JP2009032710A - Substrate processing apparatus - Google Patents

Substrate processing apparatus Download PDF

Info

Publication number
JP2009032710A
JP2009032710A JP2007191873A JP2007191873A JP2009032710A JP 2009032710 A JP2009032710 A JP 2009032710A JP 2007191873 A JP2007191873 A JP 2007191873A JP 2007191873 A JP2007191873 A JP 2007191873A JP 2009032710 A JP2009032710 A JP 2009032710A
Authority
JP
Japan
Prior art keywords
processing
liquid
inert gas
processing liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007191873A
Other languages
Japanese (ja)
Inventor
Masato Tanaka
眞人 田中
Ayumi Higuchi
鮎美 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2007191873A priority Critical patent/JP2009032710A/en
Publication of JP2009032710A publication Critical patent/JP2009032710A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively remove particles adhered to a substrate while avoiding damage to a structure formed on the substrate surface. <P>SOLUTION: A substrate processing apparatus 1 is configured to remove particles adhered to a semiconductor wafer W with minute air bubbles by imparting ultrasonic oscillation to a cooled processing liquid with a dissolved inert gas while immersing the semiconductor wafer W into the processing liquid. In the substrate processing apparatus 1, an inert gas is dissolved into the processing liquid cooled by a chiller 126 in a dissolution part 128 and the processing liquid 104, into which an inert gas is dissolved by the dissolution part 128, is stored in a processing tank 102. An ultrasonic transducer 156 imparts ultrasonic oscillation to the processing liquid 104 via the bottom part of a propagation tank 152, propagation water 154, and the bottom part of the processing tank 102. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アンモニア過水、純水等の処理液により半導体ウエハ、液晶表示装置用ガラス基板等の基板に付着したパーティクルを除去する基板処理装置に関する。   The present invention relates to a substrate processing apparatus that removes particles adhering to a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device using a processing solution such as ammonia water or pure water.

半導体ウエハに付着したパーティクルの除去は、アンモニア水等のアルカリ水溶液と過酸化水素水と純水とを混合したアンモニア過水(SC−1)等の処理液に半導体ウエハを浸漬し、化学的な作用を利用して半導体ウエハの表面からパーティクルを遊離させることにより行われるのが一般的である。この場合、処理液は常温以上に加熱されることが多い。また、半導体ウエハの表面に付着したパーティクルの除去において、メガヘルツ帯の超音波を発生させて、処理液を介して超音波振動を半導体ウエハまで伝搬させ、超音波振動による物理力を利用して半導体ウエハの表面からパーティクルを遊離させることも行われている。   The removal of the particles adhering to the semiconductor wafer is performed by immersing the semiconductor wafer in a treatment liquid such as ammonia water (SC-1) in which an alkaline aqueous solution such as ammonia water, hydrogen peroxide water and pure water are mixed, In general, it is performed by releasing particles from the surface of the semiconductor wafer by utilizing the action. In this case, the treatment liquid is often heated to room temperature or higher. In addition, in removing particles adhering to the surface of a semiconductor wafer, ultrasonic waves in the megahertz band are generated, ultrasonic vibrations are propagated to the semiconductor wafer through the processing liquid, and the semiconductor is utilized by utilizing physical force generated by the ultrasonic vibrations. Particles are also released from the surface of the wafer.

しかし、超音波振動による物理力を利用して半導体ウエハに付着したパーティクルを除去しようとすると、当該物理力により、半導体ウエハの表面に形成された構造物(例えば、シリンダー)を損傷してしまう場合がある。   However, if particles attached to the semiconductor wafer are removed using physical force generated by ultrasonic vibration, the structure (for example, cylinder) formed on the surface of the semiconductor wafer is damaged by the physical force. There is.

そこで、不活性ガスを処理液に溶解させ、処理液に溶解させた不活性ガスにクッションの役割を果たさせることにより、半導体ウエハの表面に形成された構造物の損傷を防止することも検討されている。   Therefore, it is also considered to prevent damage to the structure formed on the surface of the semiconductor wafer by dissolving the inert gas in the treatment liquid and causing the inert gas dissolved in the treatment liquid to play the role of a cushion. Has been.

なお、特許文献1及び特許文献2は、本願発明と関連する先行技術文献であり、不活性ガスを処理液に溶解させた上でメガソニック洗浄を行う技術を開示している。   Patent Document 1 and Patent Document 2 are prior art documents related to the present invention, and disclose a technique for performing megasonic cleaning after dissolving an inert gas in a treatment liquid.

特開2004−22572号公報JP 2004-22572 A 特開2004−79990号公報JP 2004-79990 A

しかしながら、半導体デバイスの構造が微細化し、半導体ウエハの表面に高アスペクト比の構造物が形成されるようになると、単に不活性ガスを溶解させた処理液を使用するという先述の損傷防止策だけでは十分な効果が得られない場合がある。また、損傷防止策のみを考慮した処理を行うと、逆にパーティクルの除去が効果的に行えないという問題がある。   However, when the structure of a semiconductor device is miniaturized and a structure having a high aspect ratio is formed on the surface of a semiconductor wafer, the above-described damage prevention measure that simply uses a processing solution in which an inert gas is dissolved is not sufficient. A sufficient effect may not be obtained. In addition, when the processing considering only damage prevention measures is performed, there is a problem that particles cannot be effectively removed.

本発明は、この問題を解決するためになされたもので、半導体ウエハ等の基板の表面に形成された構造物を損傷することを回避しつつ、基板に付着したパーティクルを効果的に除去する基板処理装置を提供することを目的とする。   The present invention was made to solve this problem, and a substrate that effectively removes particles adhering to the substrate while avoiding damaging structures formed on the surface of the substrate such as a semiconductor wafer. An object is to provide a processing apparatus.

上記課題を解決するため、請求項1の発明は、基板処理装置において、処理液を貯留する処理槽と、前記処理槽に貯留された処理液の中に基板を保持する保持手段と、前記処理槽へ処理液を供給する処理液供給手段と、前記処理液供給手段に接続され、前記処理液供給手段に処理液を供給する配管と、前記配管に設けられ、処理液を冷却させる冷却手段と、前記冷却手段が設けられた位置より下流側の配管に設けられ、前記冷却手段により冷却させられた処理液に不活性ガスを溶解させる溶解手段と、前記処理槽に貯留された処理液に超音波振動を付与する超音波振動を発生させる超音波発生手段と、を備えることを特徴とするものである。   In order to solve the above problems, the invention of claim 1 is a substrate processing apparatus, wherein a processing tank for storing a processing liquid, a holding means for holding a substrate in the processing liquid stored in the processing tank, and the processing A treatment liquid supply means for supplying a treatment liquid to the tank; a pipe connected to the treatment liquid supply means for supplying the treatment liquid to the treatment liquid supply means; and a cooling means provided in the pipe for cooling the treatment liquid. A dissolving means for dissolving an inert gas in a treatment liquid cooled by the cooling means, provided in a pipe downstream from the position where the cooling means is provided; and a treatment liquid stored in the treatment tank. And an ultrasonic wave generating means for generating an ultrasonic vibration for applying the ultrasonic vibration.

請求項2の発明は、請求項1に記載の基板処理装置において、前記処理槽に貯留された処理液の液温を測定する温度計と、前記処理槽に貯留された処理液に溶解している不活性ガスの濃度を測定する濃度計と、前記温度計により測定された液温が10℃以下でかつ、前記濃度計により測定された濃度が所定の濃度以上である場合、前記超音波発生手段の超音波の発生を開始させる制御部と、をさらに備えることを特徴とするものである。   A second aspect of the present invention is the substrate processing apparatus according to the first aspect, wherein the substrate processing apparatus is dissolved in a thermometer that measures the temperature of the processing liquid stored in the processing tank, and the processing liquid stored in the processing tank. A concentration meter that measures the concentration of the inert gas, and when the liquid temperature measured by the thermometer is 10 ° C. or less and the concentration measured by the concentration meter is a predetermined concentration or more, the generation of the ultrasonic wave And a control unit for starting generation of ultrasonic waves by the means.

請求項3の発明は、請求項2に記載の基板処理装置において、前記溶解手段により処理液に溶解させる不活性ガスの量を調整する調整手段をさらに備え、前記制御部は、前記超音波発生手段を作動させた後、前記調整手段を制御して前記溶解手段により処理液に溶解させる不活性ガスの量を増加させることを特徴とするものである。   According to a third aspect of the present invention, in the substrate processing apparatus according to the second aspect of the present invention, the substrate processing apparatus further includes an adjusting unit that adjusts an amount of an inert gas dissolved in the processing liquid by the dissolving unit, and the control unit generates the ultrasonic wave After operating the means, the adjusting means is controlled to increase the amount of inert gas dissolved in the processing liquid by the dissolving means.

請求項4の発明は、請求項3に記載の基板処理装置において、前記制御部は、濃度計により測定された濃度に基づいて、前記調整手段を制御して前記溶解手段により処理液に溶解させる不活性ガスの量を増加させることを特徴とするものである。   According to a fourth aspect of the present invention, in the substrate processing apparatus according to the third aspect, the control unit controls the adjusting means based on the concentration measured by the densitometer and dissolves it in the processing liquid by the dissolving means. The amount of the inert gas is increased.

本発明によれば、冷却手段により冷却された処理液に不活性ガスを溶解させているので、微小気泡を処理液の中に大量に発生させることができ、基板の表面に形成された構造物を損傷することなく、基板に付着したパーティクルを効果的に除去することができる。   According to the present invention, since the inert gas is dissolved in the processing liquid cooled by the cooling means, a large amount of microbubbles can be generated in the processing liquid, and the structure formed on the surface of the substrate. The particles adhering to the substrate can be effectively removed without damaging the substrate.

請求項2の発明によれば、処理液に溶解している不活性ガスの量が増加するとともに処理液の密度が高くなってから超音波振動を付与しているので、基板に付着したパーティクルをより効果的に除去することができる。   According to the invention of claim 2, since the amount of the inert gas dissolved in the processing liquid is increased and the ultrasonic vibration is applied after the density of the processing liquid is increased, the particles adhering to the substrate are removed. It can be removed more effectively.

請求項3の発明によれば、超音波発生手段を作動させた後、溶解手段により処理液に溶解させる不活性ガスの量を増加させるので、処理液への超音波振動の付与により低下した処理液中の不活性ガスの濃度を回復することができる。   According to the invention of claim 3, since the amount of the inert gas dissolved in the treatment liquid by the dissolving means is increased after the ultrasonic wave generating means is operated, the treatment decreased by application of ultrasonic vibration to the treatment liquid. The concentration of the inert gas in the liquid can be recovered.

<1 基板処理装置の構成>
図1は、本発明の望ましい実施形態に係る基板処理装置1の模式図である。基板処理装置1は、冷却しかつ不活性ガスを溶解させた処理液に半導体ウエハWを浸漬させた状態で、処理液に超音波振動を付与することにより、半導体ウエハWに付着したパーティクルを除去するものである。基板処理装置1は、複数枚の半導体ウエハWを同時に処理するバッチ式の洗浄装置である。また、基板処理装置1は、半導体ウエハWの他、液晶表示装置用ガラス基板、プラズマディスプレイパネル用ガラス基板、磁気ディスク用又は光ディスク用のガラス基板又はセラミックス基板等の各種基板も処理することができる。
<1. Configuration of substrate processing apparatus>
FIG. 1 is a schematic view of a substrate processing apparatus 1 according to a preferred embodiment of the present invention. The substrate processing apparatus 1 removes particles adhering to the semiconductor wafer W by applying ultrasonic vibration to the processing liquid while the semiconductor wafer W is immersed in a processing liquid that has been cooled and dissolved with an inert gas. To do. The substrate processing apparatus 1 is a batch type cleaning apparatus that processes a plurality of semiconductor wafers W simultaneously. In addition to the semiconductor wafer W, the substrate processing apparatus 1 can process various substrates such as a glass substrate for a liquid crystal display device, a glass substrate for a plasma display panel, a glass substrate for a magnetic disk or an optical disk, or a ceramic substrate. .

図1に示すように、基板処理装置1は、主に、処理槽102、伝搬槽152、超音波振動子156、リフタ158及び制御部160を備える。   As shown in FIG. 1, the substrate processing apparatus 1 mainly includes a processing tank 102, a propagation tank 152, an ultrasonic transducer 156, a lifter 158, and a control unit 160.

図1に断面を示す処理槽102は、内部に処理液104を貯留しており、基板処理装置1において同時に処理される複数枚の半導体ウエハWを貯留している処理液104に浸漬することができる容器形状を有している。処理液104としては、純水や、純水と他の溶液とを混合した混合液、例えば、純水と過酸化水素水(H2O2)とアンモニア水(NH3)とを容積比で100:2:1の割合で混合した混合液(SC−1)を採用することができる。 The processing tank 102 whose cross section is shown in FIG. 1 stores the processing liquid 104 therein, and can be immersed in the processing liquid 104 storing a plurality of semiconductor wafers W processed simultaneously in the substrate processing apparatus 1. It has a container shape. As the treatment liquid 104, pure water or a mixed liquid obtained by mixing pure water and other solutions, for example, pure water, hydrogen peroxide water (H 2 O 2 ), and ammonia water (NH 3 ) in a volume ratio. A mixed liquid (SC-1) mixed at a ratio of 100: 2: 1 can be employed.

処理槽102の内底面の近傍には、供給された処理液を処理槽102の内部に向かって吐出する一対のノズル106が設けられている。この一対のノズル106には、それぞれ半導体ウエハWの配列方向に沿って、処理液104を処理槽102内へ吐出するための複数個の吐出孔が形成されている。処理槽102の外側面の上端の近傍には、処理槽102の上部からあふれ出した処理液を回収する外槽108が設けられている。   A pair of nozzles 106 for discharging the supplied processing liquid toward the inside of the processing tank 102 is provided in the vicinity of the inner bottom surface of the processing tank 102. A plurality of discharge holes for discharging the processing liquid 104 into the processing tank 102 are formed in the pair of nozzles 106 along the arrangement direction of the semiconductor wafers W, respectively. In the vicinity of the upper end of the outer surface of the processing tank 102, an outer tank 108 for collecting the processing liquid overflowing from the upper part of the processing tank 102 is provided.

また、処理槽102の内部には、処理液104の液温を測定する温度計110と、処理液104に溶解している不活性ガスの濃度を測定する濃度計112とが設けられ、温度計110及び濃度計112の測定結果は制御部160によって取得されている。   In addition, a thermometer 110 that measures the temperature of the treatment liquid 104 and a concentration meter 112 that measures the concentration of an inert gas dissolved in the treatment liquid 104 are provided inside the treatment tank 102. The measurement results of 110 and the densitometer 112 are acquired by the control unit 160.

基板処理装置1は、処理槽102を出て処理槽102へ戻る処理液の循環経路を構成する配管122を備える。この配管122は、一端がノズル106に、他端が外槽108の底部に接続されており、上流から下流に向かって順に、処理液を送液するポンプ124と、処理液を冷却するチラー126と、不活性ガスを処理液に溶解させる溶解部128と、処理液中の浮遊物を濾過するフィルタ130が設けられている。ポンプ124及びチラー126の動作は、制御部160によって制御されている。基板処理装置1では、ポンプ124で処理液を送液することにより、配管122に処理液104を循環させ、外槽108において回収した処理液をノズル106を介して処理槽102へ再供給する。   The substrate processing apparatus 1 includes a pipe 122 that constitutes a circulation path of the processing liquid that leaves the processing tank 102 and returns to the processing tank 102. The pipe 122 has one end connected to the nozzle 106 and the other end connected to the bottom of the outer tub 108, and a pump 124 for feeding the processing liquid in order from upstream to downstream, and a chiller 126 for cooling the processing liquid. And a dissolving unit 128 for dissolving the inert gas in the processing liquid, and a filter 130 for filtering floating substances in the processing liquid. The operations of the pump 124 and the chiller 126 are controlled by the control unit 160. In the substrate processing apparatus 1, the processing liquid 104 is circulated through the pipe 122 by feeding the processing liquid with the pump 124, and the processing liquid collected in the outer tank 108 is re-supplied to the processing tank 102 through the nozzle 106.

溶解部128には、不活性ガスの供給経路となる配管142の一端が接続されている。配管142には、配管142を開閉するバルブ144と、不活性ガスの流量を制御する流量制御器146とが設けられ、配管142の他端には、不活性ガスの供給源148が接続されている。不活性ガスとしては、例えば、窒素ガス(N2)を採用することができる。バルブ144及び流量制御器146の動作は、制御部160によって制御されている。 One end of a pipe 142 serving as an inert gas supply path is connected to the dissolving portion 128. The pipe 142 is provided with a valve 144 for opening and closing the pipe 142 and a flow rate controller 146 for controlling the flow rate of the inert gas, and an inert gas supply source 148 is connected to the other end of the pipe 142. Yes. For example, nitrogen gas (N 2 ) can be employed as the inert gas. The operations of the valve 144 and the flow rate controller 146 are controlled by the control unit 160.

図2は、溶解部128の模式図である。図2に示すように、溶解部128は、主に、本体172と、処理液取入口180と、処理液送出口186と、不活性ガス導入口182,184とを備える。溶解部128は、処理液取入口180から取り入れた処理液104に、不活性ガス導入口182,184から導入した不活性ガスを溶解させて、処理液送出口186から送り出す。   FIG. 2 is a schematic diagram of the dissolving portion 128. As shown in FIG. 2, the dissolving unit 128 mainly includes a main body 172, a processing liquid inlet 180, a processing liquid outlet 186, and inert gas inlets 182 and 184. The dissolving unit 128 dissolves the inert gas introduced from the inert gas inlets 182 and 184 in the processing liquid 104 taken from the processing liquid inlet 180 and sends it out from the processing liquid outlet 186.

図2に斜上方から見た状態を示す本体172は、両端が閉じられた円筒容器174に給液管176と多数の中空糸分離膜178とを内蔵させた構造を有している。   2 has a structure in which a liquid supply pipe 176 and a large number of hollow fiber separation membranes 178 are built in a cylindrical container 174 closed at both ends.

給液管176は、円筒容器174の円筒軸上に配置されており、円筒容器174の第1の端面に設けられた処理液取入口180と接続されている。給液管176は、処理液取入口180から取り入れた処理液を円筒容器174の内部に導き、円筒容器174の内部において処理液を円筒容器174の径方向D1に吐出する。これにより、円筒容器174の内部は処理液で満たされることになる。   The liquid supply pipe 176 is disposed on the cylindrical axis of the cylindrical container 174 and is connected to a processing liquid inlet 180 provided on the first end face of the cylindrical container 174. The liquid supply pipe 176 guides the processing liquid taken from the processing liquid inlet 180 into the cylindrical container 174 and discharges the processing liquid in the radial direction D1 of the cylindrical container 174 inside the cylindrical container 174. Thereby, the inside of the cylindrical container 174 is filled with the processing liquid.

細筒状の中空糸分離膜178は、給液管176の周りに同軸状に配置されており、円筒容器174の第1の端面に設けられた不活性ガス導入口182又は円筒容器174の第2の端面に設けられた不活性ガス導入口184に接続されている。中空糸分離膜178は、不活性ガスを透過するが、処理液104を透過しない材質で構成されている。これにより、中空糸分離膜178が処理液に浸漬された状態で不活性ガス導入口182,184に不活性ガスが加圧供給されると、中空糸分離膜178を経由して処理液の中に不活性ガスが供給され、処理液に不活性ガスが溶解させられる。ここで、溶解部128において処理液に溶解させる不活性ガスの量は、流量制御器146によって調整される。   The thin cylindrical hollow fiber separation membrane 178 is coaxially disposed around the liquid supply pipe 176, and the inert gas inlet 182 provided on the first end surface of the cylindrical container 174 or the first of the cylindrical container 174 is provided. 2 is connected to an inert gas inlet 184 provided on the end face of the second end. The hollow fiber separation membrane 178 is made of a material that transmits an inert gas but does not transmit the treatment liquid 104. As a result, when the inert gas is pressurized and supplied to the inert gas inlets 182 and 184 while the hollow fiber separation membrane 178 is immersed in the treatment liquid, the inside of the treatment liquid passes through the hollow fiber separation membrane 178. An inert gas is supplied to the solution, and the inert gas is dissolved in the treatment liquid. Here, the amount of the inert gas dissolved in the treatment liquid in the dissolving unit 128 is adjusted by the flow rate controller 146.

図1に戻って説明すると、処理槽102の下方には、処理槽102に超音波振動を伝搬する伝搬水154を貯留する伝搬槽152が配置されており、処理槽102の底部は伝搬水154に浸漬されている。さらに、この伝搬槽152の外底部には、メガヘルツ帯の超音波振動を発生する超音波振動子156が取り付けられている。超音波振動子156の動作は、制御部160によって制御されている。超音波振動子156により発生された超音波振動は、伝搬槽152の底部、伝搬水154及び処理槽102の底部を介して、処理液104に付与される。   Referring back to FIG. 1, a propagation tank 152 that stores propagation water 154 that propagates ultrasonic vibrations to the treatment tank 102 is disposed below the treatment tank 102, and the bottom of the treatment tank 102 is the propagation water 154. Soaked in Further, an ultrasonic transducer 156 that generates megahertz ultrasonic vibration is attached to the outer bottom of the propagation tank 152. The operation of the ultrasonic transducer 156 is controlled by the control unit 160. The ultrasonic vibration generated by the ultrasonic vibrator 156 is applied to the treatment liquid 104 via the bottom of the propagation tank 152, the propagation water 154, and the bottom of the treatment tank 102.

リフタ158は、基板処理装置1において同時に処理される複数の半導体ウエハW(例えば、50枚)を所定の間隔を置いて保持した状態で、図示しない駆動機構により処理槽102内の処理位置と処理槽の上方位置との間を上下方向に移動する。なお駆動機構によるリフタ158の動作は、制御部160によって制御されている。   The lifter 158 holds a plurality of semiconductor wafers W (for example, 50 wafers) that are simultaneously processed in the substrate processing apparatus 1 at a predetermined interval, and a processing position and processing in the processing tank 102 by a driving mechanism (not shown). It moves up and down between the upper position of the tank. The operation of the lifter 158 by the drive mechanism is controlled by the control unit 160.

なお、リフタ158は、前工程から受け取った半導体ウエハWを処理槽102内の処理液104に浸漬し、半導体ウエハWを処理液104の中に保持し、処理液104に浸漬されている半導体ウエハWを引き上げて次行程へ受け渡す。   The lifter 158 immerses the semiconductor wafer W received from the previous process in the processing liquid 104 in the processing bath 102, holds the semiconductor wafer W in the processing liquid 104, and is immersed in the processing liquid 104. Raise W and hand it over to the next process.

制御部160は、組み込みコンピュータを含んで構成され、上述したように、基板処理装置1の各構成を統括制御する。   The control unit 160 is configured to include an embedded computer, and comprehensively controls each component of the substrate processing apparatus 1 as described above.

<2 基板処理装置の動作>
図3は、半導体ウエハWに付着したパーティクルを除去する際の基板処理装置1の動作を説明する流れ図である。
<2. Operation of substrate processing apparatus>
FIG. 3 is a flowchart for explaining the operation of the substrate processing apparatus 1 when particles adhering to the semiconductor wafer W are removed.

半導体ウエハWの処理に当たっては、最初に、制御部160の制御を受けて、ポンプ124の運転が開始され、処理液の循環が開始される(ステップS101)。   In processing the semiconductor wafer W, first, the operation of the pump 124 is started under the control of the control unit 160, and the circulation of the processing liquid is started (step S101).

次に、制御部160の制御を受けて、チラー126の運転が開始され、処理液の冷却が開始されるとともに(ステップS102)、バルブ144が開かれ、溶解部128への不活性ガスの供給が開始される(ステップS103)。これにより、基板処理装置1では、溶解部128において、チラー126により冷却された処理液に不活性ガスが溶解させられ、溶解部128により不活性ガスが溶解させられた処理液104が、配管122を介して一対のノズル106から処理槽102内に供給される。   Next, under the control of the control unit 160, the operation of the chiller 126 is started, the cooling of the processing liquid is started (step S102), the valve 144 is opened, and the inert gas is supplied to the dissolving unit 128. Is started (step S103). Accordingly, in the substrate processing apparatus 1, the inert gas is dissolved in the processing liquid cooled by the chiller 126 in the dissolving unit 128, and the processing liquid 104 in which the inert gas is dissolved by the dissolving unit 128 is added to the pipe 122. Is supplied from the pair of nozzles 106 into the processing tank 102.

続いて、制御部160は、温度計110により測定された液温及び濃度計112により測定された濃度を取得し(ステップS104)、液温が所定値以下かつ濃度が所定値以上(例えば、不活性ガスの濃度が飽和濃度に近い値)となると(ステップS105で"YES")、超音波振動子156を動作させて、処理液104への超音波振動の付与を開始する(ステップS106)。この超音波振動により、半導体ウエハWに付着したパーティクルの除去に寄与する微小気泡(キャビティ)が処理液104の中に発生する。   Subsequently, the control unit 160 acquires the liquid temperature measured by the thermometer 110 and the concentration measured by the concentration meter 112 (step S104), and the liquid temperature is equal to or lower than a predetermined value and the concentration is equal to or higher than a predetermined value (for example, a non-standard value). When the concentration of the active gas reaches a value close to the saturation concentration (“YES” in step S105), the ultrasonic vibrator 156 is operated to start applying ultrasonic vibration to the processing liquid 104 (step S106). Due to this ultrasonic vibration, micro bubbles (cavities) that contribute to the removal of particles adhering to the semiconductor wafer W are generated in the processing liquid 104.

一方、制御部160は、温度が所定値以下となっていない場合又は濃度が所定値以上となっていない場合は(ステップS105で"NO")、ステップS104へ戻って液温及び濃度を再び取得する。これにより、基板処理装置1では、液温が所定値以下かつ濃度が所定値以上となるまでは、処理液104への超音波振動の付与が開始されないことになる。   On the other hand, if the temperature is not lower than the predetermined value or the concentration is not higher than the predetermined value ("NO" in step S105), the control unit 160 returns to step S104 and acquires the liquid temperature and concentration again. To do. Thereby, in the substrate processing apparatus 1, the application of ultrasonic vibration to the processing liquid 104 is not started until the liquid temperature is equal to or lower than the predetermined value and the concentration is equal to or higher than the predetermined value.

このように液温及び濃度を管理するようにしたのは、以下の理由による。図4は、処理液中の微小気泡の状態を示す図であり、図4(a)は従来の技術、図4(b)は本発明の技術を示している。   The reason for controlling the liquid temperature and concentration in this way is as follows. 4A and 4B are diagrams showing the state of microbubbles in the processing liquid. FIG. 4A shows the prior art and FIG. 4B shows the technique of the present invention.

図4(a)に示す従来の技術では、常温において不活性ガスを処理液に溶け込ませており、処理槽内の処理液に超音波振動を付与すると、微小気泡が発生する。この微小気泡はさらなる超音波振動の付与により、大小に変化し、最終的には微小気泡が破裂し、この微小気泡の破裂の衝撃により、半導体ウエハWの表面のパーティクルが除去される。   In the conventional technique shown in FIG. 4A, an inert gas is dissolved in the processing liquid at room temperature. When ultrasonic vibration is applied to the processing liquid in the processing tank, microbubbles are generated. The microbubbles are changed in size by application of further ultrasonic vibration, and finally the microbubbles are ruptured, and particles on the surface of the semiconductor wafer W are removed by the impact of the rupture of the microbubbles.

しかしながら、処理液中で発生する微小気泡の数が少ないので、微小気泡の破裂の衝撃によるパーティクル除去が十分ではない。また、微小気泡のサイズが大きく、数も少ないので、微小気泡間を通り抜けた超音波振動が半導体ウエハの表面に形成された構造物への損傷を与えてしまうことになる。   However, since the number of microbubbles generated in the processing liquid is small, particle removal by impact of bursting of microbubbles is not sufficient. In addition, since the size of the microbubbles is large and the number thereof is small, the ultrasonic vibration that has passed through the microbubbles will damage the structure formed on the surface of the semiconductor wafer.

それに対して、本発明の技術では、まず、チラー126により処理液の液温を10℃以下にすると、処理液104の密度が高くなるので、常温時に比べて溶解部128において不活性ガスが多量に溶け込むことになり、処理液中における不活性ガスの溶存量が従来の技術に比べて増加する。不活性ガスの溶存量が増加した処理液に超音波振動子156からの超音波振動を付与すると、処理液内の多くの微小気泡(キャビティ)が発生する。このとき処理液を冷却したことにより処理液の密度が増加しているため、常温時に比べて微小気泡のサイズは小さくなるとともに、微小気泡の密度も向上するので、微小気泡が大量に発生する(図4(b))。   On the other hand, in the technique of the present invention, when the temperature of the processing liquid is first set to 10 ° C. or less by the chiller 126, the density of the processing liquid 104 increases. Therefore, the dissolved amount of the inert gas in the treatment liquid is increased as compared with the conventional technique. When ultrasonic vibration from the ultrasonic vibrator 156 is applied to the treatment liquid in which the dissolved amount of the inert gas is increased, many micro bubbles (cavities) in the treatment liquid are generated. Since the density of the processing liquid is increased by cooling the processing liquid at this time, the size of the microbubbles is smaller than that at normal temperature and the density of the microbubbles is improved, so that a large amount of microbubbles are generated ( FIG. 4 (b)).

さらに、この微小気泡に超音波振動を付与し続けると、超音波振動により微小気泡が大小に変化し、最終的には大量の微小気泡が破裂し、この微小気泡の破裂の衝撃により、従来の技術に比べて、半導体ウエハWに付着した表面のパーティクルを効果的に除去できる。また、このとき、処理液中に微小気泡が大量に発生しているので、超音波振動子156からの超音波振動は、多量の微小気泡により緩和させられ(図4(b))、半導体ウエハの表面に形成された構造物への損傷を防止できることになる。   Furthermore, if ultrasonic vibration is continuously applied to the microbubbles, the microbubbles are changed into large and small by the ultrasonic vibration, and finally a large amount of microbubbles are ruptured. Compared with the technique, particles on the surface attached to the semiconductor wafer W can be effectively removed. At this time, since a large amount of microbubbles are generated in the processing liquid, the ultrasonic vibration from the ultrasonic transducer 156 is relaxed by the large amount of microbubbles (FIG. 4B), and the semiconductor wafer. It is possible to prevent damage to the structure formed on the surface.

続いて、制御部160は、濃度計112による不活性ガスの濃度の検出結果に基づいて、流量制御器146を制御して、溶解部128に供給する不活性ガスの量を増加させ、溶解部128において溶解させる不活性ガスの量を増加させる(ステップS107)。このように、超音波振動子156を作動させた後、処理液104に溶解させる不活性ガスの量を増加させているので、超音波振動の付与により低下した不活性ガスの濃度を確実に回復できる。   Subsequently, the control unit 160 controls the flow rate controller 146 based on the detection result of the inert gas concentration by the densitometer 112 to increase the amount of the inert gas supplied to the dissolving unit 128, thereby In 128, the amount of the inert gas dissolved is increased (step S107). As described above, since the amount of the inert gas dissolved in the processing liquid 104 is increased after the ultrasonic vibrator 156 is operated, the concentration of the inert gas lowered by the application of the ultrasonic vibration is reliably recovered. it can.

しかる後に、制御部160の制御を受けて、リフタ158が半導体ウエハWを処理液104に浸漬し、処理液104の中に半導体ウエハWを所定時間保持する(ステップS108)。これにより、半導体ウエハWに付着したパーティクルが、微小気泡の破裂に伴い除去されることになる。   Thereafter, under the control of the controller 160, the lifter 158 immerses the semiconductor wafer W in the processing liquid 104, and holds the semiconductor wafer W in the processing liquid 104 for a predetermined time (step S108). Thereby, the particles adhering to the semiconductor wafer W are removed along with the bursting of the microbubbles.

<3 処理液の温度>
処理液104の液温は、処理液104の凝固点以上であって、処理液104の密度ができるだけ高くなるようにすることが望ましい。したがって、望ましい処理液104の液温は、処理液104の種類によって異なってくるが、純水を主成分とする処理液104の場合は、密度がある程度大きくなる0℃以上20℃以下とすることが望ましく、0℃以上10℃以下とすることがさらに望ましい。この範囲内ならば、図5に示すように、処理液104の密度を高くすることができるからである。なお、図5は、純水の密度の液温に対する依存性を示すグラフである。
<3 Treatment liquid temperature>
It is desirable that the temperature of the processing liquid 104 is equal to or higher than the freezing point of the processing liquid 104 and the density of the processing liquid 104 is as high as possible. Accordingly, the desired liquid temperature of the processing liquid 104 varies depending on the type of the processing liquid 104. However, in the case of the processing liquid 104 containing pure water as a main component, the temperature is set to 0 ° C. or higher and 20 ° C. or lower where the density increases to some extent. Is desirable, and it is more desirable to set it as 0 degreeC or more and 10 degrees C or less. This is because the density of the treatment liquid 104 can be increased within this range, as shown in FIG. FIG. 5 is a graph showing the dependence of the density of pure water on the liquid temperature.

実施形態に係る基板処理装置の模式図である。It is a schematic diagram of the substrate processing apparatus which concerns on embodiment. 溶解部128の模式図である。It is a schematic diagram of the melt | dissolution part. 実施形態の基板処理装置の動作を説明する流れ図である。It is a flowchart explaining operation | movement of the substrate processing apparatus of embodiment. 処理液中の微小気泡の状態を示す図である。It is a figure which shows the state of the microbubble in a process liquid. 純水の密度の液温に対する依存性を示す図である。It is a figure which shows the dependence with respect to the liquid temperature of the density of a pure water.

符号の説明Explanation of symbols

1 基板処理装置
102 処理槽
104 処理液
126 チラー
128 溶解部
156 超音波振動子
158 リフタ
160 制御部
DESCRIPTION OF SYMBOLS 1 Substrate processing apparatus 102 Processing tank 104 Processing liquid 126 Chiller 128 Melting | dissolving part 156 Ultrasonic vibrator 158 Lifter 160 Control part

Claims (4)

処理液を貯留する処理槽と、
前記処理槽に貯留された処理液の中に基板を保持する保持手段と、
前記処理槽へ処理液を供給する処理液供給手段と、
前記処理液供給手段に接続され、前記処理液供給手段に処理液を供給する配管と、
前記配管に設けられ、処理液を冷却させる冷却手段と、
前記冷却手段が設けられた位置より下流側の配管に設けられ、前記冷却手段により冷却させられた処理液に不活性ガスを溶解させる溶解手段と、
前記処理槽に貯留された処理液に超音波振動を付与する超音波振動を発生させる超音波発生手段と、
を備えることを特徴とする基板処理装置。
A treatment tank for storing the treatment liquid;
Holding means for holding the substrate in the processing liquid stored in the processing tank;
Treatment liquid supply means for supplying a treatment liquid to the treatment tank;
A pipe connected to the processing liquid supply means and supplying the processing liquid to the processing liquid supply means;
A cooling means provided in the pipe for cooling the treatment liquid;
Dissolving means for dissolving an inert gas in a treatment liquid provided in a downstream pipe from a position where the cooling means is provided, and cooled by the cooling means;
Ultrasonic generation means for generating ultrasonic vibrations for applying ultrasonic vibrations to the processing liquid stored in the processing tank;
A substrate processing apparatus comprising:
前記処理槽に貯留された処理液の液温を測定する温度計と、
前記処理槽に貯留された処理液に溶解している不活性ガスの濃度を測定する濃度計と、
前記温度計により測定された液温が10℃以下でかつ、前記濃度計により測定された濃度が所定の濃度以上である場合、前記超音波発生手段の超音波の発生を開始させる制御部と、
をさらに備えることを特徴とする請求項1に記載の基板処理装置。
A thermometer for measuring the temperature of the processing liquid stored in the processing tank;
A concentration meter that measures the concentration of the inert gas dissolved in the treatment liquid stored in the treatment tank;
When the liquid temperature measured by the thermometer is 10 ° C. or lower and the concentration measured by the densitometer is equal to or higher than a predetermined concentration, a control unit that starts generation of ultrasonic waves of the ultrasonic wave generation unit;
The substrate processing apparatus according to claim 1, further comprising:
前記溶解手段により処理液に溶解させる不活性ガスの量を調整する調整手段をさらに備え、
前記制御部は、前記超音波発生手段を作動させた後、前記調整手段を制御して前記溶解手段により処理液に溶解させる不活性ガスの量を増加させることを特徴とする請求項2に記載の基板処理装置。
An adjusting means for adjusting the amount of inert gas dissolved in the treatment liquid by the dissolving means;
3. The control unit according to claim 2, wherein, after operating the ultrasonic wave generation unit, the control unit controls the adjustment unit to increase the amount of an inert gas dissolved in the processing liquid by the dissolution unit. Substrate processing equipment.
前記制御部は、濃度計により測定された濃度に基づいて、前記調整手段を制御して前記溶解手段により処理液に溶解させる不活性ガスの量を増加させることを特徴とする請求項3に記載の基板処理装置。   The said control part controls the said adjustment means based on the density | concentration measured by the densitometer, and increases the quantity of the inert gas dissolved in a process liquid by the said dissolution means. Substrate processing equipment.
JP2007191873A 2007-07-24 2007-07-24 Substrate processing apparatus Pending JP2009032710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191873A JP2009032710A (en) 2007-07-24 2007-07-24 Substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191873A JP2009032710A (en) 2007-07-24 2007-07-24 Substrate processing apparatus

Publications (1)

Publication Number Publication Date
JP2009032710A true JP2009032710A (en) 2009-02-12

Family

ID=40402963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191873A Pending JP2009032710A (en) 2007-07-24 2007-07-24 Substrate processing apparatus

Country Status (1)

Country Link
JP (1) JP2009032710A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225995A (en) * 2009-03-25 2010-10-07 Toshiba Corp Cleaning device and cleaning method, of semiconductor substrate
JP2010240529A (en) * 2009-04-01 2010-10-28 Kao Corp Ultrasonic cleaning method
JP2013135037A (en) * 2011-12-26 2013-07-08 Siltronic Ag Ultrasonic cleaning method
JP2013157443A (en) * 2012-01-30 2013-08-15 Siltronic Ag Cleaning method
JP2013247186A (en) * 2012-05-24 2013-12-09 Siltronic Ag Ultrasonic cleaning method and ultrasonic cleaning device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225664A (en) * 1996-12-10 1998-08-25 Japan Organo Co Ltd Wet treating device
JP2005262031A (en) * 2004-03-17 2005-09-29 Kurita Water Ind Ltd Circulation type gas-dissolved water feed device and operation method for the device
JP2007150164A (en) * 2005-11-30 2007-06-14 Renesas Technology Corp Substrate washing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225664A (en) * 1996-12-10 1998-08-25 Japan Organo Co Ltd Wet treating device
JP2005262031A (en) * 2004-03-17 2005-09-29 Kurita Water Ind Ltd Circulation type gas-dissolved water feed device and operation method for the device
JP2007150164A (en) * 2005-11-30 2007-06-14 Renesas Technology Corp Substrate washing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225995A (en) * 2009-03-25 2010-10-07 Toshiba Corp Cleaning device and cleaning method, of semiconductor substrate
JP2010240529A (en) * 2009-04-01 2010-10-28 Kao Corp Ultrasonic cleaning method
JP2013135037A (en) * 2011-12-26 2013-07-08 Siltronic Ag Ultrasonic cleaning method
JP2013157443A (en) * 2012-01-30 2013-08-15 Siltronic Ag Cleaning method
JP2013247186A (en) * 2012-05-24 2013-12-09 Siltronic Ag Ultrasonic cleaning method and ultrasonic cleaning device

Similar Documents

Publication Publication Date Title
TWI405622B (en) Improved ultrasonic cleaning fluid, method and apparatus
KR101612633B1 (en) Substrate cleaning method and substrate cleaning apparatus
JP2008021672A (en) Ultrasonic cleaning method and cleaning device using gas supersaturation solution
JP4999338B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
JP4705517B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
JP5122662B2 (en) Surface cleaning method and apparatus
JP2007311756A (en) Ultrasonic cleaner and ultrasonic cleaning method
JP2006310456A (en) Particle removing method and substrate processing equipment
JP2003234320A (en) Method, chemical liquid, and device for cleaning substrate, and semiconductor device
KR101062255B1 (en) Method, apparatus for cleaning substrate and program recording medium
JP2009032710A (en) Substrate processing apparatus
JP5891085B2 (en) Substrate processing apparatus and substrate processing method
JP5015717B2 (en) Substrate cleaning device
JP2007059868A (en) Substrate processing equipment
JP2007173677A (en) Substrate processing apparatus
JP2009054919A (en) Substrate processing device
JP2006179765A (en) Substrate processing apparatus and particle removing method
JP2011077135A (en) Method of determining ultrasonic cleaning condition of substrate, and substrate cleaning device using the same
TWI362066B (en)
JP2010046570A (en) Apparatus for manufacturing feed liquid for ultrasonic treatment apparatus, method for manufacturing feed liquid for ultrasonic treatment apparatus and ultrasonic treatment system
JP2006179764A (en) Substrate processing apparatus and particle removing method
JP5015763B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and program recording medium
JP2009054717A (en) Substrate processing device
JP2007152207A (en) Ultrasonic washing apparatus
JP4842794B2 (en) Substrate processing apparatus, substrate processing method, substrate processing program, and program recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A521 Written amendment

Effective date: 20110128

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20111104

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120501