JP2003234320A - Method, chemical liquid, and device for cleaning substrate, and semiconductor device - Google Patents

Method, chemical liquid, and device for cleaning substrate, and semiconductor device

Info

Publication number
JP2003234320A
JP2003234320A JP2002029348A JP2002029348A JP2003234320A JP 2003234320 A JP2003234320 A JP 2003234320A JP 2002029348 A JP2002029348 A JP 2002029348A JP 2002029348 A JP2002029348 A JP 2002029348A JP 2003234320 A JP2003234320 A JP 2003234320A
Authority
JP
Japan
Prior art keywords
cleaning
pure water
dissolved nitrogen
supply line
nitrogen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002029348A
Other languages
Japanese (ja)
Inventor
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2002029348A priority Critical patent/JP2003234320A/en
Priority to US10/357,344 priority patent/US20030150477A1/en
Publication of JP2003234320A publication Critical patent/JP2003234320A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/40Specific cleaning or washing processes
    • C11D2111/46Specific cleaning or washing processes applying energy, e.g. irradiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Surface Treatment Of Glass (AREA)
  • Detergent Compositions (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method, a cleaning chemical, and a cleaning device that exhibits high performance for removing particles on a substrate, and to provide a semiconductor device. <P>SOLUTION: The cleaning method of a substrate includes a first process for adjusting the concentration of dissolved nitrogen in demineralized water to the equilibrium concentration of dissolved nitrogen with air (approximately 16 ppm) or lower on a demineralized water supply line for supplying the demineralized water, and a second process for supplying a cleaning chemical that is prepared by mixing the demineralized water adjusted by the first process with at least hydrogen peroxide water to a cleaning tank, and for applying an ultrasonic wave to the cleaning chemical in which the substrate is dipped for cleaning. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を印加して
基板の洗浄を行なう基板の洗浄方法、洗浄薬液、洗浄装
置及び半導体装置に関し、特に、基板に付着したパーテ
ィクル除去性能の高い基板の洗浄方法、洗浄薬液、洗浄
装置及び半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate cleaning method for cleaning a substrate by applying ultrasonic waves, a cleaning liquid chemical, a cleaning device, and a semiconductor device. The present invention relates to a cleaning method, a cleaning chemical solution, a cleaning device, and a semiconductor device.

【0002】[0002]

【従来の技術】従来、半導体基板、液晶ガラス基板、磁
気ディスク等の基板に付着したパーティクル等の除去
は、洗浄槽内に収容された洗浄薬液中に基板を浸漬し、
これに超音波を印加して行っている。
2. Description of the Related Art Conventionally, the removal of particles and the like adhering to substrates such as semiconductor substrates, liquid crystal glass substrates, and magnetic disks is performed by immersing the substrate in a cleaning chemical solution contained in a cleaning tank.
Ultrasonic waves are applied to this.

【0003】従来の半導体基板の洗浄方法(超音波洗浄
方法)について図面を用いて説明する。図6を参照する
と、NHOH(アンモニア水)、H(過酸化水
素水)、純水(超純水)を供給する各工場ラインから個
別にミキシングバルブに供給される。ミキシングバルブ
において供給されたNHOH、H、純水は混合
され、APM薬液として洗浄槽に供給される。洗浄槽に
収容されたAPM薬液中に半導体基板が浸漬されてお
り、APM薬液に対してメガソニック(数100kHz
の超音波)が印加される。半導体基板は、APM薬液の
化学的作用を受けて、基板表面に薄膜ができ、薄膜がで
きる前に比べてパーティクル(粒子状不純物)がわずか
に浮き上がる(以下、これを「リフトアップ」とい
う)。リフトアップされたパーティクル(粒子状不純
物)は、NHOHによるエッチング作用及びメガソニ
ックによるAPM薬液分子揺動(媒体作用力)によっ
て、基板表面にできた薄膜とともに物理的に引き離され
(剥がされ)、薬液廃液とともに槽外に排出される。こ
のようにして基板表面に付着したパーティクルが除去さ
れるというものである。
A conventional semiconductor substrate cleaning method (ultrasonic cleaning method) will be described with reference to the drawings. Referring to FIG. 6, NH 4 OH (ammonia water), H 2 O 2 (hydrogen peroxide water) and pure water (ultra pure water) are individually supplied to the mixing valve from each factory line. NH 4 OH, H 2 O 2 and pure water supplied in the mixing valve are mixed and supplied to the cleaning tank as an APM chemical solution. The semiconductor substrate is immersed in the APM chemical solution stored in the cleaning tank, and the megasonic (several hundred kHz) is applied to the APM chemical solution.
Ultrasonic waves) are applied. The semiconductor substrate is subjected to the chemical action of the APM chemical solution to form a thin film on the substrate surface, and particles (particulate impurities) are slightly lifted as compared to before the thin film is formed (hereinafter, this is referred to as “lift-up”). The lifted-up particles (particulate impurities) are physically separated (peeled) together with the thin film formed on the substrate surface by the etching action by NH 4 OH and the APM chemical liquid molecule oscillation (medium action force) by megasonics. , Together with the waste chemical liquid, is discharged out of the tank. In this way, the particles attached to the substrate surface are removed.

【0004】ここで用いられる純水には、溶存酸素、溶
存窒素、溶存炭酸ガスなどの溶存ガスを真空脱気した超
純水を用いるというのが通説となっていた。その理由
は、超純水を用いると、メガソニックによる溶存ガスの
気泡化(気泡性キャビテーション)が抑えられ、その結
果、メガソニックのエネルギーをAPM薬液分子揺動に
より多く振り向けることができるからである。また、超
純水を用いるその他のメリットとして、自然酸化膜発生
を抑制できること、配管中でのバクテリアの発生を防止
できること、純水装置のイオン交換樹脂の劣化を防止で
きること等がある。
It has been generally accepted that the pure water used here is ultrapure water obtained by vacuum degassing of dissolved gases such as dissolved oxygen, dissolved nitrogen and dissolved carbon dioxide. The reason is that when ultrapure water is used, the bubbling of dissolved gas (bubble cavitation) due to megasonics is suppressed, and as a result, the energy of megasonics can be directed more to APM chemical liquid molecule fluctuations. is there. Further, other advantages of using ultrapure water are that the generation of a natural oxide film can be suppressed, the generation of bacteria in the pipe can be prevented, and the ion exchange resin of the pure water device can be prevented from deteriorating.

【0005】しかし、最近になって、超音波洗浄におい
て気泡化がパーティクルの除去に有効に作用することが
わかってきた。その理由は、以下の通りである。超純水
にメガソニックを印加すると、メガソニックの透過率は
高くなるため、メガソニックの進行方向に界面が存在す
るとその界面でメガソニックが反射され、進行波と反射
波による定在波が発生する。このような定在波が存在す
ると、洗浄薬液中に音圧の高い部分と低い部分とが形成
され、音圧の低い部分に洗浄薬液中に漂うパーティクル
が集まり、集まったパーティクルが基板に再付着し、洗
浄むらができてしまうといった問題がある。一方、洗浄
薬液中に気泡化されたガスが存在すると、メガソニック
の進行方向の界面近傍で反射波が気泡化されたガスに吸
収され、定在波の発生を防止でき、洗浄むらの発生を防
止することができる。
Recently, however, it has been found that bubbling effectively acts to remove particles in ultrasonic cleaning. The reason is as follows. When megasonic is applied to ultrapure water, the transmittance of megasonic increases, so if there is an interface in the traveling direction of megasonic, the megasonic is reflected at the interface, and a standing wave due to the traveling wave and the reflected wave is generated. To do. When such a standing wave is present, a high sound pressure portion and a low sound pressure portion are formed in the cleaning chemical liquid, particles drifting in the cleaning chemical liquid are collected in the low sound pressure portion, and the collected particles are reattached to the substrate. However, there is a problem that uneven cleaning occurs. On the other hand, if bubbled gas is present in the cleaning chemical, the reflected wave is absorbed by the bubbled gas near the interface in the traveling direction of the megasonic, so standing waves can be prevented and uneven cleaning can occur. Can be prevented.

【0006】このため、気泡化(キャビテーション)し
ても自然酸化膜発生、バクテリアの発生、イオン交換樹
脂の劣化に影響のない窒素等の不活性ガスを溶存させた
純水を用いて超音波洗浄を行なうようになってきてい
る。このような傾向を示す従来技術として、以下のもの
がある。
Therefore, ultrasonic cleaning is performed using pure water in which an inert gas such as nitrogen, which does not affect the generation of natural oxide film, the generation of bacteria, and the deterioration of the ion-exchange resin even when air bubbles (cavitation) are dissolved. Are beginning to do. The following are conventional technologies that exhibit such a tendency.

【0007】例えば、特開平10−335294号公報
の技術は、純水中に酸素や二酸化炭素の溶存をさけつ
つ、さらに溶存窒素ガス濃度を過飽和にすることで、キ
ャビテーションを多く発生させ、自然酸化膜の成長の抑
止と粒子除去率向上を両立させたものである。
[0007] For example, the technique disclosed in Japanese Unexamined Patent Publication No. 10-335294 avoids the dissolution of oxygen and carbon dioxide in pure water and further supersaturates the dissolved nitrogen gas concentration, thereby causing a large amount of cavitation and spontaneous oxidation. This is to achieve both suppression of film growth and improvement of particle removal rate.

【0008】また、特開平10−109072号公報の
技術は、溶存ガス濃度(例えば、窒素やアルゴン、へリ
ウムなどを所定濃度5〜10ppm)を制御すること
で、超音波が進行波のみとなり、定在波が発生しないた
め、洗浄ムラがなくなり、逆汚染などが防止され、パー
ティクルの除去性が向上するというものである。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 10-109072, by controlling the dissolved gas concentration (for example, a predetermined concentration of nitrogen, argon, helium, etc. of 5 to 10 ppm), the ultrasonic wave becomes only a traveling wave, Since no standing wave is generated, cleaning unevenness is eliminated, reverse contamination is prevented, and particle removability is improved.

【0009】[0009]

【発明が解決しようとする課題】基板洗浄では、APM
薬液等、純水に過酸化水素を溶解させた薬液が使用され
る。近年の設計ルールの微細化により、基板に形成され
るパタン幅やパタン間隔が微細化してきている。この結
果、基板の洗浄で除去すべきパーティクルの大きさはよ
り微細なものも対象となり、また、洗浄後の基板に残存
するパーティクルの数もよりゼロに近い数値が求められ
てきている。しかしながら、APM薬液等に使用される
純水の溶存窒素ガスの濃度を従来の方法で制御しても、
基板洗浄液に求められる洗浄能力をそれらの薬液で実現
することは困難であった。
When cleaning a substrate, the APM is used.
A chemical solution such as pure water in which hydrogen peroxide is dissolved is used. Due to the miniaturization of design rules in recent years, the pattern width and pattern interval formed on the substrate have become finer. As a result, even finer particles to be removed by cleaning the substrate are targeted, and the number of particles remaining on the substrate after cleaning is required to be closer to zero. However, even if the concentration of dissolved nitrogen gas in pure water used for APM chemicals is controlled by the conventional method,
It was difficult to realize the cleaning ability required for the substrate cleaning liquid with these chemicals.

【0010】本発明の目的は、基板上のパーティクルの
除去性能が高い基板の洗浄方法、洗浄薬液、洗浄装置及
び半導体装置を提供することである。
An object of the present invention is to provide a substrate cleaning method, a cleaning chemical, a cleaning apparatus, and a semiconductor device which have a high performance of removing particles on the substrate.

【0011】[0011]

【課題を解決するための手段】発明者が実験を重ねてそ
の原因を究明したところ、超音波洗浄において用いられ
るAPM薬液(NHOH/H/純水の混合薬
液)やHPM薬液(HCl/H/純水の混合薬
液)等を構成する薬液のうち、洗浄に重要なH
機能していないことが判明した。すなわち、H
気泡性キャビテーションが十分でないことが判明した。
その原因は、APM薬液の大部分を構成する純水中の溶
存窒素を低減せずに直接、洗浄槽に供給しているため、
洗浄液に印加されたメガソニックのエネルギーの大半
が、洗浄に直接寄与することのない溶存窒素の気泡化
(キャビテーション)のために消費されてしまうからで
ある。その結果、薬液分子揺動が不活性となり、H
分子から発生する蒸発性気泡の数が増えず、効果的な
パーティクル除去作用が働かない。
Means for Solving the Problems
After investigating the cause of the
APM chemical solution (NHFourOH / HTwoOTwo/ Pure water mixture
Liquid) or HPM chemical liquid (HCl / HTwoOTwo/ Pure water mixture
H that is important for cleaning among the chemical liquids that make upTwoO TwoBut
Turned out not to work. That is, HTwoOTwoof
It was found that the aerated cavitation was not sufficient.
The cause is the dissolution in pure water that constitutes the majority of APM chemicals.
Since nitrogen is supplied directly to the cleaning tank without reducing the amount of nitrogen,
Most of the megasonic energy applied to the cleaning solution
Bubbling of dissolved nitrogen that does not directly contribute to cleaning
Because it is consumed for (cavitation)
is there. As a result, the fluctuation of the liquid molecules becomes inactive and HTwoO
TwoEffective because the number of evaporative bubbles generated from molecules does not increase
The particle removal function does not work.

【0012】ここで、供給される純水に予め窒素等の不
活性ガスを溶存させているのは、洗浄槽に供給されるま
での流通過程で純水に酸素が溶け込むのを防止するため
である。
Here, the reason why the inert gas such as nitrogen is dissolved in the pure water to be supplied in advance is to prevent the dissolution of oxygen in the pure water during the distribution process until it is supplied to the cleaning tank. is there.

【0013】また、Hは水との間に弱い結合力
(水素結合)が働いているが、窒素と水との間にはH
と水との結合力よりも弱い結合力しか働いていな
い。そのため、溶存窒素は超音波(メガソニック)によ
り優先的に気泡化される。溶存H は、溶存窒素よ
りも気泡化しにくいが、気泡化しないわけではなく、気
泡化した後直ちに破裂し、水に溶ける。このH
は、発生した気泡の破裂による衝撃波を生み出し、こ
の衝撃波が極めて洗浄に寄与する。つまり、この衝撃波
は、薬液分子揺動のみのときよりもさらに薄い薄膜の状
態でパーティクルを引き離すのに寄与する。
In addition, HTwoOTwoIs a weak bond with water
(Hydrogen bond) is working, but H is present between nitrogen and water.Two
OTwoIs only weaker than the bond between water and water
Yes. Therefore, the dissolved nitrogen is ultrasonically (megasonic)
Is bubbled preferentially. Dissolved H TwoOTwoIs dissolved nitrogen
It is more difficult to form bubbles, but it does not mean that bubbles do not form.
The substance bursts after foaming and dissolves in water. This HTwoO
TwoCreates a shock wave due to the bursting of the generated bubbles,
The shock wave of contributes greatly to cleaning. In other words, this shock wave
Is a thin film that is even thinner than when only the liquid crystal molecules fluctuate.
Contributes to pulling particles apart.

【0014】なお、パワー(音圧)を相当にかければ、
の気泡化(キャビテーション)をある程度行う
ことができるが、その場合、基板損傷など(例えば、パ
ターン倒れなど)が発生するおそれがある。
If the power (sound pressure) is considerably increased,
Bubble formation (cavitation) of H 2 O 2 can be performed to some extent, but in that case, substrate damage or the like (for example, pattern collapse) may occur.

【0015】以上の発明者の視点に基づく前記課題を解
決するための手段は、以下の通りである。
Means for solving the above-mentioned problems based on the viewpoints of the inventor are as follows.

【0016】本願発明の第1の視点においては、基板の
洗浄方法において、純水を供給する純水供給ライン上で
純水中の溶存窒素濃度を大気との平衡溶存窒素濃度(約
16ppm)以下に調整(脱気)する第1の工程と、前
記第1の工程で調整された純水と少なくとも過酸化水素
とを混合し作製された洗浄薬液を洗浄槽に供給し、基板
が浸漬されている前記洗浄薬液に超音波を印加して洗浄
を行なう第2の工程と、を含むことを特徴とする。溶存
窒素濃度を大気との平衡状態における溶存窒素濃度以下
に調整することで洗浄に重要なHが機能するよう
になるからである。ここで、平衡溶存窒素濃度とは、大
気との平衡状態における純水の溶存窒素濃度をいう。
According to a first aspect of the present invention, in a method for cleaning a substrate, the concentration of dissolved nitrogen in pure water is equal to or less than the equilibrium dissolved nitrogen concentration (about 16 ppm) with the atmosphere on the pure water supply line for supplying pure water. The first step of adjusting (degassing) to the cleaning step, and supplying the cleaning solution prepared by mixing the pure water prepared in the first step and at least hydrogen peroxide to the cleaning tank to immerse the substrate. A second step of applying ultrasonic waves to the existing cleaning chemical liquid to perform cleaning. This is because by adjusting the dissolved nitrogen concentration to be equal to or lower than the dissolved nitrogen concentration in the equilibrium state with the atmosphere, H 2 O 2 important for cleaning comes to function. Here, the equilibrium dissolved nitrogen concentration means the dissolved nitrogen concentration of pure water in an equilibrium state with the atmosphere.

【0017】本願発明の第2の視点においては、純水を
供給する純水供給ライン上で純水中の溶存窒素濃度を大
気との平衡溶存窒素濃度以下に調整する第1の工程と、
前記第1の工程で調整された純水と過酸化水素とアンモ
ニアとを混合して作製された洗浄薬液を洗浄槽に供給
し、基板が浸漬されている前記洗浄薬液に超音波を印加
して洗浄を行なう第2の工程と、を含むことを特徴とす
る。APM薬液(NHOH/H/純水の混合薬
液)を用いる場合にも洗浄に重要なHが機能する
ようにするためである。なお、アンモニアは、水との水
素結合が強いため、超音波(メガソニック)による気泡
化はほとんど起こらない。
In a second aspect of the present invention, a first step of adjusting the concentration of dissolved nitrogen in pure water to the equilibrium dissolved nitrogen concentration with the atmosphere or less on a pure water supply line for supplying pure water,
A cleaning solution prepared by mixing pure water prepared in the first step, hydrogen peroxide, and ammonia is supplied to the cleaning tank, and ultrasonic waves are applied to the cleaning solution in which the substrate is immersed. The second step of performing cleaning is included. This is because H 2 O 2 important for cleaning functions even when an APM chemical solution (mixed chemical solution of NH 4 OH / H 2 O 2 / pure water) is used. Since ammonia has a strong hydrogen bond with water, almost no bubbles are formed by ultrasonic waves (megasonic).

【0018】また、前記基板の洗浄方法において、前記
第2の工程における基板の洗浄は、超音波により少なく
とも前記洗浄薬液中に溶存する過酸化水素を気泡化し、
かつ、前記過酸化水素の気泡を破裂させて行なうことが
好ましい。過酸化水素の気泡の破裂による衝撃波によ
り、より効率的な洗浄を行うことができるからである。
In the method for cleaning a substrate, the cleaning of the substrate in the second step is performed by ultrasonically bubbling at least hydrogen peroxide dissolved in the cleaning chemical solution,
In addition, it is preferable to rupture the hydrogen peroxide bubbles. This is because more efficient cleaning can be performed by the shock wave caused by the burst of hydrogen peroxide bubbles.

【0019】また、前記基板の洗浄方法において、純水
の溶存窒素濃度は、窒素及び過酸化水素の気泡化により
定在波の発生を防止(界面付近で反射波を阻止)できる
程度の量であればよく、10ppm以上16ppm以下
であることが好ましい。窒素の気泡だけでなく過酸化水
素の気泡も定在波の発生の防止に寄与するからである。
10ppm未満では、窒素及び過酸化水素の気泡による
定在波の発生を防止する作用が低下し、洗浄効率が低下
する。また、16ppmを超えると、メガソニックのエ
ネルギーの大半がNの気泡化の発生に費やされ、H
の気泡化に必要なエネルギーが不足する。
In the method for cleaning a substrate, the concentration of dissolved nitrogen in pure water is such that the standing wave is prevented from being generated (the reflected wave is blocked near the interface) by the bubbling of nitrogen and hydrogen peroxide. It suffices if the amount is 10 ppm or more and 16 ppm or less. This is because not only nitrogen bubbles but also hydrogen peroxide bubbles contribute to the prevention of standing wave generation.
When it is less than 10 ppm, the action of preventing standing waves from being generated by bubbles of nitrogen and hydrogen peroxide is lowered, and the cleaning efficiency is lowered. Further, when it exceeds 16 ppm, most of the energy of megasonic is spent for generation of N 2 bubbles, and H 2
The energy required for bubbling O 2 is insufficient.

【0020】また、前記基板の洗浄方法において、前記
第1の工程における調整前の純水中の溶存窒素濃度は、
大気との平衡窒素溶存濃度(約16ppm)であること
が好ましい。調整前の流通過程において有害な酸素の溶
存を防止するためである。
In the method for cleaning a substrate, the concentration of dissolved nitrogen in pure water before adjustment in the first step is
The equilibrium dissolved nitrogen concentration with the atmosphere (about 16 ppm) is preferable. This is to prevent the harmful oxygen from being dissolved in the distribution process before adjustment.

【0021】また、前記基板の洗浄方法において、前記
第1の工程における溶存窒素濃度の調整は、純水を供給
する純水供給ライン上で流通する純水中の溶存窒素濃度
を測定し、測定された溶存窒素濃度に係る情報に基づい
て脱気量を調整して行なうことが好ましい。適切な溶存
窒素濃度の純水を自動的に供給できるようにするためで
ある。
In the method for cleaning a substrate, the dissolved nitrogen concentration in the first step is adjusted by measuring the dissolved nitrogen concentration in pure water flowing on a pure water supply line for supplying pure water. It is preferable to adjust the degassing amount based on the obtained information on the dissolved nitrogen concentration. This is so that pure water having an appropriate dissolved nitrogen concentration can be automatically supplied.

【0022】本願発明の第3の視点においては、洗浄薬
液において、溶存窒素濃度が大気との平衡溶存窒素濃度
以下に調整された純水と、過酸化水素と、を含むことを
特徴とする。このような純水との組合せで洗浄に重要な
が機能するようになるからである。また、前記
調整後の純水の溶存窒素濃度は、10ppm以上16p
pm以下であることが好ましい。定在波が発生せずにH
が十分に気泡化するので均一かつ効率的に洗浄が
できるからである。
A third aspect of the present invention is characterized in that the cleaning chemical liquid contains pure water whose dissolved nitrogen concentration is adjusted to be equal to or less than the equilibrium dissolved nitrogen concentration with the atmosphere, and hydrogen peroxide. This is because H 2 O 2 important for cleaning functions in combination with such pure water. Further, the dissolved nitrogen concentration of the pure water after the adjustment is 10 ppm or more and 16 p
It is preferably pm or less. H without standing waves
This is because 2 O 2 is sufficiently bubbled to allow uniform and efficient cleaning.

【0023】本願発明の第4の視点においては、基板に
対して洗浄を行なう洗浄薬液を収容する洗浄槽と、前記
洗浄薬液に超音波を付与する超音波付与手段と、純水と
少なくとも過酸化水素を混合して洗浄薬液を作製すると
ともに、作製された前記洗浄薬液を直接若しくは温度調
整をしてから前記洗浄槽に供給する混合機と、前記混合
機に過酸化水素を供給する過酸化水素供給ラインと、前
記混合機に純水を供給する純水供給ラインと、を備える
洗浄装置において、前記純水供給ライン上で流通する純
水の溶存窒素濃度を測定する測定装置と、前記純水供給
ライン上で流通する純水の溶存窒素を調整可能に脱気す
る脱気装置と、前記測定装置で測定された溶存窒素濃度
に係る情報に基づき前記脱気装置を用いて純水の溶存窒
素濃度を制御する制御装置と、を備えることを特徴とす
る。
In a fourth aspect of the present invention, a cleaning tank for containing a cleaning chemical solution for cleaning a substrate, an ultrasonic wave applying means for applying an ultrasonic wave to the cleaning chemical solution, pure water and at least peroxide. A mixing machine that mixes hydrogen to prepare a cleaning solution, and supplies the prepared cleaning solution directly or after adjusting the temperature to the cleaning tank, and hydrogen peroxide that supplies hydrogen peroxide to the mixing machine. A cleaning device comprising a supply line and a pure water supply line for supplying pure water to the mixer, a measuring device for measuring the dissolved nitrogen concentration of pure water flowing on the pure water supply line, and the pure water. A degassing device that adjustably degasses the dissolved nitrogen in the pure water flowing on the supply line, and the dissolved nitrogen in the pure water using the degassing device based on the information related to the dissolved nitrogen concentration measured by the measuring device. Control the concentration Characterized in that it comprises control apparatus and, a.

【0024】本願発明の第5の視点においては、基板に
対して洗浄を行なう洗浄薬液を収容する洗浄槽と、前記
洗浄薬液に超音波を付与する超音波付与手段と、純水と
過酸化水素とアンモニアを混合して洗浄薬液を作製する
とともに、作製された前記洗浄薬液を直接若しくは温度
調整をしてから前記洗浄槽に供給する混合機と、前記混
合機に過酸化水素を供給する過酸化水素供給ラインと、
前記混合機にアンモニアを供給するアンモニア供給ライ
ンと、前記混合機に純水を供給する純水供給ラインと、
を備える洗浄装置において、前記純水供給ライン上で流
通する純水の溶存窒素濃度を測定する測定装置と、前記
純水供給ライン上で流通する純水の溶存窒素を調整可能
に脱気する脱気装置と、前記測定装置で測定された溶存
窒素濃度に係る情報に基づき前記脱気装置を用いて純水
の溶存窒素濃度を制御する制御装置と、を備えることを
特徴とする。
In a fifth aspect of the present invention, a cleaning tank for containing a cleaning chemical liquid for cleaning a substrate, an ultrasonic wave applying means for applying ultrasonic waves to the cleaning chemical liquid, pure water and hydrogen peroxide. And a mixture of ammonia and ammonia to prepare a cleaning chemical solution, and a mixer for supplying the cleaning chemical solution thus prepared directly or after temperature adjustment to the cleaning tank, and a peroxide for supplying hydrogen peroxide to the mixer. Hydrogen supply line,
An ammonia supply line for supplying ammonia to the mixer, and a pure water supply line for supplying pure water to the mixer,
In a cleaning device including: a measuring device for measuring the dissolved nitrogen concentration of pure water flowing on the pure water supply line, and a degassing device for degassing the dissolved nitrogen of pure water flowing on the pure water supply line in an adjustable manner. And a control device for controlling the dissolved nitrogen concentration of pure water using the degassing device based on the information related to the dissolved nitrogen concentration measured by the measurement device.

【0025】また、前記洗浄装置において、前記測定装
置及び前記脱気装置は、前記純水供給ライン上のうち前
記混合機の近傍に配されることが好ましい。調整後の流
通過程において有害な酸素の溶存を抑制するためであ
る。
Further, in the cleaning device, it is preferable that the measuring device and the degassing device are arranged near the mixer on the pure water supply line. This is because the harmful oxygen is prevented from being dissolved in the distribution process after the adjustment.

【0026】[0026]

【発明の実施の形態】基板の洗浄方法において、純水を
供給する純水供給ライン上で純水中の溶存窒素濃度を大
気との平衡溶存窒素濃度(約16ppm)以下に調整
(脱気)する第1の工程と、前記第1の工程で調整され
た純水と少なくとも過酸化水素とを混合し作製された洗
浄薬液を洗浄槽に供給し、基板が浸漬されている前記洗
浄薬液に超音波を印加して洗浄を行なう第2の工程と、
を含むことにより窒素の気泡化に消費されるメガソニッ
ク(超音波)のエネルギーが減少するため、音圧を半導
体基板に効率的に伝えられる。
BEST MODE FOR CARRYING OUT THE INVENTION In a substrate cleaning method, the concentration of dissolved nitrogen in pure water is adjusted to be equal to or less than the equilibrium dissolved nitrogen concentration (about 16 ppm) with the atmosphere on the pure water supply line for supplying pure water (degassing). And a cleaning chemical solution prepared by mixing pure water prepared in the first step with at least hydrogen peroxide is supplied to a cleaning tank, and the cleaning chemical solution in which the substrate is immersed is superfluous. A second step of applying a sound wave to perform cleaning,
Since the energy of megasonic (ultrasonic wave) consumed for bubbling of nitrogen is reduced by including, the sound pressure can be efficiently transmitted to the semiconductor substrate.

【0027】すなわち、半導体基板は、薬液の化学的作
用を受けて、基板表面に薄膜ができ、薄膜ができる前と
比べて表面に付着したパーティクルがわずかにリフトア
ップする。リフトアップされたパーティクルは、メガソ
ニックによる薬液分子揺動と発生したHの気泡の
破裂による衝撃波によって、基板表面にできた薄膜とと
もに物理的に引き離され(剥がされ)、薬液廃液ととも
に槽外に排出することができる。特に、Hの気泡
の破裂による衝撃波は、薬液分子揺動のみのときよりも
さらに薄い薄膜の状態でパーティクルを引き離すのに寄
与する。これと同時に、メガソニックによって発生した
窒素及び過酸化水素の気泡により定在波の発生を抑制す
ることができる。その結果、洗浄効果が飛躍的に向上す
る。
That is, the semiconductor substrate is subjected to the chemical action of the chemical solution to form a thin film on the substrate surface, and particles attached to the surface are slightly lifted up as compared with before the thin film is formed. The lifted particles are physically separated (peeled) together with the thin film formed on the substrate surface by the shock wave due to the fluctuation of the chemical liquid molecules by megasonics and the burst of the generated H 2 O 2 bubbles, and together with the chemical liquid waste tank Can be discharged outside. In particular, the shock wave caused by the burst of H 2 O 2 bubbles contributes to the separation of the particles in the state of a thinner thin film than when only the liquid crystal molecules oscillate. At the same time, it is possible to suppress the generation of standing waves by the bubbles of nitrogen and hydrogen peroxide generated by megasonics. As a result, the cleaning effect is dramatically improved.

【0028】[0028]

【実施例】本発明の実施例1に係る洗浄装置について図
面を用いて説明する。図1は、本発明の実施例1に係る
洗浄装置の構成を模式的に示したブロック図である。こ
の洗浄装置は、薬液使い捨て方式を採用したAPM薬液
(NHOH/H/純水の混合薬液)用の超音波
洗浄装置であり、洗浄槽と、超音波付与手段と、混合機
と、H供給ラインと、NHOH供給ラインと、
純水供給ラインと、測定装置と、脱気装置と、制御装置
と、を備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A cleaning device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram schematically showing the configuration of the cleaning device according to the first embodiment of the present invention. This cleaning device is an ultrasonic cleaning device for APM chemical liquid (mixed chemical liquid of NH 4 OH / H 2 O 2 / pure water) adopting a chemical liquid disposable system, and includes a cleaning tank, an ultrasonic wave applying means, and a mixer. And an H 2 O 2 supply line and an NH 4 OH supply line,
A pure water supply line, a measuring device, a degassing device, and a control device are provided.

【0029】洗浄槽は、半導体基板に対して洗浄を行な
う洗浄薬液(APM洗浄液)を収容する槽であり、混合
機と配管を介して接続するとともに洗浄薬液を流入する
ための流入部と、洗浄後の洗浄薬液を外部に流出するた
めの流出部と、を有する。洗浄槽は、1槽のみの場合
や、洗浄用の槽とリンス用の槽の2槽に別れたものを用
いる場合がある。
The cleaning tank is a tank for containing a cleaning chemical solution (APM cleaning solution) for cleaning the semiconductor substrate, is connected to the mixer through a pipe, and has an inflow section for inflowing the cleaning chemical solution and the cleaning. And an outflow portion for outflowing the cleaning chemical liquid to the outside. There is a case where only one cleaning tank is used, or a cleaning tank and a rinse tank which are separated from each other are used.

【0030】超音波付与手段は、洗浄槽内に収容された
洗浄薬液に超音波を付与する手段であり、洗浄槽の底面
側から上方に向けて発振する。実施例において用いた超
音波は、周波数750kHz、出力760Wである。
The ultrasonic wave applying means is means for applying ultrasonic waves to the cleaning chemical liquid contained in the cleaning tank, and oscillates upward from the bottom side of the cleaning tank. The ultrasonic waves used in the examples have a frequency of 750 kHz and an output of 760 W.

【0031】混合機は、所定の割合で供給された純水と
過酸化水素水とアンモニア水を混合して洗浄薬液を作製
する機器であり、純水供給ライン、H供給ライン
及びNHOH供給ラインと流路として接続し、各ライ
ンからの流入量を流量計で調節し、恒温槽で一定温度に
調整し(もしくはミキシングバルブを用いて直接混合
し)、洗浄槽と配管を介して接続し、作製された洗浄薬
液を洗浄槽に供給する。APM薬液(NHOH/H
/純水の混合薬液)におけるNHOH:H
:純水の組成は、代表的には1:4:20である。
The mixer mixes with the pure water supplied at a predetermined ratio.
Preparation of cleaning chemicals by mixing hydrogen peroxide and ammonia
It is a device to operate, pure water supply line, HTwoOTwoSupply line
And NHFourEach line is connected to the OH supply line as a flow path.
The flow rate from the inlet is adjusted with a flow meter, and a constant temperature is maintained in a constant temperature bath.
Adjust (or mix directly using mixing valve)
)), A cleaning agent made by connecting to the cleaning tank via piping
The liquid is supplied to the cleaning tank. APM chemical (NHFourOH / HTwo
OTwo/ Pure water (mixed chemical solution of pure water)FourOH: H
TwoOTwo: The composition of pure water is typically 1: 4: 20.

【0032】H供給ラインは、流通する過酸化水
素水を混合機に供給する配管であり、混合機と流路とし
て接続する。実施例におけるH供給ラインから供
給される過酸化水素の濃度は、約31wt%である。
The H 2 O 2 supply line is a pipe for supplying circulating hydrogen peroxide solution to the mixer, and is connected to the mixer as a flow path. The concentration of hydrogen peroxide supplied from the H 2 O 2 supply line in the example is about 31 wt%.

【0033】NHOH供給ラインは、流通するアンモ
ニア水を混合機に供給する配管であり、混合機と流路と
して接続する。実施例におけるNHOH供給ラインか
ら供給されるアンモニアの濃度は、約29wt%であ
る。
The NH 4 OH supply line is a pipe for supplying circulating ammonia water to the mixer, and is connected to the mixer as a flow path. The concentration of ammonia supplied from the NH 4 OH supply line in the example is about 29 wt%.

【0034】純水供給ラインは、流通する純水を混合機
に供給する配管であり、混合機と流路として接続し、ラ
イン上に脱気装置と、その2次側(下流側)測定装置
と、を有する。その1次側(脱気装置よりも上流側)か
ら供給される純水は、酸素が溶け込むのを防止するため
に、大気との平衡窒素溶存濃度(15〜16ppm)で
ある。
The pure water supply line is a pipe for supplying circulating pure water to the mixer, is connected to the mixer as a flow path, and has a deaerator and a secondary side (downstream side) measuring device on the line. And. Pure water supplied from the primary side (upstream of the deaerator) has an equilibrium dissolved nitrogen concentration (15 to 16 ppm) with the atmosphere in order to prevent oxygen from dissolving.

【0035】脱気装置は、実施例では純水供給ライン上
で流通する純水から溶存窒素濃度を調整可能に真空脱気
する装置であり、減圧ポンプが内装されており、制御装
置の制御によりバルブが開閉操作され、真空度が調節さ
れる。ここでの溶存窒素濃度は、平衡状態における大気
と純水の溶存窒素濃度(平衡窒素溶存濃度;15〜16
ppm)以下(例えば、12〜13ppm)に調整され
る。ここでの真空脱気は、ヘンリーの法則に基づいて、
約0.6〜0.05atmの減圧下で定量的に行なわれ
る。
In the embodiment, the degassing device is a device for vacuum degassing from the pure water flowing on the pure water supply line so that the concentration of dissolved nitrogen can be adjusted, and is equipped with a decompression pump, which is controlled by the control device. The valve is opened and closed to adjust the degree of vacuum. The dissolved nitrogen concentration here is the dissolved nitrogen concentration of the atmosphere and pure water in the equilibrium state (equilibrium dissolved nitrogen concentration: 15 to 16).
ppm) or less (for example, 12 to 13 ppm). Vacuum degassing here is based on Henry's law,
It is quantitatively performed under a reduced pressure of about 0.6 to 0.05 atm.

【0036】測定装置は、純水供給ラインの2次側(脱
気装置の下流側)で流通する純水の溶存窒素濃度を測定
する装置であり、測定された溶存窒素濃度に係る情報を
制御装置に送信する。
The measuring device is a device for measuring the dissolved nitrogen concentration of pure water flowing on the secondary side of the pure water supply line (downstream of the deaerator), and controls the information relating to the measured dissolved nitrogen concentration. Send to device.

【0037】制御装置は、測定装置で測定された溶存窒
素濃度に係る情報を受信することにより、この情報に基
づいて脱気装置における真空度を調節して純水の溶存窒
素濃度を制御する。
The control device receives the information on the dissolved nitrogen concentration measured by the measuring device, and controls the dissolved nitrogen concentration of the pure water by adjusting the degree of vacuum in the degassing device based on this information.

【0038】次に、実施例1に係る洗浄装置の動作につ
いて説明する。
Next, the operation of the cleaning apparatus according to the first embodiment will be described.

【0039】まず、純水供給ラインの1次側から流入す
る純水の溶存窒素濃度を脱気装置により大気との平衡状
態における純水の溶存窒素濃度15〜16ppm(平衡
窒素溶存濃度)以下(例えば12〜13ppm程度)に
なるように低減する。この時、純水供給ラインの2次側
で測定装置を用いて流通する純水(脱気後のもの)の溶
存窒素濃度を測定し、測定された溶存窒素濃度に係る情
報に基づいて制御装置の制御により脱気装置の真空バル
ブ開度を調節している。
First, the dissolved nitrogen concentration of pure water flowing in from the primary side of the pure water supply line is not more than 15 to 16 ppm (equilibrium dissolved nitrogen concentration) of pure water in a state of equilibrium with the atmosphere by a degassing device ( For example, about 12 to 13 ppm). At this time, the dissolved nitrogen concentration of the pure water (after degassing) flowing through the secondary side of the pure water supply line is measured using a measuring device, and the control device is based on the information related to the measured dissolved nitrogen concentration. The vacuum valve opening of the deaerator is controlled by the control of.

【0040】次に、溶存窒素濃度を低減した純水を2次
側に流し、混合機においてNHOH:H:溶存
窒素濃度を低減した純水を1:4:20の割合で混合(ミ
キシング)し、混合して作製されたAPM薬液を洗浄槽
に供給する。洗浄槽に収容され、半導体基板が浸漬され
ているAPM薬液には数100kHzのメガソニックが
印加される。これにより、APM薬液中に浸漬された半
導体基板上からパーティクルが除去される。
Next, pure water with a reduced dissolved nitrogen concentration was flowed to the secondary side, and NH 4 OH: H 2 O 2 : purified water with a reduced dissolved nitrogen concentration was mixed at a ratio of 1: 4: 20 in a mixer. After mixing (mixing), the APM chemical solution prepared by mixing is supplied to the cleaning tank. Megasonic of several 100 kHz is applied to the APM chemical solution which is housed in the cleaning tank and in which the semiconductor substrate is immersed. As a result, particles are removed from the semiconductor substrate immersed in the APM chemical solution.

【0041】最後に、任意ではあるが、純水リンスを行
なう。APM洗浄後、純水供給ラインの1次側から流入
する純水の溶存窒素濃度を脱気装置を用いて大気との平
衡状態における純水の溶存窒素濃度15〜16ppm
(平衡窒素溶存濃度)以下(例えば12〜13ppm程
度)になるように低減する。溶存窒素濃度を低減した純
水を2次側に流し、混合機で他の薬液と混合しないでそ
のまま溶存窒素濃度を低減した純水を洗浄槽に供給す
る。洗浄槽に収容され、半導体基板が浸漬されている溶
存窒素濃度を低減した純水には、数100kHzのメガ
ソニックが印加される。この段階では、混合機は、NH
OH供給ライン及びH供給ラインからのNH
OH及びHの供給を停止している。
Finally, an optional but pure water rinse is performed. After APM cleaning, the dissolved nitrogen concentration of pure water flowing in from the primary side of the pure water supply line was measured by using a degassing device.
(Equilibrium dissolved nitrogen concentration) or less (for example, about 12 to 13 ppm). Pure water with a reduced dissolved nitrogen concentration is caused to flow to the secondary side, and pure water with a reduced dissolved nitrogen concentration is directly supplied to the cleaning tank without being mixed with other chemicals by a mixer. Megasonic of several hundreds of kHz is applied to the pure water in which the dissolved nitrogen concentration is reduced, in which the semiconductor substrate is immersed in the cleaning tank. At this stage, the mixer is
NH 4 from 4 OH and H 2 O 2 supply lines
The supply of OH and H 2 O 2 is stopped.

【0042】実施例1による洗浄を考察すると、APM
薬液の大部分は純水で構成されるが、このとき純水中の
溶存窒素濃度を大気との平衡濃度以下に低減すると、薬
液分子揺動が活発化する。同時に、溶存H分子の
蒸発性気泡の数が増加して気泡の破裂による衝撃が多く
発生する。こうした薬液分子揺動や気泡の破裂現象によ
る衝撃により半導体基板上のパーティクルは基板から引
き剥がされるので、図2に示すように、純水中の溶存窒
素濃度を低減するにつれ基板上のパーティクル除去率が
大幅に向上し、デバイス歩留まりが大きく向上する効果
がある。
Considering the cleaning according to Example 1, the APM
Most of the chemical liquid is composed of pure water. At this time, if the dissolved nitrogen concentration in the pure water is reduced to a concentration equal to or less than the equilibrium concentration with the atmosphere, the chemical liquid molecule fluctuations are activated. At the same time, the number of evaporative bubbles of dissolved H 2 O 2 molecules increases, and a large number of impacts due to the burst of the bubbles occur. Particles on the semiconductor substrate are peeled off from the substrate due to the impact of the fluctuations of the chemical liquid molecules and the bursting phenomenon of the bubbles. Therefore, as shown in FIG. Is significantly improved, and the device yield is greatly improved.

【0043】その理由について考察すると、純水中の溶
存窒素濃度を低減することにより、溶存H分子の
蒸発性気泡の数や分子揺動の割合が増加するのはメガソ
ニック付加時のエネルギー伝播(音圧)が、洗浄効果に
全く寄与しない溶存窒素の気泡化の方に消費されること
が抑制されるためである。
Considering the reason for this, the number of evaporative bubbles of dissolved H 2 O 2 molecules and the ratio of molecular fluctuation increase when the concentration of dissolved nitrogen in pure water is reduced. This is because the energy transmission (sound pressure) is suppressed from being consumed toward the bubbling of dissolved nitrogen that does not contribute to the cleaning effect at all.

【0044】また、図3を参照すると、溶存窒素濃度を
平衡濃度以下に下げて行くと音圧が向上して行くが、こ
れは窒素の気泡に音圧が吸収(消費)されにくくなった
ためである。また、メガソニックのエネルギーが過酸化
水素の気泡化に振り向けられた結果、同量のエネルギー
を用いて、過酸化水素の気泡によって定常波の発生を阻
止しつつ、さらに新たなエネルギーを付与することなく
(エネルギーを上げることなく)過酸化水素の気泡の破
裂による衝撃波を利用しているからである。
Further, referring to FIG. 3, when the dissolved nitrogen concentration is lowered to the equilibrium concentration or less, the sound pressure is improved. This is because it becomes difficult for the nitrogen bubbles to absorb (consume) the sound pressure. is there. In addition, as a result of the megasonic energy being directed to bubble formation of hydrogen peroxide, the same amount of energy was used to prevent the standing wave from being generated by the hydrogen peroxide bubbles, but without adding new energy. This is because the shock wave generated by the burst of hydrogen peroxide bubbles (without raising energy) is used.

【0045】次に、実施例2について図面を用いて説明
する。図4は、本発明の実施例2に係る洗浄装置の構成
を示したブロック図である。この洗浄装置は、薬液使い
捨て方式を採用したHPM(HCl/H/純水の
混合薬液)薬液用の超音波洗浄装置であり、図1の洗浄
装置のNHOH供給ラインをHCl供給ラインにした
構成であり、それ以外の構成は実施例1と同様である。
ここで、HPM薬液は、表面の金属汚染物を除去する必
要のある半導体基板のメタル洗浄を行う場合に用いられ
る。
Next, a second embodiment will be described with reference to the drawings. FIG. 4 is a block diagram showing the configuration of the cleaning apparatus according to the second embodiment of the present invention. This cleaning device is an ultrasonic cleaning device for a HPM (mixed chemical liquid of HCl / H 2 O 2 / pure water) chemical liquid that adopts a chemical liquid disposable system, and supplies NH 4 OH supply line of the cleaning device of FIG. 1 with HCl. The configuration is in line, and other configurations are similar to those of the first embodiment.
Here, the HPM chemical solution is used when performing metal cleaning of a semiconductor substrate that needs to remove metal contaminants on the surface.

【0046】次に、実施例2に係る洗浄装置の動作につ
いて説明する。
Next, the operation of the cleaning apparatus according to the second embodiment will be described.

【0047】まず、HPM洗浄(メタル洗浄)を行な
う。HCl供給ライン及びH供給ラインからHC
l及びHを混合機に供給するとともに、純水供給
ラインから脱気調整されていない純水を混合機に供給
し、混合機においてHCl:H:純水を1:1:
5の割合で混合(ミキシング)し、混合して作製された
HPM薬液を洗浄槽に供給し、洗浄槽に収容され、半導
体基板(表面の金属汚染物を除去する必要のあるもの)
を浸漬してHPM洗浄を行なう。これにより、半導体基
板上のメタルが洗浄される。この段階での純水供給ライ
ン上の脱気装置は、脱気していない。また、HPM薬液
にはメガソニックは印加されていない。
First, HPM cleaning (metal cleaning) is performed. HC from the HCl supply line and the H 2 O 2 supply line
l and H 2 O 2 are supplied to the mixer, pure water that has not been deaerated is supplied to the mixer from the pure water supply line, and HCl: H 2 O 2 : pure water is mixed in the mixer 1: 1. :
Mixing (mixing) at a ratio of 5 and supplying the HPM chemical solution prepared by mixing to a cleaning tank, and the HPM chemical solution is housed in the cleaning tank, and a semiconductor substrate (which needs to remove metal contaminants on the surface)
Is immersed and HPM cleaning is performed. This cleans the metal on the semiconductor substrate. The deaeration device on the pure water supply line at this stage is not deaerated. Further, no megasonic is applied to the HPM chemical solution.

【0048】次に、1次リンスを行なう。HPM洗浄
後、純水供給ラインの1次側から流入する純水の溶存窒
素濃度を脱気装置を用いて大気との平衡状態における純
水の溶存窒素濃度15〜16ppm(平衡窒素溶存濃
度)以下(例えば12〜13ppm程度)になるように
低減する。溶存窒素濃度を低減した純水を2次側に流
し、混合機においてH:溶存窒素濃度を低減した
純水を1:50〜100の割合で混合(ミキシング)し、
混合して作製されたPM薬液(H/純水の混合薬
液)を洗浄槽に供給する。洗浄槽に収容され、半導体基
板(表面の金属汚染物を除去する必要のあるもの)が浸
漬されているPM薬液には数100kHzのメガソニッ
クが印加される。これにより、PM薬液中に浸漬された
半導体基板上からパーティクルが除去される。この段階
での混合機は、HCl供給ラインからのHClの供給を
停止している。また、実施例においてH供給ライ
ンから供給される過酸化水素水の濃度は、31wt%で
ある。
Next, a primary rinse is performed. After HPM cleaning, the dissolved nitrogen concentration of pure water that flows in from the primary side of the pure water supply line is 15 to 16 ppm (equilibrium dissolved nitrogen concentration) of dissolved pure water in equilibrium with the atmosphere using a degasser. (For example, about 12 to 13 ppm). Flowing pure water with a reduced concentration of dissolved nitrogen in the secondary side, the mixer in H 2 O 2: pure water with a reduced concentration of dissolved nitrogen were mixed 1: (mixing) at a ratio of 50 to 100,
A PM chemical solution (H 2 O 2 / pure water mixed chemical solution) prepared by mixing is supplied to the cleaning tank. Mega sonic of several 100 kHz is applied to the PM chemical solution which is housed in the cleaning tank and in which the semiconductor substrate (which needs to remove metal contaminants on the surface) is immersed. As a result, particles are removed from the semiconductor substrate immersed in the PM chemical solution. The mixer at this stage has stopped the supply of HCl from the HCl supply line. In addition, the concentration of the hydrogen peroxide solution supplied from the H 2 O 2 supply line in the example is 31 wt%.

【0049】最後に、2次リンスを行なう。PM洗浄
後、純水供給ラインの1次側から流入する純水の溶存窒
素濃度を脱気装置を用いて大気との平衡状態における純
水の溶存窒素濃度15〜16ppm(平衡窒素溶存濃
度)以下(例えば12〜13ppm程度)になるように
低減する。溶存窒素濃度を低減した純水を2次側に流
し、混合機で他の薬液と混合しないでそのまま溶存窒素
濃度を低減した純水を洗浄槽に供給する。洗浄槽に収容
され、半導体基板(表面の金属汚染物を除去する必要の
あるもの)が浸漬されている溶存窒素濃度を低減した純
水には数100kHzのメガソニックが印加される。こ
の段階での混合機は、HCl供給ライン及びH
給ラインからのHCl及びHの供給を停止してい
る。
Finally, a secondary rinse is performed. PM cleaning
Then, the dissolved nitrogen of pure water flowing in from the primary side of the pure water supply line is dissolved.
Elementary concentration was measured using a degasser to determine the net
Dissolved nitrogen concentration of water 15-16ppm (equilibrium dissolved nitrogen concentration
Degree) or less (for example, about 12 to 13 ppm)
Reduce. Flow pure water with reduced dissolved nitrogen concentration to the secondary side
However, dissolved nitrogen as it is without mixing with other chemicals in the mixer
Pure water with a reduced concentration is supplied to the cleaning tank. Stored in cleaning tank
Semiconductor substrate (requires removal of surface metal contaminants
Some are pure) with a reduced dissolved nitrogen concentration
Megasonic of several 100 kHz is applied to water. This
At the stage of the mixer, the HCl supply line and H TwoOTwoCompanion
HCl and H from the supply lineTwoOTwoHas stopped supplying
It

【0050】以上の工程により、窒素脱気により分子揺
動の活発化と過酸化水素の気泡の破裂による衝撃波によ
りメタル洗浄後のパーティクル除去あるいは再付着が抑
制できる。
Through the above steps, it is possible to suppress particle removal or redeposition after metal cleaning due to activation of molecular fluctuation due to nitrogen deaeration and shock wave due to burst of hydrogen peroxide bubbles.

【0051】図5に実施例2に係る洗浄方法を使用した
場合の純水中の溶存窒素濃度とメタル洗浄前後のパーテ
ィクル増加数の関係を示す。この図から、溶存窒素濃度
を低減することにより、0.13μm以上のパーティク
ルの総数がウェハ1枚あたり(外周3mmカット)で1
0個以下の増加数に収めることができることがわかる。
つまり、溶存窒素濃度を低減することにより、最終的に
パーティクルの少ないウェハ基板を得ることができるこ
とがわかる。
FIG. 5 shows the relationship between the concentration of dissolved nitrogen in pure water and the increased number of particles before and after metal cleaning when the cleaning method according to the second embodiment is used. From this figure, by reducing the dissolved nitrogen concentration, the total number of particles of 0.13 μm or more is 1 per wafer (3 mm outer circumference cut).
It can be seen that the number of increases can be set to 0 or less.
That is, it can be seen that a wafer substrate with few particles can be finally obtained by reducing the dissolved nitrogen concentration.

【0052】実施例2における1次リンス及び2次リン
スは、メタル洗浄(自然酸化膜の洗浄)に用いられるS
PM洗浄(HSO/Hの混合薬液による洗
浄)やHF洗浄(HF/純水の混合薬液による洗浄)の
後にも利用することができ、この場合も、溶存窒素濃度
の低減によるパーティクルの少ないウェハ基板を得るこ
とができる。
The primary rinse and the secondary rinse in the second embodiment are S used for metal cleaning (cleaning of natural oxide film).
It can also be used after PM cleaning (cleaning with a mixed chemical solution of H 2 SO 4 / H 2 O 2 ) and HF cleaning (cleaning with a mixed chemical solution of HF / pure water). In this case as well, the concentration of dissolved nitrogen can be reduced. It is possible to obtain a wafer substrate with less particles.

【0053】[0053]

【発明の効果】本発明によれば、溶存窒素による気泡
(洗浄効果を有さない)の生成を抑制でき、相対的に過
酸化水素の気泡(洗浄効果を有する)の発生効率を向上
させることができる。すなわち、溶存窒素の気泡化に用
いられていた音圧を過酸化水素の気泡化に廻すことがで
きる。その結果、過酸化水素の気泡の破裂を促進できる
のでパーティクルの除去率を大幅に向上させることがで
きる。
According to the present invention, generation of bubbles (having no cleaning effect) due to dissolved nitrogen can be suppressed, and the efficiency of generating hydrogen peroxide bubbles (having a cleaning effect) can be relatively improved. You can That is, the sound pressure used to bubble the dissolved nitrogen can be used to bubble the hydrogen peroxide. As a result, the bursting of hydrogen peroxide bubbles can be promoted, and the particle removal rate can be greatly improved.

【0054】また、洗浄液の音圧を半導体基板上に効率
的に伝えられるため、直接的な分子振動によるパーティ
クルの除去も可能である。
Further, since the sound pressure of the cleaning liquid can be efficiently transmitted to the semiconductor substrate, it is possible to remove particles by direct molecular vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る洗浄装置の構成を模式
的に示したブロック図である。
FIG. 1 is a block diagram schematically showing a configuration of a cleaning device according to a first embodiment of the present invention.

【図2】本発明の実施例1に係る洗浄方法を使用した場
合の純水中の溶存窒素濃度と除去率の関係を示したグラ
フである。
FIG. 2 is a graph showing the relationship between the concentration of dissolved nitrogen in pure water and the removal rate when the cleaning method according to Example 1 of the present invention is used.

【図3】本発明の実施例1に係る洗浄方法を使用した場
合の純水中の溶存窒素濃度と音圧の関係を示したグラフ
である。
FIG. 3 is a graph showing the relationship between the dissolved nitrogen concentration in pure water and the sound pressure when the cleaning method according to Example 1 of the present invention is used.

【図4】本発明の実施例2に係る洗浄装置の構成を模式
的に示したブロック図である。
FIG. 4 is a block diagram schematically showing a configuration of a cleaning device according to a second embodiment of the present invention.

【図5】本発明の実施例2に係る洗浄方法を使用した場
合の純水中の溶存窒素濃度とパーティクル増加数の関係
を示したグラフである。
FIG. 5 is a graph showing the relationship between the concentration of dissolved nitrogen in pure water and the increased number of particles when the cleaning method according to the second embodiment of the present invention is used.

【図6】従来の一例に係る洗浄装置の構成を模式的に示
したブロック図である。
FIG. 6 is a block diagram schematically showing a configuration of a conventional cleaning device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C11D 7/18 C11D 7/18 17/00 17/00 // C03C 23/00 C03C 23/00 A Fターム(参考) 3B201 AA01 BB02 BB83 BB95 CC01 CC21 4G059 AA08 AB01 AB09 AB11 AC24 AC30 4H003 BA12 DA15 DC04 EA23 ED02 EE04 FA21 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 identification code FI theme code (reference) C11D 7/18 C11D 7/18 17/00 17/00 // C03C 23/00 C03C 23/00 AF term (Reference) 3B201 AA01 BB02 BB83 BB95 CC01 CC21 4G059 AA08 AB01 AB09 AB11 AC24 AC30 4H003 BA12 DA15 DC04 EA23 ED02 EE04 FA21

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】純水を供給する純水供給ライン上で純水中
の溶存窒素濃度を大気との平衡溶存窒素濃度以下に調整
する第1の工程と、 前記第1の工程で調整された純水と少なくとも過酸化水
素とを混合し作製された洗浄薬液を洗浄槽に供給し、基
板が浸漬されている前記洗浄薬液に超音波を印加して洗
浄を行なう第2の工程と、を含むことを特徴とする基板
の洗浄方法。
1. A first step of adjusting the dissolved nitrogen concentration in pure water to a value equal to or lower than the equilibrium dissolved nitrogen concentration in the pure water on a pure water supply line for supplying pure water, and the first step was adjusted. A second step of supplying a cleaning chemical solution prepared by mixing pure water and at least hydrogen peroxide to a cleaning tank and applying ultrasonic waves to the cleaning chemical solution in which the substrate is immersed to perform cleaning. A method for cleaning a substrate, comprising:
【請求項2】純水を供給する純水供給ライン上で純水中
の溶存窒素濃度を大気との平衡溶存窒素濃度以下に調整
する第1の工程と、 前記第1の工程で調整された純水と過酸化水素とアンモ
ニアとを混合して作製された洗浄薬液を洗浄槽に供給
し、基板が浸漬されている前記洗浄薬液に超音波を印加
して洗浄を行なう第2の工程と、を含むことを特徴とす
る基板の洗浄方法。
2. A first step of adjusting the dissolved nitrogen concentration in pure water to a value equal to or less than the equilibrium dissolved nitrogen concentration in the pure water on a pure water supply line for supplying pure water, and the adjustment in the first step. A second step of supplying a cleaning chemical solution prepared by mixing pure water, hydrogen peroxide and ammonia to a cleaning tank, and applying ultrasonic waves to the cleaning chemical solution in which the substrate is immersed to perform cleaning. A method for cleaning a substrate, comprising:
【請求項3】前記第2の工程における基板の洗浄は、超
音波により少なくとも前記洗浄薬液中に溶存する過酸化
水素を気泡化し、かつ、前記過酸化水素の気泡を破裂さ
せて行なうことを特徴とする請求項1又は2記載の基板
の洗浄方法。
3. The cleaning of the substrate in the second step is performed by ultrasonicating at least hydrogen peroxide dissolved in the cleaning chemical liquid into bubbles and bursting the hydrogen peroxide bubbles. The method for cleaning a substrate according to claim 1 or 2.
【請求項4】前記第1の工程における調整後の純水中の
溶存窒素濃度は、10ppm以上16ppm以下である
ことを特徴とする請求項1乃至3のいずれか一に記載の
基板の洗浄方法。
4. The method for cleaning a substrate according to claim 1, wherein the concentration of dissolved nitrogen in the pure water after the adjustment in the first step is 10 ppm or more and 16 ppm or less. .
【請求項5】前記第1の工程における溶存窒素濃度の調
整は、純水を供給する純水供給ライン上で流通する純水
中の溶存窒素濃度を測定し、測定された溶存窒素濃度に
係る情報に基づいて脱気量を調整して行なうことを特徴
とする請求項1乃至4のいずれか一に記載の基板の洗浄
方法。
5. The adjustment of the dissolved nitrogen concentration in the first step relates to the measured dissolved nitrogen concentration by measuring the dissolved nitrogen concentration in pure water flowing on a pure water supply line for supplying pure water. The substrate cleaning method according to claim 1, wherein the degassing amount is adjusted based on the information.
【請求項6】溶存窒素濃度が大気との平衡溶存窒素濃度
以下に調整された純水と、 過酸化水素と、を含むことを特徴とする洗浄薬液。
6. A cleaning chemical liquid comprising pure water whose dissolved nitrogen concentration is adjusted to be equal to or less than the equilibrium dissolved nitrogen concentration with the atmosphere, and hydrogen peroxide.
【請求項7】前記純水の溶存窒素濃度は、10ppm以
上16ppm以下であることを特徴とする請求項6記載
の洗浄薬液。
7. The cleaning chemical liquid according to claim 6, wherein the dissolved nitrogen concentration of the pure water is 10 ppm or more and 16 ppm or less.
【請求項8】基板に対して洗浄を行なう洗浄薬液を収容
する洗浄槽と、 前記洗浄薬液に超音波を付与する超音波付与手段と、 純水と少なくとも過酸化水素を混合して洗浄薬液を作製
するとともに、前記洗浄薬液を直接若しくは温度調整を
してから前記洗浄槽に供給する混合機と、 前記混合機に過酸化水素を供給する過酸化水素供給ライ
ンと、 前記混合機に純水を供給する純水供給ラインと、を備え
る洗浄装置において、 前記純水供給ライン上で流通する純水の溶存窒素濃度を
測定する測定装置と、前記純水供給ライン上で流通する
純水の溶存窒素を調整可能に脱気する脱気装置と、 前記測定装置で測定された溶存窒素濃度に係る情報に基
づき前記脱気装置を用いて純水の溶存窒素濃度を制御す
る制御装置と、を備えることを特徴とする洗浄装置。
8. A cleaning tank containing a cleaning chemical solution for cleaning a substrate, an ultrasonic wave applying means for applying ultrasonic waves to the cleaning chemical solution, and pure water and at least hydrogen peroxide are mixed to form a cleaning chemical solution. A mixer for producing the cleaning solution directly or after adjusting the temperature and supplying it to the cleaning tank, a hydrogen peroxide supply line for supplying hydrogen peroxide to the mixer, and pure water for the mixer. In a cleaning device including a pure water supply line for supplying, a measuring device for measuring a dissolved nitrogen concentration of pure water flowing on the pure water supply line, and a dissolved nitrogen of pure water flowing on the pure water supply line A degassing device that adjustably degasses, and a control device that controls the dissolved nitrogen concentration of pure water using the degassing device based on information related to the dissolved nitrogen concentration measured by the measuring device. Wash characterized by Apparatus.
【請求項9】基板に対して洗浄を行なう洗浄薬液を収容
する洗浄槽と、 前記洗浄薬液に超音波を付与する超音波付与手段と、 純水と過酸化水素とアンモニアを混合して洗浄薬液を作
製するとともに、作製された前記洗浄薬液を直接若しく
は温度調整をしてから前記洗浄槽に供給する混合機と、 前記混合機に過酸化水素を供給する過酸化水素供給ライ
ンと、 前記混合機にアンモニアを供給するアンモニア供給ライ
ンと、 前記混合機に純水を供給する純水供給ラインと、を備え
る洗浄装置において、 前記純水供給ライン上で流通する純水の溶存窒素濃度を
測定する測定装置と、 前記純水供給ライン上で流通する純水の溶存窒素を調整
可能に脱気する脱気装置と、 前記測定装置で測定された溶存窒素濃度に係る情報に基
づき前記脱気装置を用いて純水の溶存窒素濃度を制御す
る制御装置と、を備えることを特徴とする洗浄装置。
9. A cleaning tank containing a cleaning chemical solution for cleaning a substrate, an ultrasonic wave applying means for applying ultrasonic waves to the cleaning chemical solution, and a cleaning chemical solution by mixing pure water, hydrogen peroxide and ammonia. And a mixer for supplying the cleaning chemical solution thus prepared directly or after adjusting the temperature to the cleaning tank, a hydrogen peroxide supply line for supplying hydrogen peroxide to the mixer, and the mixer. In a cleaning device including an ammonia supply line for supplying ammonia to the mixer and a pure water supply line for supplying pure water to the mixer, measurement for measuring the dissolved nitrogen concentration of pure water flowing on the pure water supply line An apparatus, a degassing apparatus for degassing the dissolved nitrogen of the pure water flowing on the pure water supply line in an adjustable manner, and using the degassing apparatus based on information related to the dissolved nitrogen concentration measured by the measuring apparatus. Cleaning device comprising Te and a control unit for controlling the concentration of dissolved nitrogen of the pure water, in that it comprises.
【請求項10】前記測定装置及び前記脱気装置は、前記
純水供給ライン上のうち前記混合機の近傍に配されるこ
とを特徴とする請求項8又は9記載の洗浄装置。
10. The cleaning device according to claim 8, wherein the measuring device and the degassing device are arranged in the vicinity of the mixer on the pure water supply line.
【請求項11】請求項1乃至5のいずれか一に記載の基
板の洗浄方法により洗浄されたことを特徴とする半導体
基板。
11. A semiconductor substrate cleaned by the method for cleaning a substrate according to any one of claims 1 to 5.
JP2002029348A 2002-02-06 2002-02-06 Method, chemical liquid, and device for cleaning substrate, and semiconductor device Pending JP2003234320A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002029348A JP2003234320A (en) 2002-02-06 2002-02-06 Method, chemical liquid, and device for cleaning substrate, and semiconductor device
US10/357,344 US20030150477A1 (en) 2002-02-06 2003-02-04 Substrate cleaning method, cleaning solution, cleaning apparatus and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029348A JP2003234320A (en) 2002-02-06 2002-02-06 Method, chemical liquid, and device for cleaning substrate, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2003234320A true JP2003234320A (en) 2003-08-22

Family

ID=27654695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029348A Pending JP2003234320A (en) 2002-02-06 2002-02-06 Method, chemical liquid, and device for cleaning substrate, and semiconductor device

Country Status (2)

Country Link
US (1) US20030150477A1 (en)
JP (1) JP2003234320A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101539A (en) * 2003-08-25 2005-04-14 Tokyo Electron Ltd Method of cleaning member and substrate processing apparatus
JP2006024890A (en) * 2004-06-07 2006-01-26 Dainippon Screen Mfg Co Ltd Method, equipment, and system for processing substrate
JP2007250726A (en) * 2006-03-15 2007-09-27 Tokyo Electron Ltd Cleaning method, device and program of substrate, and recording medium
WO2008050832A1 (en) * 2006-10-27 2008-05-02 Tokyo Electron Limited Substrate cleaning apparatus, substrate cleaning method, program and recording medium
JP2009021539A (en) * 2007-06-15 2009-01-29 Tokyo Electron Ltd Substrate cleaning method, substrate cleaning apparatus, program, and program recording medium
US8083857B2 (en) 2007-06-15 2011-12-27 Tokyo Electron Limited Substrate cleaning method and substrate cleaning apparatus
JP2012132708A (en) * 2010-12-20 2012-07-12 Siltronic Ag Method for monitoring concentration of dissolved nitrogen
CN104084410A (en) * 2014-07-04 2014-10-08 深圳市华星光电技术有限公司 Liquid feeding system and liquid feeding method thereof
JP2019161161A (en) * 2018-03-16 2019-09-19 栗田工業株式会社 Device and method for washing substrate
WO2020175207A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Glass film

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035175C1 (en) * 2000-07-19 2002-01-03 Fraunhofer Ges Forschung Making electrical/mechanical connection between flexible thin film substrates involves positioning substrates so openings coincide, positioning bonding elements, pressing together
JP4319445B2 (en) * 2002-06-20 2009-08-26 大日本スクリーン製造株式会社 Substrate processing equipment
JP4159574B2 (en) * 2005-06-21 2008-10-01 株式会社カイジョー Deaeration device and ultrasonic cleaning device using the same
TWI255864B (en) * 2005-06-30 2006-06-01 Chunghwa Picture Tubes Ltd Etching apparatus and etching process
TW200714379A (en) * 2005-06-30 2007-04-16 Fico Bv Method and device for cleaning electronic components processed with a laser beam
JP2009081366A (en) * 2007-09-27 2009-04-16 Elpida Memory Inc Batch processing apparatus
EP2226834B1 (en) * 2009-03-06 2020-04-29 IMEC vzw Method for physical force assisted cleaning with reduced damage
AT510893B1 (en) * 2010-12-20 2017-06-15 Primetals Technologies Austria GmbH METHOD AND DEVICE FOR PREPARING PROCESS WATER
JP5526118B2 (en) * 2011-12-26 2014-06-18 ジルトロニック アクチエンゲゼルシャフト Ultrasonic cleaning method
JP2013157443A (en) * 2012-01-30 2013-08-15 Siltronic Ag Cleaning method
US10121685B2 (en) * 2015-03-31 2018-11-06 Tokyo Electron Limited Treatment solution supply method, non-transitory computer-readable storage medium, and treatment solution supply apparatus
US10935896B2 (en) * 2016-07-25 2021-03-02 Applied Materials, Inc. Cleaning solution mixing system with ultra-dilute cleaning solution and method of operation thereof
JP7217280B2 (en) * 2018-01-23 2023-02-02 エーシーエム リサーチ (シャンハイ) インコーポレーテッド SUBSTRATE CLEANING METHOD AND CLEANING APPARATUS
CN114632764A (en) * 2022-01-25 2022-06-17 南京航空航天大学 Ultrasonic cleaning method based on microparticle nucleation and impact effect

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907611A (en) * 1986-12-22 1990-03-13 S & C Co., Ltd. Ultrasonic washing apparatus
CH679890A5 (en) * 1989-11-17 1992-04-30 Orbisphere Lab
JPH1022246A (en) * 1996-07-04 1998-01-23 Tadahiro Omi Cleaning method
WO1998008248A1 (en) * 1996-08-20 1998-02-26 Organo Corporation Method and device for washing electronic parts member, or the like
US5800626A (en) * 1997-02-18 1998-09-01 International Business Machines Corporation Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
US6039055A (en) * 1998-01-08 2000-03-21 International Business Machines Corporation Wafer cleaning with dissolved gas concentration control
US6167891B1 (en) * 1999-05-25 2001-01-02 Infineon Technologies North America Corp. Temperature controlled degassification of deionized water for megasonic cleaning of semiconductor wafers
US6295998B1 (en) * 1999-05-25 2001-10-02 Infineon Technologies North America Corp. Temperature controlled gassification of deionized water for megasonic cleaning of semiconductor wafers
JP2002316027A (en) * 2001-04-19 2002-10-29 Ebara Corp Device and method for manufacturing gas-dissolved water, device and method for ultrasonic cleaning

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101539A (en) * 2003-08-25 2005-04-14 Tokyo Electron Ltd Method of cleaning member and substrate processing apparatus
JP2006024890A (en) * 2004-06-07 2006-01-26 Dainippon Screen Mfg Co Ltd Method, equipment, and system for processing substrate
JP4553781B2 (en) * 2004-06-07 2010-09-29 大日本スクリーン製造株式会社 Substrate processing method, substrate processing apparatus, and substrate processing system
JP2007250726A (en) * 2006-03-15 2007-09-27 Tokyo Electron Ltd Cleaning method, device and program of substrate, and recording medium
WO2008050832A1 (en) * 2006-10-27 2008-05-02 Tokyo Electron Limited Substrate cleaning apparatus, substrate cleaning method, program and recording medium
JP2009021539A (en) * 2007-06-15 2009-01-29 Tokyo Electron Ltd Substrate cleaning method, substrate cleaning apparatus, program, and program recording medium
US8083857B2 (en) 2007-06-15 2011-12-27 Tokyo Electron Limited Substrate cleaning method and substrate cleaning apparatus
JP2012132708A (en) * 2010-12-20 2012-07-12 Siltronic Ag Method for monitoring concentration of dissolved nitrogen
US8778085B2 (en) 2010-12-20 2014-07-15 Siltronic Ag Dissolved nitrogen concentration monitoring method, substrate cleaning method, and substrate cleaning apparatus
CN104084410A (en) * 2014-07-04 2014-10-08 深圳市华星光电技术有限公司 Liquid feeding system and liquid feeding method thereof
JP2019161161A (en) * 2018-03-16 2019-09-19 栗田工業株式会社 Device and method for washing substrate
WO2020175207A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Glass film

Also Published As

Publication number Publication date
US20030150477A1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
JP2003234320A (en) Method, chemical liquid, and device for cleaning substrate, and semiconductor device
EP1834708B1 (en) Substrate cleaning method, substrate cleaning system and program storage medium
JP4705517B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP2008021672A (en) Ultrasonic cleaning method and cleaning device using gas supersaturation solution
JP5127257B2 (en) Ultrasonic cleaning method
KR101061946B1 (en) Substrate cleaning method, substrate cleaning apparatus and program recording medium
JPH1022246A (en) Cleaning method
JP4599323B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP4482844B2 (en) Wafer cleaning method
TWI362066B (en)
JP2009032710A (en) Substrate processing apparatus
JP2005150768A (en) Cleaning method and cleaning method of electronic component
JP2010046570A (en) Apparatus for manufacturing feed liquid for ultrasonic treatment apparatus, method for manufacturing feed liquid for ultrasonic treatment apparatus and ultrasonic treatment system
JP2000288495A (en) Cleaning method
JP2004296463A (en) Cleaning method and cleaning device
JP2007152207A (en) Ultrasonic washing apparatus
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
JP2821887B2 (en) Ultrasonic cleaning equipment
JPH1071375A (en) Washing method
JPH04130629A (en) Etchant mixer
JPH118214A (en) Method and system for cleaning
JP2005039002A (en) Washing apparatus and method therefor
JP2008091546A (en) Apparatus and method for cleaning substrate
JP3615951B2 (en) Substrate cleaning method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913