WO2018123193A1 - Device for manufacturing diluted liquid, and method for manufacturing diluted liquid - Google Patents

Device for manufacturing diluted liquid, and method for manufacturing diluted liquid Download PDF

Info

Publication number
WO2018123193A1
WO2018123193A1 PCT/JP2017/036436 JP2017036436W WO2018123193A1 WO 2018123193 A1 WO2018123193 A1 WO 2018123193A1 JP 2017036436 W JP2017036436 W JP 2017036436W WO 2018123193 A1 WO2018123193 A1 WO 2018123193A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tank
pipe
pressure
dilution
Prior art date
Application number
PCT/JP2017/036436
Other languages
French (fr)
Japanese (ja)
Inventor
山下 幸福
翔太 森野
山中 弘次
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016254939A external-priority patent/JP6777534B2/en
Priority claimed from JP2016254938A external-priority patent/JP6777533B2/en
Priority claimed from JP2016254940A external-priority patent/JP6738726B2/en
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN201780066541.6A priority Critical patent/CN109890494B/en
Priority to KR1020197015953A priority patent/KR102275626B1/en
Publication of WO2018123193A1 publication Critical patent/WO2018123193A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/405Methods of mixing liquids with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2213Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a diluent manufacturing apparatus and a diluent manufacturing method.
  • ultrapure water from which impurities are highly removed is used as a cleaning liquid for cleaning electronic components such as semiconductor wafers and glass substrates.
  • the use of ultrapure water having a high specific resistance value tends to generate static electricity during cleaning, which may cause electrostatic breakdown of the insulating film and reattachment of fine particles.
  • chemical solutions such as ammonia water and carbonated water have been added to ultra-pure water with high accuracy for the purpose of adjusting the specific resistance value (conductivity) to a predetermined range and suppressing the generation of static electricity.
  • the diluted solution adjusted to a predetermined concentration is used.
  • Patent Document 1 discloses, as such a diluent manufacturing apparatus, a first pipe for supplying ultrapure water, a tank for storing a chemical solution, and a second pipe for connecting the tank and the first pipe. And a pressure regulator for adjusting the pressure in the tank, and the chemical solution in the tank is pumped through the second pipe by the pressure regulator and added to the ultrapure water in the first pipe to produce a diluted liquid.
  • a manufacturing apparatus is described. According to this manufacturing apparatus, the amount of chemical solution added can be adjusted with high accuracy by appropriately controlling the pressure in the tank based on the measured values of the flow rate of the ultrapure water or diluent and the concentration of the diluent. As a result, a diluted solution adjusted to a predetermined concentration can be produced.
  • the diluted liquid adjusted to a predetermined concentration is continuously and stably used. It is required to supply points.
  • the manufacturing apparatus described in Patent Document 1 when the chemical liquid in the tank becomes empty, the operation of the apparatus is stopped, the pressure in the tank is released and the chemical liquid is replenished, or the chemical liquid is filled. It is necessary to change to another tank. In such a case, it may take time for the concentration of the diluted solution to be stabilized after the operation of the apparatus is resumed.
  • the chemical liquid is replenished to the tank while the chemical liquid is continuously supplied from the tank before the chemical liquid in the tank becomes empty.
  • a replenishment method is performed by controlling the inside of the tank to be pressurized with the pressurizing gas, the supply of the chemical from the tank leads to disturbance of the pressure control in the tank, and the diluted liquid produced. It leads to destabilizing the concentration.
  • an object of the present invention is to provide a diluent manufacturing apparatus and a diluent manufacturing method capable of continuously and stably manufacturing a diluent adjusted to a predetermined concentration.
  • the diluent manufacturing apparatus of the present invention manufactures a second liquid diluent by adding the second liquid to the first liquid, and uses the diluent as a use point.
  • a pressure adjusting unit that adjusts the pressure in the second pipe and the first tank, the pressure supplying the first liquid by pumping the second liquid in the first tank through the second pipe Based on the adjustment unit and the measured value of the flow rate of the first liquid or dilution liquid flowing in the first pipe and the concentration of the dilution liquid, the pressure adjustment unit adjusts the concentration of the dilution liquid to a predetermined concentration.
  • a control unit that adjusts the amount of the second liquid added to the first liquid.
  • the dilution liquid manufacturing apparatus of the present invention includes a second tank that is connected in series to the first tank and temporarily stores the second liquid that is replenished to the first tank.
  • the second tank is connected in parallel to the first tank and stores the second liquid supplied to the first pipe instead of the first tank.
  • the method for producing a diluent according to the present invention is a method for producing a diluent that produces a diluent of the second liquid by adding the second liquid to the first liquid and supplies the diluent to the use point.
  • the first liquid is supplied to the first pipe and the pressure in the first tank for storing the second liquid is adjusted to connect the first tank and the first pipe.
  • the method for producing a diluent according to the present invention includes a step of temporarily storing a second liquid in a second tank connected in series to the first tank, and a liquid in the first tank.
  • a diluent adjusted to a predetermined concentration can be continuously and stably produced.
  • FIG. 2 is a graph plotting the conductivity of dilute ammonia water against the amount of ammonia water added in Example 1.
  • FIG. It is a graph which shows the time change of the flow volume of the 1st liquid in Example 2, the pressure in a 1st tank, and the electrical conductivity of diluted ammonia water. It is a graph which shows the time change of the flow volume of the 1st liquid, the pressure in a 1st tank, and the electrical conductivity of diluted ammonia water in a comparative example.
  • FIG. 1 is a schematic configuration diagram of a diluent manufacturing apparatus according to the first embodiment of the present invention. Note that the illustrated configuration is merely an example, and it is needless to say that the configuration can be appropriately changed according to the use purpose, application, and required performance of the apparatus, for example, by adding a valve or a filter.
  • the dilution liquid manufacturing apparatus 10 includes a first pipe 11 that supplies a first liquid, two tanks 12a and 12b that store a second liquid, two tanks 12a and 12b, and a first pipe 11. And a plurality of second pipes 13 connected in parallel to each other.
  • the second liquid is a chemical liquid to be diluted
  • the first liquid is a dilution medium for diluting the second liquid. Therefore, the diluent manufacturing apparatus 10 manufactures the second liquid diluent by adding the second liquid to the first liquid flowing through the first pipe 11 through the second pipe 13.
  • the diluted solution is supplied to the use point 1 through the first pipe 11.
  • the type of the first liquid is not particularly limited, and ultrapure water, pure water, water in which an electrolyte or gas is dissolved, or alcohols such as isopropyl alcohol can be used according to the intended use.
  • the type of the second liquid is not particularly limited, and an electrolyte such as carbonated water or hydrogen water, or water in which a gas is dissolved, or an alcohol such as isopropyl alcohol. Can be used according to the intended use.
  • the diluted liquid to be manufactured is used for cleaning a semiconductor wafer, it is preferable to use ultrapure water as the first liquid and an aqueous ammonia solution as the second liquid.
  • an aqueous tetramethylammonium hydroxide (TMAH) solution can also be suitably used as the second liquid.
  • the ultrapure water mentioned here means treated water obtained by removing ions and nonionic substances from the treated water (raw water) using an ultrapure water production apparatus. It means treated water having a resistance value of 18 M ⁇ ⁇ cm or more.
  • the two tanks 12a and 12b are connected in parallel to each other. That is, the two tanks 12a and 12b are connected in series to the plurality of second pipes 13 via the valves 14a and 14b, respectively, on the outlet side. Valves 13a are provided on the inlet sides of the plurality of second pipes 13, respectively. A filter F1 is provided between the two valves 14a and 14b and the plurality of valves 13a. A three-way valve may be provided on the outlet side of the two tanks 12a and 12b instead of the two valves 14a and 14b. Further, a chemical liquid supply line (liquid supply means) 16 for supplying a second liquid to the tanks 12a and 12b is connected to the two tanks 12a and 12b via valves 15a and 15b, respectively.
  • a chemical liquid supply line (liquid supply means) 16 for supplying a second liquid to the tanks 12a and 12b is connected to the two tanks 12a and 12b via valves 15a and 15b, respectively.
  • Filters F2 and F3 are provided between the valve 15a and the tank 12a and between the valve 15b and the tank 12b, respectively, and the chemical solution supply line 16 is provided with a valve 16a. Further, the two tanks 12a and 12b are provided with air release valves 17a and 17b, respectively. A three-way valve may be provided on the inlet side of the two tanks 12a and 12b instead of the two valves 15a and 15b.
  • the diluent manufacturing apparatus 10 uses the pressure in the tanks 12a and 12b as a means for pumping the second liquid in the tanks 12a and 12b through the second pipe 13 and supplying the second liquid to the first pipe 11. It has the pressure adjustment part 18 to adjust.
  • the pressure adjustment unit 18 includes a tank pressurization gas supply line 18a for supplying tank pressurization gas into the tanks 12a and 12b, and a supply / exhaust mechanism 18b provided in the tank pressurization gas supply line 18a.
  • the air supply / exhaust mechanism 18b includes an air supply valve 18c and an exhaust valve 18d, and the tanks 12a and 12b can be pressurized or depressurized by opening and closing them.
  • the supply / exhaust mechanism 18b is not limited to the illustrated configuration, that is, the supply / pressurization mechanism (supply valve 18c) and the exhaust pressure reduction mechanism (exhaust valve 18d) are configured separately.
  • an air supply pressurizing mechanism such as an electropneumatic regulator and an exhaust pressure reducing mechanism may be integrally configured.
  • the tank pressurization gas supply line 18a is connected to one tank (first tank) 12a via a valve 19a, and is connected to the other tank (second tank) 12b via a valve 19b.
  • the gas supply line 18a is provided with a pressure gauge 19c for measuring the supply pressure of the tank pressurizing gas.
  • the tank pressurizing gas is not particularly limited, but it is preferable to use an inert gas, nitrogen gas, which can be used relatively easily.
  • an inert gas nitrogen gas
  • the tank pressurizing gas should be avoided. For this reason, even when an inert gas such as nitrogen is used, it may be affected by oxygen contained as an impurity, so that it is necessary to sufficiently consider its purity.
  • the second liquid is alternately supplied from the two tanks 12a and 12b to the first pipe 11 during the normal operation in which the diluent is manufactured. That is, the first supply mode in which the second liquid is supplied from the first tank 12 a to the first pipe 11, and the second liquid in which the second liquid is supplied from the second tank 12 b to the first pipe 11.
  • the two supply modes are appropriately switched based on the liquid level in each tank 12a, 12b. For example, in the first supply mode, when the liquid level in the first tank 12a falls below a predetermined lower limit liquid level, the supply of the second liquid from the first tank 12a is stopped, and the second tank 12b. The second liquid is supplied from. This switching operation will be described later.
  • the supply of the second liquid to the first pipe 11 is performed through one of the plurality of second pipes 13, but the plurality of second pipes 13 are connected to the second pipe 13.
  • the plurality of second pipes 13 have at least one of an inner diameter and a length that allow the second liquid to pass at different flow rates even when the pressure in each of the tanks 12a and 12b is constant, for example. Configured differently. The configuration of these second pipes 13 will also be described later.
  • the diluent manufacturing apparatus 10 has a control unit 20 that controls various operation operations of the diluent manufacturing apparatus 10.
  • the control unit 20 is based on at least the measurement results of the flow rate measurement unit 21 that measures the flow rate of the first liquid flowing in the first pipe 11 and the concentration measurement unit 22 that measures the concentration of the diluent.
  • the amount of the second liquid added to the first liquid by the pressure adjusting unit 18 can be adjusted so that the concentration of the diluted liquid becomes a predetermined concentration.
  • a method for adjusting the amount of addition of the second liquid by the control unit 20 will be described. Before that, Hagen-Poiseuille's law, which is the basis for adjusting the amount of addition, will be briefly described.
  • Hagen-Poiseuille's law is a law related to the loss head of laminar flow in a circular pipe.
  • the inner diameter of the pipe is D [m]
  • the length of the pipe is L [m]
  • the pressure gradient at both ends of the pipe is ⁇ P.
  • [Pa] the viscosity coefficient of the liquid is ⁇ [Pa ⁇ s]
  • the flow rate of the liquid flowing in the pipe is Q [m 3 / s]
  • Q ( ⁇ ⁇ D 4 ⁇ ⁇ P) / (128 ⁇ ⁇ ⁇ L) It is expressed by the relationship.
  • the flow rate Q of the liquid flowing through the circular tube is proportional to the fourth power of the inner diameter D of the circular tube and the pressure gradient ⁇ P at both ends, and the length L of the circular tube and the viscosity of the liquid It is inversely proportional to the coefficient ⁇ .
  • Hagen-Poiseuille's law is applied to the supply of the second liquid through each second pipe.
  • the length L and the inner diameter D of each of the second pipes are fixed values. If the type of the second liquid is determined, the viscosity coefficient ⁇ is also a fixed value. Therefore, it is possible to proportionally control the flow rate Q in each second pipe only by controlling the pressure in the tank corresponding to the pressure gradient ⁇ P between both ends of each second pipe.
  • the target value of the concentration of the diluted liquid to be manufactured is set, and the amount of the second liquid added is calculated with respect to the set target concentration.
  • the flow rate of the first liquid is measured by the flow rate measuring means 21, and the target addition amount of the second liquid for achieving the target concentration is calculated.
  • one second pipe 13 to be used is determined for the calculated target addition amount, and the target addition is performed on the determined second pipe 13.
  • a target value of the pressure in the first tank 12a for realizing the amount (flow rate) is calculated.
  • the pressure adjusting unit 18 adjusts the pressure in the first tank 12a to the calculated target pressure, so that the first tank 12a
  • the second liquid is added to the first liquid in the first pipe 11 through the second pipe 13 in a predetermined addition amount.
  • the flow rate Q of the second liquid flowing through the second pipe 13 is proportional to the pressure gradient ⁇ P at both ends of the second pipe 13. Therefore, for example, when the flow rate of the first liquid changes, the pressure in the first tank 12a is changed so that the pressure gradient ⁇ P is proportional to the change by a certain proportional constant.
  • the pressure gradient ⁇ P is halved and the flow rate of the second liquid is also halved.
  • the concentration of the second liquid itself may not be constant due to volatilization or decomposition of the second liquid in the first tank 12a.
  • the concentration of the diluted solution to be manufactured is initially adjusted within a predetermined concentration range including the target concentration, there is a possibility that it gradually deviates from the concentration range. Therefore, in this embodiment, when the concentration of the diluent is measured by the concentration measuring means 22 and the measured concentration of the diluent is out of the predetermined concentration range, the concentration of the diluent falls within the predetermined concentration range.
  • the proportionality constant described above is modified to fit.
  • the proportionality constant can be automatically changed to an optimum value even when the apparatus is initially operated or when the target value of the concentration of the diluent is changed. As a result, a diluted solution adjusted to a predetermined concentration can be stably produced.
  • the configuration of the flow rate measuring means 21 is not particularly limited, and for example, a Karman vortex flow meter or an ultrasonic flow meter can be used. Moreover, the flow rate measuring means 21 should just be installed in the position which can monitor the flow volume fluctuation
  • the flow rate measuring means 21 is provided on the upstream side of the connection portion of the first pipe 11 with the plurality of second pipes 13, but on the downstream side of the connection portion. The flow rate of the diluent flowing through the first pipe 11 may be measured. This is because the supply amount (flow rate) of the second liquid is much smaller than the flow rate of the first liquid, and the flow rate of the diluent can be handled equivalently to the flow rate of the first liquid.
  • the concentration measuring means 22 is not particularly limited as long as it can measure the concentration of the diluent as an electrochemical constant.
  • an electric conductivity meter, a pH meter, a specific resistance meter, an ORP meter (an oxidation meter) Reduction electrometer) or an ion electrode meter can be used.
  • an electric conductivity meter or a specific resistance meter as the concentration measuring means 22.
  • the concentration measuring means 22 is installed on the downstream side of the connection portion of the first pipe 11 with the plurality of second pipes 13. At this installation position, the first pipe 11 is provided. It may be directly attached to, or may be attached to a bypass pipe provided in parallel with the first pipe 11.
  • the accuracy of the second liquid supply amount (flow rate Q) is greatly influenced by the pressure gradient ⁇ P at both ends of the second pipe 13. Therefore, when the pressure at the connection portion between the first pipe 11 and the second pipe 13 fluctuates greatly, it becomes difficult to stably manufacture a diluent adjusted to a predetermined concentration.
  • a pressure measuring means 23 for measuring the pressure in the first pipe 11 is provided. Therefore, the control unit 20 sets the target of the pressure in the first tank 12a for setting the concentration of the diluent to the target concentration based on the measurement results of the flow rate measuring unit 21, the concentration measuring unit 22, and the pressure measuring unit 23.
  • the value is calculated and the amount of addition of the second liquid is adjusted.
  • the configuration of the pressure measurement means 23 is not particularly limited, and in the illustrated embodiment, the installation position is also upstream of the connection portion with the plurality of second pipes 13. If it can be measured, it may be downstream from the connecting portion.
  • the flow rate Q of the second liquid flowing in the second pipe 13 is proportional to the pressure gradient ⁇ P at both ends of the second pipe 13. Therefore, if this pressure gradient ⁇ P can be changed greatly, a wide supply amount (flow rate) of the second liquid can be realized and a wide concentration range can be dealt with.
  • a wide supply amount (flow rate) of the second liquid can be realized and a wide concentration range can be dealt with.
  • the pressure gradient ⁇ P since there is an upper limit to the pressure applied to each of the tanks 12a and 12b, it is difficult to greatly change the pressure gradient ⁇ P, and the adjustment range of the amount of addition of the second liquid is also limited.
  • the flow rate Q of the second liquid is also proportional to the inner diameter D (the fourth power) of the second pipe 13 and inversely proportional to its length L.
  • the plurality of second pipes 13 are configured such that at least one of the inner diameter and the length is different from each other. Has been. That is, the plurality of second pipes 13 are different from each other in at least one of the inner diameter and the length. For example, even if the pressure in each of the tanks 12a and 12b is constant, the second pipes 13 pass the second liquid at different flow rates. It is configured to let you. Thereby, it becomes possible to widen the adjustment range of the addition amount of the second liquid as the whole apparatus, and it becomes possible to manufacture a dilute solution having a wide concentration range.
  • the inner diameters of the individual second pipes 13 are not limited to specific dimensions, but in order to more precisely control the concentration of the diluent to be produced, the inner diameters of the respective second pipes 13 are It is preferably more than 0.1 mm and 4 mm or less, more preferably more than 0.2 mm and 0.5 mm or less. This is because the flow of the second liquid in the second pipe 13 tends to be a laminar flow (regular and orderly flow). That is, when the flow in the pipe becomes a turbulent flow (irregular flow), the Hagen-Poiseuille law described above does not hold, and the flow rate Q of the second liquid flowing in the second pipe is changed to the both ends of the second pipe.
  • each second pipe 13 has a laminar flow of the second liquid flowing in the pipe.
  • each second pipe 13 is not limited to a specific dimension. However, if the length is too short, the flow rate in the pipe is likely to be affected, and the liquid flow rate is reduced at both ends of the pipe. Proportional control with a pressure gradient becomes difficult. If the length is too long, it is difficult to install the pipe, and the contact area between the pipe and the liquid is increased, which may increase the contamination of the liquid in the pipe. Therefore, the length of each second pipe 13 is preferably in the range of 0.01 m to 100 m, and more preferably in the range of 0.1 m to 10 m.
  • the second pipe 13 having an inner diameter of 0.1 mm or less or a length exceeding 100 m depends on the combination, but the resistance when the second liquid flows through the pipe 13 is likely to increase. That is, the pressure in the tank tends to be high. Therefore, such an inner diameter and length are not preferable because it is difficult to select components (piping, valves, etc.) constituting the apparatus from the viewpoint of pressure resistance.
  • the second pipe 13 having an inner diameter of more than 4 mm or a length of less than 0.01 m tends to reduce the resistance when the second liquid flows through the pipe 13 depending on the combination. That is, the flow rate of the second liquid is easily changed by a slight change in the pressure in the tank. Therefore, such an inner diameter and length are not preferable because it is difficult to control the pressure in the tank.
  • the material and shape of the second pipe 13 are not particularly limited, but a resin-made flexible tube is preferably used.
  • resins include fluororesins such as PFA and ETFE, polyethylene resins, polypropylene resins, and the like, and when the diluted solution produced is used for cleaning or rinsing semiconductor wafers, there is little elution. A fluororesin is particularly preferred.
  • the second liquid is a volatile liquid
  • the second pipe 13 has gas permeability in order to suppress the concentration fluctuation of the liquid due to the liquid in the tube volatilizing and diffusing outside. It is preferable to use a low one.
  • oxygen contained in the diluent may have an adverse effect depending on the intended use of the diluent to be produced. Therefore, oxygen in the air moves from the outside of the second pipe 13 to the inside. It is also preferable in that it can suppress diffusion and suppress an increase in dissolved oxygen concentration in the second liquid.
  • the method of connecting the second pipe 13 to the first pipe 11 is not particularly limited as long as the first liquid and the second liquid are appropriately mixed.
  • the second pipe 13 is preferably connected to the first pipe 11 such that the tip thereof is located at the center of the first pipe 11, thereby efficiently connecting the first liquid and the first pipe 11.
  • the second liquid can be mixed.
  • the plurality of second pipes 13 are preferably individually connected to the first pipe 11 in that the structure is simple and the liquid pool is small.
  • the four second pipes 13 are provided, but the number of the second pipes 13 is not limited to four, depending on the required concentration range of the diluent, For example, it can be appropriately changed to two, three, or five or more. Accordingly, the combination of the inner diameter and the length is not limited to a specific combination and can be appropriately changed. As a combination of the inner diameter and the length, only one of them may be different. In this case, as described above, since there is an upper limit to the pressure applied to each of the tanks 12a and 12b, the inner diameters are different from each other in that the adjustment range of the amount of addition of the second liquid can be further expanded. A combination is preferred.
  • the length L affects the flow rate Q of the second liquid flowing through the second pipe 13, while the inner diameter D affects the fourth power. It is clear from what to do.
  • the second liquid is supplied to the first pipe 11 through one of the plurality of second pipes 13, but depending on the required concentration range of the diluent, a plurality of the second liquids may be supplied. Of these second pipes 13, two or more second pipes 13 may be used.
  • the first supply mode in which the second liquid is supplied from the first tank 12a to the first pipe 11 during the normal operation in which the dilution liquid is manufactured, and the second Switching to the second supply mode in which the second liquid is supplied from the tank 12b to the first pipe 11 is performed.
  • this switching operation will be described by taking as an example a case where switching from the first supply mode to the second supply mode is performed.
  • the valve 19a for connecting the tank pressurizing gas supply line 18a and the first tank 12a is opened, so that the tank pressurizing gas is supplied to the first tank 12a through the tank pressurizing gas supply line 18a.
  • a gas eg, nitrogen gas
  • the measured value (pressure in the first tank 12a) by the pressure gauge 19c is adjusted by the air supply / exhaust mechanism 18b so as to become the target pressure.
  • the second liquid in the first tank 12 a is added to the first liquid in the first pipe 11 in a predetermined addition amount through the designated second pipe 13.
  • valve 19b for connecting the tank pressurization gas supply line 18a and the second tank 12b, a valve 16a for the chemical supply line 16, and the chemical supply line 16 and the first tank 12a 15b, the valve 15b between the chemical solution supply line 16 and the second tank 12b, the atmosphere release valve 17a of the first tank 12a, and the atmosphere release valve 17b of the second tank 12b are all closed. It is in the state that was done. Further, the second tank 12b is in a standby state in which a small amount of the second liquid is stored.
  • the valve 16a of the chemical liquid supply line 16 is The air release valve 17b of the second tank 12b is opened. Subsequently, the valve 15b between the chemical liquid supply line 16 and the second tank 12b is opened, and the second liquid is supplied to the second tank 12b through the chemical liquid supply line 16 and stored.
  • the valve 16a of the chemical liquid supply line 16, the air release valve 17b of the second tank 12b, and the chemical liquid supply line 16 and the second tank Valve 15b between 12b is closed.
  • the valve 19b connecting the tank pressurization gas supply line 18a and the second tank 12b is opened, and the tank pressurization gas is introduced into the second tank 12b through the tank pressurization gas supply line 18a.
  • the measured value by the pressure gauge 19c is adjusted to the target pressure by the air supply / exhaust mechanism 18b. That is, the pressure in the second tank 12b is adjusted to the target pressure while maintaining the state in which the pressure in the first tank 12a is adjusted to the target pressure.
  • the valve 14b connecting the second tank 12b and the second pipe 13 is opened, and then the first tank 12a and the second pipe are connected. 13 is closed.
  • the supply mode is changed from the first supply mode in which the second liquid is supplied from the first tank 12a to the second supply mode in which the supply of the second liquid is supplied from the second tank 12b.
  • the switch is complete. Thereafter, the valve 19a connecting the tank pressurization gas supply line 18a and the first tank 12a is closed, and the first tank 12a is replenished with the second liquid for the next first supply mode. Wait until.
  • the supply of the second liquid from the second tank 12b is adjusted so that the pressure in the second tank 12b matches the pressure in the first tank 12a. Done later.
  • the first liquid in the first pipe 11 is added to the second liquid in the first tank 12a with a predetermined addition amount. Can be added to the liquid.
  • fluctuations in the amount of the second liquid added can be suppressed as much as possible. Therefore, fluctuations in the concentration of the diluted liquid produced can be suppressed as much as possible.
  • the atmosphere release valve 17b when the second tank 12b is in a standby state, the atmosphere release valve 17b is closed. This is to suppress the entry of oxygen into the second tank 12b and to suppress the dissolution of oxygen into the second liquid when the second liquid is replenished to the second tank 12b thereafter. However, if the dissolution of oxygen into the second liquid in the second tank 12b is not a problem, the atmosphere release valve 17b may not be closed. In addition, when replenishing the second liquid to the second tank 12b to the extent that the gas component in the tank is exhausted, the air in the tank is exhausted from the atmosphere release valve 17b, whereby the second liquid is discharged. Since the dissolution of oxygen into the liquid can be reduced, the atmosphere release valve 17b may be in either an open state or a closed state.
  • the replenishment of the second liquid to the second tank 12b is performed just before the end of the first supply mode, but the replenishment timing is not limited to this.
  • the second liquid can be replenished at an arbitrary timing in the first supply mode, such as immediately after switching to the first supply mode.
  • the atmosphere release valve 17b is preferably kept closed after the second liquid is replenished in order to suppress volatilization of the second liquid.
  • the switching from the first supply mode to the second supply mode is preferably started before the first tank 12a is emptied, as described above.
  • the dilution liquid manufacturing apparatus 10 of this embodiment temporarily stops supply of the first liquid to the first pipe 11 between normal operations, such as when there is no demand for the dilution liquid at the use point 1.
  • a transition to a standby mode in which the production of the diluted solution is temporarily stopped may occur.
  • the pressure in the first tank 12a that has been adjusted to the target pressure is preferably returned to the atmospheric pressure in consideration of safety. Conceivable.
  • depressurization to atmospheric pressure is actually not preferable in the following points.
  • the pressure in the first tank 12a is maintained and adjusted to a pressure exceeding the atmospheric pressure.
  • the atmospheric pressure Preferably it is.
  • the pressure in the first tank 12a in the standby mode is large in order to suppress the volatilization of the second liquid and suppress the concentration fluctuation. It is preferably higher than atmospheric pressure and higher than the saturated vapor pressure of the second liquid.
  • the tank pressurizing gas may be dissolved in the second liquid during normal operation. Therefore, in such a case, the pressure in the first tank 12a in the standby mode takes into account the solubility of the tank pressurizing gas in the second liquid in addition to the saturated vapor pressure of the second liquid. Preferably it is determined. On the other hand, since the good addition amount adjustment can be resumed more quickly after the normal operation is resumed, the pressure in the first tank 12a is adjusted to the target pressure as in the first supply mode even in the standby mode. May be maintained. Such adjustment is particularly suitable when the second liquid is water in which an electrolyte or gas such as carbonated water or hydrogen water is dissolved. *
  • FIG. 2 is a schematic configuration diagram of a diluent manufacturing apparatus according to the second embodiment of the present invention.
  • the same reference numerals are given to the same components as those in the first embodiment, the description thereof is omitted, and only the components different from those in the first embodiment will be described.
  • This embodiment is different from the first embodiment in that the function of the second tank 12b is changed.
  • the second tank 12b is connected in series via the connection line 31, not in parallel with the first tank 12a. More specifically, the second tank 12b is connected to the first tank 12a so that the second liquid in the second tank 12b is supplied to the first tank 12a by hydraulic head pressure. . Accordingly, the valves 14a, 14b, 15a, 15b of the first embodiment are omitted, and a plurality of second pipes 13 are provided only between the first tank 12a and the first pipe 11, The chemical solution supply line 16 is connected only to the second tank 12b.
  • the pressure gauge 19c is provided in the first tank 12a, and the connection line 31 is provided with a valve 31a and a check valve (not shown).
  • the second tank 12b functions as a temporary storage tank that temporarily stores the second liquid that is replenished to the first tank 12a. That is, during the normal operation in which the dilution liquid is manufactured, the second liquid is appropriately replenished from the second tank 12b to the first tank 12a based on the liquid level of the first tank 12a. The second liquid is continuously supplied from the tank 12 a to the first pipe 11. This eliminates the need for tank replacement and eliminates the need to stop the operation of the apparatus, thereby making it possible to continuously and stably manufacture the diluent. Hereinafter, this replenishment operation will be described.
  • tank pressurization gas for example, nitrogen gas
  • a measured value pressure in the first tank 12a
  • the target pressure is adjusted by the exhaust mechanism 18b.
  • the second liquid in the first tank 12 a is added to the first liquid in the first pipe 11 in a predetermined addition amount through the designated second pipe 13.
  • the following valves that is, a valve 19b for connecting the tank pressurization gas supply line 18a and the second tank 12b, a valve 16a for the chemical liquid supply line 16, an air release valve 17b for the second tank 12b,
  • the valve 31a of the connection line 31 is in a closed state.
  • the state of the air release valve 17b of the second tank 12b at this time is not limited to a closed state, as in the first embodiment, and is in an open state as necessary. May be.
  • the second tank 12b When the second liquid is supplied from the first tank 12a to the first pipe 11 and the liquid level in the first tank 12a falls below a predetermined lower limit liquid level, the second tank 12b is opened to the atmosphere. The valve 17b is opened. Subsequently, the valve 16a of the chemical liquid supply line 16 is opened, and the second liquid is supplied to the second tank 12b through the chemical liquid supply line 16 and stored. When the liquid level in the second tank 12b reaches a predetermined upper limit liquid level, the valve 16a of the chemical liquid supply line 16 is closed, and the air release valve 17b of the second tank 12b is closed.
  • the valve 19b connecting the tank pressurization gas supply line 18a and the second tank 12b is opened, and the tank pressurization gas is introduced into the second tank 12b through the tank pressurization gas supply line 18a.
  • the measured value by the pressure gauge 19c is adjusted to the target pressure by the air supply / exhaust mechanism 18b. That is, the pressure in the second tank 12b is adjusted to the target pressure while maintaining the state in which the pressure in the first tank 12a is adjusted to the target pressure.
  • the valve 31a of the connection line 31 is opened, and the second liquid is transferred from the second tank 12b to the first tank 12a by the hydraulic head pressure. .
  • the valve 31a of the connection line 31 is closed, and the second tank 12b is in a standby state until the next refilling operation.
  • the pressure in the second tank 12b matches the pressure in the first tank 12a. After being adjusted to do.
  • the pressure fluctuation of the first tank 12a can be suppressed as much as possible, and Concentration fluctuation can be suppressed as much as possible.
  • the bottom surface of the second tank 12b may be higher than the top surface of the first tank 12a so that the second liquid is reliably transferred to the first tank 12a by the head pressure. preferable.
  • the storage of the second liquid in the second tank 12b is started when the liquid level in the first tank 12a falls below a predetermined lower limit liquid level, but is limited to this timing. It can be performed at any timing.
  • the second liquid is a volatile liquid
  • the atmosphere release valve 17b remains closed after the replenishment of the second liquid.
  • the transfer of the second liquid from the second tank 12b to the first tank 12a can be performed at an arbitrary timing after the second liquid is stored in the second tank 12b.
  • the tank pressurizing gas is accumulated in the second pipe, and the gas is supplied to the first pipe and manufactured. Concentration fluctuations may occur in the diluted solution. Therefore, at least the transfer of the second liquid from the second tank 12b to the first tank 12a is performed at the above-described timing, that is, the second liquid is continuously supplied from the first tank 12a. It is preferably started before the first tank 12a is empty.
  • Example 1 diluted ammonia water was manufactured as a diluent using the diluent manufacturing apparatus 10 having the configuration shown in FIG. 3, and the conductivity of the diluted ammonia water was measured.
  • each tube A to E is as follows.
  • the thing made from PFA was used as the 1st piping 11, the 1st tank 12a, and the 2nd tank 12b, respectively.
  • the first liquid ultrapure water having a specific resistance value of 18 M ⁇ ⁇ cm or more and total organic carbon (TOC) of 1.0 ppb or less is used.
  • the first pipe 11 has a flow rate of 40 L / min and a water pressure of 0.35 MPa. We let water pass.
  • the second liquid 29 wt% ammonia water (for electronics industry, manufactured by Kanto Chemical Co., Inc.) was used, and nitrogen gas was used as the tank pressurizing gas introduced into the first tank 12a.
  • the conductivity of the diluted ammonia water when the pressure in the first tank 12a is changed and the amount of ammonia water added to the ultrapure water is changed is defined as the conductivity. Measurement was performed using a meter (product number “M300”, manufactured by METTLER TOLEDO).
  • FIG. 4 is a graph showing the measurement results at this time, the horizontal axis indicates the amount of ammonia water added to ultrapure water, and the vertical axis indicates the conductivity of the obtained diluted solution (dilute ammonia water). Yes.
  • Ammonia water is a weak base, and the change in conductivity with respect to the amount added is large in the low concentration range, but the change in conductivity with respect to the amount added becomes dull in the high concentration range. Therefore, the minimum amount of ammonia water in tube A and the electrical conductivity of the diluent at that time are 0.015 mL / min and 1.2 ⁇ S / cm, respectively, whereas the maximum amount of ammonia water in tube E is The amount and the electrical conductivity of the diluent at that time were 8.18 mL / min and 62.1 ⁇ S / cm, respectively.
  • the amount of ammonia water added is 0.015 mL / min (tube It was necessary to change about 545 times from A) to 8.18 mL / min (tube E).
  • the adjustment range of the ammonia water addition amount can be dealt with by using five tubes having different inner diameters and lengths. It was confirmed that dilute ammonia water in the concentration range could be produced continuously.
  • Example 2 In the present embodiment, using the dilution liquid manufacturing apparatus 10 having the configuration shown in FIG. 3, except that ultrapure water as the first liquid was passed through the first pipe 11 at a water pressure of 0.16 MPa. Dilute aqueous ammonia was produced under the same conditions as in Example 1. Then, the supply of the first liquid was temporarily stopped, that is, the production of the diluted solution was temporarily stopped, and the conductivity of the diluted ammonia water before and after that was measured. The temperature of ultrapure water and ammonia water was adjusted to 23 ° C., and the target value of the conductivity of the diluted solution was set to 40 ⁇ S / cm. FIG.
  • FIG. 5A shows the measurement results at this time (the flow rate of the first liquid, the pressure in the first tank, and the change over time in the conductivity of the diluted ammonia water).
  • FIG. 5B also shows a measurement result when the pressure in the first tank 12a is returned to atmospheric pressure when the supply of the first liquid is temporarily stopped as a comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

A device 10 for manufacturing a diluted liquid has: first piping 11 for supplying a first liquid; a first tank 12a for storing a second liquid; second piping 13 that connects the first tank 12 and the first piping 11; a pressure adjustment unit 18 for adjusting the pressure in the first tank 12a, the pressure adjustment unit 18 sending the second liquid inside the first tank 12a via the second piping 13 and supplying the second liquid to the first piping 11; a control unit 20 that adjusts the addition amount of the second liquid to the first liquid by the pressure adjustment unit 18 so that the concentration of the diluted liquid reaches a prescribed concentration on the basis of the flow rate of the first liquid or the diluted liquid flowing in the first piping 11, and the concentration of the diluted liquid; and a second tank 12b connected in series to the first tank 12a, the second tank 12b temporarily storing the second liquid for replenishing the first tank 12a.

Description

希釈液製造装置および希釈液製造方法Diluent manufacturing apparatus and diluent manufacturing method
 本発明は、希釈液製造装置および希釈液製造方法に関する。 The present invention relates to a diluent manufacturing apparatus and a diluent manufacturing method.
 従来から、半導体デバイスや液晶デバイスの製造プロセスでは、半導体ウエハやガラス基板等の電子部品を洗浄する洗浄液として、不純物が高度に除去された超純水が用いられている。このような超純水を用いた洗浄では、比抵抗値の高い超純水を用いることで、洗浄時に静電気が発生しやすくなり、絶縁膜の静電破壊や微粒子の再付着を招くおそれがあることが知られている。そのため、近年では、比抵抗値(導電率)を所定の範囲に調整し、静電気の発生を抑制することを目的として、超純水にアンモニア水や炭酸水などの薬液を高精度に添加することで所定の濃度に調整された希釈液が用いられている。 Conventionally, in the manufacturing process of semiconductor devices and liquid crystal devices, ultrapure water from which impurities are highly removed is used as a cleaning liquid for cleaning electronic components such as semiconductor wafers and glass substrates. In such cleaning using ultrapure water, the use of ultrapure water having a high specific resistance value tends to generate static electricity during cleaning, which may cause electrostatic breakdown of the insulating film and reattachment of fine particles. It is known. Therefore, in recent years, chemical solutions such as ammonia water and carbonated water have been added to ultra-pure water with high accuracy for the purpose of adjusting the specific resistance value (conductivity) to a predetermined range and suppressing the generation of static electricity. The diluted solution adjusted to a predetermined concentration is used.
 特許文献1には、このような希釈液の製造装置として、超純水を供給する第1の配管と、薬液を貯留するタンクと、タンクと第1の配管とを接続する第2の配管と、タンク内の圧力を調整する圧力調整器とを有し、圧力調整器によってタンク内の薬液を第2の配管を通じて圧送し、第1の配管内の超純水に添加して希釈液を製造する製造装置が記載されている。この製造装置によれば、超純水または希釈液の流量と希釈液の濃度との測定値に基づいてタンク内の圧力を適切に制御することで、薬液の添加量を高精度に調整することができ、その結果、所定の濃度に調整された希釈液を製造することができる。 Patent Document 1 discloses, as such a diluent manufacturing apparatus, a first pipe for supplying ultrapure water, a tank for storing a chemical solution, and a second pipe for connecting the tank and the first pipe. And a pressure regulator for adjusting the pressure in the tank, and the chemical solution in the tank is pumped through the second pipe by the pressure regulator and added to the ultrapure water in the first pipe to produce a diluted liquid. A manufacturing apparatus is described. According to this manufacturing apparatus, the amount of chemical solution added can be adjusted with high accuracy by appropriately controlling the pressure in the tank based on the measured values of the flow rate of the ultrapure water or diluent and the concentration of the diluent. As a result, a diluted solution adjusted to a predetermined concentration can be produced.
国際公開第2016/042933号International Publication No. 2016/042933
 希釈液の製造装置では、製造される希釈液が半導体ウエハやガラス基板等の電子部品の洗浄に使用される場合、所定の濃度に調整された希釈液を継続的かつ安定的に製造してユースポイントに供給することが求められる。しかしながら、特許文献1に記載の製造装置では、タンク内の薬液が空になった場合、装置の運転を停止し、タンク内の圧力を解放して薬液を補充するか、あるいは薬液が充填された別のタンクに交換する必要がある。このような場合、装置の運転再開後、製造される希釈液の濃度が安定するまでに時間を要することがある。また、装置を継続的に運転するという観点からは、タンク内の薬液が空になる前に、タンクから薬液の供給を継続しながら同タンクに薬液を補充することも考えられる。しかしながら、このような補充方法は、タンクからの薬液の供給が加圧用ガスによってタンク内を加圧状態に制御することで行われるため、タンク内の圧力制御の乱れにつながり、製造される希釈液の濃度を不安定にすることにつながる。 In the dilution liquid manufacturing equipment, when the manufactured dilution liquid is used for cleaning electronic parts such as semiconductor wafers and glass substrates, the diluted liquid adjusted to a predetermined concentration is continuously and stably used. It is required to supply points. However, in the manufacturing apparatus described in Patent Document 1, when the chemical liquid in the tank becomes empty, the operation of the apparatus is stopped, the pressure in the tank is released and the chemical liquid is replenished, or the chemical liquid is filled. It is necessary to change to another tank. In such a case, it may take time for the concentration of the diluted solution to be stabilized after the operation of the apparatus is resumed. Further, from the viewpoint of continuously operating the apparatus, it is conceivable that the chemical liquid is replenished to the tank while the chemical liquid is continuously supplied from the tank before the chemical liquid in the tank becomes empty. However, since such a replenishment method is performed by controlling the inside of the tank to be pressurized with the pressurizing gas, the supply of the chemical from the tank leads to disturbance of the pressure control in the tank, and the diluted liquid produced. It leads to destabilizing the concentration.
 そこで、本発明の目的は、所定の濃度に調整された希釈液を継続的かつ安定的に製造することができる希釈液製造装置および希釈液製造方法を提供することである。 Therefore, an object of the present invention is to provide a diluent manufacturing apparatus and a diluent manufacturing method capable of continuously and stably manufacturing a diluent adjusted to a predetermined concentration.
 上述した目的を達成するために、本発明の希釈液製造装置は、第1の液体に対して第2の液体を添加することで第2の液体の希釈液を製造し、ユースポイントに希釈液を供給する希釈液製造装置であって、第1の液体を供給する第1の配管と、第2の液体を貯留する第1のタンクと、第1のタンクと第1の配管とを接続する第2の配管と、第1のタンク内の圧力を調整する圧力調整部であって、第1のタンク内の第2の液体を第2の配管を通じて圧送して第1の配管に供給する圧力調整部と、第1の配管内を流れる第1の液体または希釈液の流量と希釈液の濃度との測定値に基づいて、希釈液の濃度が所定の濃度になるように、圧力調整部による第1の液体への第2の液体の添加量を調整する制御部と、を有している。さらに、本発明の希釈液製造装置は、一態様では、第1のタンクに直列に接続され、第1のタンクに補充される第2の液体を一時的に貯留する第2のタンクを有し、他の態様では、第1のタンクに並列に接続され、第1のタンクの代わりに第1の配管に供給される第2の液体を貯留する第2のタンクを有している。 In order to achieve the above-described object, the diluent manufacturing apparatus of the present invention manufactures a second liquid diluent by adding the second liquid to the first liquid, and uses the diluent as a use point. A first pipe for supplying a first liquid, a first tank for storing a second liquid, and a first tank and a first pipe. A pressure adjusting unit that adjusts the pressure in the second pipe and the first tank, the pressure supplying the first liquid by pumping the second liquid in the first tank through the second pipe Based on the adjustment unit and the measured value of the flow rate of the first liquid or dilution liquid flowing in the first pipe and the concentration of the dilution liquid, the pressure adjustment unit adjusts the concentration of the dilution liquid to a predetermined concentration. A control unit that adjusts the amount of the second liquid added to the first liquid. Furthermore, in one aspect, the dilution liquid manufacturing apparatus of the present invention includes a second tank that is connected in series to the first tank and temporarily stores the second liquid that is replenished to the first tank. In another aspect, the second tank is connected in parallel to the first tank and stores the second liquid supplied to the first pipe instead of the first tank.
 また、本発明の希釈液製造方法は、第1の液体に対して第2の液体を添加することで第2の液体の希釈液を製造し、ユースポイントに希釈液を供給する希釈液製造方法であって、第1の配管に第1の液体を供給する工程と、第2の液体を貯留する第1のタンク内の圧力を調整して、第1のタンクと第1の配管とを接続する第2の配管を通じて、第1のタンク内の第2の液体を圧送して第1の配管に供給する工程であって、第1の配管内を流れる第1の液体または希釈液の流量と希釈液の濃度とを測定し、その測定値に基づいて、希釈液の濃度が所定の濃度になるように第1の液体への第2の液体の添加量を調整することを含む、第2の液体を第1の配管に供給する工程と、を含んでいる。さらに、本発明の希釈液製造方法は、一態様では、第1のタンクに直列に接続された第2のタンクに第2の液体を一時的に貯留する工程と、第1のタンク内の液位に基づいて、第2のタンクに貯留された第2の液体を第1のタンクに補充する工程と、を含み、他の態様では、第1のタンクに並列に接続された第2のタンクに第2の液体を貯留する工程と、第1のタンク内の液位に基づいて、第1のタンクの代わりに第2のタンクから第1の配管に第2の液体を供給する工程と、を含んでいる。 In addition, the method for producing a diluent according to the present invention is a method for producing a diluent that produces a diluent of the second liquid by adding the second liquid to the first liquid and supplies the diluent to the use point. The first liquid is supplied to the first pipe and the pressure in the first tank for storing the second liquid is adjusted to connect the first tank and the first pipe. The second liquid in the first tank is pumped and supplied to the first pipe through the second pipe, and the flow rate of the first liquid or diluent flowing in the first pipe is Measuring the concentration of the diluent, and adjusting the amount of the second liquid added to the first liquid based on the measured value so that the concentration of the diluent becomes a predetermined concentration. Supplying the first liquid to the first pipe. Furthermore, in one aspect, the method for producing a diluent according to the present invention includes a step of temporarily storing a second liquid in a second tank connected in series to the first tank, and a liquid in the first tank. And replenishing the first tank with the second liquid stored in the second tank based on the position, and in another aspect, the second tank connected in parallel to the first tank Storing the second liquid in the first tank, supplying the second liquid from the second tank to the first pipe instead of the first tank based on the liquid level in the first tank, Is included.
 このような希釈液製造装置および希釈液製造方法では、2つのタンクを用いることで、一方のタンクが空になる前に、他方のタンクから一方のタンクに第2の液体を補充したり、他方のタンクに切り替えて第2の液体を供給したりすることができる。これにより、タンクの交換作業など、装置の運転停止の必要がなくなることで、希釈液の製造を継続的に安定して行うことが可能になる。 In such a diluent manufacturing apparatus and a diluent manufacturing method, two tanks are used, so that one tank is replenished with the second liquid before the other tank is empty, The second liquid can be supplied by switching to this tank. As a result, it is not necessary to stop the operation of the apparatus, such as a tank replacement operation, so that it becomes possible to continuously and stably manufacture the diluted solution.
 以上、本発明によれば、所定の濃度に調整された希釈液を継続的かつ安定的に製造することができる。 As described above, according to the present invention, a diluent adjusted to a predetermined concentration can be continuously and stably produced.
本発明の第1の実施形態に係る希釈液製造装置の概略構成図である。It is a schematic block diagram of the dilution liquid manufacturing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る希釈液製造装置の概略構成図である。It is a schematic block diagram of the dilution liquid manufacturing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の一実施例に係る希釈液製造装置のフローシートである。It is a flow sheet of the dilution liquid manufacturing apparatus concerning one example of the present invention. 実施例1における、アンモニア水の添加量に対して希薄アンモニア水の導電率をプロットしたグラフである。2 is a graph plotting the conductivity of dilute ammonia water against the amount of ammonia water added in Example 1. FIG. 実施例2における、第1の液体の流量、第1のタンク内の圧力、および希薄アンモニア水の導電率の時間変化を示すグラフである。It is a graph which shows the time change of the flow volume of the 1st liquid in Example 2, the pressure in a 1st tank, and the electrical conductivity of diluted ammonia water. 比較例における、第1の液体の流量、第1のタンク内の圧力、および希薄アンモニア水の導電率の時間変化を示すグラフである。It is a graph which shows the time change of the flow volume of the 1st liquid, the pressure in a 1st tank, and the electrical conductivity of diluted ammonia water in a comparative example.
 以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る希釈液製造装置の概略構成図である。なお、図示した構成は、あくまで一例であって、例えば、バルブやフィルタを追加するなど、装置の使用目的や用途、要求性能に応じて適宜変更可能であることは言うまでもない。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a diluent manufacturing apparatus according to the first embodiment of the present invention. Note that the illustrated configuration is merely an example, and it is needless to say that the configuration can be appropriately changed according to the use purpose, application, and required performance of the apparatus, for example, by adding a valve or a filter.
 希釈液製造装置10は、第1の液体を供給する第1の配管11と、第2の液体を貯留する2つのタンク12a,12bと、2つのタンク12a,12bと第1の配管11とを接続し、互いに並列に接続された複数の第2の配管13とを有している。第2の液体は、希釈される薬液であり、第1の液体は、第2の液体を希釈する希釈媒体である。したがって、希釈液製造装置10は、第1の配管11を流れる第1の液体に対して第2の配管13を通じて第2の液体を添加することで第2の液体の希釈液を製造し、製造された希釈液を第1の配管11を通じてユースポイント1に供給するものである。 The dilution liquid manufacturing apparatus 10 includes a first pipe 11 that supplies a first liquid, two tanks 12a and 12b that store a second liquid, two tanks 12a and 12b, and a first pipe 11. And a plurality of second pipes 13 connected in parallel to each other. The second liquid is a chemical liquid to be diluted, and the first liquid is a dilution medium for diluting the second liquid. Therefore, the diluent manufacturing apparatus 10 manufactures the second liquid diluent by adding the second liquid to the first liquid flowing through the first pipe 11 through the second pipe 13. The diluted solution is supplied to the use point 1 through the first pipe 11.
 第1の液体としては、その種類に特に制限はなく、超純水や純水、電解質やガスを溶解させた水、イソプロピルアルコールなどのアルコール類を利用用途に合わせて使用することができる。また、第2の液体としては、希釈される目的で使用される限り、その種類に特に制限はなく、炭酸水や水素水等の電解質やガスを溶解させた水やイソプロプルアルコール等のアルコール類を利用用途に合わせて使用することができる。製造される希釈液が半導体ウエハの洗浄に使用される場合、第1の液体として超純水を用い、第2の液体としてアンモニア水溶液を用いることが好ましい。あるいは、第2の液体として、水酸化テトラメチルアンモニウム(TMAH)水溶液も好適に用いることができる。なお、ここでいう超純水とは、超純水製造装置を用いて被処理水(原水)からイオンおよび非イオン性物質を除去して得られる処理水を意味し、具体的には、比抵抗値が18MΩ・cm以上の処理水を意味する。 The type of the first liquid is not particularly limited, and ultrapure water, pure water, water in which an electrolyte or gas is dissolved, or alcohols such as isopropyl alcohol can be used according to the intended use. Moreover, as long as it is used for the purpose of dilution, the type of the second liquid is not particularly limited, and an electrolyte such as carbonated water or hydrogen water, or water in which a gas is dissolved, or an alcohol such as isopropyl alcohol. Can be used according to the intended use. When the diluted liquid to be manufactured is used for cleaning a semiconductor wafer, it is preferable to use ultrapure water as the first liquid and an aqueous ammonia solution as the second liquid. Alternatively, an aqueous tetramethylammonium hydroxide (TMAH) solution can also be suitably used as the second liquid. The ultrapure water mentioned here means treated water obtained by removing ions and nonionic substances from the treated water (raw water) using an ultrapure water production apparatus. It means treated water having a resistance value of 18 MΩ · cm or more.
 2つのタンク12a,12bは、互いに並列に接続されている。すなわち、2つのタンク12a,12bは、その出口側において、それぞれバルブ14a,14bを介して複数の第2の配管13に直列に接続されている。複数の第2の配管13の入口側には、それぞれバルブ13aが設けられている。2つのバルブ14a,14bと複数のバルブ13aとの間には、フィルタF1が設けられている。なお、2つのタンク12a,12bの出口側には、2つのバルブ14a,14bの代わりに、三方バルブが設けられていてもよい。また、2つのタンク12a,12bには、それぞれバルブ15a,15bを介して、各タンク12a,12bに第2の液体を供給する薬液供給ライン(液体供給手段)16が接続されている。バルブ15aとタンク12aとの間、およびバルブ15bとタンク12bとの間には、それぞれフィルタF2,F3が設けられ、薬液供給ライン16には、バルブ16aが設けられている。さらに、2つのタンク12a,12bには、それぞれ大気開放バルブ17a,17bが設けられている。なお、2つのタンク12a,12bの入口側には、2つのバルブ15a,15bの代わりに、三方バルブが設けられていてもよい。 The two tanks 12a and 12b are connected in parallel to each other. That is, the two tanks 12a and 12b are connected in series to the plurality of second pipes 13 via the valves 14a and 14b, respectively, on the outlet side. Valves 13a are provided on the inlet sides of the plurality of second pipes 13, respectively. A filter F1 is provided between the two valves 14a and 14b and the plurality of valves 13a. A three-way valve may be provided on the outlet side of the two tanks 12a and 12b instead of the two valves 14a and 14b. Further, a chemical liquid supply line (liquid supply means) 16 for supplying a second liquid to the tanks 12a and 12b is connected to the two tanks 12a and 12b via valves 15a and 15b, respectively. Filters F2 and F3 are provided between the valve 15a and the tank 12a and between the valve 15b and the tank 12b, respectively, and the chemical solution supply line 16 is provided with a valve 16a. Further, the two tanks 12a and 12b are provided with air release valves 17a and 17b, respectively. A three-way valve may be provided on the inlet side of the two tanks 12a and 12b instead of the two valves 15a and 15b.
 さらに、希釈液製造装置10は、タンク12a,12b内の第2の液体を第2の配管13を通じて圧送して第1の配管11に供給するための手段として、タンク12a,12b内の圧力を調整する圧力調整部18を有している。圧力調整部18は、タンク12a,12b内にタンク加圧用ガスを供給するタンク加圧用ガス供給ライン18aと、タンク加圧用ガス供給ライン18aに設けられた給排気機構18bとから構成されている。給排気機構18bは、給気バルブ18cと排気バルブ18dとから構成され、これらを開閉することで、タンク12a,12b内を加圧したり減圧したりすることができる。なお、給排気機構18bは、図示した構成、すなわち、給気加圧機構(給気バルブ18c)と排気減圧機構(排気バルブ18d)とが別々に構成されたものに限定されるものではなく、例えば、電空レギュレータなどの給気加圧機構と排気減圧機構とが一体に構成されたものであってもよい。タンク加圧用ガス供給ライン18aは、バルブ19aを介して一方のタンク(第1のタンク)12aに接続され、バルブ19bを介して他方のタンク(第2のタンク)12bに接続されている。また、ガス供給ライン18aには、タンク加圧用ガスの供給圧力を測定する圧力計19cが設けられている。タンク加圧用ガスとしては、その種類に特に制限はないが、比較的容易に利用可能な、不活性ガスである窒素ガスを用いることが好ましい。ただし、製造される希釈液が、酸化されやすい材料を含む被処理体の洗浄やリンスに使用される場合、タンク加圧用ガスとして、酸素や空気を用いることは避けるべきである。そのため、たとえ窒素などの不活性ガスを用いる場合であっても、不純物として含まれる酸素の影響を受ける可能性があるため、その純度にも十分に配慮することが必要である。 Furthermore, the diluent manufacturing apparatus 10 uses the pressure in the tanks 12a and 12b as a means for pumping the second liquid in the tanks 12a and 12b through the second pipe 13 and supplying the second liquid to the first pipe 11. It has the pressure adjustment part 18 to adjust. The pressure adjustment unit 18 includes a tank pressurization gas supply line 18a for supplying tank pressurization gas into the tanks 12a and 12b, and a supply / exhaust mechanism 18b provided in the tank pressurization gas supply line 18a. The air supply / exhaust mechanism 18b includes an air supply valve 18c and an exhaust valve 18d, and the tanks 12a and 12b can be pressurized or depressurized by opening and closing them. The supply / exhaust mechanism 18b is not limited to the illustrated configuration, that is, the supply / pressurization mechanism (supply valve 18c) and the exhaust pressure reduction mechanism (exhaust valve 18d) are configured separately. For example, an air supply pressurizing mechanism such as an electropneumatic regulator and an exhaust pressure reducing mechanism may be integrally configured. The tank pressurization gas supply line 18a is connected to one tank (first tank) 12a via a valve 19a, and is connected to the other tank (second tank) 12b via a valve 19b. The gas supply line 18a is provided with a pressure gauge 19c for measuring the supply pressure of the tank pressurizing gas. The tank pressurizing gas is not particularly limited, but it is preferable to use an inert gas, nitrogen gas, which can be used relatively easily. However, when the diluted solution to be produced is used for cleaning or rinsing an object to be processed containing a material that is easily oxidized, the use of oxygen or air as a tank pressurizing gas should be avoided. For this reason, even when an inert gas such as nitrogen is used, it may be affected by oxygen contained as an impurity, so that it is necessary to sufficiently consider its purity.
 本実施形態では、希釈液が製造される通常運転時、第2の液体は、2つのタンク12a,12bから交互に第1の配管11に供給される。すなわち、第1のタンク12aから第1の配管11に第2の液体が供給される第1の供給モードと、第2のタンク12bから第1の配管11に第2の液体が供給される第2の供給モードとが、各タンク12a,12b内の液位に基づいて適宜切り替えられる。例えば、第1の供給モードにおいて、第1のタンク12a内の液位が所定の下限液位を下回ると、第1のタンク12aからの第2の液体の供給が停止され、第2のタンク12bから第2の液体が供給されるようになる。この切り替え動作については後述する。 In the present embodiment, the second liquid is alternately supplied from the two tanks 12a and 12b to the first pipe 11 during the normal operation in which the diluent is manufactured. That is, the first supply mode in which the second liquid is supplied from the first tank 12 a to the first pipe 11, and the second liquid in which the second liquid is supplied from the second tank 12 b to the first pipe 11. The two supply modes are appropriately switched based on the liquid level in each tank 12a, 12b. For example, in the first supply mode, when the liquid level in the first tank 12a falls below a predetermined lower limit liquid level, the supply of the second liquid from the first tank 12a is stopped, and the second tank 12b. The second liquid is supplied from. This switching operation will be described later.
 また、本実施形態では、第1の配管11への第2の液体の供給は、複数の第2の配管13のうち1つを通じて行われるが、複数の第2の配管13は、第2の液体の幅広い供給量を実現するために、内径および長さの少なくとも一方が互いに異なるように構成されている。すなわち、複数の第2の配管13は、例えばそれぞれのタンク12a,12b内の圧力が一定であっても互いに異なる流量で第2の液体を通過させるように、内径および長さの少なくとも一方が互いに異なるように構成されている。これら第2の配管13の構成についても後述する。 In the present embodiment, the supply of the second liquid to the first pipe 11 is performed through one of the plurality of second pipes 13, but the plurality of second pipes 13 are connected to the second pipe 13. In order to realize a wide supply amount of the liquid, at least one of the inner diameter and the length is different from each other. In other words, the plurality of second pipes 13 have at least one of an inner diameter and a length that allow the second liquid to pass at different flow rates even when the pressure in each of the tanks 12a and 12b is constant, for example. Configured differently. The configuration of these second pipes 13 will also be described later.
 さらに、希釈液製造装置10は、希釈液製造装置10の各種運転動作を制御する制御部20を有している。特に、制御部20は、少なくとも、第1の配管11内を流れる第1の液体の流量を測定する流量測定手段21と、希釈液の濃度を測定する濃度測定手段22との測定結果に基づいて、希釈液の濃度が所定の濃度になるように、圧力調整部18による第1の液体への第2の液体の添加量を調整することができる。以下では、制御部20による第2の液体の添加量の調整方法について説明するが、その前に、この添加量調整の基となるハーゲン・ポアズイユの法則について簡単に説明する。 Furthermore, the diluent manufacturing apparatus 10 has a control unit 20 that controls various operation operations of the diluent manufacturing apparatus 10. In particular, the control unit 20 is based on at least the measurement results of the flow rate measurement unit 21 that measures the flow rate of the first liquid flowing in the first pipe 11 and the concentration measurement unit 22 that measures the concentration of the diluent. The amount of the second liquid added to the first liquid by the pressure adjusting unit 18 can be adjusted so that the concentration of the diluted liquid becomes a predetermined concentration. In the following, a method for adjusting the amount of addition of the second liquid by the control unit 20 will be described. Before that, Hagen-Poiseuille's law, which is the basis for adjusting the amount of addition, will be briefly described.
 ハーゲン・ポアズイユの法則とは、円形管路内の層流の損失水頭に関する法則であり、管の内径をD[m]、管の長さをL[m]、管の両端の圧力勾配をΔP[Pa]、液体の粘性係数をμ[Pa・s]、管内を流れる液体の流量をQ[m/s]とすると、
 Q=(π×D×ΔP)/(128×μ×L)
という関係で表される。すなわち、ハーゲン・ポアズイユの法則によれば、円管を流れる液体の流量Qが、円管の内径Dの4乗と両端の圧力勾配ΔPとに比例し、円管の長さLと液体の粘性係数μとに反比例する。
Hagen-Poiseuille's law is a law related to the loss head of laminar flow in a circular pipe. The inner diameter of the pipe is D [m], the length of the pipe is L [m], and the pressure gradient at both ends of the pipe is ΔP. When [Pa], the viscosity coefficient of the liquid is μ [Pa · s], and the flow rate of the liquid flowing in the pipe is Q [m 3 / s],
Q = (π × D 4 × ΔP) / (128 × μ × L)
It is expressed by the relationship. That is, according to Hagen-Poiseuille's law, the flow rate Q of the liquid flowing through the circular tube is proportional to the fourth power of the inner diameter D of the circular tube and the pressure gradient ΔP at both ends, and the length L of the circular tube and the viscosity of the liquid It is inversely proportional to the coefficient μ.
 本実施形態の希釈液製造装置では、それぞれの第2の配管を通じた第2の液体の供給に、ハーゲン・ポアズイユの法則が応用されている。第2の配管のそれぞれの長さLおよび内径Dは固定された値であり、第2の液体の種類が決定されれば、その粘性係数μも固定された値である。そのため、それぞれの第2の配管の両端間の圧力勾配ΔPに対応するタンク内の圧力を制御するだけで、それぞれの第2の配管内の流量Qを比例制御することが可能になる。 In the dilution liquid manufacturing apparatus of this embodiment, Hagen-Poiseuille's law is applied to the supply of the second liquid through each second pipe. The length L and the inner diameter D of each of the second pipes are fixed values. If the type of the second liquid is determined, the viscosity coefficient μ is also a fixed value. Therefore, it is possible to proportionally control the flow rate Q in each second pipe only by controlling the pressure in the tank corresponding to the pressure gradient ΔP between both ends of each second pipe.
 次に、第1のタンク12aから第1の液体に第2の液体が添加される場合の、制御部20による第2の液体の添加量の調整方法について説明する。 Next, a method of adjusting the amount of addition of the second liquid by the control unit 20 when the second liquid is added from the first tank 12a to the first liquid will be described.
 まず、製造される希釈液の濃度の目標値が設定され、設定された目標濃度に対して、第2の液体の添加量が計算される。具体的には、流量測定手段21によって第1の液体の流量が測定され、目標濃度を達成するための第2の液体の目標添加量が計算される。次に、計算された目標添加量に対して、複数の第2の配管13のうち、使用する1つの第2の配管13が決定され、決定された第2の配管13に対して、目標添加量(流量)を実現するための第1のタンク12a内の圧力の目標値が算出される。そして、使用する第2の配管13のバルブ13aを開放した後、圧力調整部18により、算出された目標圧力に第1のタンク12a内の圧力を調整することで、第1のタンク12aから第2の配管13を通じて第1の配管11内の第1の液体に第2の液体が所定の添加量で添加される。 First, the target value of the concentration of the diluted liquid to be manufactured is set, and the amount of the second liquid added is calculated with respect to the set target concentration. Specifically, the flow rate of the first liquid is measured by the flow rate measuring means 21, and the target addition amount of the second liquid for achieving the target concentration is calculated. Next, among the plurality of second pipes 13, one second pipe 13 to be used is determined for the calculated target addition amount, and the target addition is performed on the determined second pipe 13. A target value of the pressure in the first tank 12a for realizing the amount (flow rate) is calculated. Then, after opening the valve 13a of the second pipe 13 to be used, the pressure adjusting unit 18 adjusts the pressure in the first tank 12a to the calculated target pressure, so that the first tank 12a The second liquid is added to the first liquid in the first pipe 11 through the second pipe 13 in a predetermined addition amount.
 このとき、上述したハーゲン・ポアズイユの法則によれば、第2の配管13を流れる第2の液体の流量Qは第2の配管13の両端の圧力勾配ΔPに比例する。そのため、例えば第1の液体の流量が変化した場合には、その変化に対して圧力勾配ΔPがある比例定数で比例するように、第1のタンク12a内の圧力を変化させる。例えば、第1の液体の流量が2倍になった場合、圧力勾配ΔPを2倍にして第2の液体の流量も2倍にし、第1の液体の流量が1/2になった場合、圧力勾配ΔPを1/2にして第2の液体の流量も1/2にする。このような調整方法により、結果的に第1の液体の流量と第2の液体の流量との比例関係が保たれ、第1の液体の流量が変動した場合にも、安定した濃度の希釈液を得ることができる。 At this time, according to the Hagen-Poiseuille law described above, the flow rate Q of the second liquid flowing through the second pipe 13 is proportional to the pressure gradient ΔP at both ends of the second pipe 13. Therefore, for example, when the flow rate of the first liquid changes, the pressure in the first tank 12a is changed so that the pressure gradient ΔP is proportional to the change by a certain proportional constant. For example, when the flow rate of the first liquid is doubled, when the pressure gradient ΔP is doubled and the flow rate of the second liquid is doubled, and the flow rate of the first liquid is halved, The pressure gradient ΔP is halved and the flow rate of the second liquid is also halved. By such an adjustment method, as a result, the proportional relationship between the flow rate of the first liquid and the flow rate of the second liquid is maintained, and even when the flow rate of the first liquid fluctuates, the diluted liquid having a stable concentration Can be obtained.
 ただし、第1のタンク12aにおける第2の液体の揮散や分解などにより、第2の液体自体の濃度が一定でない場合もある。その場合、製造される希釈液の濃度が、当初は目標濃度を含む所定の濃度範囲内に調整されていたとしても、その濃度範囲から徐々に外れていく可能性がある。そのため、本実施形態では、濃度測定手段22によって希釈液の濃度が測定され、測定された希釈液の濃度が所定の濃度範囲から外れていると、当該希釈液の濃度が所定の濃度範囲内に収まるように、上述の比例定数が修正される。このフィードバック制御により、装置の運転当初や希釈液の濃度の目標値が変更されたときにも、比例定数を最適な値に自動的に変更することができる。その結果、所定の濃度に調整された希釈液を安定して製造することができる。 However, the concentration of the second liquid itself may not be constant due to volatilization or decomposition of the second liquid in the first tank 12a. In this case, even if the concentration of the diluted solution to be manufactured is initially adjusted within a predetermined concentration range including the target concentration, there is a possibility that it gradually deviates from the concentration range. Therefore, in this embodiment, when the concentration of the diluent is measured by the concentration measuring means 22 and the measured concentration of the diluent is out of the predetermined concentration range, the concentration of the diluent falls within the predetermined concentration range. The proportionality constant described above is modified to fit. By this feedback control, the proportionality constant can be automatically changed to an optimum value even when the apparatus is initially operated or when the target value of the concentration of the diluent is changed. As a result, a diluted solution adjusted to a predetermined concentration can be stably produced.
 流量測定手段21としては、その構成に特に制限はなく、例えば、カルマン渦流量計や超音波流量計を用いることができる。また、流量測定手段21は、第1の配管11内を流れる第1の液体の流量変動を監視できる位置に設置されていればよく、その設置位置に特に制限はない。また、図示した実施形態では、流量測定手段21は、第1の配管11の、複数の第2の配管13との接続部よりも上流側に設けられているが、この接続部よりも下流側に設置されて、第1の配管11内を流れる希釈液の流量を測定するようになっていてもよい。これは、第2の液体の供給量(流量)が第1の液体の流量に比べてはるかに少なく、希釈液の流量を第1の液体の流量と等価に扱うことができるためである。 The configuration of the flow rate measuring means 21 is not particularly limited, and for example, a Karman vortex flow meter or an ultrasonic flow meter can be used. Moreover, the flow rate measuring means 21 should just be installed in the position which can monitor the flow volume fluctuation | variation of the 1st liquid which flows through the inside of the 1st piping 11, and there is no restriction | limiting in particular in the installation position. In the illustrated embodiment, the flow rate measuring means 21 is provided on the upstream side of the connection portion of the first pipe 11 with the plurality of second pipes 13, but on the downstream side of the connection portion. The flow rate of the diluent flowing through the first pipe 11 may be measured. This is because the supply amount (flow rate) of the second liquid is much smaller than the flow rate of the first liquid, and the flow rate of the diluent can be handled equivalently to the flow rate of the first liquid.
 濃度測定手段22としては、希釈液の濃度を電気化学的定数として測定できるものであれば、その構成に特に制限はなく、例えば、電気導電率計、pH計、比抵抗計、ORP計(酸化還元電位計)、またはイオン電極計などを用いることができる。製造される希釈液が帯電防止や除電を目的として被処理体の洗浄やリンスに使用される場合、濃度測定手段22としては、電気導電率計や比抵抗計を用いることが好ましい。濃度測定手段22は、図示したように、第1の配管11の、複数の第2の配管13との接続部よりも下流側に設置されているが、この設置位置において、第1の配管11に直接取り付けられていてもよく、あるいは、第1の配管11に並列に設けられたバイパス配管に取り付けられていてもよい。 The concentration measuring means 22 is not particularly limited as long as it can measure the concentration of the diluent as an electrochemical constant. For example, an electric conductivity meter, a pH meter, a specific resistance meter, an ORP meter (an oxidation meter) Reduction electrometer) or an ion electrode meter can be used. When the manufactured diluted solution is used for cleaning or rinsing the object to be processed for the purpose of preventing static charge or removing static electricity, it is preferable to use an electric conductivity meter or a specific resistance meter as the concentration measuring means 22. As shown in the figure, the concentration measuring means 22 is installed on the downstream side of the connection portion of the first pipe 11 with the plurality of second pipes 13. At this installation position, the first pipe 11 is provided. It may be directly attached to, or may be attached to a bypass pipe provided in parallel with the first pipe 11.
 ハーゲン・ポアズイユの法則からも理解できるように、第2の液体の供給量(流量Q)の精度は、第2の配管13の両端の圧力勾配ΔPに大きな影響を受ける。そのため、第1の配管11と第2の配管13との接続部における圧力が大きく変動する場合、所定の濃度に調整された希釈液を安定して製造することが困難になる。この接続部における圧力変動を監視するために、図示したように、第1の配管11内の圧力を測定する圧力測定手段23が設けられている。したがって、制御部20は、流量測定手段21、濃度測定手段22、および圧力測定手段23の測定結果に基づいて、希釈液の濃度を目標濃度にするための第1のタンク12a内の圧力の目標値を算出し、第2の液体の添加量の調整を行うようになっている。圧力測定手段23の構成には特に制限はなく、その設置位置も、図示した実施形態では、複数の第2の配管13との接続部よりも上流側であるが、接続部における管内の圧力を測定することができれば、接続部よりも下流側であってもよい。 As can be understood from Hagen-Poiseuille's law, the accuracy of the second liquid supply amount (flow rate Q) is greatly influenced by the pressure gradient ΔP at both ends of the second pipe 13. Therefore, when the pressure at the connection portion between the first pipe 11 and the second pipe 13 fluctuates greatly, it becomes difficult to stably manufacture a diluent adjusted to a predetermined concentration. In order to monitor the pressure fluctuation in this connection part, as shown in the figure, a pressure measuring means 23 for measuring the pressure in the first pipe 11 is provided. Therefore, the control unit 20 sets the target of the pressure in the first tank 12a for setting the concentration of the diluent to the target concentration based on the measurement results of the flow rate measuring unit 21, the concentration measuring unit 22, and the pressure measuring unit 23. The value is calculated and the amount of addition of the second liquid is adjusted. The configuration of the pressure measurement means 23 is not particularly limited, and in the illustrated embodiment, the installation position is also upstream of the connection portion with the plurality of second pipes 13. If it can be measured, it may be downstream from the connecting portion.
 これまで繰り返し述べているように、第2の配管13内を流れる第2の液体の流量Qは、第2の配管13の両端の圧力勾配ΔPに比例する。そのため、この圧力勾配ΔPを大きく変化させることができれば、第2の液体の幅広い供給量(流量)を実現して、幅広い濃度範囲に対応することが可能である。しかしながら、実用上、各タンク12a,12bに加えられる圧力には上限があるため、圧力勾配ΔPを大きく変化させることは困難であり、第2の液体の添加量の調整範囲にも限界がある。 As described repeatedly, the flow rate Q of the second liquid flowing in the second pipe 13 is proportional to the pressure gradient ΔP at both ends of the second pipe 13. Therefore, if this pressure gradient ΔP can be changed greatly, a wide supply amount (flow rate) of the second liquid can be realized and a wide concentration range can be dealt with. However, practically, since there is an upper limit to the pressure applied to each of the tanks 12a and 12b, it is difficult to greatly change the pressure gradient ΔP, and the adjustment range of the amount of addition of the second liquid is also limited.
 その一方で、ハーゲン・ポアズイユの法則によれば、第2の液体の流量Qは、第2の配管13の内径D(の4乗)にも比例し、その長さLには反比例する。この点に着目し、本実施形態では、第2の液体の幅広い供給量(流量)を実現するために、複数の第2の配管13は、内径および長さの少なくとも一方が互いに異なるように構成されている。すなわち、複数の第2の配管13は、内径および長さの少なくとも一方が互いに異なることで、例えばそれぞれのタンク12a,12b内の圧力が一定であっても互いに異なる流量で第2の液体を通過させるように構成されている。これにより、装置全体として、第2の液体の添加量の調整範囲を広げることが可能になり、幅広い濃度範囲の希釈液を製造することが可能になる。 On the other hand, according to Hagen-Poiseuille's law, the flow rate Q of the second liquid is also proportional to the inner diameter D (the fourth power) of the second pipe 13 and inversely proportional to its length L. Focusing on this point, in the present embodiment, in order to realize a wide supply amount (flow rate) of the second liquid, the plurality of second pipes 13 are configured such that at least one of the inner diameter and the length is different from each other. Has been. That is, the plurality of second pipes 13 are different from each other in at least one of the inner diameter and the length. For example, even if the pressure in each of the tanks 12a and 12b is constant, the second pipes 13 pass the second liquid at different flow rates. It is configured to let you. Thereby, it becomes possible to widen the adjustment range of the addition amount of the second liquid as the whole apparatus, and it becomes possible to manufacture a dilute solution having a wide concentration range.
 個々の第2の配管13の内径は、特定の寸法に限定されるものではないが、製造される希釈液の濃度をより精密に制御するためには、それぞれの第2の配管13の内径が0.1mmを超え4mm以下であることが好ましく、0.2mmを超え0.5mm以下であることがより好ましい。これは、第2の配管13内の第2の液体の流れが層流(規則正しい整然とした流れ)になりやすくなるためである。すなわち、管内の流れが乱流(不規則な流れ)になると、上述したハーゲン・ポアズイユの法則が成り立たなくなり、第2の配管内を流れる第2の液体の流量Qを、第2の配管の両端間の圧力勾配ΔPで比例制御することが困難になるためである。換言すると、流量Qと圧力勾配ΔPの良好な比例関係を維持するために、個々の第2の配管13は、管内を流れる第2の液体の流れが層流になっていることが好ましい。なお、この内径の好適な範囲の詳細については、特許文献1を参照されたい。 The inner diameters of the individual second pipes 13 are not limited to specific dimensions, but in order to more precisely control the concentration of the diluent to be produced, the inner diameters of the respective second pipes 13 are It is preferably more than 0.1 mm and 4 mm or less, more preferably more than 0.2 mm and 0.5 mm or less. This is because the flow of the second liquid in the second pipe 13 tends to be a laminar flow (regular and orderly flow). That is, when the flow in the pipe becomes a turbulent flow (irregular flow), the Hagen-Poiseuille law described above does not hold, and the flow rate Q of the second liquid flowing in the second pipe is changed to the both ends of the second pipe. This is because it becomes difficult to perform proportional control with the pressure gradient ΔP. In other words, in order to maintain a good proportional relationship between the flow rate Q and the pressure gradient ΔP, it is preferable that each second pipe 13 has a laminar flow of the second liquid flowing in the pipe. For details of the preferred range of the inner diameter, refer to Patent Document 1.
 また、個々の第2の配管13の長さについても、特定の寸法に限定されるものではないが、長さが短すぎると、管内の流量に影響が出やすく、液体の流量を配管両端の圧力勾配で比例制御することが困難になる。また、長さが長すぎると、配管の設置が困難になることに加え、配管と液体との接触面積が大きくなり、配管内の液体の汚染が増加する可能性がある。そのため、個々の第2の配管13の長さは、0.01m以上100m以下の範囲であることが好ましく、0.1m以上10m以下の範囲であることがより好ましい。 Further, the length of each second pipe 13 is not limited to a specific dimension. However, if the length is too short, the flow rate in the pipe is likely to be affected, and the liquid flow rate is reduced at both ends of the pipe. Proportional control with a pressure gradient becomes difficult. If the length is too long, it is difficult to install the pipe, and the contact area between the pipe and the liquid is increased, which may increase the contamination of the liquid in the pipe. Therefore, the length of each second pipe 13 is preferably in the range of 0.01 m to 100 m, and more preferably in the range of 0.1 m to 10 m.
 さらに、第2の配管13として内径が0.1mm以下のものや長さが100mを超えるものは、その組み合わせにもよるが、第2の液体が配管13を流れる際の抵抗が大きくなりやすく、すなわち、タンク内の圧力が高圧になりやすい。したがって、このような内径および長さは、装置を構成する部品類(配管やバルブなど)の選定が耐圧の点から困難となるため好ましくない。また、第2の配管13として内径が4mmを超えるものや長さが0.01m未満のものは、その組み合わせにもよるが、第2の液体が配管13を流れる際の抵抗が小さくなりやすく、すなわち、タンク内の圧力のわずかな変化で第2の液体の流量が変化しやすくなる。したがって、このような内径および長さは、タンク内の圧力制御が困難となるため好ましくない。 In addition, the second pipe 13 having an inner diameter of 0.1 mm or less or a length exceeding 100 m depends on the combination, but the resistance when the second liquid flows through the pipe 13 is likely to increase. That is, the pressure in the tank tends to be high. Therefore, such an inner diameter and length are not preferable because it is difficult to select components (piping, valves, etc.) constituting the apparatus from the viewpoint of pressure resistance. In addition, the second pipe 13 having an inner diameter of more than 4 mm or a length of less than 0.01 m tends to reduce the resistance when the second liquid flows through the pipe 13 depending on the combination. That is, the flow rate of the second liquid is easily changed by a slight change in the pressure in the tank. Therefore, such an inner diameter and length are not preferable because it is difficult to control the pressure in the tank.
 第2の配管13の材質や形状には特に制限はないが、樹脂製の柔軟なチューブが好適に用いられる。そのような樹脂としては、PFAやETFEなどのフッ素樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂などが挙げられ、製造される希釈液が半導体ウエハの洗浄やリンスに使用される場合には、溶出の少ないフッ素樹脂が特に好ましい。また、第2の液体が揮発性のある液体の場合、管内の液体が揮発して外部に拡散することによる液体の濃度変動を抑制するために、第2の配管13としては、ガス透過性が低いものを用いることが好ましい。このことは、上述したように、製造される希釈液の用途によっては希釈液に含まれる酸素が悪影響を及ぼすこともあることから、空気中の酸素が第2の配管13の外側から内側へと拡散することを抑制し、第2の液体中の溶存酸素濃度が上昇することを抑制できる点でも好ましい。 The material and shape of the second pipe 13 are not particularly limited, but a resin-made flexible tube is preferably used. Examples of such resins include fluororesins such as PFA and ETFE, polyethylene resins, polypropylene resins, and the like, and when the diluted solution produced is used for cleaning or rinsing semiconductor wafers, there is little elution. A fluororesin is particularly preferred. In addition, when the second liquid is a volatile liquid, the second pipe 13 has gas permeability in order to suppress the concentration fluctuation of the liquid due to the liquid in the tube volatilizing and diffusing outside. It is preferable to use a low one. This is because, as described above, oxygen contained in the diluent may have an adverse effect depending on the intended use of the diluent to be produced. Therefore, oxygen in the air moves from the outside of the second pipe 13 to the inside. It is also preferable in that it can suppress diffusion and suppress an increase in dissolved oxygen concentration in the second liquid.
 第2の配管13の第1の配管11への接続方法としては、第1の液体と第2の液体が適切に混合するものであれば特に制限はない。例えば、第2の配管13は、その先端が第1の配管11の中心部に位置するように第1の配管11に接続されていることが好ましく、これにより、効率的に第1の液体と第2の液体を混合することができる。また、複数の第2の配管13は、構造が簡単になり、液溜まりの少ない構造にもなる点で、それぞれ個別に第1の配管11に接続されていることが好ましい。 The method of connecting the second pipe 13 to the first pipe 11 is not particularly limited as long as the first liquid and the second liquid are appropriately mixed. For example, the second pipe 13 is preferably connected to the first pipe 11 such that the tip thereof is located at the center of the first pipe 11, thereby efficiently connecting the first liquid and the first pipe 11. The second liquid can be mixed. Further, the plurality of second pipes 13 are preferably individually connected to the first pipe 11 in that the structure is simple and the liquid pool is small.
 図示した例では、4本の第2の配管13が設けられているが、第2の配管13の数は4つに限定されるものではなく、要求される希釈液の濃度範囲に応じて、例えば、2つ、3つ、または5つ以上と適宜変更可能である。それに応じて、内径と長さの組み合わせも、特定の組み合わせに限定されるものではなく、適宜変更可能である。内径と長さの組み合わせとしては、どちらか一方のみが異なるものも考えられる。その場合、上述したように、各タンク12a,12bに加えられる圧力には上限があることから、第2の液体の添加量の調整範囲をより広げることができる点で、内径が互いに異なるものを組み合わせた方が好ましい。これは、上述したハーゲン・ポアズイユの法則により、第2の配管13を流れる第2の液体の流量Qに対し、長さLが1乗で影響するのに対して、内径Dが4乗で影響することからも明らかである。なお、本実施形態では、第1の配管11への第2の液体の供給は、複数の第2の配管13のうち1つを通じて行われるが、要求される希釈液の濃度範囲によっては、複数の第2の配管13のうち2本以上の第2の配管13を通じて行われるようになっていてもよい。 In the illustrated example, the four second pipes 13 are provided, but the number of the second pipes 13 is not limited to four, depending on the required concentration range of the diluent, For example, it can be appropriately changed to two, three, or five or more. Accordingly, the combination of the inner diameter and the length is not limited to a specific combination and can be appropriately changed. As a combination of the inner diameter and the length, only one of them may be different. In this case, as described above, since there is an upper limit to the pressure applied to each of the tanks 12a and 12b, the inner diameters are different from each other in that the adjustment range of the amount of addition of the second liquid can be further expanded. A combination is preferred. According to the Hagen-Poiseuille's law described above, the length L affects the flow rate Q of the second liquid flowing through the second pipe 13, while the inner diameter D affects the fourth power. It is clear from what to do. In the present embodiment, the second liquid is supplied to the first pipe 11 through one of the plurality of second pipes 13, but depending on the required concentration range of the diluent, a plurality of the second liquids may be supplied. Of these second pipes 13, two or more second pipes 13 may be used.
 上述したように、本実施形態では、希釈液が製造される通常運転時、第1のタンク12aから第1の配管11に第2の液体が供給される第1の供給モードと、第2のタンク12bから第1の配管11に第2の液体が供給される第2の供給モードとの切り替えが行われる。これにより、タンクの交換作業が不要になり、装置の運転を停止する必要がなくなることで、希釈液の製造を継続的に安定して行うことが可能になる。以下、この切り替え動作について、第1の供給モードから第2の供給モードに切り替えられる場合を例に挙げて説明する。 As described above, in the present embodiment, the first supply mode in which the second liquid is supplied from the first tank 12a to the first pipe 11 during the normal operation in which the dilution liquid is manufactured, and the second Switching to the second supply mode in which the second liquid is supplied from the tank 12b to the first pipe 11 is performed. This eliminates the need for tank replacement and eliminates the need to stop the operation of the apparatus, thereby making it possible to continuously and stably manufacture the diluent. Hereinafter, this switching operation will be described by taking as an example a case where switching from the first supply mode to the second supply mode is performed.
 第1の供給モードでは、タンク加圧用ガス供給ライン18aと第1のタンク12aとを接続するバルブ19aが開放されることで、第1のタンク12aにタンク加圧用ガス供給ライン18aを通じてタンク加圧用ガス(例えば、窒素ガス)が導入される。そして、圧力計19cによる測定値(第1のタンク12a内の圧力)が給排気機構18bによって目標圧力になるように調整される。こうして、第1のタンク12a内の第2の液体が、指定された第2の配管13を通じて所定の添加量で第1の配管11内の第1の液体に添加される。なお、このとき、以下のバルブ、すなわち、タンク加圧用ガス供給ライン18aと第2のタンク12bとを接続するバルブ19b、薬液供給ライン16のバルブ16a、薬液供給ライン16と第1のタンク12aとの間のバルブ15a、薬液供給ライン16と第2のタンク12bとの間のバルブ15b、第1のタンク12aの大気開放バルブ17a、および第2のタンク12bの大気開放バルブ17bは、いずれも閉鎖された状態にある。また、第2のタンク12bは、わずかな量の第2の液体が貯留された待機状態にある。 In the first supply mode, the valve 19a for connecting the tank pressurizing gas supply line 18a and the first tank 12a is opened, so that the tank pressurizing gas is supplied to the first tank 12a through the tank pressurizing gas supply line 18a. A gas (eg, nitrogen gas) is introduced. Then, the measured value (pressure in the first tank 12a) by the pressure gauge 19c is adjusted by the air supply / exhaust mechanism 18b so as to become the target pressure. Thus, the second liquid in the first tank 12 a is added to the first liquid in the first pipe 11 in a predetermined addition amount through the designated second pipe 13. At this time, the following valves, that is, a valve 19b for connecting the tank pressurization gas supply line 18a and the second tank 12b, a valve 16a for the chemical supply line 16, and the chemical supply line 16 and the first tank 12a 15b, the valve 15b between the chemical solution supply line 16 and the second tank 12b, the atmosphere release valve 17a of the first tank 12a, and the atmosphere release valve 17b of the second tank 12b are all closed. It is in the state that was done. Further, the second tank 12b is in a standby state in which a small amount of the second liquid is stored.
 第1のタンク12aから第1の配管11に第2の液体が供給されることで、第1のタンク12a内の液位が所定の下限液位を下回ると、薬液供給ライン16のバルブ16aが開放され、第2のタンク12bの大気開放バルブ17bが開放される。続いて、薬液供給ライン16と第2のタンク12bとの間のバルブ15bが開放され、薬液供給ライン16を通じて第2の液体が第2のタンク12bに供給されて貯留される。そして、第2のタンク12b内の液位が所定の上限液位に達すると、薬液供給ライン16のバルブ16a、第2のタンク12bの大気開放バルブ17b、および薬液供給ライン16と第2のタンク12bとの間のバルブ15bが閉鎖される。その後、タンク加圧用ガス供給ライン18aと第2のタンク12bとを接続するバルブ19bが開放され、第2のタンク12bにタンク加圧用ガス供給ライン18aを通じてタンク加圧用ガスが導入される。このとき、圧力計19cによる測定値が給排気機構18bによって目標圧力になるように調整される。すなわち、第1のタンク12a内の圧力が目標圧力に調整された状態を維持しながら、第2のタンク12b内の圧力もその目標圧力になるように調整される。第2のタンク12b内の圧力がその目標圧力に達すると、第2のタンク12bと第2の配管13とを接続するバルブ14bが開放され、続いて、第1のタンク12aと第2の配管13とを接続するバルブ14aが閉鎖される。こうして、第1のタンク12aから第2の液体が供給される第1の供給モードから、第2のタンク12bから第2の液体の供給が供給される第2の供給モードへと、供給モードの切り替えが完了する。その後、タンク加圧用ガス供給ライン18aと第1のタンク12aとを接続するバルブ19aが閉鎖され、第1のタンク12aは、次回の第1の供給モードのために第2の液体が補充されるまで待機状態になる。 When the liquid level in the first tank 12a falls below a predetermined lower limit liquid level by supplying the second liquid from the first tank 12a to the first pipe 11, the valve 16a of the chemical liquid supply line 16 is The air release valve 17b of the second tank 12b is opened. Subsequently, the valve 15b between the chemical liquid supply line 16 and the second tank 12b is opened, and the second liquid is supplied to the second tank 12b through the chemical liquid supply line 16 and stored. When the liquid level in the second tank 12b reaches a predetermined upper limit liquid level, the valve 16a of the chemical liquid supply line 16, the air release valve 17b of the second tank 12b, and the chemical liquid supply line 16 and the second tank Valve 15b between 12b is closed. Thereafter, the valve 19b connecting the tank pressurization gas supply line 18a and the second tank 12b is opened, and the tank pressurization gas is introduced into the second tank 12b through the tank pressurization gas supply line 18a. At this time, the measured value by the pressure gauge 19c is adjusted to the target pressure by the air supply / exhaust mechanism 18b. That is, the pressure in the second tank 12b is adjusted to the target pressure while maintaining the state in which the pressure in the first tank 12a is adjusted to the target pressure. When the pressure in the second tank 12b reaches the target pressure, the valve 14b connecting the second tank 12b and the second pipe 13 is opened, and then the first tank 12a and the second pipe are connected. 13 is closed. Thus, the supply mode is changed from the first supply mode in which the second liquid is supplied from the first tank 12a to the second supply mode in which the supply of the second liquid is supplied from the second tank 12b. The switch is complete. Thereafter, the valve 19a connecting the tank pressurization gas supply line 18a and the first tank 12a is closed, and the first tank 12a is replenished with the second liquid for the next first supply mode. Wait until.
 この切り替え動作では、上述したように、第2のタンク12bからの第2の液体の供給は、第2のタンク12b内の圧力が第1のタンク12a内の圧力に一致するように調整された後で行われる。これにより、第1の供給モードから第2の供給モードへの切り替え直後であっても、第1のタンク12a内の第2の液体を所定の添加量で第1の配管11内の第1の液体に添加することができる。その結果、モード切り替え時に、第2の液体の添加量の変動を極力抑えることができ、したがって、製造される希釈液の濃度変動を極力抑えることができる。 In this switching operation, as described above, the supply of the second liquid from the second tank 12b is adjusted so that the pressure in the second tank 12b matches the pressure in the first tank 12a. Done later. Thus, even immediately after switching from the first supply mode to the second supply mode, the first liquid in the first pipe 11 is added to the second liquid in the first tank 12a with a predetermined addition amount. Can be added to the liquid. As a result, at the time of mode switching, fluctuations in the amount of the second liquid added can be suppressed as much as possible. Therefore, fluctuations in the concentration of the diluted liquid produced can be suppressed as much as possible.
 上述した例では、第2のタンク12bが待機状態にあるとき、大気開放バルブ17bは閉鎖されている。これは、第2のタンク12bへの酸素の入り込みを抑え、その後の第2のタンク12bへの第2の液体の補充時に第2の液体への酸素の溶け込みを抑えるためである。ただし、第2のタンク12bでの第2の液体への酸素の溶け込みが問題にならない場合には、大気開放バルブ17bは閉鎖された状態になくてもよい。また、第2のタンク12bへの第2の液体の補充時にタンク内の気体成分がなくなる程度まで補充を行う場合には、タンク内の大気を大気開放バルブ17bから排出することで、第2の液体への酸素の溶け込みを軽減することができるため、大気開放バルブ17bは開放および閉鎖のいずれの状態にあってもよい。 In the above-described example, when the second tank 12b is in a standby state, the atmosphere release valve 17b is closed. This is to suppress the entry of oxygen into the second tank 12b and to suppress the dissolution of oxygen into the second liquid when the second liquid is replenished to the second tank 12b thereafter. However, if the dissolution of oxygen into the second liquid in the second tank 12b is not a problem, the atmosphere release valve 17b may not be closed. In addition, when replenishing the second liquid to the second tank 12b to the extent that the gas component in the tank is exhausted, the air in the tank is exhausted from the atmosphere release valve 17b, whereby the second liquid is discharged. Since the dissolution of oxygen into the liquid can be reduced, the atmosphere release valve 17b may be in either an open state or a closed state.
 また、上述した例では、第2のタンク12bへの第2の液体の補充は、第1の供給モードの終了間際に行われるが、補充のタイミングは、これに限定されるものではない。例えば、第1の供給モードへの切り替え直後など、第1の供給モードにおける任意のタイミングで第2の液体の補充を行うことができる。このとき、第2の液体が揮発性のある液体の場合、第2の液体の揮発を抑制するために、第2の液体の補充後に大気開放バルブ17bは閉鎖されたままであることが好ましい。 In the above-described example, the replenishment of the second liquid to the second tank 12b is performed just before the end of the first supply mode, but the replenishment timing is not limited to this. For example, the second liquid can be replenished at an arbitrary timing in the first supply mode, such as immediately after switching to the first supply mode. At this time, when the second liquid is a volatile liquid, the atmosphere release valve 17b is preferably kept closed after the second liquid is replenished in order to suppress volatilization of the second liquid.
 なお、第1の供給モードにおいて、第1のタンク12aが空になるまで第2の液体の供給を行うと、第2の配管にタンク加圧用ガスが溜まってしまい、次回の第1の供給モードへの切り替え時に、そのガスが第1の配管に供給され、製造される希釈液に濃度変動が発生する可能性がある。そのため、第1の供給モードから第2の供給モードへの切り替えは、上述したように、第1のタンク12aが空になる前に開始されることが好ましい。 In the first supply mode, if the second liquid is supplied until the first tank 12a becomes empty, the tank pressurizing gas accumulates in the second pipe, and the next first supply mode. At the time of switching to, the gas is supplied to the first pipe, and the concentration fluctuation may occur in the manufactured diluted solution. Therefore, the switching from the first supply mode to the second supply mode is preferably started before the first tank 12a is emptied, as described above.
 ところで、本実施形態の希釈液製造装置10は、ユースポイント1で希釈液の需要がないときなど、通常運転の合間に、第1の配管11への第1の液体の供給が一時的に停止されて希釈液の製造が一時的に停止される待機モードに移行することがある。このとき、例えば第1の供給モードから待機モードに移行する場合、目標圧力に調整されていた第1のタンク12a内の圧力は、安全面を考慮すると、大気圧に戻しておくことが好ましいと考えられる。しかしながら、このような大気圧への減圧は、実際には、以下の点で好ましくない。 By the way, the dilution liquid manufacturing apparatus 10 of this embodiment temporarily stops supply of the first liquid to the first pipe 11 between normal operations, such as when there is no demand for the dilution liquid at the use point 1. Thus, there is a case in which a transition to a standby mode in which the production of the diluted solution is temporarily stopped may occur. At this time, for example, when shifting from the first supply mode to the standby mode, the pressure in the first tank 12a that has been adjusted to the target pressure is preferably returned to the atmospheric pressure in consideration of safety. Conceivable. However, such depressurization to atmospheric pressure is actually not preferable in the following points.
 すなわち、第1のタンク12a内の圧力を減圧して大気圧に戻してしまうと、高圧下で第2の液体に溶解していたガス成分が気泡として生成され、この気泡が第2の配管13内に滞留することになる。このため、通常運転再開後、第1のタンク12aを再度加圧しても第2の液体は添加されず、さらに、第1のタンク12aは過剰に加圧された状態になってしまう。その後、気泡は第2の配管13から抜け、第2の液体は再び第1の液体に添加されるようになるが、その際、第2の液体は急激に添加されるため、添加量調整が良好に行われず、製造される希釈液の濃度が安定するまでに時間を要することがある。このような気泡による影響は、本発明者らによって初めて見出された知見である。 That is, when the pressure in the first tank 12a is reduced to the atmospheric pressure, the gas component dissolved in the second liquid under high pressure is generated as bubbles, and these bubbles are generated in the second pipe 13. Will stay inside. For this reason, even if the first tank 12a is pressurized again after the normal operation is resumed, the second liquid is not added, and the first tank 12a is excessively pressurized. Thereafter, the bubbles are removed from the second pipe 13 and the second liquid is again added to the first liquid. At this time, the second liquid is added abruptly. It may not take place well, and it may take time for the concentration of the diluted solution to be stabilized. The effect of such bubbles is a finding that has been found for the first time by the present inventors.
 したがって、本実施形態の希釈液製造装置10では、例えば第1の供給モードから待機モードに移行しても、第1のタンク12a内の圧力は、大気圧を上回る圧力に保持されて調整されていることが好ましい。これにより、第2の液体に溶解していたガス成分が気泡として生成されることを抑制することができる。その結果、第1の供給モードの再開直後から第2の液体の添加量調整を良好に行うことができる。また、特に第2の液体が揮発性の液体である場合には、第2の液体の揮発を抑制して濃度変動を抑制するために、待機モードにおける第1のタンク12a内の圧力は、大気圧よりも高く、第2の液体の飽和蒸気圧よりも高いことが好ましい。ただし、第2の液体とタンク加圧用ガスとの組み合わせによっては、通常運転時にタンク加圧用ガスが第2の液体に溶け込んでいることもある。そのため、このような場合には、待機モードにおける第1のタンク12a内の圧力は、第2の液体の飽和蒸気圧に加えて、第2の液体へのタンク加圧用ガスの溶解度も考慮して決定されることが好ましい。一方で、通常運転再開後に良好な添加量調整をより迅速に再開できることから、待機モードにおいても、第1のタンク12a内の圧力は、第1の供給モードと同様に目標圧力に調整された状態に維持されていてもよい。このような調整は、特に第2の液体が炭酸水や水素水等の電解質やガスを溶解させた水である場合に適している。    Therefore, in the diluent manufacturing apparatus 10 of the present embodiment, for example, even if the first supply mode is shifted to the standby mode, the pressure in the first tank 12a is maintained and adjusted to a pressure exceeding the atmospheric pressure. Preferably it is. Thereby, it can suppress that the gas component which melt | dissolved in the 2nd liquid is produced | generated as a bubble. As a result, it is possible to satisfactorily adjust the addition amount of the second liquid immediately after resuming the first supply mode. In particular, when the second liquid is a volatile liquid, the pressure in the first tank 12a in the standby mode is large in order to suppress the volatilization of the second liquid and suppress the concentration fluctuation. It is preferably higher than atmospheric pressure and higher than the saturated vapor pressure of the second liquid. However, depending on the combination of the second liquid and the tank pressurizing gas, the tank pressurizing gas may be dissolved in the second liquid during normal operation. Therefore, in such a case, the pressure in the first tank 12a in the standby mode takes into account the solubility of the tank pressurizing gas in the second liquid in addition to the saturated vapor pressure of the second liquid. Preferably it is determined. On the other hand, since the good addition amount adjustment can be resumed more quickly after the normal operation is resumed, the pressure in the first tank 12a is adjusted to the target pressure as in the first supply mode even in the standby mode. May be maintained. Such adjustment is particularly suitable when the second liquid is water in which an electrolyte or gas such as carbonated water or hydrogen water is dissolved. *
 (第2の実施形態)
 図2は、本発明の第2の実施形態に係る希釈液製造装置の概略構成図である。以下、第1の実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、第1の実施形態と異なる構成のみ説明する。
(Second Embodiment)
FIG. 2 is a schematic configuration diagram of a diluent manufacturing apparatus according to the second embodiment of the present invention. Hereinafter, the same reference numerals are given to the same components as those in the first embodiment, the description thereof is omitted, and only the components different from those in the first embodiment will be described.
 本実施形態は、第2のタンク12bの機能が変更されている点で、第1の実施形態と異なっている。具体的には、第2のタンク12bが、第1のタンク12aと並列にではなく、接続ライン31を介して直列に接続されている。より具体的には、第2のタンク12bは、第2のタンク12b内の第2の液体が水頭圧によって第1のタンク12aに供給されるように、第1のタンク12aに接続されている。これに応じて、第1の実施形態のバルブ14a,14b,15a,15bは省略され、複数の第2の配管13が第1のタンク12aと第1の配管11との間にのみ設けられ、薬液供給ライン16が第2のタンク12bにのみ接続されている。また、圧力計19cは第1のタンク12aに設けられ、接続ライン31には、バルブ31aと、逆止弁(図示せず)とが設けられている。 This embodiment is different from the first embodiment in that the function of the second tank 12b is changed. Specifically, the second tank 12b is connected in series via the connection line 31, not in parallel with the first tank 12a. More specifically, the second tank 12b is connected to the first tank 12a so that the second liquid in the second tank 12b is supplied to the first tank 12a by hydraulic head pressure. . Accordingly, the valves 14a, 14b, 15a, 15b of the first embodiment are omitted, and a plurality of second pipes 13 are provided only between the first tank 12a and the first pipe 11, The chemical solution supply line 16 is connected only to the second tank 12b. The pressure gauge 19c is provided in the first tank 12a, and the connection line 31 is provided with a valve 31a and a check valve (not shown).
 したがって、本実施形態では、第2のタンク12bが、第1のタンク12aに補充される第2の液体を一時的に貯留する一時貯留タンクとして機能する。すなわち、希釈液が製造される通常運転時、第1のタンク12aの液位に基づいて、第2のタンク12bから第1のタンク12aに第2の液体が適宜補充され、その結果、第1のタンク12aから第1の配管11に第2の液体が継続的に供給される。これにより、タンクの交換作業が不要になり、装置の運転を停止する必要がなくなることで、希釈液の製造を継続的に安定して行うことが可能になる。以下、この補充動作について説明する。 Therefore, in the present embodiment, the second tank 12b functions as a temporary storage tank that temporarily stores the second liquid that is replenished to the first tank 12a. That is, during the normal operation in which the dilution liquid is manufactured, the second liquid is appropriately replenished from the second tank 12b to the first tank 12a based on the liquid level of the first tank 12a. The second liquid is continuously supplied from the tank 12 a to the first pipe 11. This eliminates the need for tank replacement and eliminates the need to stop the operation of the apparatus, thereby making it possible to continuously and stably manufacture the diluent. Hereinafter, this replenishment operation will be described.
 通常運転時、第1のタンク12aにタンク加圧用ガス供給ライン18aを通じてタンク加圧用ガス(例えば、窒素ガス)が導入され、圧力計19cによる測定値(第1のタンク12a内の圧力)が給排気機構18bによって目標圧力になるように調整される。こうして、第1のタンク12a内の第2の液体が、指定された第2の配管13を通じて所定の添加量で第1の配管11内の第1の液体に添加される。なお、このとき、以下のバルブ、すなわち、タンク加圧用ガス供給ライン18aと第2のタンク12bとを接続するバルブ19b、薬液供給ライン16のバルブ16a、第2のタンク12bの大気開放バルブ17b、および接続ライン31のバルブ31aは、いずれも閉鎖された状態にある。ただし、このときの第2のタンク12bの大気開放バルブ17bの状態は、第1の実施形態と同様に、閉鎖された状態に限定されるものではなく、必要に応じて開放された状態にあってもよい。 During normal operation, tank pressurization gas (for example, nitrogen gas) is introduced into the first tank 12a through the tank pressurization gas supply line 18a, and a measured value (pressure in the first tank 12a) by the pressure gauge 19c is supplied. The target pressure is adjusted by the exhaust mechanism 18b. Thus, the second liquid in the first tank 12 a is added to the first liquid in the first pipe 11 in a predetermined addition amount through the designated second pipe 13. At this time, the following valves, that is, a valve 19b for connecting the tank pressurization gas supply line 18a and the second tank 12b, a valve 16a for the chemical liquid supply line 16, an air release valve 17b for the second tank 12b, The valve 31a of the connection line 31 is in a closed state. However, the state of the air release valve 17b of the second tank 12b at this time is not limited to a closed state, as in the first embodiment, and is in an open state as necessary. May be.
 第1のタンク12aから第1の配管11に第2の液体が供給されることで、第1のタンク12a内の液位が所定の下限液位を下回ると、第2のタンク12bの大気開放バルブ17bが開放される。続いて、薬液供給ライン16のバルブ16aが開放され、薬液供給ライン16を通じて第2の液体が第2のタンク12bに供給されて貯留される。そして、第2のタンク12b内の液位が所定の上限液位に達すると、薬液供給ライン16のバルブ16aが閉鎖され、第2のタンク12bの大気開放バルブ17bが閉鎖される。その後、タンク加圧用ガス供給ライン18aと第2のタンク12bとを接続するバルブ19bが開放され、第2のタンク12bにタンク加圧用ガス供給ライン18aを通じてタンク加圧用ガスが導入される。このとき、圧力計19cによる測定値が給排気機構18bによって目標圧力になるように調整される。すなわち、第1のタンク12a内の圧力が目標圧力に調整された状態を維持しながら、第2のタンク12b内の圧力もその目標圧力になるように調整される。第2のタンク12b内の圧力がその目標圧力に達すると、接続ライン31のバルブ31aが開放されて、第2のタンク12bから第2の液体が水頭圧によって第1のタンク12aに移送される。第2の液体の移送が完了すると、接続ライン31のバルブ31aが閉鎖され、第2のタンク12bは、次回の補充動作まで待機状態になる。 When the second liquid is supplied from the first tank 12a to the first pipe 11 and the liquid level in the first tank 12a falls below a predetermined lower limit liquid level, the second tank 12b is opened to the atmosphere. The valve 17b is opened. Subsequently, the valve 16a of the chemical liquid supply line 16 is opened, and the second liquid is supplied to the second tank 12b through the chemical liquid supply line 16 and stored. When the liquid level in the second tank 12b reaches a predetermined upper limit liquid level, the valve 16a of the chemical liquid supply line 16 is closed, and the air release valve 17b of the second tank 12b is closed. Thereafter, the valve 19b connecting the tank pressurization gas supply line 18a and the second tank 12b is opened, and the tank pressurization gas is introduced into the second tank 12b through the tank pressurization gas supply line 18a. At this time, the measured value by the pressure gauge 19c is adjusted to the target pressure by the air supply / exhaust mechanism 18b. That is, the pressure in the second tank 12b is adjusted to the target pressure while maintaining the state in which the pressure in the first tank 12a is adjusted to the target pressure. When the pressure in the second tank 12b reaches its target pressure, the valve 31a of the connection line 31 is opened, and the second liquid is transferred from the second tank 12b to the first tank 12a by the hydraulic head pressure. . When the transfer of the second liquid is completed, the valve 31a of the connection line 31 is closed, and the second tank 12b is in a standby state until the next refilling operation.
 この補充動作では、上述したように、第2のタンク12bから第1のタンク12aへの第2の液体の移送は、第2のタンク12b内の圧力が第1のタンク12a内の圧力に一致するように調整された後で行われる。これにより、第2のタンク12bから第1のタンク12aに水頭圧によって第2の液体が移送される際に、第1のタンク12aの圧力変動を極力抑えることができ、製造される希釈液の濃度変動を極力抑えることができる。なお、第2のタンク12bは、第2の液体が水頭圧によって第1のタンク12aに確実に移送されるように、その底面が第1のタンク12aの天面よりも高い位置にあることが好ましい。 In this replenishment operation, as described above, when the second liquid is transferred from the second tank 12b to the first tank 12a, the pressure in the second tank 12b matches the pressure in the first tank 12a. After being adjusted to do. As a result, when the second liquid is transferred from the second tank 12b to the first tank 12a by the head pressure, the pressure fluctuation of the first tank 12a can be suppressed as much as possible, and Concentration fluctuation can be suppressed as much as possible. The bottom surface of the second tank 12b may be higher than the top surface of the first tank 12a so that the second liquid is reliably transferred to the first tank 12a by the head pressure. preferable.
 上述した例では、第2のタンク12bへの第2の液体の貯留は、第1のタンク12a内の液位が所定の下限液位を下回った時点で開始されるが、このタイミングに限定されず、任意のタイミングで行うことができる。このとき、第2の液体が揮発性のある液体の場合、第2の液体の揮発を抑制するために、第2の液体の補充後に大気開放バルブ17bは閉鎖されたままであることが特に好ましい。同様に、第2のタンク12bから第1のタンク12aへの第2の液体の移送も、第2のタンク12bに第2の液体が貯留された後、任意のタイミングで行うことができる。ただし、第1のタンク12aが空になるまで第2の液体の供給を行うと、第2の配管にタンク加圧用ガスが溜まってしまい、そのガスが第1の配管に供給され、製造される希釈液に濃度変動が発生する可能性がある。そのため、少なくとも第2のタンク12bから第1のタンク12aへの第2の液体の移送は、第1のタンク12aから第2の液体が継続的に供給されるように、上述したタイミング、すなわち、第1のタンク12aが空になる前に開始されることが好ましい。 In the example described above, the storage of the second liquid in the second tank 12b is started when the liquid level in the first tank 12a falls below a predetermined lower limit liquid level, but is limited to this timing. It can be performed at any timing. At this time, when the second liquid is a volatile liquid, in order to suppress the volatilization of the second liquid, it is particularly preferable that the atmosphere release valve 17b remains closed after the replenishment of the second liquid. Similarly, the transfer of the second liquid from the second tank 12b to the first tank 12a can be performed at an arbitrary timing after the second liquid is stored in the second tank 12b. However, if the second liquid is supplied until the first tank 12a is empty, the tank pressurizing gas is accumulated in the second pipe, and the gas is supplied to the first pipe and manufactured. Concentration fluctuations may occur in the diluted solution. Therefore, at least the transfer of the second liquid from the second tank 12b to the first tank 12a is performed at the above-described timing, that is, the second liquid is continuously supplied from the first tank 12a. It is preferably started before the first tank 12a is empty.
 次に、図3に示すフローシートを参照して、上述した第2の実施形態に対応する実施例について説明する。図3のフローシートにおいて、図2に示す符号と同じ符号は、第2の実施形態と同様の構成を示している。 Next, an example corresponding to the second embodiment will be described with reference to the flow sheet shown in FIG. In the flow sheet of FIG. 3, the same reference numerals as those shown in FIG. 2 indicate the same configurations as those of the second embodiment.
 (実施例1)
 本実施例では、図3に示す構成の希釈液製造装置10を用いて、希釈液として希薄アンモニア水を製造し、その希薄アンモニア水の導電率を測定した。
Example 1
In this example, diluted ammonia water was manufactured as a diluent using the diluent manufacturing apparatus 10 having the configuration shown in FIG. 3, and the conductivity of the diluted ammonia water was measured.
 第2の配管13として、内径および長さの少なくとも一方が異なる5本のETFE製チューブA~E(チューブA,B:品番「7009」、チューブC~E:品番「7010」、いずれもフロム社製)を用いた。各チューブA~Eの内径および長さは、以下の通りである。
 チューブA 内径:0.2mm、長さ:3m
 チューブB 内径:0.2mm、長さ:1m
 チューブC 内径:0.3mm、長さ:1m
 チューブD 内径:0.3mm、長さ:0.5m
 チューブE 内径:0.3mm、長さ:0.3m
As the second piping 13, five ETFE tubes AE having different inner diameters and lengths (tubes A and B: product number “7009”, tubes C to E: product number “7010”, all from Made). The inner diameter and length of each tube A to E are as follows.
Tube A Inner Diameter: 0.2mm, Length: 3m
Tube B Inner Diameter: 0.2mm, Length: 1m
Tube C Inner diameter: 0.3 mm, Length: 1 m
Tube D Inner diameter: 0.3 mm, Length: 0.5 m
Tube E Inner diameter: 0.3 mm, Length: 0.3 m
 また、第1の配管11、第1のタンク12a、および第2のタンク12bとして、それぞれPFA製のものを用いた。 Moreover, the thing made from PFA was used as the 1st piping 11, the 1st tank 12a, and the 2nd tank 12b, respectively.
 第1の液体として、比抵抗値が18MΩ・cm以上、全有機炭素(TOC)が1.0ppb以下の超純水を用い、第1の配管11には流量40L/min、水圧0.35MPaで通水させた。第2の液体として、29wt%のアンモニア水(電子工業用、関東化学(株)製)を用い、第1のタンク12aに導入するタンク加圧用ガスとしては、窒素ガスを用いた。 As the first liquid, ultrapure water having a specific resistance value of 18 MΩ · cm or more and total organic carbon (TOC) of 1.0 ppb or less is used. The first pipe 11 has a flow rate of 40 L / min and a water pressure of 0.35 MPa. We let water pass. As the second liquid, 29 wt% ammonia water (for electronics industry, manufactured by Kanto Chemical Co., Inc.) was used, and nitrogen gas was used as the tank pressurizing gas introduced into the first tank 12a.
 それぞれのチューブA~Eに対して、第1のタンク12a内の圧力を変化させ、超純水に添加するアンモニア水の添加量を変化させたときの、希薄アンモニア水の導電率を、導電率計(品番「M300」、メトラー・トレド社製)を用いて測定した。図4は、このときの測定結果を示すグラフであり、横軸が超純水へのアンモニア水の添加量を示し、縦軸が得られた希釈液(希薄アンモニア水)の導電率を示している。 For each of the tubes A to E, the conductivity of the diluted ammonia water when the pressure in the first tank 12a is changed and the amount of ammonia water added to the ultrapure water is changed is defined as the conductivity. Measurement was performed using a meter (product number “M300”, manufactured by METTLER TOLEDO). FIG. 4 is a graph showing the measurement results at this time, the horizontal axis indicates the amount of ammonia water added to ultrapure water, and the vertical axis indicates the conductivity of the obtained diluted solution (dilute ammonia water). Yes.
 アンモニア水は弱塩基であり、低濃度域では添加量に対する導電率の変化は大きいが、高濃度域では添加量に対する導電率の変化が鈍くなる。そのため、チューブAでのアンモニア水の最小添加量およびそのときの希釈液の導電率はそれぞれ、0.015mL/minおよび1.2μS/cmであるのに対し、チューブEでのアンモニア水の最大添加量およびそのときの希釈液の導電率はそれぞれ、8.18mL/minおよび62.1μS/cmであった。すなわち、希釈液の導電率を1.2μS/cm(チューブA)から62.1μS/cm(チューブE)まで約50倍に高めるためには、アンモニア水の添加量を0.015mL/min(チューブA)から8.18mL/min(チューブE)まで約545倍も変化させる必要があった。このようなアンモニア水の添加量の調整範囲に対しても、図4のグラフからも分かるように、内径および長さの少なくとも一方が異なる5本のチューブを用いることで対応することができ、幅広い濃度範囲の希薄アンモニア水を連続して製造できることが確認された。 Ammonia water is a weak base, and the change in conductivity with respect to the amount added is large in the low concentration range, but the change in conductivity with respect to the amount added becomes dull in the high concentration range. Therefore, the minimum amount of ammonia water in tube A and the electrical conductivity of the diluent at that time are 0.015 mL / min and 1.2 μS / cm, respectively, whereas the maximum amount of ammonia water in tube E is The amount and the electrical conductivity of the diluent at that time were 8.18 mL / min and 62.1 μS / cm, respectively. That is, in order to increase the conductivity of the diluted solution by about 50 times from 1.2 μS / cm (tube A) to 62.1 μS / cm (tube E), the amount of ammonia water added is 0.015 mL / min (tube It was necessary to change about 545 times from A) to 8.18 mL / min (tube E). As can be seen from the graph of FIG. 4, the adjustment range of the ammonia water addition amount can be dealt with by using five tubes having different inner diameters and lengths. It was confirmed that dilute ammonia water in the concentration range could be produced continuously.
 (実施例2)
 本実施例では、図3に示す構成の希釈液製造装置10を用い、第1の液体としての超純水を第1の配管11に水圧0.16MPaで通水させた点を除いて、実施例1と同様の条件で希薄アンモニア水を製造した。そして、第1の液体の供給を一時的に停止、すなわち、希釈液の製造を一時的に停止し、その前後での希薄アンモニア水の導電率を測定した。なお、超純水およびアンモニア水の温度を23℃に調整し、希釈液の導電率の目標値を40μS/cmに設定した。このときの測定結果(第1の液体の流量、第1のタンク内の圧力、および希薄アンモニア水の導電率の時間変化)を図5Aに示す。なお、図5Bには、比較例として、第1の液体の供給を一時的に停止した際に第1のタンク12a内の圧力を大気圧に戻した場合の測定結果も示している。
(Example 2)
In the present embodiment, using the dilution liquid manufacturing apparatus 10 having the configuration shown in FIG. 3, except that ultrapure water as the first liquid was passed through the first pipe 11 at a water pressure of 0.16 MPa. Dilute aqueous ammonia was produced under the same conditions as in Example 1. Then, the supply of the first liquid was temporarily stopped, that is, the production of the diluted solution was temporarily stopped, and the conductivity of the diluted ammonia water before and after that was measured. The temperature of ultrapure water and ammonia water was adjusted to 23 ° C., and the target value of the conductivity of the diluted solution was set to 40 μS / cm. FIG. 5A shows the measurement results at this time (the flow rate of the first liquid, the pressure in the first tank, and the change over time in the conductivity of the diluted ammonia water). FIG. 5B also shows a measurement result when the pressure in the first tank 12a is returned to atmospheric pressure when the supply of the first liquid is temporarily stopped as a comparative example.
 本実施例では、図5Aに示すように、第1の液体の供給再開後(通常運転再開後)にも希釈液の導電率が良好に調整されていることが確認された。一方で、比較例では、図5Bに示すように、第1の液体の供給を一時的に停止した際に第1のタンク12a内の圧力を大気圧に戻したことで、通常運転再開後に第1のタンク12a内の圧力を以前よりも高くしているにもかかわらず、希釈液の導電率の調整を良好に行うことができなかった。これは、本実施例において、第1の液体の供給を一時的に停止した際に第1のタンク12a内の圧力が大気圧を上回る圧力に保持されたことで気泡の生成が抑制されたためであると考えられる。 In this example, as shown in FIG. 5A, it was confirmed that the conductivity of the diluted liquid was well adjusted even after the supply of the first liquid was resumed (after the normal operation was resumed). On the other hand, in the comparative example, as shown in FIG. 5B, when the supply of the first liquid is temporarily stopped, the pressure in the first tank 12a is returned to the atmospheric pressure. Although the pressure in one tank 12a was higher than before, the conductivity of the diluent could not be adjusted well. This is because in this embodiment, when the supply of the first liquid is temporarily stopped, the generation of bubbles is suppressed by maintaining the pressure in the first tank 12a at a pressure exceeding the atmospheric pressure. It is believed that there is.
 1 ユースポイント
 10 希釈液製造装置
 11 第1の配管
 12a 第1のタンク
 12b 第2のタンク
 13 第2の配管
 13a バルブ
 14a,14b バルブ
 15a,15b バルブ
 16 薬液供給ライン(液体供給手段)
 16a バルブ
 17a,17b 大気開放バルブ
 18 圧力調整部
 18a タンク加圧用ガス供給ライン
 18b 給排気機構
 19a,19b バルブ
 19c 圧力計
 20 制御部
 21 流量測定手段
 22 濃度測定手段
 23 圧力測定手段
DESCRIPTION OF SYMBOLS 1 Use point 10 Dilution liquid manufacturing apparatus 11 1st piping 12a 1st tank 12b 2nd tank 13 2nd piping 13a Valve 14a, 14b Valve 15a, 15b Valve 16 Chemical solution supply line (liquid supply means)
16a Valve 17a, 17b Air release valve 18 Pressure adjusting unit 18a Gas supply line for tank pressurization 18b Air supply / exhaust mechanism 19a, 19b Valve 19c Pressure gauge 20 Control unit 21 Flow rate measuring unit 22 Concentration measuring unit 23 Pressure measuring unit

Claims (13)

  1.  第1の液体に対して第2の液体を添加することで該第2の液体の希釈液を製造し、ユースポイントに前記希釈液を供給する希釈液製造装置であって、
     前記第1の液体を供給する第1の配管と、
     前記第2の液体を貯留する第1のタンクと、
     前記第1のタンクと前記第1の配管とを接続する第2の配管と、
     前記第1のタンク内の圧力を調整する圧力調整部であって、前記第1のタンク内の前記第2の液体を前記第2の配管を通じて圧送して前記第1の配管に供給する圧力調整部と、
     前記第1の配管内を流れる前記第1の液体または前記希釈液の流量と前記希釈液の濃度との測定値に基づいて、前記希釈液の濃度が所定の濃度になるように、前記圧力調整部による前記第1の液体への前記第2の液体の添加量を調整する制御部と、
     前記第1のタンクに直列に接続され、前記第1のタンクに補充される前記第2の液体を一時的に貯留する第2のタンクと、
     を有する希釈液製造装置。
    A dilution production apparatus for producing a dilution liquid of the second liquid by adding the second liquid to the first liquid and supplying the dilution liquid to a use point,
    A first pipe for supplying the first liquid;
    A first tank for storing the second liquid;
    A second pipe connecting the first tank and the first pipe;
    A pressure adjustment unit that adjusts the pressure in the first tank, and supplies the second liquid in the first tank through the second pipe and supplies the second liquid to the first pipe. And
    Based on the measured value of the flow rate of the first liquid or the diluent and the concentration of the diluent flowing through the first pipe, the pressure adjustment is performed so that the concentration of the diluent becomes a predetermined concentration. A control unit for adjusting the amount of the second liquid added to the first liquid by a unit;
    A second tank connected in series to the first tank and temporarily storing the second liquid to be replenished to the first tank;
    A diluent manufacturing apparatus having
  2.  第1の液体に対して第2の液体を添加することで該第2の液体の希釈液を製造し、ユースポイントに前記希釈液を供給する希釈液製造装置であって、
     前記第1の液体を供給する第1の配管と、
     前記第2の液体を貯留する第1のタンクと、
     前記第1のタンクと前記第1の配管とを接続する第2の配管と、
     前記第1のタンク内の圧力を調整する圧力調整部であって、前記第1のタンク内の前記第2の液体を前記第2の配管を通じて圧送して前記第1の配管に供給する圧力調整部と、
     前記第1の配管内を流れる前記第1の液体または前記希釈液の流量と前記希釈液の濃度との測定値に基づいて、前記希釈液の濃度が所定の濃度になるように、前記圧力調整部による前記第1の液体への前記第2の液体の添加量を調整する制御部と、
     前記第1のタンクに並列に接続され、前記第1のタンクの代わりに前記第1の配管に供給される前記第2の液体を貯留する第2のタンクと、
     を有する希釈液製造装置。
    A dilution production apparatus for producing a dilution liquid of the second liquid by adding the second liquid to the first liquid and supplying the dilution liquid to a use point,
    A first pipe for supplying the first liquid;
    A first tank for storing the second liquid;
    A second pipe connecting the first tank and the first pipe;
    A pressure adjustment unit that adjusts the pressure in the first tank, and supplies the second liquid in the first tank through the second pipe and supplies the second liquid to the first pipe. And
    Based on the measured value of the flow rate of the first liquid or the diluent and the concentration of the diluent flowing through the first pipe, the pressure adjustment is performed so that the concentration of the diluent becomes a predetermined concentration. A control unit for adjusting the amount of the second liquid added to the first liquid by a unit;
    A second tank connected in parallel to the first tank and storing the second liquid supplied to the first pipe instead of the first tank;
    A diluent manufacturing apparatus having
  3.  前記圧力調整部が、前記第2のタンク内の圧力を調整可能であり、
     前記制御部は、前記第1のタンク内の液位が所定の下限液位を下回った場合に、前記圧力調整部によって前記第2のタンク内の圧力を前記第1のタンク内の圧力に一致させるように調整した後、前記第2のタンクから前記第1のタンクへの前記第2の液体の補充を実行する、請求項1に記載の希釈液製造装置。
    The pressure adjusting unit can adjust the pressure in the second tank;
    The control unit matches the pressure in the second tank with the pressure in the first tank by the pressure adjusting unit when the liquid level in the first tank falls below a predetermined lower limit liquid level. 2. The dilution liquid manufacturing apparatus according to claim 1, wherein the second liquid is replenished from the second tank to the first tank after the adjustment is performed.
  4.  前記第1のタンクと前記第2のタンクとは、前記第2のタンク内の前記第2の液体が水頭圧によって前記第1のタンクに供給されるように接続されている、請求項1または3に記載の希釈液製造装置。 The first tank and the second tank are connected so that the second liquid in the second tank is supplied to the first tank by a hydraulic head pressure. 3. The dilution liquid production apparatus according to 3.
  5.  前記圧力調整部が、前記第2のタンク内の圧力を調整可能であり、
     前記制御部は、前記第1のタンク内の液位が所定の下限液位を下回った場合に、前記圧力調整部によって前記第2のタンク内の圧力を前記第1のタンク内の圧力に一致させるように調整した後、前記第1のタンクから前記第1の配管への前記第2の液体の供給を、前記第2のタンクから前記第1の配管への前記第2の液体の供給に切り替える、請求項2に記載の希釈液製造装置。
    The pressure adjusting unit can adjust the pressure in the second tank;
    The control unit matches the pressure in the second tank with the pressure in the first tank by the pressure adjusting unit when the liquid level in the first tank falls below a predetermined lower limit liquid level. After the adjustment is made, the supply of the second liquid from the first tank to the first pipe is changed to the supply of the second liquid from the second tank to the first pipe. The dilution liquid manufacturing apparatus according to claim 2, which is switched.
  6.  複数の前記第2の配管を有し、
     前記複数の第2の配管は、内径および長さの少なくとも一方が互いに異なる、請求項1から5のいずれか1項に記載の希釈液製造装置。
    A plurality of the second pipes;
    6. The dilution liquid manufacturing apparatus according to claim 1, wherein at least one of an inner diameter and a length of the plurality of second pipes is different from each other.
  7.  前記複数の第2の配管が、それぞれ個別に前記第1の配管に接続されている、請求項6に記載の希釈液製造装置。 The dilution liquid manufacturing apparatus according to claim 6, wherein the plurality of second pipes are individually connected to the first pipe.
  8.  前記第1の液体が、超純水であり、第2の液体が、アンモニア水溶液または水酸化テトラメチルアンモニウム水溶液である、請求項1から7のいずれか1項に記載の希釈液製造装置。 The dilution liquid production apparatus according to any one of claims 1 to 7, wherein the first liquid is ultrapure water, and the second liquid is an aqueous ammonia solution or an aqueous tetramethylammonium hydroxide solution.
  9.  前記制御部は、前記第1の配管への前記第1の液体の供給が停止されて前記希釈液の製造が停止される際に、前記第1のタンク内の圧力が大気圧を上回る圧力に保持されるように該第1のタンク内の圧力を調整する、請求項1から8のいずれか1項に記載の希釈液製造装置。 When the supply of the first liquid to the first pipe is stopped and the production of the dilution liquid is stopped, the control unit causes the pressure in the first tank to exceed the atmospheric pressure. The dilution liquid manufacturing apparatus according to any one of claims 1 to 8, wherein the pressure in the first tank is adjusted so as to be held.
  10.  前記制御部は、前記第1のタンク内の圧力が前記第2の液体の飽和蒸気圧を上回る圧力に保持されるように該第1のタンク内の圧力を調整する、請求項9に記載の希釈液製造装置。 10. The control unit according to claim 9, wherein the control unit adjusts the pressure in the first tank so that the pressure in the first tank is maintained at a pressure higher than a saturated vapor pressure of the second liquid. Diluent production equipment.
  11.  前記制御部は、前記第1のタンク内の圧力が前記希釈液の製造が停止される前に調整されていた圧力に維持されるように該第1のタンク内の圧力を調整する、請求項9に記載の希釈液製造装置。 The said control part adjusts the pressure in this 1st tank so that the pressure in the said 1st tank may be maintained at the pressure adjusted before manufacture of the said dilution liquid was stopped. 9. The dilution liquid production apparatus according to 9.
  12.  第1の液体に対して第2の液体を添加することで該第2の液体の希釈液を製造し、ユースポイントに前記希釈液を供給する希釈液製造方法であって、
     第1の配管に前記第1の液体を供給する工程と、
     前記第2の液体を貯留する第1のタンク内の圧力を調整して、前記第1のタンクと前記第1の配管とを接続する第2の配管を通じて、前記第1のタンク内の前記第2の液体を圧送して前記第1の配管に供給する工程であって、前記第1の配管内を流れる前記第1の液体または前記希釈液の流量と前記希釈液の濃度とを測定し、該測定値に基づいて、前記希釈液の濃度が所定の濃度になるように前記第1の液体への前記第2の液体の添加量を調整することを含む、前記第2の液体を前記第1の配管に供給する工程と、
     前記第1のタンクに直列に接続された第2のタンクに前記第2の液体を一時的に貯留する工程と、
     前記第1のタンク内の液位に基づいて、前記第2のタンクに貯留された前記第2の液体を前記第1のタンクに補充する工程と、
     を含む希釈液製造方法。
    A dilution liquid production method for producing a dilution liquid of the second liquid by adding a second liquid to the first liquid, and supplying the dilution liquid to a use point,
    Supplying the first liquid to a first pipe;
    The pressure in the first tank that stores the second liquid is adjusted, and the second tank in the first tank is connected to the first tank through the second pipe that connects the first tank and the first pipe. Measuring the flow rate of the first liquid or the diluting liquid flowing in the first pipe and the concentration of the diluting liquid; Adjusting the amount of the second liquid added to the first liquid based on the measured value so that the concentration of the diluent becomes a predetermined concentration. Supplying to one pipe;
    Temporarily storing the second liquid in a second tank connected in series to the first tank;
    Replenishing the first tank with the second liquid stored in the second tank based on the liquid level in the first tank;
    A method for producing a diluted solution.
  13.  第1の液体に対して第2の液体を添加することで該第2の液体の希釈液を製造し、ユースポイントに前記希釈液を供給する希釈液製造方法であって、
     第1の配管に前記第1の液体を供給する工程と、
     前記第2の液体を貯留する第1のタンク内の圧力を調整して、前記第1のタンクと前記第1の配管とを接続する第2の配管を通じて、前記第1のタンク内の前記第2の液体を圧送して前記第1の配管に供給する工程であって、前記第1の配管内を流れる前記第1の液体または前記希釈液の流量と前記希釈液の濃度とを測定し、該測定値に基づいて、前記希釈液の濃度が所定の濃度になるように前記第1の液体への前記第2の液体の添加量を調整することを含む、前記第2の液体を前記第1の配管に供給する工程と、
     前記第1のタンクに並列に接続された第2のタンクに前記第2の液体を貯留する工程と、
     前記第1のタンク内の液位に基づいて、前記第1のタンクの代わりに前記第2のタンクから前記第1の配管に前記第2の液体を供給する工程と、
     を含む希釈液製造方法。
    A dilution liquid production method for producing a dilution liquid of the second liquid by adding a second liquid to the first liquid, and supplying the dilution liquid to a use point,
    Supplying the first liquid to a first pipe;
    The pressure in the first tank that stores the second liquid is adjusted, and the second tank in the first tank is connected to the first tank through the second pipe that connects the first tank and the first pipe. Measuring the flow rate of the first liquid or the diluting liquid flowing in the first pipe and the concentration of the diluting liquid; Adjusting the amount of the second liquid added to the first liquid based on the measured value so that the concentration of the diluent becomes a predetermined concentration. Supplying to one pipe;
    Storing the second liquid in a second tank connected in parallel to the first tank;
    Supplying the second liquid from the second tank to the first pipe instead of the first tank based on the liquid level in the first tank;
    A method for producing a diluted solution.
PCT/JP2017/036436 2016-12-28 2017-10-06 Device for manufacturing diluted liquid, and method for manufacturing diluted liquid WO2018123193A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780066541.6A CN109890494B (en) 2016-12-28 2017-10-06 Diluent producing apparatus and diluent producing method
KR1020197015953A KR102275626B1 (en) 2016-12-28 2017-10-06 Diluent manufacturing apparatus and diluent manufacturing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-254938 2016-12-28
JP2016254939A JP6777534B2 (en) 2016-12-28 2016-12-28 Diluting solution manufacturing equipment and diluent manufacturing method
JP2016254938A JP6777533B2 (en) 2016-12-28 2016-12-28 Diluting solution manufacturing equipment and diluent manufacturing method
JP2016-254939 2016-12-28
JP2016254940A JP6738726B2 (en) 2016-12-28 2016-12-28 Diluting liquid manufacturing apparatus and diluting liquid manufacturing method
JP2016-254940 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123193A1 true WO2018123193A1 (en) 2018-07-05

Family

ID=62707982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036436 WO2018123193A1 (en) 2016-12-28 2017-10-06 Device for manufacturing diluted liquid, and method for manufacturing diluted liquid

Country Status (4)

Country Link
KR (1) KR102275626B1 (en)
CN (1) CN109890494B (en)
TW (1) TWI759381B (en)
WO (1) WO2018123193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761334A (en) * 2019-01-30 2019-05-17 郭修斌 The device of regulation solution concentration, method and minerals water dispenser, Soda water machine and grug feeding jar on demand

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550673B (en) * 2020-04-15 2022-04-19 北京航天试验技术研究所 Multi-storage-tank parallel filling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263379A (en) * 1997-03-21 1998-10-06 Nikkiso Co Ltd Automatic diluting device
JPH1170328A (en) * 1997-08-29 1999-03-16 Urutora Clean Technol Kaihatsu Kenkyusho:Kk Device and method for chemical liquid quantitative injection
JP2005175183A (en) * 2003-12-11 2005-06-30 Kitz Sct:Kk Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it
JP2015158399A (en) * 2014-02-24 2015-09-03 スガ試験機株式会社 Weather resistance testing machine and diluted solution supply device
WO2016042933A1 (en) * 2014-09-16 2016-03-24 オルガノ株式会社 Diluted liquid production method and diluted liquid production device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980051761A (en) * 1996-12-23 1998-09-25 김광호 Automatic thinner supply device and automatic thinner supply method for semiconductor manufacturing
JP3382138B2 (en) * 1997-08-21 2003-03-04 富士通株式会社 Chemical liquid supply device and chemical liquid supply method
JP5001757B2 (en) * 2007-08-31 2012-08-15 シーケーディ株式会社 Fluid mixing system and fluid mixing apparatus
CN204346804U (en) * 2014-12-10 2015-05-20 武汉市天虹仪表有限责任公司 For the dynamic dilution device of the controllable pressure of gaseous sample
CN204986420U (en) * 2015-07-07 2016-01-20 深圳市华尔信环保科技有限公司 Chemicals supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263379A (en) * 1997-03-21 1998-10-06 Nikkiso Co Ltd Automatic diluting device
JPH1170328A (en) * 1997-08-29 1999-03-16 Urutora Clean Technol Kaihatsu Kenkyusho:Kk Device and method for chemical liquid quantitative injection
JP2005175183A (en) * 2003-12-11 2005-06-30 Kitz Sct:Kk Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it
JP2015158399A (en) * 2014-02-24 2015-09-03 スガ試験機株式会社 Weather resistance testing machine and diluted solution supply device
WO2016042933A1 (en) * 2014-09-16 2016-03-24 オルガノ株式会社 Diluted liquid production method and diluted liquid production device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761334A (en) * 2019-01-30 2019-05-17 郭修斌 The device of regulation solution concentration, method and minerals water dispenser, Soda water machine and grug feeding jar on demand

Also Published As

Publication number Publication date
CN109890494A (en) 2019-06-14
KR102275626B1 (en) 2021-07-09
TWI759381B (en) 2022-04-01
CN109890494B (en) 2021-10-19
KR20190077501A (en) 2019-07-03
TW201838710A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US10857512B2 (en) Diluted solution production method and diluted solution production apparatus
JP6734621B2 (en) Ozone water supply method and ozone water supply device
US8727323B2 (en) Devices, systems, and methods for carbonation of deionized water
TW201004707A (en) Gasification systems and methods for making bubble free solutions of gas in liquid
WO2018225278A1 (en) Dilute chemical solution production device
WO2018190090A1 (en) Cleaning water supply device
WO2018123193A1 (en) Device for manufacturing diluted liquid, and method for manufacturing diluted liquid
US20200353431A1 (en) Functional water producing apparatus and functional water producing method
JP6777533B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP6777534B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP6738726B2 (en) Diluting liquid manufacturing apparatus and diluting liquid manufacturing method
US11319226B2 (en) Cleaning water supply device
US20220184571A1 (en) Dilute chemical solution production device
JP2005175183A (en) Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it
JP7049875B2 (en) Diluted liquid manufacturing method and diluted liquid manufacturing equipment
US20240025785A1 (en) Production device for ph/redox potential-adjusted water
TWI842869B (en) System for supplying a rinsing liquid comprising ultrapure water and an ammonia gas and method for supplying a rinsing liquid comprising ultrapure water with a desired concentration of an ammonia gas dissolved therein
US20220410090A1 (en) Dilute chemical supply device
TW202106365A (en) Systems and methods for generating a dissolved ammonia solution with reduced dissolved carrier gas and oxygen content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015953

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886670

Country of ref document: EP

Kind code of ref document: A1