WO2005087396A1 - Circulation type gas-dissolved water supply device and method of operating such device - Google Patents

Circulation type gas-dissolved water supply device and method of operating such device Download PDF

Info

Publication number
WO2005087396A1
WO2005087396A1 PCT/JP2005/004900 JP2005004900W WO2005087396A1 WO 2005087396 A1 WO2005087396 A1 WO 2005087396A1 JP 2005004900 W JP2005004900 W JP 2005004900W WO 2005087396 A1 WO2005087396 A1 WO 2005087396A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
water tank
dissolved
tank
Prior art date
Application number
PCT/JP2005/004900
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroto Tokoshima
Junichi Ida
Hiroshi Morita
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Publication of WO2005087396A1 publication Critical patent/WO2005087396A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to evacuating a circulating / dissolving water feeding apparatus. More specifically, the present invention relates to a method for dissolving and dissolving a specific gas used in a wet process such as an electronic material by using a gas dissolving water having an enhanced effect. Return the dissolved gas water that did not exist to the water tank, and set the concentration of the specific gas in the gas dissolved water above a certain level. This is related to the removal of the circulating gas, water, and water supply equipment that can keep the concentration low. Background scythe
  • the present inventors have found that the use of electronic materials such as silicon for body ⁇ ⁇ ⁇ , glass for liquid crystal and the like contaminated by fine particles can be efficiently performed with a small amount of wisteria IJ.
  • the inclusion concentration is less than ⁇ 0.7 mg / L, and the PH is between 6 and 12
  • An electronic material i »7_R made of a thread feK was provided (Patent Document 1).
  • the amount of water in the shelf fluctuates without creeping due to the formation of U: ⁇
  • the stable and hydrogen gas concentration of water is more than ⁇ , it is provided to youth points
  • the dewatering unit that removes the 3 ⁇ 4fek ⁇ gas, the dissolving unit that dissolves the hydrogen gas in the super-degasified state, and the jj water tank that is not used in youth points It has a sealed water tank that can supply mixed water of super 2 fek and replenished water, and hydrogen gas can be applied to the eyes of the closed water tank according to the fluctuation of water level.
  • gas-dissolved water which is used for cutting electronic materials, is supplied to the point of use.
  • the gas-dissolved water that has not been used in youth points is returned to the shell tank, and the gas-dissolved water can be circulated and used without any fluctuation in the gas concentration of the gas-dissolved water.
  • a dispenser for dissolving water has been proposed (Patent Document 3). 0 This device is useful, but requires special attachment, and thus has been difficult in practical use.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 117-177021 (page 2, FIG. 3)
  • Patent Document 3 Japanese Patent Laid-Open Publication No. 2000-2771549 (Page 2, FIG. 1, FIG. 2)
  • the present invention relates to a gas-dissolved water supply device in which a specific gas used in an etching process such as an electronic material is dissolved to enhance the result, and the gas-dissolved water that has not been used in a large amount is supplied to a water tank. Circulating gas-dissolved water that can maintain the concentration of specific gas in the gas-dissolved water above a certain value and maintain the concentration of the specific gas in the upper space of the water tank in which the power and gas-dissolved water are formed.
  • Supply equipment The purpose of this equipment is to make clear the details of the equipment. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above, and as a result, gas dissolved water not used at the point of use and gas dissolved water supplied to
  • gas dissolved water not used at the point of use and gas dissolved water supplied to By providing a tank for the mixed water of the above, and maintaining the position of the tank ⁇ at a constant level, replenishing the required amount of gas and the amount of dissolved gas and increasing the amount of dissolved gas ,?
  • the concentration of the specific gas to be entrained can be maintained at a certain level or more.
  • the gas such as nitrogen gas and rare gas is not affected.
  • ventilating the active gas over a certain flow rate It has been found that the specific gas inside can be suppressed to a certain value or less, and based on this finding, the present invention has been accomplished.
  • Dissolver A for producing specific gas-dissolved water A water tank B for dissolving specific gas-dissolved water, water pipe B for connecting dissolver A to water tank B Pump D that sends water to the machine, pump D from tank B and circulation pipe E that returns to water tank B via the branch point to the machine, and three pipes F that feed gas to the upper space of 7_MfB Gas-to-container ⁇ a water-supplying device, in which the lower end of the weaving pipe C and the lower end of the circulating pipe E are submerged under the water surface in the water tank B. Separation of dissolved water,
  • a circulating gas-dissolving water dispenser according to (4) which has an oxygen gas detector or a gas concentration meter that looks at the space above zfB.
  • Dissolving device A for producing specific gas-dissolved water
  • water tank B for dissolving specific gas-dissolved water
  • fiber tube C for connecting dissolving device A and water tank B
  • water tank B for dissolving specific gas-dissolved water
  • Water tank B for dissolving specific gas-dissolved water
  • fiber tube C for connecting dissolving device A and water tank B
  • water tank B for dissolving specific gas-dissolved water
  • Water tank B for dissolving specific gas-dissolved water
  • fiber tube C for connecting dissolving device A and water tank B
  • water tank B ⁇ Pump D to send water to the machine
  • Pump D from water tank B and circulation pipe E to return to water tank B via a branch point to the 3 ⁇ 4if machine, and gas supply to the upper space of water tank B
  • Gas pipe F for T At the branch point, the water is supplied to a specific gas-dissolving hydraulic power plant, and the specific gas-dissolving hydraulic power of S is circulated and returned to water tank B, and the lower end of connection pipe C and the lower end of circulation
  • the specific gas is hydrogen gas
  • Fig. 1 is a diagram of the device of the present invention!
  • Fig. 2 is an explanatory diagram of the device used in the embodiment,
  • Fig. 3 is a diagram of the hydrogen gas-dissolved water 7]
  • Elemental gas concentration 4A and 4B are graphs showing the temporal change of the hydrogen gas concentration in the upper space of FIG. 4 __Mf.
  • ⁇ ⁇ ⁇ is a melting device
  • is a tank
  • C is a connecting rooster S pipe
  • D is a pump
  • is a circulating rooster S pipe
  • F is a gas pipe
  • a is a dissolving device
  • b is a KzK tank
  • c is a connection.
  • the lower end of the connection pipe, 16 represents the lower end of the circulation pipe.
  • the circulation type gas-dissolved water dispenser of the present invention includes a dissolution apparatus A for producing a specific gas-dissolved water, a water tank B for shelling a specific gas-dissolved water, a connection pipe C for connecting the dissolution apparatus A and the water tank B, Shell D in tank B Pump D that sends water to the fresh machine, Pump D from tank B and a circulation pipe that returns to tank B via the branch point to the machine E, and gas piping that supplies gas to the upper space of zMfB
  • the specific gas to which the device of the present invention or the present invention can be applied includes, for example, hydrogen gas, ozone gas, oxygen gas, anoregon gas, carbon dioxide gas, nitrogen gas and the like.
  • the present invention can be particularly suitably applied to 7_K element gas dissolved water.
  • FIG. 1 is an unpleasant view of the apparatus of the present invention.
  • the device of this fiber is a melting device A for producing a specific gas-dissolved water, a water tank B for supplying the specific gas-dissolved water, a connecting pipe C connecting the dissolution device A and the water tank B, and a cleaning of the ff water in the water tank B. It has a pump D that sends out to the machine, a pump D from the ⁇ tank B, a circulation pipe E that returns to the water tank B via a branch point to the »machine, and a gas pipe F that supplies gas to the upper space of the water tank B ⁇ super ifck It is sent to melting device A via force valve 1 and melts a specific gas. It becomes gas dissolved water.
  • Tank B is provided with a total of two forces S, and the opening force S of Norbu 3 is controlled by a signal sent from the ⁇ meter, so that the water level in tank ⁇ is kept constant.
  • the gas-dissolved water shelled in the water tank ⁇ is pumped out by the pump D, cooled by the heat pump 4 so as to keep the water constant, and the fine particles 5 are installed on the secondary side of the pump by fine particles 5.
  • the gas concentration meter 6 measures the specific gas concentration of the gas-dissolved water.
  • the gas-dissolved water is diverted at branch points 7 and 8 of the circulation pipe ⁇ , sent to Nadaki via valves 9 and 10, and stored at the return of electronic materials.
  • the gas-dissolved water from the block! 1 that has not been used for cleaning is returned to the water tank ⁇ via the circulation pipe ⁇ .
  • the circulating rooster ⁇ has a knob 11 to keep the water pressure at the point of use constant.
  • the tank 8 is provided with a gas pipe F for supplying gas to the upper space of the water tank ⁇ , and a gas supplied from the gas pipe F is used to measure a specific gas in the upper space of the water tank ⁇ . Keep the specific gas concentration in the headspace below a certain value.
  • a specific gas monitor 12 In the upper space of 7 ⁇ tank ⁇ , there is a specific gas monitor 12 to monitor the specific gas concentration in the upper space, and to enjoy the oxygen gas concentration in the upper space ⁇ * Gas monitor 13 A pressure estimator 14 is provided for
  • the lower end 15 of the connecting pipe C and the lower end 16 of the circulating pipe ⁇ are submerged under the water surface in the S water tank ⁇ .
  • the lower end 15 of the connecting fiber tube C and the lower end 16 of the circulation pipe ⁇ S The specific gas volume that is connected to the water tank ⁇ ⁇ from the connecting pipe C by submerging under the water surface in the water tank ⁇
  • the specific gas dissolved water returned from the circulation pipe ⁇ to the water tank ⁇ from the circulation pipe ⁇ does not disintegrate with the eyes of the upper space, and the specific gas power is volatilized from the gas dissolved water to produce a specific gas. It is possible to prevent the concentration from decreasing and to prevent the specific gas concentration power S in the upper space from increasing.
  • an inert gas is supplied to the apparatus of the present invention through the gas pipe F.
  • the specific gas dissolved in water is a dangerous gas such as hydrogen gas or ozone gas.
  • a dangerous gas such as hydrogen gas or ozone gas.
  • the apparatus of the present invention can be suitably used as a circulating nitrogen gas dissolved water supply apparatus which is a hydrogen gas having a specific gas power. Hydrogen gas-dissolved water has an excellent effect in removing adhered fine particles, particularly for electronic materials.
  • the upper space of B is in a state of high hydrogen gas concentration.
  • the lower limit of the mixture gas of hydrogen gas and air at normal temperature and normal pressure is 4.1 m% of hydrogen gas. Therefore, it is extremely dangerous if the upper space force of water tank B S hydrogen gas concentration is high.
  • the apparatus of the present invention can maintain the hydrogen gas concentration in the upper space of 7W1B low even if it is used as a circulating hydrogen gas dissolved water supply apparatus. be able to.
  • the specific gas is hydrogen gas
  • the inside of zfB is always maintained at a positive pressure by the pressure regulator 14, there is no gas from the outside air to the water tank B, and the gas in the upper space of the water tank B is normally used. * Gas concentration is 0 # 3 ⁇ 4%.
  • Circulating the gas dissolved water supply device of the present invention can and different! ⁇ And child and ⁇ shown in F i g. 1.
  • the gas concentration meter 6 is used to measure the gas concentration of the dissolved gas in the circulation pipe E and the water tank B.
  • the gas concentration meter 6 may be located anywhere in the circulation pipe ⁇ , and may be located in the tank ⁇ .
  • Gas? The dissolved gas concentration of the volume water can also be measured directly with a gas concentration meter.
  • the exhaust gas from the specific gas monitor 12 that changes the specific gas concentration in the upper space and the oxygen gas monitor 13 that monitors the oxygen gas concentration in the upper space can be discharged outside the system.
  • the circulation gas dissolving water supply device includes a dissolving device for dissolving specific gas dissolving water, a water tank for dissolving specific gas dissolving water, and a dissolving device.
  • the amount of gas dissolution zk supplied from the dissolving device A to the water tank is circulated. 5 ⁇ 2) ⁇ 3 ⁇ 43 ⁇ 4 or more with respect to 0 0.
  • the gas dissolved hydraulic power circulating in the circulation pipe is divided at the s branch point, and when the water is dissipated in the »machine, the amount of the gas dissolved water returning to the water tank B decreases, and zMf B The amount of gas-dissolved water starts to decrease.
  • the height of the inverted water tank B is preferably 60% or less of the standard water level, more preferably 40% or less, and 2% or less. More preferably, it is 0% or less 7] Fluctuation force of the liquid level in the tank When the water level exceeds 60% of the standard water level, the lower end of the connection pipe C and the lower end of the circulation pipe E are below the water level.
  • the upper fck position and lower position are set by the liquid level gauge 2, and the amount of water from the connection pipe c is controlled so that the liquid level is within this range.
  • the free gas concentration of the gas-dissolved water can be maintained at a predetermined value. If the amount of gas-dissolved water used is less than 5 parts per 100 parts of gas-dissolved water sent out by the pump D, the amount of gas-dissolved water from the dissolution device A to the water tank , 5 ⁇ 3 ⁇ 43 ⁇ 4 or more with respect to the gas dissolved water 100 ## sent out by the pump D.
  • the hydrogen gas concentration of the hydrogen gas-dissolved water supplied from the dissolving device to the water tank is set to 0.6 mg / L or more. More preferably, it is O mg gL or more.
  • the concentration of t 7j elemental gas is 0.6 mg gZL or more! The fruit develops.
  • the hydrogen gas used in the washing machine is sent out from the water tank B to the circulation pipe E by the pump D. Dissolved water easily increases hydrogen gas concentration 0.6 It can be kept above magZL.
  • the flow rate of the gas supplied through the gas pipe F is 0.15 to 50 with respect to the gas-liquid contact of the water tank B.
  • L (standard state) Zm i ⁇ ⁇ m 2
  • the flow rate of the test ⁇ Ru gas through the gas pipe F is at 0. 1 5 L (standard state) Zm in. M less than 2 with respect to gas-liquid transliteration insect ®3 ⁇ 4 aquarium beta
  • hydrogen in the upper space of the tank B Gas concentration may exceed 4.0 # 3 ⁇ 4%.
  • the lower limit of the mixture of hydrogen gas and air at normal temperature and normal pressure is 7_ ⁇ gas 4.1 ⁇ * 3 ⁇ 4%, so by setting the hydrogen gas concentration in the upper space of water tank ⁇ to 4.0% or less, Inside the zMfB; not only can prevent accidents, but also eliminate the possibility of a crane accident, even if the gas in the upper space of tank B leaks into the atmosphere. 5 0 L (exceeding normal state JZm in.
  • Hydrogen gas concentration meter 6 Professional water discharge norb 9, Circulation piping e Pulp to keep the pressure in e 0.2MPa 1 1, 7
  • Gas piping f to supply nitrogen gas to the upper space of tank b, supply gas
  • a pressure regulator 14 for maintaining the upper space of the water tank b at a positive pressure at the outlet side of the tank b, and a sensor 12 for measuring the hydrogen gas concentration in the upper space of the water tank b are provided.
  • the lower end 15 of the exchange pipe c and the lower end 16 of the circulating rooster S pipe e are located 10 cm ⁇ ⁇ from the bottom of the tank.
  • Example 1 Dissolved hydrogen gas concentration was prepared by dissolving device a. 1. Hydrogen gas dissolved water of Omg / L was prepared, and 160 L of hydrogen gas water was filled in water tank b with AU circulation pipe e filled with hydrogen gas dissolved water.
  • Water tank b Hydrogen gas concentration from dissolution device a 1. Hydrogen gas dissolved water at Omg / L 1.0 L / min is supplied, and hydrogen gas dissolved water 20 L / min is sent out to fb power and circulation pipe e by pump d. Blow water discharge valve The blow water was discharged at 1.0 L / min from 9 power and circulated through the 7 k ⁇ gas melt angle. In addition, gas piping (nitrogen gas, 0.5 U, standard condition) was supplied to the upper space of the water tank b.
  • the hydrogen gas-dissolved water measured by the hydrogen gas key meter 6 was 1.Omg / L at the beginning of the cloud, 0.88mg after 13 temples, 2 hours after 0.75mg / hour, and 3 hours after 0.68mg / hour. L, 0.66 mgZ after 4 hours, 0.65 mgZ after 5 hours, 0.65 mgZ after 6 hours.
  • the hydrogen gas concentration in the upper space of tank 7_k was consistently 0.0% by volume from the beginning of the constitution to 18 hours later.
  • Omg, L hydrogen gas dissolved water. .5 L / min was supplied and blow gas was discharged from water tank b to circulation pipe e by pump d in the same manner as mmn l, except that blow water 0.5 L / min was discharged from blow ⁇ discharge nozzle 9. ⁇ Kangaku drought 2 OL / min was sent out, and zK raw gas ⁇ Kangaku ZK was circulated.
  • the concentration of hydrogen gas dissolved in hydrogen gas dissolved water measured with a hydrogen gas concentration meter 6 is 1. Omg / L 1 hour later 0.8 Smg / L 2 hours later 0.73mgZ 3 hours later 0.65 mg / L, 4 hours later 0.57 mgZ, 5 hours later 0.53 mgZZ, 6 hours later 0.49 mg / L
  • Difficult case 2 Dissolver a power k tank b 7k in the same manner as in Example 1 except that the amount of nitrogen gas supplied to the upper space of water tank b was set to 0.0375 L (standard state) Zmin.
  • Power Pro Water 1.0 LZm i ⁇ was discharged and hydrogen gas-dissolved water was circulated.
  • the dissolved hydrogen gas concentration measured by the gas concentration meter 6 was 1.0 mg at the start of the treatment, 0.88 mgZ after 1 hour, 2 hours after 0.75 mgZ: L, 3 hours after 0.68 mgZ: L, 4 hours after 0.66 mgZ The dose was 0.65 mg / L after 5 hours and 0.65 mgZL after 6 hours. 7
  • the hydrogen gas concentration in the upper space of water tank b measured by the elementary gas concentration sensor 12 was at the beginning of the wisteria.
  • the hydrogen gas concentration in the upper space of the water tank b measured by the specific gas monitor 12 was 0.53 # 3 ⁇ 4% at the start of the application, 1.77f «% after 2 hours, 2.79 # 3 ⁇ 4% after 4 hours, 3.49 # after 6 hours 3 ⁇ 4%, 8 hours after 3.73 marrow 0 I 10 h after 3.88 marrow%, 12 hours after 3.98 bran 0 I 14 h after 4.02IPH3 ⁇ 4%, after 16 hours 4.07Im%, was 4. 10 # 3 ⁇ 4% after 18 hours .
  • Table 1 shows the conditions of Examples 1 and 2 and Comparative Examples 1 to 3
  • Fig. 3 shows the change over time of the hydrogen gas concentration of the dissolved hydrogen gas dissolved water
  • Fig. 3 shows the hydrogen gas concentration in the upper space of zMfb. The change over time is shown in FIG. Table 1
  • Example 1 the concentration of dissolved hydrogen gas in the hydrogen gas-dissolved water sent out from the seven-vessel ID force is maintained at 0.6 mg / L or more, which is necessary as washing water for removing fine particles.
  • the hydrogen gas concentration of the hydrogen gas-dissolved water supplied from the hydrogen gas dissolving device a to the water tank b was set to 1. Omg / L, and the replenishment amount of the hydrogen gas-dissolved water was pumped from the water tank b.
  • the concentration of hydrogen gas dissolved hydrogen gas sent to the circulation pipe e can be reduced to » It can be seen that it can be maintained at 0.6 mg / L or more.
  • a gas-melting water in which a specific gas used in a jetting process such as an electronic material is dissolved is used. Return the water to the water tank, which is not used in the process, and return the water to the water tank.
  • the concentration of certain gases in the upper space of the aquarium can be kept low.
  • the present application is applied to 7k hydrogen gas dissolved water to increase the concentration of dissolved hydrogen gas to achieve sufficient results, and the upper space of the water tank where the hydrogen gas dissolved water is shelled.
  • the hydrogen gas concentration can be kept low, and electronic materials and the like using hydrogen gas dissolved water can be performed quickly.

Abstract

A circulation type gas-dissolved water supply device comprising a dissolver (A) for producing a particular gas-dissolved water, a water tank (B) for storing the gas-dissolved water, a connection piping (C) for connecting the dissolver (A) to the water tank (B), a pump (D) for delivering the stored water in the water tank (B), a circulation piping (E) extending from the water tank (B) to a branch point to the pump (D) and to a washing machine and back to the water tank (B), a gas piping (F) for supplying gas to the upper space in the water tank (B), the lower ends of the pipings (C, E) lying below the water surface in the water tank (B); and an operating method wherein in the described device, the amount of gas-dissolved water resupplied from the dissolver (A) to the water tank (B) is 5 vol. parts or more per 100 vol. parts of the gas-dissolved water delivered by the pump (D). The invention makes it possible to feed the gas-dissolved water unused in the washing machine back to the water tank, to maintain above a fixed value the concentration of a particular gas present dissolved in the gas-dissolved water, and to keep low the concentration of the particular gas in the upper space of the water tank storing the gas-dissolved water.

Description

明細書 循環^ス溶解水供離離ひ 装置の適 去 技術分野  Description Circulation / dissolution of water
本発明は、 循環 ¾/ス溶解水供糸雜艱ひ該装置の避 去に関する。 さらに詳しくは 、 本発明は、 電子材料などのウエット »工程で使用される特定のガスを溶解して? j¾f¾) 果を高めたガス溶解水供離置にぉレ、て、 ¾f機で删されなかったガス溶解水を水槽へ 戻し、 ガス溶解水に ί雜する特定のガスの濃度を一定値以上に糸辦し、 力つ、 ガス溶解水 を貝 f¾する水槽の上部空間の特定のガスの濃度を低く保つことができる循環式ガス?容角军水 供^ ¾g¾ひ亥装置の 去に関する。 背景鎌  The present invention relates to evacuating a circulating / dissolving water feeding apparatus. More specifically, the present invention relates to a method for dissolving and dissolving a specific gas used in a wet process such as an electronic material by using a gas dissolving water having an enhanced effect. Return the dissolved gas water that did not exist to the water tank, and set the concentration of the specific gas in the gas dissolved water above a certain level. This is related to the removal of the circulating gas, water, and water supply equipment that can keep the concentration low. Background scythe
^ィ本用シリコン基板、 液晶用ガラス凝反、 フォトマスク用石英基板などの電子ネ才料の 表面から、 微粒子、 有 ·、 などを除去することは、 製品の品質、 歩留まりを確ィ呆す る上で極めて重要である。 ゥエツト»工程のリンスに使用可能な高純度の あるいは fekに、 水素、 オゾンなどの特定のガスを溶解した賺水が、 数0 ダ一の薬品を溶 解した 液に匹 iH "る 果を発揮する^があることが分かってきた。 強い酸化力 を有し有機物や一部の^ M汚染の除去に棚なオゾン水に加え、 水素ガスを高濃度に溶解 した水素水が、微粒子除去用の 水として注目されるようになった。 本発明者らは、 微 粒子により汚染された^体用シリコン ¾¾、 液晶用ガラス などの電子材料を、 i する藤 IJの量が少なく、 しかも効率よく髙レ、汚 »除去率で? »することができる電子材 料用 水として、 水素ガス濃度が 0. 7 m g / L以 ±包和濃度以下であり、 P Hが 6〜 1 2である超糸 feKからなる電子材料用 i»7_Rを した (特許文献 1 )。 Removal of fine particles, particles, etc. from the surface of electronic materials such as silicon substrates for books, glass anti-reflection for liquid crystals, and quartz substrates for photomasks, assures product quality and yield. It is extremely important for Uetsuto »in high purity or fek available for rinsing step, hydrogen,賺水dissolving the specific gas, such as ozone, exert the number 0 da one chemical to dissolve the liquid two dogs iH" Ru fruit In addition to ozone water, which has a strong oxidizing power and removes organic matter and some ^ M contamination, hydrogen water with a high concentration of hydrogen gas is used to remove fine particles. The present inventors have found that the use of electronic materials such as silicon for body ガ ラ ス, glass for liquid crystal and the like contaminated by fine particles can be efficiently performed with a small amount of wisteria IJ. As a water for electronic materials that can be removed at a removal rate of> 0.7 mg / L or less, the inclusion concentration is less than ± 0.7 mg / L, and the PH is between 6 and 12 An electronic material i »7_R made of a thread feK was provided (Patent Document 1).
従来のガス溶解水を供^ fる装置は、 游ガス濃度を維持するために Hi式で供^ 1"る ことが一般的であり、 ユースボイントでガス?容角早水を吏用してレ、なくても、 一定量のガス 溶解水を «してブローしていた。 しかし、 ガス溶解水の消費量を節! ^るために、 ガス 容角军水を循環供^ることにより、 無駄なブローをなくすこと力試みられている。  Conventional equipment for supplying gas-dissolved water is generally supplied in a Hi-type to maintain the free gas concentration in a 1-inch system. Even if not, a certain amount of gas-dissolved water was blown in. However, in order to reduce the consumption of gas-dissolved water! Attempts have been made to eliminate useless blows.
例えば、 洗浄用の水難有鋤脉を、 Uが生じて鶴することなく、棚水量が変動 する:^にも、 安定し 雜水素ガス濃度の水餘有超 ¾Κをユースボイントに供 る ことができる水 有 の供給装置として、 ¾fekの^ ガスを除去する脱気部と、 水素ガスを脱気後の超 に溶解させる溶解部と、 ユースボイントで使われなかつた^ j の水赫有超2 fekと補給される水赫有 τΚの混合水を膽する密閉式の水槽を有し、 密閉式の水槽の 目部に水位の変動に応じて水素ガスをネ舗 ることができ、 水 有超 純水を送水ポンプによりフィルターを経由してユースポイントに送り、 吏用の水素含有 超糸 ΦζΚを循環して水槽に戻す装置が ϋ¾されている ( Ιΐ文献 2)。 しかし、 この装置 ¾7 槽の上部空間力水素ガスで満たされるので、 確保の面で不+^なものであった。 For example, in a water-resistant vulva vein for washing, the amount of water in the shelf fluctuates without creeping due to the formation of U: ^ Even though the stable and hydrogen gas concentration of water is more than 餘, it is provided to youth points The dewatering unit that removes the ¾fek ^ gas, the dissolving unit that dissolves the hydrogen gas in the super-degasified state, and the jj water tank that is not used in youth points It has a sealed water tank that can supply mixed water of super 2 fek and replenished water, and hydrogen gas can be applied to the eyes of the closed water tank according to the fluctuation of water level. There is a device that sends ultrapure water to a use point through a filter by a water pump, and circulates the hydrogen-containing super-filament Φ 用 for officers and returns it to the water tank (Reference 2). However, since this device was filled with hydrogen gas, the upper space force of the 7 tanks was not sufficient in terms of securing.
また、 電子材料などのゥヱット»に用いられるガス溶解水をユースポイントに供給し In addition, gas-dissolved water, which is used for cutting electronic materials, is supplied to the point of use.
、 ユースボイントで使用されなかつた^ のガス溶解水を貝 タンクに返送し、 ガス溶解 水のガス濃度に変動を生ずることなく、 ガス溶解水を循環使用することができるガス溶解 水供離置として、 ユースポイントで棚されなかった IJのガス溶解水を返送する貝 タンクに、 ガス溶解水の液面に接して上 し、 ガス溶解水と 目とを遮 l fi "る遮蔽材を 設けたガス溶解水供糸幾置が提案されている (特許文献 3 )0 この装置は、 有用かっ で あるが、 特殊な眘附を必要とするために、 実用性には難 があった。 The gas-dissolved water that has not been used in youth points is returned to the shell tank, and the gas-dissolved water can be circulated and used without any fluctuation in the gas concentration of the gas-dissolved water. A gas with a shielding material that comes up in contact with the liquid surface of the gas-dissolved water, and that shields the gas-dissolved water from the eyes, in a shell tank that returns the IJ gas-dissolved water that was not shelved at the point of use. A dispenser for dissolving water has been proposed (Patent Document 3). 0 This device is useful, but requires special attachment, and thus has been difficult in practical use.
[ilt F文献 1 ] 特開平 1 1—2 9 7 9 4号公報 (第 2頁)  [ilt F Reference 1] Japanese Patent Application Laid-Open No. 11-297794 (page 2)
[特許文献 2] 特開平 1 1一 7 7 0 2 1号公報 (第 2頁、 図 3)  [Patent Document 2] Japanese Patent Application Laid-Open No. 117-177021 (page 2, FIG. 3)
[特許文献 3 ] 特開 2 0 0 0— 2 7 1 5 4 9号公報 (第 2頁、 図 1、 図 2)  [Patent Document 3] Japanese Patent Laid-Open Publication No. 2000-2771549 (Page 2, FIG. 1, FIG. 2)
本発明は、 電子材料などのゥエツト 工程で使用される特定のガスを溶解して 果を高めたガス溶解水供^ ¾置におレヽて、 ¾m幾で使用されなかったガス溶解水を水槽へ 戻し、 ガス溶解水に する特定のガスの濃度を一定値以上に糸辦し、 力 、 ガス溶解水 を貝 する水槽の上部空間の特定のガスの濃度を低く保つことができる循環式ガス溶解水 供給装 E¾ひ 1亥装置の 云 去を ί¾することを目的としてなされたものである。 発明の開示  The present invention relates to a gas-dissolved water supply device in which a specific gas used in an etching process such as an electronic material is dissolved to enhance the result, and the gas-dissolved water that has not been used in a large amount is supplied to a water tank. Circulating gas-dissolved water that can maintain the concentration of specific gas in the gas-dissolved water above a certain value and maintain the concentration of the specific gas in the upper space of the water tank in which the power and gas-dissolved water are formed. Supply equipment The purpose of this equipment is to make clear the details of the equipment. Disclosure of the invention
本発明者らは、 上記の を解決すべく鋭意研究を重ねた結果、 ユースポイントで使用 されなかったガス溶解水と、義されたガス溶解水をネ^ 1~るために供給したガス溶解水 の混合水を するフ槽を設け、 τΚ槽のフ J:位を一定に保つことにより必要量のガス?容角爭ス k を補給し、ネ るガス溶解水を一定量以上とすることにより、?雜する特定のガスの濃 度を一定値以上に維持することができ、 さらに、 水に^ してレヽる特定のガス力 s気相に揮 散しても、 窒素ガス、 希ガスなどの不活性ガスを一定流量以上通気することにより、 目 中の特定のガスの «を一定値以下に抑えることができることを見レ、だし、 この知見に基 づレヽて本発明を¾^~るに至つた。 The present inventors have conducted intensive studies to solve the above, and as a result, gas dissolved water not used at the point of use and gas dissolved water supplied to By providing a tank for the mixed water of the above, and maintaining the position of the tank τΚ at a constant level, replenishing the required amount of gas and the amount of dissolved gas and increasing the amount of dissolved gas ,? The concentration of the specific gas to be entrained can be maintained at a certain level or more. Furthermore, even if the specific gas power generated in water s is volatilized in the gas phase, the gas such as nitrogen gas and rare gas is not affected. By ventilating the active gas over a certain flow rate, It has been found that the specific gas inside can be suppressed to a certain value or less, and based on this finding, the present invention has been accomplished.
すなわち、 本 明は、  That is, the present invention
( 1) 特定のガス溶解水を製 3 1 "る溶解装置 A、 特定のガス溶解水を貝 f¾する水槽 B、 溶 解装置 Aと水槽 Bをつなぐ接織己管 C、 水槽 Bの貝情水を辨機に送り出すポンプ D、 水 槽 Bよりポンプ Dと "機への分岐点を経て水槽 Bに戻る循環配管 E、 7_MfBの上部空間 にガスを供糸^るガス酉 3管 Fを有するガス?容角军水供糸合装置であって、 接織己管 Cの下端と 循環配管 Eの下端が水槽 B内の水面下に没してレ、ることを樹敷とする循環式ガス溶解水供 離置、  (1) Dissolver A for producing specific gas-dissolved water A water tank B for dissolving specific gas-dissolved water, water pipe B for connecting dissolver A to water tank B Pump D that sends water to the machine, pump D from tank B and circulation pipe E that returns to water tank B via the branch point to the machine, and three pipes F that feed gas to the upper space of 7_MfB Gas-to-container 合 a water-supplying device, in which the lower end of the weaving pipe C and the lower end of the circulating pipe E are submerged under the water surface in the water tank B. Separation of dissolved water,
( 2) ガス配管 Fを通して不活性ガスを供 ^1 "る(1 )記載の循環式ガス溶解水供糸幾置、 (2) Supply the inert gas through the gas pipe F ^ 1 "
( 3) 不活†生ガスが、 窒素ガスである(2)記載の循環式ガス溶解水供給装置、 (3) The circulating gas dissolved water supply device according to (2), wherein the inert gas is nitrogen gas.
(4) 特定のガスが、 水素ガスである(1)謹の循環 ¾¾ス溶解水供糸幾置、  (4) The specific gas is hydrogen gas. (1) Safe circulation
( 5 ) z fBの上部空間を 見する酸素ガス検知器又は赚ガス濃度計を有する( 4 )記載 の循環式ガス溶解水供離置、  (5) A circulating gas-dissolving water dispenser according to (4), which has an oxygen gas detector or a gas concentration meter that looks at the space above zfB.
( 6 ) 特定のガス溶解水を製造する溶解装置 A、 特定のガス溶解水を貝 する水槽 B、 溶 解装置 Aと水槽 Bをつなぐ接纖己管 C、 水槽 Bの! ^水を 機に送り出すポンプ D、 水 槽 Bよりポンプ Dと ¾if機への分岐点を経て水槽 Bに戻る循環配管 E、 水槽 Bの上部空間 にガスを供糸^ Tるガス配管 Fを有し、 分岐点にぉレ、て特定のガス溶解水力 機に供給さ れ、 餘の特定のガス溶解水力 S循環して水槽 Bに戻され、 接続配管 Cの下端と循環配管 E の下端が水槽 B内の水面下に没している循環式ガス溶解水供給装置の適 去にお!/、て、 溶解装置 Aから水槽 B るガス溶解水の量を、 ポンプ Dにより送り出されるガス溶 解水 1 0 0{«¾に対して 5ί«¾以上とすることを樹敫とする循環式ガス溶解水供糸雜 置の; 8$云方法、  (6) Dissolving device A for producing specific gas-dissolved water, water tank B for dissolving specific gas-dissolved water, fiber tube C for connecting dissolving device A and water tank B, and water tank B! ^ Pump D to send water to the machine, Pump D from water tank B and circulation pipe E to return to water tank B via a branch point to the ¾if machine, and gas supply to the upper space of water tank B ^ Gas pipe F for T At the branch point, the water is supplied to a specific gas-dissolving hydraulic power plant, and the specific gas-dissolving hydraulic power of S is circulated and returned to water tank B, and the lower end of connection pipe C and the lower end of circulation pipe E are connected to a water tank. To remove the circulating gas dissolved water supply device submerged under the water surface in B! / Recirculation system with the requirement that the amount of gas-dissolved water from dissolution unit A to water tank B be set to at least 5 100% of gas-dissolved water sent out by pump D Gas dissolved water supply system; 8 $
( 7 ) 特定のガスが水素ガスであって、 溶解装置 Αから水槽 趣合されるガス溶解水の 水素ガス濃度を 0. S m g ZL以上とする(6 )記載の循環式ガス溶解水供給装置の運 去、  (7) The specific gas is hydrogen gas, and the circulating gas dissolved water supply device according to (6), wherein the hydrogen gas concentration of the gas dissolved water to be used is set to at least 0. The departure,
( 8 ) ガス配管 Fを通して供給するガスの流量を、 7j槽 Bの気液織虫面積に対して 0. 1 5〜 5 0 L (標準状態) Zm i n · m2とすることにより、 水槽 Bの上部空間中の水素ガス 濃度を 4. 0髓%以下に保つ ( 7 )記載の循環 、ス溶解水供離置の藤 去、 (8) By the flow rate of the gas supplied through the gas pipe F, and 0. 1 5~ 5 0 L (standard state) Zm in · m 2 with respect to gas-liquid Omushi area 7j tank B, aquarium B The hydrogen gas concentration in the upper space is maintained at 4.0% or less by the circulation described in (7).
( 9 ) 水槽 Bから供給される水素ガス溶解水の^ 水素ガス濃度を、 0. 6 m g /L¾± とする( 7 )又は( 8 )記載の循環式ガス溶解水供糸幾置の趣訪法、 及び、 ( 1 0) 水槽 Bの脑の高さの変動を、標準水位の 6 0 %以下に保つ(6)記載の循環式ガ ス ί容^_K供^ ¾置の ¾|5 ^去、 (9) Reduce the concentration of hydrogen gas in the hydrogen gas-dissolved water supplied from water tank B to 0.6 mg / L¾ ± (7) or (8) as described in the visiting method for circulating gas-dissolved water supply, and (10) Change the height of the water tank B to 60% or less of the standard water level. Keep the circulating gas described in (6).
を するものである。 図面の簡単な説明 It is what you do. Brief Description of Drawings
F i g . 1は本発明装置の一! Hiのェ mm統図、 F i g . 2は実施例で用いた装置の説明 図、 F i g . 3は水素ガス溶解水の?雜 7]素ガス濃度の経時的変化を示すグラフ、 F i g . 4 « _Mfの上部空間の水素ガス濃度の経時的変化を示すグラフである。 図中^ ·Αは溶 解装置、 Βはフ槽、 Cは接続酉 S管、 Dはポンプ、 Εは循環酉 S管、 Fはガス配管、 aは溶解 装置、 b ¾zK槽、 cは接続配管、 dはポンプ、 eは循環配管、 fはガス酉己管、 1はバルブ 、 2は液面計、 3はバルブ、 4は熱 ¾ I、 5は純ィ 1«冓、 6はガス濃度計、 7は分岐点 、 8は分岐点、 9はバルブ、 1 0はバノレブ、 1 1はバルブ、 1 2は特定ガスモニター、 1 3は酸素ガスモニター、 1 4は圧力調整器、 1 5は接続配管の下端、 1 6は循環配管の下 端を表す。 発明を実施するための最良の开態  Fig. 1 is a diagram of the device of the present invention! Fig. 2 is an explanatory diagram of the device used in the embodiment, Fig. 3 is a diagram of the hydrogen gas-dissolved water 7] Elemental gas concentration 4A and 4B are graphs showing the temporal change of the hydrogen gas concentration in the upper space of FIG. 4 __Mf. In the figure, ^ · Α is a melting device, Β is a tank, C is a connecting rooster S pipe, D is a pump, Ε is a circulating rooster S pipe, F is a gas pipe, a is a dissolving device, b is a KzK tank, and c is a connection. Plumbing, d is pump, e is circulation piping, f is gas rooster, 1 is valve, 2 is level gauge, 3 is valve, 4 is heat 、 I, 5 is pure 1 liter, 6 is gas concentration 7 is a branch point, 8 is a branch point, 9 is a valve, 10 is a vanoleb, 11 is a valve, 12 is a specific gas monitor, 13 is an oxygen gas monitor, 14 is a pressure regulator, and 15 is a pressure regulator. The lower end of the connection pipe, 16 represents the lower end of the circulation pipe. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の循環式ガス溶解水供糸離置は、 特定のガス溶解水を製造する溶解装置 A、 特定 のガス溶解水を貝 f¾する水槽 B、 溶解装置 Aと水槽 Bをつなぐ接続配管 C、 水槽 Bの貝 水を?鮮機に送り出すポンプ D、 水槽 Bよりポンプ Dと'赚機への分岐点を経て水槽 Bに 戻る循環酉己管 E、 zMfBの上部空間にガスを供給するガス配管 Fを有するガス溶解水供給 装置であって、 接讓己管 Cの下端と循環配管 Eの下端が水槽 B内の水面下に没してレヽる。 本発明装置又は本発明; W去を適用することができる特定のガスとしては、 例えば、 水素 ガス、 オゾンガス、 酸素ガス、 ァノレゴンガス、 炭酸ガス、 窒素ガスなどを挙げることがで きる。 本発明は、 これらの中で、 7_K素ガス溶解水に特に好適に適用することができる。  The circulation type gas-dissolved water dispenser of the present invention includes a dissolution apparatus A for producing a specific gas-dissolved water, a water tank B for shelling a specific gas-dissolved water, a connection pipe C for connecting the dissolution apparatus A and the water tank B, Shell D in tank B Pump D that sends water to the fresh machine, Pump D from tank B and a circulation pipe that returns to tank B via the branch point to the machine E, and gas piping that supplies gas to the upper space of zMfB This is a gas-dissolved water supply device having F, wherein the lower end of the connecting pipe C and the lower end of the circulation pipe E are immersed below the water surface in the water tank B. The specific gas to which the device of the present invention or the present invention can be applied includes, for example, hydrogen gas, ozone gas, oxygen gas, anoregon gas, carbon dioxide gas, nitrogen gas and the like. The present invention can be particularly suitably applied to 7_K element gas dissolved water.
F i g . 1は、 本発明装置の一嫌のエ縣統図である。 本纖の装置は、 特定のガス 溶解水を製造する溶解装置 A、 特定のガス溶解水を貝¾する水槽 B、 溶解装置 Aと水槽 B をつなぐ ¾続配管 C、 水槽 Bの ff¾水を洗浄機に送り出すポンプ D、 τΚ槽 Bよりポンプ D と »機への分岐点を経て水槽 Bに戻る循環配管 E、 水槽 Bの上部空間にガスを供 ^1 "る ガス配管 Fを有する。 超ifck力バルブ 1を経由して溶解装置 Aに送られ、 特定のガスを溶 解してガス溶解水となる。 槽 Bには 計 2力 S設けられ、 β計から送られる信号によ りノルブ 3の開度力 S制御され、 水槽 Β内の水位が一定に保たれる。 水槽 Β内に貝 された ガス溶解水は、 ポンプ Dにより送り出され、 熱 ¾»4により一定の になるように加 ¾Χは冷却され、 ポンプの二次側に設置された純ィ 冓 5により微粒子などが除去され、 ガス濃度計 6によりガス溶解水の特定のガス濃度が測定される。 ガス溶解水は、 循環配管 Εの分岐点 7、 8で分流し、 バルブ 9、 1 0を経由して灘機に送られ、 電子材料などの 歸に棚される。 洗浄に使用されなかった雜 !1のガス溶解水は、 循環配管 Εを経て水槽 Βに戻される。 循環酉己管 Εには、 ユースポイントにおける水圧を一定に保っためのノ レブ 1 1が設けられている。 FIG. 1 is an unpleasant view of the apparatus of the present invention. The device of this fiber is a melting device A for producing a specific gas-dissolved water, a water tank B for supplying the specific gas-dissolved water, a connecting pipe C connecting the dissolution device A and the water tank B, and a cleaning of the ff water in the water tank B. It has a pump D that sends out to the machine, a pump D from the τΚ tank B, a circulation pipe E that returns to the water tank B via a branch point to the »machine, and a gas pipe F that supplies gas to the upper space of the water tank B ^ super ifck It is sent to melting device A via force valve 1 and melts a specific gas. It becomes gas dissolved water. Tank B is provided with a total of two forces S, and the opening force S of Norbu 3 is controlled by a signal sent from the β meter, so that the water level in tank Β is kept constant. The gas-dissolved water shelled in the water tank Β is pumped out by the pump D, cooled by the heat pump 4 so as to keep the water constant, and the fine particles 5 are installed on the secondary side of the pump by fine particles 5. Are removed, and the gas concentration meter 6 measures the specific gas concentration of the gas-dissolved water. The gas-dissolved water is diverted at branch points 7 and 8 of the circulation pipe 送, sent to Nadaki via valves 9 and 10, and stored at the return of electronic materials. The gas-dissolved water from the block! 1 that has not been used for cleaning is returned to the water tank て via the circulation pipe Ε. The circulating rooster Ε has a knob 11 to keep the water pressure at the point of use constant.
7]槽8には、 水槽 Βの上部空間にガスを供給するガス配管 F力 S設けられ、 ガス配管 Fか ら供給されるガスにより、 水槽 Βの上部空間の特定のガスを辦尺し、 上部空間の特定のガ ス濃度を一定の値以下に保つ。 7Κ槽 Βの上部空間には、 上部空間の特定のガス濃度を監視 する特定ガスモニター 1 2、 上部空間の酸素ガス濃度を慰見する^ *ガスモニター 1 3、 上部空間を陽圧にィ呆つための圧力言慮器 1 4が設けられてレ、る。  7] The tank 8 is provided with a gas pipe F for supplying gas to the upper space of the water tank 力, and a gas supplied from the gas pipe F is used to measure a specific gas in the upper space of the water tank 、. Keep the specific gas concentration in the headspace below a certain value. In the upper space of 7Κ tank 特定, there is a specific gas monitor 12 to monitor the specific gas concentration in the upper space, and to enjoy the oxygen gas concentration in the upper space ^ * Gas monitor 13 A pressure estimator 14 is provided for
本発明の循環式ガス溶解水供糸維置においては、 接癱己管 Cの下端 1 5と循環配管 Εの 下端 1 6力 S水槽 Β内の水面下に没している。 接纖己管 Cの下端 1 5と循環配管 Εの下端 1 6力 S水槽 Β内の水面下に没することにより、 接織己管 Cから水槽 Βに機合される特定のガ ス?容解水と、 循環配管 Εから水槽 Βに戻される特定のガス溶解水が上部空間の 目と撤虫 することがなく、 ガス溶解水から特定のガス力揮散して、 ガス溶解水の特定のガス濃度が 低下することを防止するとともに、 上部空間の特定のガス濃度力 S上昇することを防止する ことができる。  In the circulating gas-dissolved water supply device of the present invention, the lower end 15 of the connecting pipe C and the lower end 16 of the circulating pipe 力 are submerged under the water surface in the S water tank Β. The lower end 15 of the connecting fiber tube C and the lower end 16 of the circulation pipe 力 S The specific gas volume that is connected to the water tank か ら from the connecting pipe C by submerging under the water surface in the water tank Β The specific gas dissolved water returned from the circulation pipe Ε to the water tank Β from the circulation pipe Ε does not disintegrate with the eyes of the upper space, and the specific gas power is volatilized from the gas dissolved water to produce a specific gas. It is possible to prevent the concentration from decreasing and to prevent the specific gas concentration power S in the upper space from increasing.
本発明装置にぉレ、ては、 ガス配管 Fを通して不活性ガスを供 ることが好ましレヽ。 水 に溶解する特定のガスが、 水素ガス、 オゾンガスなどの危険性を有するガスである 、 ガス配管 Fを通して水槽 Βの上部空間に不活性ガスを供糸^ ることにより、 上部空間の特 定のガス?農度を下げて装置の^†生を高めることができる。 供糸^ る不活性ガスに特に制 限はなく、 例えば、 窒素ガス、 希ガスなどを挙げることができる。 これらの中で、 窒素ガ スを女 siに用レヽることができる。  Preferably, an inert gas is supplied to the apparatus of the present invention through the gas pipe F. The specific gas dissolved in water is a dangerous gas such as hydrogen gas or ozone gas. By supplying inert gas to the upper space of the water tank Β through the gas pipe F, It is possible to increase the production of the equipment by lowering the gas and agriculture. There is no particular limitation on the inert gas to be supplied, and examples thereof include a nitrogen gas and a rare gas. Among these, nitrogen gas can be used for female si.
本発明装置は、 特定のガス力 s水素ガスである循環 ¾κ素ガス溶解水供^ ¾置として好適 に用いることができる。 水素ガス溶解水は、 電子材料などの »に確して、 付着した微 粒子の除去に優れた効果を発揮する。 しかし、 水素ガス溶解水を水槽 Βに I ^すると水槽 Bの上部空間は水素ガス濃度の高レ、状態となる。 常温常圧における水素ガスと空気の混合 気体の難下限界は、 水素ガス 4. 1髓%なので、 水槽 Bの上部空間力 S水素ガス濃度の 高い状態となると極めて危険である。 本発明装置は、 循環 ¾R素ガス溶解水供 ^置とし て用いても、 7W1Bの上部空間の水素ガス濃度を低く保つことができるので、 を保つ て水素ガス溶解水を 機に供糸^ることができる。 INDUSTRIAL APPLICABILITY The apparatus of the present invention can be suitably used as a circulating nitrogen gas dissolved water supply apparatus which is a hydrogen gas having a specific gas power. Hydrogen gas-dissolved water has an excellent effect in removing adhered fine particles, particularly for electronic materials. However, when I dissolve the hydrogen gas in the water tank Β The upper space of B is in a state of high hydrogen gas concentration. The lower limit of the mixture gas of hydrogen gas and air at normal temperature and normal pressure is 4.1 m% of hydrogen gas. Therefore, it is extremely dangerous if the upper space force of water tank B S hydrogen gas concentration is high. The apparatus of the present invention can maintain the hydrogen gas concentration in the upper space of 7W1B low even if it is used as a circulating hydrogen gas dissolved water supply apparatus. be able to.
本発明装置において、 特定のガスが水素ガスである ± には、 7_Κ槽 Bの上部空間を 見 する赫ガス齢口器又は瞧ガス濃度計を設けること力 S好ましレ、。 不慮の事故などにより 、 7槽 Βの上部空間の水素ガス濃度が 4權%を超えて、 そこに着火源があつたとしても 、 酸素ガス力 S被しなければ舰は起こらない。 本発明装置では、 z fB内は圧力調節器 1 4により常に陽圧に保たれているので、 外気から水槽 Bへの ガスの^ Λはなく、 通 常であれば水槽 Bの上部空間の^ *ガス濃度は 0#¾%である。 し力し、 Z fBの上香 |5空 間に不活个 スを供給しても、 万一空気力侵入した齢には危険な状態を招くことになる ので、 酸素ガス検知器又は酸素ガス濃度計を設け、 7槽 Bの上部空間を慰見することによ り、 より 生を高めることができる。  In the apparatus of the present invention, when the specific gas is hydrogen gas, it is preferable to provide a gas inlet or a gas concentration meter that looks at the upper space of 7_Κ tank B. Due to an accident or the like, the hydrogen gas concentration in the upper space of the 7th tank Β exceeds 4% by right, and even if there is an ignition source, the 舰 will not occur unless the oxygen gas power S is exposed. In the apparatus of the present invention, since the inside of zfB is always maintained at a positive pressure by the pressure regulator 14, there is no gas from the outside air to the water tank B, and the gas in the upper space of the water tank B is normally used. * Gas concentration is 0 # ¾%. Supplying inert gas to the space of Z fB | 5 can lead to dangerous conditions at the age of aerodynamic intrusion, so use an oxygen gas detector or oxygen gas. By installing a densitometer and enjoying the space above the 7th tank B, the production can be further enhanced.
本発明の循環式ガス溶解水供給装置は、 F i g . 1に示す纖とは異なる! ^とするこ とができる。 例えば、 ノルブ 1とノルブ 3のうちのレヽ f L力、 1個を省き、 残ったノルブに 液面計 2から信号を送って開度を制御し、 水槽 B内の水位を一定に保つことができる。 ま た、 ガス濃度計 6は、 循環配管 Eと水槽 Bの内部のガス溶解水の ガス濃度を測定する ためのものであり、 循環配管 Εのどこに位置してレヽてもよく、 7槽 Β内のガス?容角水の溶 存ガス濃度をガス濃度計で直接測定することもできる。 'さらに、 上部空間の特定のガス濃 度を翻する特定ガスモニター 1 2と上部空間の酸素ガス濃度を慰見する酸素ガスモニタ 一 1 3の排気は、 系外に排出することもできる。 Circulating the gas dissolved water supply device of the present invention can and different! ^ And child and纖shown in F i g. 1. For example, it is possible to omit one level f L force of Norbu 1 and Norbu 3 and send a signal from the liquid level meter 2 to the remaining Norbu to control the opening and maintain the water level in the water tank B constant. it can. The gas concentration meter 6 is used to measure the gas concentration of the dissolved gas in the circulation pipe E and the water tank B. The gas concentration meter 6 may be located anywhere in the circulation pipe 、, and may be located in the tank Β. Gas? The dissolved gas concentration of the volume water can also be measured directly with a gas concentration meter. 'Furthermore, the exhaust gas from the specific gas monitor 12 that changes the specific gas concentration in the upper space and the oxygen gas monitor 13 that monitors the oxygen gas concentration in the upper space can be discharged outside the system.
本発明の循環式ガス溶解水供糸 置の ¾ ^去にぉレ、ては、 特定のガス溶解水を^す る溶解装置 Α、 特定のガス溶解水を貝¾する水槽 Β、 溶解装置 Αと水槽 Βをつなぐ接続配 管 水槽 Bの!^水を ¾ ^機に送り出すポンプ D、 水槽 Bよりポンプ Dと»機への分 岐点を経て水槽 Bに戻る循環配管 E、' 7]槽 Bの上部空間にガスを供糸 るガス配管 Fを有 し、 分岐点において特定のガス溶解水力 機に供給され、 残余の特定のガス溶解水力 S循 環して水槽 Bに戻され、 接続配管 Cの下端と循環配管 Eの下端が水槽 B内の水面下に没し ている循環式ガス溶解水供^ ¾置において、 溶解装置 Aから水槽 給されるガス溶解 zkの量を、 循 ¾7 1 0 0 に対して 5 {2)∑¾¾以上とする。 本発明装置において、 循環配管を循财るガス溶解水力 s分岐点で分流し、 »機におい て、 にィ趙されると、 水槽 Bへ戻るガス溶解水の量が減少し、 zMf B内のガス溶解水の 量が減少し始める。 このとき、 液面計 2により蘭の低下を検出し、 バルブ 3に信号を送 つてバルブの開度を大きくし、 ίβの高さ力—定になるように、 溶解装置 Αから水槽 Βに ガス溶解水をネ^ 1 "る。 本発明方法において、 水槽 Bの翻の高さの麵は、 標準水位の 6 0 %以下であることが好ましく、 4 0 %以下であることがより好ましく、 2 0 %以下で あることがさらに好ましい。 7]槽の液面の高さの変動力 S標準水位の 6 0 %を超えると、 接 続酉己管 Cの下 、 循環配管 Eの下端が水面下に没しにくくなるとともに、 水槽 Bの上咅 |5空 間の^目の糸 JJ¾¾が^]して、 本発明装置を安定して ¾云することが困難となるおそれがあ る。 通常、 液面計 2により、 上fck位、下 位を設定し、 液面高さがこの範囲になるよ うに接続配管 cからの機合水量を制御する。 The circulation gas dissolving water supply device according to the present invention includes a dissolving device for dissolving specific gas dissolving water, a water tank for dissolving specific gas dissolving water, and a dissolving device. Piping connecting water tank Β and water tank B! ^ Pump D that sends water to the machine 機 ^ Circulation pipe E that returns to water tank B from water tank B via pump D and the branch point to the machine E, '7] tank There is a gas pipe F for supplying gas in the upper space of B, and it is supplied to a specific gas-dissolved hydraulic power plant at the branch point, and the remaining specific gas-dissolved hydraulic power is circulated back to the water tank B and connected to the piping. In the circulating gas dissolving water supply unit in which the lower end of C and the lower end of the circulation pipe E are submerged in the water tank B, the amount of gas dissolution zk supplied from the dissolving device A to the water tank is circulated. 5 {2) ∑¾¾ or more with respect to 0 0. In the apparatus of the present invention, the gas dissolved hydraulic power circulating in the circulation pipe is divided at the s branch point, and when the water is dissipated in the »machine, the amount of the gas dissolved water returning to the water tank B decreases, and zMf B The amount of gas-dissolved water starts to decrease. At this time, the drop of orchid is detected by the liquid level gauge 2 and a signal is sent to the valve 3 to increase the opening of the valve, so that the gas is transferred from the dissolving device 水 to the water tank に な る so that the height of β becomes constant. In the method of the present invention, the height of the inverted water tank B is preferably 60% or less of the standard water level, more preferably 40% or less, and 2% or less. More preferably, it is 0% or less 7] Fluctuation force of the liquid level in the tank When the water level exceeds 60% of the standard water level, the lower end of the connection pipe C and the lower end of the circulation pipe E are below the water level. In the water tank B, and the thread JJ of the eye | space | space | 5 of the space | interval of the water tank B may become], and it may become difficult to carry out the said apparatus of this invention stably. The upper fck position and lower position are set by the liquid level gauge 2, and the amount of water from the connection pipe c is controlled so that the liquid level is within this range.
本発明雄において、 ポンプ Dにより送り出されるガス溶解水 1 0 0#¾部に対して、 In the male of the present invention, the gas dissolved water 100 #
5 以上のガス溶解水が 争機にぉレ、て使用される は、
Figure imgf000009_0001
された量と等 しレ、ガス溶解水を溶解装置 Aから水槽 Bにネ纏^"ることにより、 ガス溶解水の游ガス濃 度を所定の値に保つことができる。 しかし、 g¾f機において使用されるガス溶解水の量が 、 ポンプ Dにより送り出されるガス溶解水 1 0 0 部に対して 5體部未満である は、 溶解装置 Aから水槽 Β^«1~るガス溶解水の量を、 ポンプ Dにより送り出されるガ ス溶解水 1 0 0#¾¾に対して 5{φ¾¾以上とする。 この:^は、 槽 Β又は循環配管 Ε からガス溶解水の"^ 15をブローして、 水槽 Βの の高さを一定にすること力 S好ましレ、。 このために、 zMfB又は循環配管 Εの任意の位置に、 プロ一配管を設けておくのがよレ、。 溶解装置 Aから水槽 ΒΗϋ^Τるガス溶解水の量が、 ポンプ Dにより送り出されるガス溶 解水 1 0 0 に対して 5 ί¾部未満であると、 ガス溶解水の游ガス濃度が低下する おそれがある。
If more than 5 gas-dissolved water is used in a fight,
Figure imgf000009_0001
By dissolving the gas-dissolved water in the water tank B from the dissolving device A, the free gas concentration of the gas-dissolved water can be maintained at a predetermined value. If the amount of gas-dissolved water used is less than 5 parts per 100 parts of gas-dissolved water sent out by the pump D, the amount of gas-dissolved water from the dissolution device A to the water tank , 5 {φ¾¾ or more with respect to the gas dissolved water 100 ## sent out by the pump D. This: ^ blows the gas dissolved water "^ 15" from the tank "or the circulation pipe Ε, and The power to keep the height of the constant, For this purpose, it is better to provide a professional pipe at any position in the zMfB or circulation pipe. If the amount of gas-dissolved water flowing from dissolution apparatus A to the water tank is less than 5 parts by weight of gas-dissolved water 100 sent out by pump D, the free gas concentration of gas-dissolved water may decrease. There is.
本発明 去において、 特定のガスカ¾|素ガスであるときは、 溶解装置 Αから水槽 給される水素ガス溶解水の ^水素ガス濃度を 0. 6 m g /L以上とすること力 S好ましく 、 1. O m gZL以上とすることがより好ましい。 電子材料などに付着した微粒子を水素 ガス溶解水を用いて洗浄するとき、 t 7j素ガス濃度が 0. 6 m gZL以上であると、 良 好な !果が発現する。 また、 溶解装置 Aから水槽 BH» ~る水素ガス溶解水の游 水素ガス濃度を l . O m gZLとすることにより、 水槽 Bからポンプ Dにより循環配管 E へ送り出し、 洗浄機において使用する水素ガス溶解水の^ 水素ガス濃度を容易に 0. 6 m gZL以上に保つことができる。 In the present invention, when the specific gas is a gaseous carbon gas, the hydrogen gas concentration of the hydrogen gas-dissolved water supplied from the dissolving device to the water tank is set to 0.6 mg / L or more. More preferably, it is O mg gL or more. When cleaning fine particles adhering to electronic materials using hydrogen gas-dissolved water, it is good if the concentration of t 7j elemental gas is 0.6 mg gZL or more! The fruit develops. Also, by setting the free hydrogen gas concentration of the dissolved hydrogen gas from the dissolving device A to the water tank BH to l.OmgZL, the hydrogen gas used in the washing machine is sent out from the water tank B to the circulation pipe E by the pump D. Dissolved water easily increases hydrogen gas concentration 0.6 It can be kept above magZL.
本発明; 去におレ、て、 特定のガスが水素ガスであるときは、 ガス配管 Fを通して供^ T るガスの流量を、 水槽 Bの気液接触 に対して 0. 1 5〜5 0 L (標準状態) Zm i η · m2とすることにより、 水槽 Bの上部空間の水素ガス農度を 4. 0 ί*®%以下に保つことが 好ましレヽ。 ガス配管 Fを通して供^^るガスの流量が水槽 Βの気液翻虫 ®¾に対して 0. 1 5 L (標準状態) Zm i n . m2未満であると、 水槽 Bの上部空間の水素ガス濃度が 4. 0 #¾%を超えるおそれがある。 常温常圧における水素ガスと空気の混 体の麟下限界 は、 7_Κ素ガス 4. 1 ί*¾%なので、 水槽 Βの上部空間の水素ガス濃度を 4. 0{ %以下と することにより、 zMfB内部での; ^事故を防止し得るのみならず、 水槽 Bの上部空間の 気体が大気中に洩れた齡でも、 鶴事故の可能性をなくすことができる。 ガス配管 Fを 通して供 ^1 "るガスの流量が水槽 Βの気液翻虫 ffi®に対して 5 0 L (標準状態 JZm i n . m2を超えると、 7k素ガス溶解水から水槽 Bの上部空間の気相への水素ガスの揮散量が多 くなり、 Zk素ガス溶解水の?雜 zR素ガス濃度力 M氐下するおそれがある。 ガス配管 Fを通し て水槽 Bの上部空間に供給したガスは、 圧力調觀 1 4を経由して排出することができる 。 実施例 In the present invention, when the specific gas is hydrogen gas, the flow rate of the gas supplied through the gas pipe F is 0.15 to 50 with respect to the gas-liquid contact of the water tank B. By setting L (standard state) to Zm i η · m 2 , it is preferable to maintain the hydrogen gas yield in the upper space of the water tank B at 4.0ί * ®% or less. When the flow rate of the test ^^ Ru gas through the gas pipe F is at 0. 1 5 L (standard state) Zm in. M less than 2 with respect to gas-liquid transliteration insect ®¾ aquarium beta, hydrogen in the upper space of the tank B Gas concentration may exceed 4.0 # ¾%. The lower limit of the mixture of hydrogen gas and air at normal temperature and normal pressure is 7_Κ gas 4.1ί * ¾%, so by setting the hydrogen gas concentration in the upper space of water tank Β to 4.0% or less, Inside the zMfB; not only can prevent accidents, but also eliminate the possibility of a crane accident, even if the gas in the upper space of tank B leaks into the atmosphere. 5 0 L (exceeding normal state JZm in. M 2 relative to through a gas pipe F subjected ^ 1 "Ru flow rate of the gas is aquarium Β liquid transliteration insect Ffi®, water tank B from 7k hydrogen gas dissolved water The amount of hydrogen gas volatilized into the gaseous phase in the upper space of the tank increases, and the dissolved water of the Zk element gas may decrease the concentration of the ZR element gas M. The upper space of the water tank B through the gas pipe F The gas supplied to the tank can be discharged via the pressure observation 14.
以下に、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこれらの実施例に よりなんら限定されるものではなレ、。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
例及び比較例においては、 F i g. 2に示すガス溶解水供給装置を用いて、 水素ガ ス溶解水の循 験を行つた。 この装置は、 ポリプロピレン製のガス ¾ B莫を備えた水素 ガス?容角军装置 a、 気 ί夜翻虫面積 0. 2 5 m2, 繊 2 0 0 Lの 7槽 b、 ?容角早装置 aと 7_Mfb をつなぐ接続配管 c、 水槽 bの水位変動を 6. 4 c m以下に調整するノ レブ 3、 7k槽 bよ り循環配管 eに水素ガス溶解水を送り出すポンプ d、 水素ガス溶解水の?踏を 2 5 °Cに保 つための熱^ #4、 フィルター 5、 ?雜水素ガス濃度計 6、 プロ一水排出ノルブ 9、 循 環配管 e内の圧力を 0. 2MP aに保つパルプ 1 1、 7槽 bの上部空間に窒素ガスを供給 するガス配管 f、 供給ガスの出口側で水槽 bの上部空間を陽圧に保っための圧力調整器 1 4、 水槽 bの上部空間の水素ガス濃度を測定するセンサー 1 2を備えている。 換铳配管 c の下端 1 5と循環酉 S管 eの下端 1 6は、 水槽の底から 1 0 c m±^に离! ^た位置にある。 実施例 1 溶解装置 aで溶存水素ガス濃度 1. Omg/Lの水素ガス溶解水を調製し、 水槽 b内に 水素ガス翁水 160 Lを A U 循環配管 eを水素ガス溶解水で満たした。 In Examples and Comparative Examples, circulation of hydrogen gas-dissolved water was performed using the gas-dissolved water supply device shown in FIG. This apparatus is a hydrogen gas with a polypropylene gas ¾ B trillions? Description angle military apparatus a, gas ί night transliteration worms area 0. 2 5 m 2, fiber 2 0 0 L 7 tank b,? Connection pipe connecting the angle-adjusting device a and 7_Mfb c, water tank b adjusting the water level fluctuation to 6.4 cm or less Knob 3, pump pumping out hydrogen gas dissolved water from 7k tank b to circulation pipe e, hydrogen Heat # 4 to keep the temperature of the gas-dissolved water at 25 ° C, filter 5,? Hydrogen gas concentration meter 6, Professional water discharge norb 9, Circulation piping e Pulp to keep the pressure in e 0.2MPa 1 1, 7 Gas piping f to supply nitrogen gas to the upper space of tank b, supply gas A pressure regulator 14 for maintaining the upper space of the water tank b at a positive pressure at the outlet side of the tank b, and a sensor 12 for measuring the hydrogen gas concentration in the upper space of the water tank b are provided. The lower end 15 of the exchange pipe c and the lower end 16 of the circulating rooster S pipe e are located 10 cm ± ^ from the bottom of the tank. Example 1 Dissolved hydrogen gas concentration was prepared by dissolving device a. 1. Hydrogen gas dissolved water of Omg / L was prepared, and 160 L of hydrogen gas water was filled in water tank b with AU circulation pipe e filled with hydrogen gas dissolved water.
溶解装置 aから水槽 b 雜水素ガス濃度 1. Omg/Lの水素ガス溶解水 1.0 L/m i nを供給し、 ポンプ dにより fb力、ら循環配管 eへ水素ガス溶解水 20 L/m i nを 送り出し、 ブロー水排出バルブ 9力らブロー水 1.0 L/m i nを排出して、 τΚ素ガス溶 角 7kを循環した。 また、 ガス配管 ί力 窒素ガス 0.5U標準状態) Zmi nを水槽 bの 上部空間に供給した。  Water tank b Hydrogen gas concentration from dissolution device a 1. Hydrogen gas dissolved water at Omg / L 1.0 L / min is supplied, and hydrogen gas dissolved water 20 L / min is sent out to fb power and circulation pipe e by pump d. Blow water discharge valve The blow water was discharged at 1.0 L / min from 9 power and circulated through the 7 k τΚ gas melt angle. In addition, gas piping (nitrogen gas, 0.5 U, standard condition) was supplied to the upper space of the water tank b.
雜水素ガス鍵計 6で測定した水素ガス溶解水の ί雜水素ガス艇は、 云開始時 1 . Omg/L, 13寺間後0.88mgZレ 2時間後 0.75mg/レ 3時間後 0.68m g/L, 4時間後 0.66mgZレ 5時間後 0.65mg/レ 6時間後 0.65mgZ であった。 7_k槽 Bの上部空間の水素ガス濃度は、 憲開始時から 18時間後まで一貫し て 0.0体賴%であった。  The hydrogen gas-dissolved water measured by the hydrogen gas key meter 6 was 1.Omg / L at the beginning of the cloud, 0.88mg after 13 temples, 2 hours after 0.75mg / hour, and 3 hours after 0.68mg / hour. L, 0.66 mgZ after 4 hours, 0.65 mgZ after 5 hours, 0.65 mgZ after 6 hours. The hydrogen gas concentration in the upper space of tank 7_k was consistently 0.0% by volume from the beginning of the constitution to 18 hours later.
比較例 1 Comparative Example 1
溶解装置 aから水槽 雜水素ガス濃度 1. Omg,Lの水素ガス溶解水。.5 L/m i nを供給し、 ブロー τΚ排出ノ レブ 9からブロー水 0.5 L/m i nをお出した以外は、 mmn ιと同様にして、 ポンプ dにより水槽 bから循麵己管 eへ水素ガス?容角旱水 2 OL/ m i nを送り出し、 zK素ガス?容角军 ZKを循環した。  Dissolver a to water tank Hydrogen gas concentration 1. Omg, L hydrogen gas dissolved water. .5 L / min was supplied and blow gas was discharged from water tank b to circulation pipe e by pump d in the same manner as mmn l, except that blow water 0.5 L / min was discharged from blow τΚ discharge nozzle 9.容 Kangaku drought 2 OL / min was sent out, and zK raw gas 容 Kangaku ZK was circulated.
ί銪水素ガス濃度計 6で測定した水素ガス溶解水の?雜^ C素ガス濃度は、 鍵云開始時 1 . Omg/L 1時間後 0.8 Smg/L, 2時間後 0.73mgZレ 3時間後 0.65m g/L, 4時間後 0.57mgZレ 5時間後 0.53 m gZレ 6時間後 0.49mg/ Lであった  雜 The concentration of hydrogen gas dissolved in hydrogen gas dissolved water measured with a hydrogen gas concentration meter 6 is 1. Omg / L 1 hour later 0.8 Smg / L 2 hours later 0.73mgZ 3 hours later 0.65 mg / L, 4 hours later 0.57 mgZ, 5 hours later 0.53 mgZZ, 6 hours later 0.49 mg / L
比較例 2 Comparative Example 2
溶解装置 aから水槽 bへの水素ガス溶解水の供給と、 ブロー水排出バルブ 9からのプロ 一水の排出を行わなかった以外は、 難例 1と同様にして、 ポンプ dにより水槽 bから循 環配管 eへ水素ガス溶解水 20 LZm i nを送り出し、 zk素ガス溶解水を循環した。 Circulation from tank b by pump d in the same manner as in Example 1, except that hydrogen gas-dissolved water was not supplied from dissolution unit a to tank b, and professional water was not discharged from blow water discharge valve 9. 20 LZ min of hydrogen gas-dissolved water was sent out to the ring pipe e, and zk element gas-dissolved water was circulated.
?雜水素ガス濃度計 6で測定した水素ガス溶解水の游 zk素ガス濃度は、 雜開始時 1? The free gas concentration of the dissolved hydrogen gas measured by the hydrogen gas concentration meter 6 was 1
. Omg/L 1時間後 0.83mg/L, 2時間後 0.69mg/L 3時間後 0.49m g/L 4時間後 0.35mgZ:L、 5時間後 0.25mgZレ 6時間後 0.21mgZ Lであった。 Omg / L 1 hour later 0.83 mg / L, 2 hours later 0.69 mg / L 3 hours later 0.49 mg / L 4 hours later 0.35 mgZ: L, 5 hours later 0.25 mgZ: 6 hours later 0.21 mgZL.
難例 2 ガス配管 f力ら水槽 bの上部空間に供^ Tる窒素ガスの量を 0.0375 L (標準状態) Zm i nとした以外は、 実施例 1と同様にして、 溶解装置 a力 k槽 b 雜 7k素ガス濃 度 1 · 0 m g/Lの水素ガス溶解水 1.0 L/m i nを供給し、 ポンプ dにより 7槽 bから 循環配管 eへ水素ガス溶解水 20 L/m i nを送り出し、 ブロー 7排出パルプ 9力 プロ —水 1.0 LZm i ηを排出し、 水素ガス溶解水を循環した。 Difficult case 2 Dissolver a power k tank b 7k in the same manner as in Example 1 except that the amount of nitrogen gas supplied to the upper space of water tank b was set to 0.0375 L (standard state) Zmin. Supply 1.0 L / min of hydrogen gas dissolved water with a hydrogen gas concentration of 1.0 mg / L, pump out 20 L / min of hydrogen gas dissolved water from tank b to circulation pipe e by pump d, and blow 7 discharge pulp 9 Power Pro—Water 1.0 LZm i η was discharged and hydrogen gas-dissolved water was circulated.
ガス濃度計 6で測定した水素ガス溶解水の?雜水素ガス濃度は、 旌開始時 1.0 m g / 1時間後 0.88mgZレ 2時間後 0.75mgZ:L、 3時間後 0.68mgZ:L 、 4時間後 0.66mgZ 5時間後 0.65mg/L, 6時間後 0.65mgZLであ つた。 7素ガス濃度センサー 12で測定した水槽 bの上部空間の水素ガス濃度は、 藤開 始時。, 53體0ん 2時間後 1· 48髓0ん 4時間後 2.52髓0ん 6時間後 3. 13 纏0ん 8時間後 3.39體0ん 10時間後 3.56髓0ん 12時間後 3· 59髓0 /0 、 14時間後、 16時間後、 18時間後はすべて 3.64髓0 /0であった。 The dissolved hydrogen gas concentration measured by the gas concentration meter 6 was 1.0 mg at the start of the treatment, 0.88 mgZ after 1 hour, 2 hours after 0.75 mgZ: L, 3 hours after 0.68 mgZ: L, 4 hours after 0.66 mgZ The dose was 0.65 mg / L after 5 hours and 0.65 mgZL after 6 hours. 7 The hydrogen gas concentration in the upper space of water tank b measured by the elementary gas concentration sensor 12 was at the beginning of the wisteria. , 53 congregation 0 I 2 hours after 1-48 marrow 0 I 4 hours after 2.52 marrow 0 I 6 hours after 3.13 fireman's standard 0 I 8 hours after 3.39 congregation 0 I after 10 hours 3.56 marrow 0 I 12 hours after 3, 59 marrow 0/0, 14 hours later, 16 hours later, 18 hours later were all 3.64 marrow 0/0.
比較例 3 Comparative Example 3
ガス配管 f力 zMfbの上部空間に窒素ガスを供給しなかった以外は、 実施例 1と同様 にして、 ?容角装置 aカ ら水槽 b 雜水素ガス濃度 1. Omg/Lの水素ガス?容角¾| 1.0 L/m i nを供給し、 ポンプ dにより水槽 b力 循環配管 eへ水素ガス溶解水 20 L/m i nを送り出し、 ブロー水排出バルブ 9からブロー水 1.0 L/m i nを排出し、 水素ガ ス溶解水を循環した。 '  Gas piping f force Same as in Example 1 except that nitrogen gas was not supplied to the space above zMfb. Pot angle device a to water tank b Hydrogen gas concentration 1. Hydrogen gas at Omg / L? Supply angle ¾ | 1.0 L / min, and pump d to water tank b Power circulation pipe e Hydrogen gas dissolved water 20 L / Min was sent out, and 1.0 L / min of blow water was discharged from blow water discharge valve 9 to circulate hydrogen gas dissolved water. '
特定ガスモニター 12で測定した水槽 bの上部空間の水素ガス濃度は、 適云開始時 0. 53#¾%、 2時間後 1.77f«%、 4時間後 2.79#¾%、 6時間後 3.49#¾% 、 8時間後 3.73髓0ん 10時間後 3.88髓%、 12時間後 3.98糠0ん 14 時間後 4.02ίΦ¾%、 16時間後 4.07im%, 18時間後 4. 10#¾%であった。 実施例 1〜 2及び比較例 1〜 3の鐮 件を第 1表に、 水素ガス溶解水の?雜水素ガス 濃度の経時的変化を F i g. 3に、 zMfbの上部空間の水素ガス濃度の経時的変化を F i g. 4に示す。 第 1表 The hydrogen gas concentration in the upper space of the water tank b measured by the specific gas monitor 12 was 0.53 # ¾% at the start of the application, 1.77f «% after 2 hours, 2.79 # ¾% after 4 hours, 3.49 # after 6 hours ¾%, 8 hours after 3.73 marrow 0 I 10 h after 3.88 marrow%, 12 hours after 3.98 bran 0 I 14 h after 4.02IPH¾%, after 16 hours 4.07Im%, was 4. 10 # ¾% after 18 hours . Table 1 shows the conditions of Examples 1 and 2 and Comparative Examples 1 to 3, Fig. 3 shows the change over time of the hydrogen gas concentration of the dissolved hydrogen gas dissolved water, and Fig. 3 shows the hydrogen gas concentration in the upper space of zMfb. The change over time is shown in FIG. Table 1
Figure imgf000013_0001
Figure imgf000013_0001
F i g. 3に見られるように、 水槽 bからポンプ dにより循環配管 eに送り出される水 素ガス溶解水 1 ΟΟί«35に対して、 溶解装置 aから水素ガス溶解水 5ί機部を補給した 実施例 1では、 7槽 ID力 送り出される水素ガス溶解水の?雜水素ガス濃度は、 微粒子除 去のための洗浄水として必要な 0.6mg/L以上を保っている。 これに対して、 水槽 b 力 ポンプ dにより循環配管に送り出される水素ガス溶解水 10 Of様部に対して、 溶解 装置 a力 水素ガス溶解水 2.5 f樣部をネ纏合した比較例 1では、 水槽 bから送り出され る水素ガス溶解水の溶存水素ガス濃度は、 0.6 m g / Lを下回ってレヽる。 溶解装置 aか ら水槽 bへの水素ガス溶解水のネ縣合がなレヽ比較例 2では、 水槽 bから送り出される水素ガ ス溶解水の^ 7_R素ガス濃度力^^に低下してレ、る。 As can be seen in Fig. 3, 5 units of hydrogen gas-dissolved water was supplied from dissolution unit a to 35 units of hydrogen gas-dissolved water sent out from water tank b to circulation pipe e by pump d to circulation pipe e. In Example 1, the concentration of dissolved hydrogen gas in the hydrogen gas-dissolved water sent out from the seven-vessel ID force is maintained at 0.6 mg / L or more, which is necessary as washing water for removing fine particles. On the other hand, in Comparative Example 1 in which the dissolving device a and the hydrogen gas dissolving water 2.5 f were combined with the hydrogen gas dissolving water 10 Of like sent to the circulation pipe by the water tank b and the power pump d, The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water sent out from the water tank b falls below 0.6 mg / L. In Comparative Example 2, the hydrogen gas-dissolved water from the dissolution apparatus a was not suspended in the water tank b. You.
この結果から、 7素ガス溶解装置 aから水槽 bに補^ Tる水素ガス溶解水の雜水素ガ ス濃度を 1. Omg/Lとし、 K素ガス溶解水の補給量を、 水槽 bからポンプ dにより循 環配管 eに送り出される水量 100#¾¾に対して 5#¾部以上とすることにより、 循環 配管 eに送り出される水素ガス溶解水の^ 素ガス濃度を、 »水として十分な性能を 発揮する 0.6m g /L以上に保ち得ることが分かる。  From these results, the hydrogen gas concentration of the hydrogen gas-dissolved water supplied from the hydrogen gas dissolving device a to the water tank b was set to 1. Omg / L, and the replenishment amount of the hydrogen gas-dissolved water was pumped from the water tank b. By increasing the amount of water to be sent out to the circulation pipe e by 5 # ¾ or more with respect to the amount of water sent out to the circulation pipe e by d, the concentration of hydrogen gas dissolved hydrogen gas sent to the circulation pipe e can be reduced to » It can be seen that it can be maintained at 0.6 mg / L or more.
F i g. 4に見られるように、 水槽 bの上部空間に水槽 bの気液纖虫赚に対して、 ガ ス配管 f を通して 2.0 L (標準状態)/ m i n · m2の窒素ガスを供給した実 ¾ 列 1では、 水槽 bの上部空間の水素ガス濃度は 0体積%であり、 ガス配管 fを通して 0. 15 L (標準 状態) Zm i n . m2の窒素ガスを供給した実施例 2では、 水槽 bの上部空間の水素ガス濃 度は 3. 6 4髓%で安定する。 これに対して、 7_Mfbの上部空間に窒素ガスを供給しな レ、比較例 3では、 1 8時間後には水槽 bの上部空間の水素ガス濃度は、 7R素ガスと空気の 混^ M体の;) ¾下限界とされる 4. 1髓%に達し、 なおわずかに上昇する傾向にある。 この,結果から、 zMfbの上部空間にガス配管 fを通して、 水槽 bの気 ί夜撫虫面積に対し て 0. 1 5 Ν (標準状態) /m i η · m2以上の窒素ガスを供^ 1~ることにより、 水槽 bの上 部空間の水素ガス濃度を 4. 0 以下に保ち得ることが分かる。 産業上の利用可能性 F i g. As seen in 4, supplied to the gas-liquid纖虫赚aquarium b into the upper space of the tank b, the 2.0 L (normal state) / min · m 2 of nitrogen gas through gas pipes f In column 1, the hydrogen gas concentration in the upper space of the water tank b was 0% by volume, and 0.15 L (standard State) in Zm in. Example 2 was supplied with nitrogen gas m 2, hydrogen gas concentration in the upper space of the tank b is stable at 3.6 4 marrow%. In contrast, nitrogen gas was not supplied to the upper space of 7_Mfb. In Comparative Example 3, after 18 hours, the hydrogen gas concentration in the upper space of the water tank b was reduced to a mixture of 7R element gas and air. ;) さ れ る Lower limit 4.1 It reaches 1 med% and tends to increase slightly. This, test results, through the gas pipe f headspace of ZMfb, air ί night aquarium b with respect撫虫area 0. 1 5 New (standard state) / mi η · m 2 or more nitrogen ^ 1 It can be seen that the hydrogen gas concentration in the upper space of the water tank b can be maintained at 4.0 or less by performing. Industrial applicability
本発明の循環式ガス溶解水供糸幾 g¾ひ 装置の使用方法によれば、 電子材料などのゥ ェット»工程で使用される特定のガスを溶解したガス溶角 水を用レ、て、 機で使 用されなかったガス溶角 I»·水を水槽へ戻し、 ガス溶角!^水に游する特定のガスの濃 度を一定値以上に膽し、 力 、 ガス溶角? 水を貝 f¾する水槽の上部空間の特定のガス の濃度を低く保つことができる。 本 明装飄ぴ ^去は、 7k素ガス溶解水に適用して、 溶 存水素ガス濃度を高く,して十分な 果を発揮させ、 しかも水素ガス溶解水を貝 f¾ する水槽の上部空間の水素ガス濃度を低く保ち、 に水素ガス溶解水による電子材料な どの,を行うことができる。  According to the method of using the circulating gas dissolving water supply device of the present invention, a gas-melting water in which a specific gas used in a jetting process such as an electronic material is dissolved is used. Return the water to the water tank, which is not used in the process, and return the water to the water tank. The concentration of certain gases in the upper space of the aquarium can be kept low. The present application is applied to 7k hydrogen gas dissolved water to increase the concentration of dissolved hydrogen gas to achieve sufficient results, and the upper space of the water tank where the hydrogen gas dissolved water is shelled. The hydrogen gas concentration can be kept low, and electronic materials and the like using hydrogen gas dissolved water can be performed quickly.

Claims

!—一—請求の範囲 ! —One—Claims
1 . 特定のガス溶解水を製造する溶解装置 A、 特定のガス溶解水を貝 する水槽 B、 溶解 装置 Aと水槽 Bをつなぐ観配管 C、 水槽 Bの貝 f¾水を赚機に送り出すポンプ D、 水槽 Bよりポンプ Dと 機への分岐点を経て水槽 Bに戻る循環配管 E、 水槽 Bの上部空間に ガスを供糸 るガス配管 Fを有するガス溶解水供給装置であって、 接続配管 Cの下端と循 環配管 Eの下端が水槽 B内の水面下に没していることを糊敷とする循環式ガス溶解水供給 装鼠 1. Dissolver A for producing specific gas-dissolved water, water tank B for dissolving specific gas-dissolved water, observation pipe C connecting dissolution apparatus A and water tank B, shell D for water tank B f Pump for pumping water to machine A gas dissolving water supply device having a circulation pipe E returning from the water tank B to the water tank B via a branch point to the pump D and the machine, and a gas pipe F for supplying gas to the upper space of the water tank B, and a connection pipe C Circulating gas-dissolved water supply, with the lower end of the pipe and the lower end of the circulating pipe E submerged below the surface of the water in the tank B
2. ガス配管 Fを通して不活†生ガスを供給する請求の範囲 1言己載の循環式ガス?容角牟水供給  2. Claims for supplying inert gas through gas pipe F
3 . 不活性ガスが、 窒素ガスである請求の範囲 2記載の循環式ガス溶解水供^^ 3. The circulating gas dissolved water supply according to claim 2, wherein the inert gas is nitrogen gas.
4. 特定のガスが、 水素ガスである請求の範囲 1記載の循環式ガス溶解水供給装置。 4. The circulating gas dissolved water supply device according to claim 1, wherein the specific gas is hydrogen gas.
5. 水槽 Bの上部空間を^ 1する,ガス検知器又は ガス濃度計を有する請求の範囲 4記載の循環式ガス溶解水供給装鼠 5. The circulating gas-dissolved water supply device according to claim 4, which has a gas detector or a gas concentration meter that makes the upper space of the water tank B ^ 1.
6 . 特定のガス溶解水を製造する溶解装置 A、 特定のガス溶解水を貝¾する水槽 B、 溶解 装置 Aと水槽 Bをつなぐ接続配管 C、 水槽 Bの貝 水を »機に送り出すポンプ D、 7槽 Bよりポンプ Dと »機への分岐点を経て水槽 Bに戻る循環配管 E、 水槽 Bの上部空間に ガスを供糸^"るガス配管 Fを有し、 分岐点にぉレ、て特定のガス溶解水力 ¾ ^機に供給され 、 残余の特定のガス溶解水力循環して水槽 Bに戻され、 接纖己管 Cの下端と循環配管 Eの 下端が水槽 B内の水面下に没している循環式ガス溶解水供糸雜置の11云;^去において、 溶 解装置 Aから水槽 Β^^·Τるガス溶解水の量を、 ポンプ Dにより送り出されるガス溶角军 水 1 0 0#¾¾に対して 5 ί«¾以上とすることを樹敫とする循環式ガス溶解水供糸織置 の趣 去。 6. Dissolver A for producing specific gas-dissolved water, water tank B for supplying specific gas-dissolved water, connecting pipe C connecting dissolver A and water tank B, shell D for water tank B Pump for sending water to »machine , A circulation pipe E returning to the water tank B through the branch point to the pump D and the »machine from the 7 tank B, and a gas pipe F for supplying gas to the upper space of the water tank B. The specific gas-dissolving hydraulic power is supplied to the machine, the remaining specific gas-dissolving hydraulic power is circulated and returned to the water tank B, and the lower end of the fiber tube C and the lower end of the circulation pipe E are placed below the water surface in the water tank B. At the end of the submerged circulating gas-dissolved water supply system, the amount of gas-dissolved water flowing from the dissolving unit A in the water tank Β ^^ The concept of a circulating gas-dissolved water supply weaving device that sets a value of 5% or more for 100 #.
7. 特定のガスが水素ガスであって、 溶解装置 Aから水槽 趣合されるガス溶解水の溶 存水素ガス濃度を 0. 6 m g/L以上とする請求の範囲 6記載の循環式ガス溶解水供給装 置の辯 去。 7. The circulating gas dissolution according to claim 6, wherein the specific gas is hydrogen gas, and the concentration of dissolved hydrogen gas in the gas dissolving water to be dissolved is set to 0.6 mg / L or more from the dissolving device A to the water tank. Water supply equipment benign.
8. ガス配管 Fを通して供給するガスの流量を、 水槽 Bの気液翻 B¾に対して 0. 1 5 ~ 5 0 L (標準状態) /m i n · m2とすることにより、 水槽 Bの上部空間中の水素ガス濃 度を 4. 0体積%以下に保つ請求の範囲 7記載の循環式ガス溶解水供給装置の運転方法。8. the flow rate of the gas supplied through the gas pipe F, by a 0. 1 5 ~ 5 0 L (standard state) / min · m 2 with respect to gas-liquid transliteration B¾ aquarium B, the upper space of the tank B 8. The method for operating a circulating gas-dissolved water supply device according to claim 7, wherein the hydrogen gas concentration in the gas is kept at 4.0 vol% or less.
9. 7槽 Bから供給される水素ガス溶解水の ^#zk素ガス濃度を、 0. 6 m gZL以上と する請求の範囲 7又は 8記載の循環式ガス溶解水供糸幾置の 去。 9. Removal of the circulating gas-dissolved water supply line according to claim 7 or 8, wherein the concentration of ^ # zk element gas in the hydrogen gas-dissolved water supplied from tank B is set to 0.6 mg ZL or more.
1 0. 水槽 Bの液面の高さの βを、 標準水位の 6 0 %以下に保つ請求の範囲 6記載の循 環式ガス溶解水供離置の趣訪法。  10. The visitor method of claim 6, wherein the liquid surface height β of the water tank B is kept at 60% or less of the standard water level.
PCT/JP2005/004900 2004-03-17 2005-03-14 Circulation type gas-dissolved water supply device and method of operating such device WO2005087396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-075624 2004-03-17
JP2004075624A JP2005262031A (en) 2004-03-17 2004-03-17 Circulation type gas-dissolved water feed device and operation method for the device

Publications (1)

Publication Number Publication Date
WO2005087396A1 true WO2005087396A1 (en) 2005-09-22

Family

ID=34975392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004900 WO2005087396A1 (en) 2004-03-17 2005-03-14 Circulation type gas-dissolved water supply device and method of operating such device

Country Status (4)

Country Link
JP (1) JP2005262031A (en)
CN (1) CN1929930A (en)
TW (1) TW200536624A (en)
WO (1) WO2005087396A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470101B2 (en) * 2004-03-24 2010-06-02 栗田工業株式会社 Nitrogen-dissolved ultrapure water production method
JP4891589B2 (en) * 2005-10-11 2012-03-07 東京エレクトロン株式会社 Liquid processing apparatus, processing liquid supply method, and processing liquid supply program
JP5072062B2 (en) * 2006-03-13 2012-11-14 栗田工業株式会社 Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
JP5007999B2 (en) * 2007-03-29 2012-08-22 国立大学法人広島大学 Gas-liquid separator
JP2009032710A (en) * 2007-07-24 2009-02-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
KR101082673B1 (en) * 2009-09-07 2011-11-17 한국서부발전 주식회사 standard solution of dissolved in water hydrogen manufacturing equipment
CN101850344A (en) * 2010-05-28 2010-10-06 上海集成电路研发中心有限公司 Semiconductor part cleaning device and cleaning method
JP6348330B2 (en) * 2014-04-22 2018-06-27 株式会社テックコーポレーション Hydrogen discharger, hydrogen gas supply method, and hydrogen release system
CN104588359A (en) * 2015-02-04 2015-05-06 河南省爱可沃德生态科技有限公司 Workpiece undamaged washing machine and using method thereof
JP6043001B1 (en) * 2016-01-19 2016-12-14 S.P.エンジニアリング株式会社 Hydrogen water generator for biological growth
JP6024060B1 (en) * 2016-07-14 2016-11-09 株式会社昭和冷凍プラント Nitrogen water production system and production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296899A (en) * 1999-04-12 2000-10-24 Japan Organo Co Ltd Method for storing gas dissolved water and its storing device
JP2003221690A (en) * 2002-01-29 2003-08-08 Mitsubishi Corp Apparatus and process for generating high-pressure hydrogen
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004050119A (en) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd Washing device and washing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296899A (en) * 1999-04-12 2000-10-24 Japan Organo Co Ltd Method for storing gas dissolved water and its storing device
JP2003221690A (en) * 2002-01-29 2003-08-08 Mitsubishi Corp Apparatus and process for generating high-pressure hydrogen
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004050119A (en) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd Washing device and washing method

Also Published As

Publication number Publication date
CN1929930A (en) 2007-03-14
TW200536624A (en) 2005-11-16
JP2005262031A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
WO2005087396A1 (en) Circulation type gas-dissolved water supply device and method of operating such device
JP6116658B2 (en) Gas dissolving apparatus and gas dissolving method
EP1512457B1 (en) Gas-dissolved water supply
JP5251184B2 (en) Gas dissolved water supply system
US8999069B2 (en) Method for producing cleaning water for an electronic material
WO2007105820A1 (en) Process and equipment for production of wash water containing dissolved gas, and cleaning equipment
TWI242537B (en) Fluorine gas generator
KR102041132B1 (en) Chlorine dioxide manufacturing device and manufacturing method for removed from explosion dangeri with power-free decompression material supply and reaction
JP5412135B2 (en) Ozone water supply device
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JP7204211B2 (en) Batch-type microbubble liquid generator and generation method
JP3256693B2 (en) Apparatus for producing high-concentration saline and apparatus for producing sterilized water containing hypochlorous acid using the same
JPH11138182A (en) Ozonized ultrapure water feeder
JP5099519B2 (en) Gas dissolved water supply device
JP2017131822A (en) Hydrogen water generator and hydrogen water generation method
JP2019195805A (en) Hydrogen dissolved water manufacturing apparatus and method, and hydrogen supply apparatus
JP7019340B2 (en) Grout equipment and cooling tower equipment
TWM559885U (en) System for producing chlorine dioxide aqueous solution
JP7365751B2 (en) Dissolved gas replacement device and dissolved gas replacement method
JP2024035532A (en) Gas solution supply device
TWI647174B (en) A system for producing chlorine dioxide solution
KR20070017499A (en) Circulation type gas­dissolved water supply device and method of operating such device
KR20210050942A (en) Chlorine dioxide gas manufacturing device and manufacturing method for removed from explosion dangeri with power-free decompression material supply and reaction
JP2013202451A (en) Gas-dissolved water supply system
JP2575660Y2 (en) Purification spouting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017408

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580008074.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067017408

Country of ref document: KR

122 Ep: pct application non-entry in european phase