JP2012172978A - Trihalomethane measuring apparatus - Google Patents

Trihalomethane measuring apparatus Download PDF

Info

Publication number
JP2012172978A
JP2012172978A JP2011031841A JP2011031841A JP2012172978A JP 2012172978 A JP2012172978 A JP 2012172978A JP 2011031841 A JP2011031841 A JP 2011031841A JP 2011031841 A JP2011031841 A JP 2011031841A JP 2012172978 A JP2012172978 A JP 2012172978A
Authority
JP
Japan
Prior art keywords
trihalomethane
carrier liquid
carbon dioxide
atmosphere
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011031841A
Other languages
Japanese (ja)
Other versions
JP5658591B2 (en
Inventor
Hirohide Yamaguchi
太秀 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2011031841A priority Critical patent/JP5658591B2/en
Publication of JP2012172978A publication Critical patent/JP2012172978A/en
Application granted granted Critical
Publication of JP5658591B2 publication Critical patent/JP5658591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variance in measured concentration of trihalomethane with the passage of time.SOLUTION: A trihalomethane measuring apparatus includes a reagent tank 22a which stores a sodium hydroxide solution, piping 22b which opens the inside of the reagent tank 22a into the atmosphere, and an adsorption device 22c which is provided in the piping 22b for removing carbon dioxide contained in the atmosphere introduced into the reagent tank 22a. Thus, carbon dioxide contained in the atmosphere introduced into the reagent tank 22a is removed, thereby suppressing variance in measured concentration of trihalomethane with the passage of time.

Description

本発明は、水中に含まれるトリハロメタンの濃度を測定するトリハロメタン測定装置に関するものである。   The present invention relates to a trihalomethane measuring apparatus for measuring the concentration of trihalomethane contained in water.

クロロホルム,ブロモジクロロメタン,ジブロモクロロメタン,及びブロモホルム(以下、これらをトリハロメタンと総称する)は、水道原水中に含まれる腐植質等の有機物と水道原水の浄水工程で用いられる消毒用塩素とが反応することによって生成される。このトリハロメタンは、発がん性物質であることが知られている。このため、浄水場では、水中に含まれるトリハロメタンの濃度が水質基準項目の一つとして管理されている。   Chloroform, bromodichloromethane, dibromochloromethane, and bromoform (hereinafter collectively referred to as trihalomethane) react with organic substances such as humic substances contained in tap water and disinfecting chlorine used in the water purification process of tap water. Is generated by This trihalomethane is known to be a carcinogen. For this reason, in the water purification plant, the concentration of trihalomethane contained in the water is managed as one of the water quality standard items.

このような背景から、特許出願人は、今までに特許文献1に記載されているトリハロメタン測定装置を提案した。このトリハロメタン測定装置は、トリハロメタンを含む試料水と酸性還元剤溶液とを混合した試料溶液中のトリハロメタンを蛍光分析試薬と水酸化ナトリウム溶液とを混合したキャリア液中に溶解移行させ、トリハロメタンが溶解移行したキャリア液中のトリハロメタンと蛍光分析試薬とから蛍光物質を生成し、蛍光物質を含むキャリア液の蛍光強度を測定することによってトリハロメタンの濃度を測定するものである。   From such a background, the patent applicant has proposed the trihalomethane measuring apparatus described in Patent Document 1 so far. This trihalomethane measuring device dissolves and transfers the trihalomethane in the sample solution containing the sample water containing trihalomethane and the acidic reducing agent solution in the carrier solution in which the fluorescence analysis reagent and the sodium hydroxide solution are mixed. The concentration of trihalomethane is measured by generating a fluorescent substance from the trihalomethane and the fluorescence analysis reagent in the carrier liquid and measuring the fluorescence intensity of the carrier liquid containing the fluorescent substance.

特開2009−14382号公報JP 2009-14382 A

本願発明の発明者らは、特許文献1記載のトリハロメタン測定装置によれば、時間経過に伴い、トリハロメタンの実濃度は変動していないのにも係わらず、トリハロメタンの測定濃度が変動することを知見した。このため、時間経過に伴うトリハロメタンの測定濃度の変動を抑制可能な技術の提供が期待されていた。   The inventors of the present invention have found that according to the trihalomethane measuring apparatus described in Patent Document 1, the measured concentration of trihalomethane varies with the passage of time, even though the actual concentration of trihalomethane does not vary. did. For this reason, provision of the technique which can suppress the fluctuation | variation of the measurement density | concentration of trihalomethane with time passage was anticipated.

本発明は、上記課題に鑑みてなされたものであって、その目的は、時間経過に伴うトリハロメタンの測定濃度の変動を抑制可能なトリハロメタン測定装置を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the trihalomethane measuring apparatus which can suppress the fluctuation | variation of the measurement density | concentration of the trihalomethane with time passage.

本願発明の発明者らは、鋭意研究を重ねてきた結果、時間経過に伴うトリハロメタンの測定濃度の変動は、水酸化ナトリウムの消費に伴い水酸化ナトリウム溶液を貯留する試薬タンク内に大気が入り込み、水酸化ナトリウム溶液が大気中に含まれる二酸化炭素を吸収することによって、水酸化ナトリウム溶液のpH値が下がることに起因することを知見した。   As a result of intensive studies, the inventors of the present invention have found that the variation in the measured concentration of trihalomethane over time is that the atmosphere enters the reagent tank that stores the sodium hydroxide solution with the consumption of sodium hydroxide, It has been found that the sodium hydroxide solution absorbs carbon dioxide contained in the atmosphere, thereby causing the pH value of the sodium hydroxide solution to decrease.

上記の知見に基づき想到された本発明に係るトリハロメタン装置は、トリハロメタンを含む試料水と酸性還元剤溶液とを混合した試料溶液を送り出す試料送液部と、蛍光分析試薬と水酸化ナトリウム溶液とを混合したキャリア液を送り出すキャリア液送液部と、前記試料溶液と前記キャリア液とが供給され、前記試料溶液中のトリハロメタンを前記キャリア液中に溶解移行させる分離溶解部と、前記トリハロメタンが溶解移行したキャリア液が供給され、該キャリア液中のトリハロメタンと蛍光分析試薬とから蛍光物質を生成する反応部と、前記蛍光物質を含むキャリア液が供給され、該キャリア液中の蛍光物質の蛍光強度を測定することによってトリハロメタンを定量する検出部と、を備えるトリハロメタン測定装置であって、前記水酸化ナトリウム溶液を貯留する試薬タンクと、前記試薬タンク内を大気開放する大気導入路と、前記大気導入路に設けられ、前記試薬タンク内に導入される大気中に含まれる二酸化炭素を除去する二酸化炭素除去手段と、を備える。   The trihalomethane device according to the present invention, which has been conceived based on the above knowledge, comprises a sample liquid feeding section for feeding a sample solution in which a sample water containing trihalomethane and an acidic reducing agent solution are mixed, a fluorescence analysis reagent, and a sodium hydroxide solution. A carrier liquid feeding part for feeding the mixed carrier liquid, a separation and dissolving part for feeding and transferring the trihalomethane in the sample solution into the carrier liquid, the sample solution and the carrier liquid being supplied, and the trihalomethane dissolving and transferring The carrier liquid is supplied, a reaction unit that generates a fluorescent substance from the trihalomethane and the fluorescence analysis reagent in the carrier liquid, a carrier liquid containing the fluorescent substance is supplied, and the fluorescence intensity of the fluorescent substance in the carrier liquid is increased. A trihalomethane measuring device comprising a detector for quantifying trihalomethane by measuring, A reagent tank for storing a thorium solution, an air introduction path for opening the inside of the reagent tank to the atmosphere, and carbon dioxide provided in the air introduction path for removing carbon dioxide contained in the atmosphere introduced into the reagent tank Removing means.

本発明に係るトリハロメタン測定装置によれば、試薬タンク内に導入される大気中に含まれる二酸化炭素を除去するので、時間経過に伴うトリハロメタンの測定濃度の変動を抑制することができる。   According to the trihalomethane measuring apparatus according to the present invention, since carbon dioxide contained in the atmosphere introduced into the reagent tank is removed, fluctuations in the measured concentration of trihalomethane over time can be suppressed.

図1は、本発明の一実施形態であるトリハロメタン測定装置の全体構成を示す模式図である。FIG. 1 is a schematic diagram showing an overall configuration of a trihalomethane measuring apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態である吸着装置の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of an adsorption device according to an embodiment of the present invention. 図3は、吸着装置によって大気中の二酸化炭素を除去した場合と除去しなかった場合とにおける経過日数に伴うトリハロメタンの測定濃度の変化を示す図である。FIG. 3 is a diagram showing a change in measured concentration of trihalomethane with the elapsed days when carbon dioxide in the atmosphere is removed by the adsorption device and when it is not removed.

以下、図面を参照して、本発明の一実施形態であるトリハロメタン測定装置の構成について説明する。   Hereinafter, a configuration of a trihalomethane measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.

〔全体構成〕
始めに、図1を参照して、本発明の一実施形態であるトリハロメタン測定装置の全体構成について説明する。
〔overall structure〕
First, the overall configuration of a trihalomethane measuring apparatus according to an embodiment of the present invention will be described with reference to FIG.

図1は、本発明の一実施形態であるトリハロメタン測定装置の構成を示す模式図である。図1に示すように、本発明の一実施形態であるトリハロメタン測定装置は、トリハロメタンを含む試料水と酸性還元剤溶液とを混合した試料溶液を送り出す試料送液部10と、トリハロメタン用蛍光分析試薬(以下、蛍光分析試薬と略記)と水酸化ナトリウム溶液とを混合したキャリア液を送り出すキャリア液送液部20と、試料溶液中のトリハロメタンをキャリア液中に溶解移行させる分離溶解部30と、トリハロメタンが溶解移行したキャリア液中のトリハロメタンと蛍光分析試薬とから蛍光物質を生成する反応部40と、蛍光物質を含むキャリア液の蛍光強度を測定することによって、トリハロメタンを定量する検出部50と、を備えている。   FIG. 1 is a schematic diagram showing a configuration of a trihalomethane measuring apparatus according to an embodiment of the present invention. As shown in FIG. 1, a trihalomethane measuring apparatus according to an embodiment of the present invention includes a sample feeding unit 10 that sends out a sample solution in which sample water containing trihalomethane and an acidic reducing agent solution are mixed, and a fluorescence analysis reagent for trihalomethane. (Hereinafter abbreviated as "fluorescence analysis reagent") and a carrier solution mixture 20 for sending out a carrier solution mixed with sodium hydroxide solution, a separation and dissolution unit 30 for dissolving and transferring trihalomethane in the sample solution into the carrier solution, and trihalomethane A reaction unit 40 that generates a fluorescent substance from the trihalomethane and the fluorescence analysis reagent in the carrier solution into which the carrier has been dissolved and transferred, and a detection unit 50 that quantifies trihalomethane by measuring the fluorescence intensity of the carrier liquid containing the fluorescent substance. I have.

試料送液部10には、分離溶解部30の試料溶液流路33に試料溶液を供給するための試料溶液用の主管14と、試料溶液用の主管14に接続する2本の支管、すなわちトリハロメタンを含む試料水用の支管11と、酸性還元剤溶液用の支管12とが配設されている。2本の支管11,12には、液体を主管14側に送り出すための送液ポンプ13と、開閉用電磁弁15a,15bとが設置されている。なお、酸性還元剤溶液としては、硫酸ヒドラジン溶液を例示でき、その濃度は例えば1[%]程度であればよい。   The sample solution supply unit 10 includes a sample solution main tube 14 for supplying the sample solution to the sample solution flow path 33 of the separation and dissolution unit 30 and two branch pipes connected to the sample solution main tube 14, that is, trihalomethane. A branch pipe 11 for sample water and a branch pipe 12 for an acidic reducing agent solution are disposed. The two branch pipes 11 and 12 are provided with a liquid feed pump 13 for sending liquid to the main pipe 14 side, and open / close solenoid valves 15a and 15b. In addition, as an acidic reducing agent solution, the hydrazine sulfate solution can be illustrated, The density | concentration should just be about 1 [%], for example.

キャリア液送液部20には、蛍光分析試薬用の支管21と、水酸化ナトリウム溶液用の支管22と、支管21,22が接続された密閉型の混合タンク23と、が設けられている。支管22には、水酸化ナトリウム溶液を貯留する試薬タンク22aが接続され、試薬タンク22a内の水酸化ナトリウム溶液が支管22を介して混合タンク23内に供給される。また、詳しくは後述するが、試薬タンク22aには、試薬タンク22a内を大気開放するための配管22bと、試薬タンク22a内に供給される大気中に含まれる二酸化炭素を吸着除去する吸着装置22cとが設けられている。配管22b及び吸着装置22cはそれぞれ、本発明に係る大気導入路及び二酸化炭素除去手段として機能する。   The carrier liquid feeding unit 20 is provided with a branch pipe 21 for a fluorescence analysis reagent, a branch pipe 22 for a sodium hydroxide solution, and a sealed mixing tank 23 to which the branch pipes 21 and 22 are connected. A reagent tank 22 a for storing a sodium hydroxide solution is connected to the branch pipe 22, and the sodium hydroxide solution in the reagent tank 22 a is supplied into the mixing tank 23 through the branch pipe 22. As will be described in detail later, the reagent tank 22a includes a pipe 22b for releasing the inside of the reagent tank 22a to the atmosphere, and an adsorption device 22c for adsorbing and removing carbon dioxide contained in the atmosphere supplied to the reagent tank 22a. And are provided. The pipe 22b and the adsorption device 22c function as an air introduction path and a carbon dioxide removal unit according to the present invention, respectively.

混合タンク23には、混合タンク23内を負圧にするためのエアポンプ25と、混合タンク23内の圧力を測定するための圧力計16とが設置された配管24が配設されている。混合タンク23の側面下部と分離溶解部30のキャリア液流路34との間には、これらを結ぶキャリア液用の主管26が配設されている。   The mixing tank 23 is provided with a pipe 24 in which an air pump 25 for making the inside of the mixing tank 23 negative and a pressure gauge 16 for measuring the pressure in the mixing tank 23 are installed. A carrier liquid main pipe 26 is disposed between the lower portion of the side surface of the mixing tank 23 and the carrier liquid flow path 34 of the separation and dissolution section 30.

キャリア液用の主管26には、蛍光分析試薬と水酸化ナトリウム溶液とを混合したキャリア液を分離溶解部30側に送り出すための送液ポンプ29が設置されている。なお、蛍光分析用試薬としては、ニコチン酸アミド溶液を例示でき、その濃度は30〜40[%]の範囲内にあることが望ましい。また、水酸化ナトリウム溶液の濃度は0.2〜0.4[M]の範囲内にあることが望ましい。   The carrier liquid main pipe 26 is provided with a liquid feed pump 29 for sending a carrier liquid obtained by mixing a fluorescence analysis reagent and a sodium hydroxide solution to the separation and dissolution unit 30 side. In addition, as a reagent for fluorescence analysis, a nicotinamide solution can be illustrated, and it is preferable that the density | concentration exists in the range of 30-40 [%]. The concentration of the sodium hydroxide solution is preferably in the range of 0.2 to 0.4 [M].

混合タンク23には、混合タンク23内を大気開放するための配管27と、混合タンク23内の底部から空気を吹き出すように構成された空気吹込み用の配管28とが配設されている。これら配管27,28並びに支管21,22には、それぞれ開閉用電磁弁15c〜15fが設置されている。   The mixing tank 23 is provided with a pipe 27 for opening the inside of the mixing tank 23 to the atmosphere, and an air blowing pipe 28 configured to blow out air from the bottom of the mixing tank 23. The pipes 27 and 28 and the branch pipes 21 and 22 are provided with open / close electromagnetic valves 15c to 15f, respectively.

分離溶解部30は円筒形状を有しており、その内部にはその軸方向と平行なガス透過性チューブ32が設けられている。分離溶解部30の軸方向内壁とガス透過性チューブ32との間には、これらと平行にガス透過性平膜31が設けられている。分離溶解部30内壁とガス透過性平膜31とで閉空間を構成しており、この閉空間が試料溶液流路33となる。そして、ガス透過性チューブ32の内側空間がキャリア液流路34となり、残りの空間、すなわち、ガス透過性チューブ32とガス透過性平膜31及び分離溶解部30内壁との間の空間は、気相空間となる。   The separation and dissolution part 30 has a cylindrical shape, and a gas permeable tube 32 parallel to the axial direction is provided inside thereof. A gas-permeable flat membrane 31 is provided between the inner wall in the separation / dissolving portion 30 and the gas-permeable tube 32 in parallel therewith. A closed space is constituted by the inner wall of the separation and dissolution part 30 and the gas permeable flat membrane 31, and this closed space becomes the sample solution flow path 33. The inner space of the gas permeable tube 32 becomes the carrier liquid flow path 34, and the remaining space, that is, the space between the gas permeable tube 32 and the gas permeable flat membrane 31 and the inner wall of the separation / dissolution part 30 is air. It becomes a phase space.

分離溶解部30には、試料溶液流路33を流れる試料溶液中のトリハロメタンが揮発する温度に試料溶液を加熱するためのヒータ35が設けられている。分離溶解部30の気相空間には、気相空間内に洗浄用空気を供給するための洗浄用空気配管36と、洗浄後の空気を排出するための排気用配管38と、が設けられている。洗浄用空気配管36には、洗浄用空気を送り込むためのエアポンプ37と、開閉用電磁弁15gと、が設置されている。分離溶解部30の試料溶液流路33には、トリハロメタンが分離除去された試料溶液を排出するための排液用配管39が設けられている。   The separation and dissolution unit 30 is provided with a heater 35 for heating the sample solution to a temperature at which trihalomethane in the sample solution flowing through the sample solution channel 33 volatilizes. The gas phase space of the separation and dissolution unit 30 is provided with a cleaning air pipe 36 for supplying cleaning air into the gas phase space and an exhaust pipe 38 for discharging the cleaned air. Yes. The cleaning air pipe 36 is provided with an air pump 37 for sending cleaning air and an opening / closing electromagnetic valve 15g. The sample solution flow path 33 of the separation and dissolution unit 30 is provided with a drainage pipe 39 for discharging the sample solution from which trihalomethane has been separated and removed.

分離溶解部30のキャリア液流路34と反応部40との間には、これらを結ぶキャリア液用の配管41が配設されている。反応部40には、例えば沸騰水を利用してキャリア液用の配管41を加熱することによって、キャリア液中のトリハロメタンと蛍光分析試薬とが反応して蛍光物質を生成する温度にキャリア液を加熱する不図示の装置が設けられている。   Between the carrier liquid flow path 34 and the reaction part 40 of the separation and dissolution unit 30, a carrier liquid pipe 41 that connects them is disposed. The reaction unit 40 heats the carrier liquid to a temperature at which the trihalomethane in the carrier liquid reacts with the fluorescence analysis reagent to generate a fluorescent substance by heating the carrier liquid piping 41 using, for example, boiling water. A device (not shown) is provided.

反応部40と検出部50との間には、これらを結ぶキャリア液用の配管51が配設されている。検出部50には、キャリア液中の蛍光物質の蛍光強度を測定し、その測定値と予め設定してある検量線とから、試料水中のトリハロメタンの濃度を演算する不図示の装置が設けられている。検出部50には、測定後のキャリア液を排出する配管52が設けられており、この配管52は、分離溶解部30の排液用配管39と合流した後、不図示の廃液処理設備へと繋がっている。   Between the reaction part 40 and the detection part 50, the piping 51 for carrier liquid which connects these is arrange | positioned. The detection unit 50 is provided with a device (not shown) that measures the fluorescence intensity of the fluorescent substance in the carrier liquid and calculates the concentration of trihalomethane in the sample water from the measured value and a preset calibration curve. Yes. The detection unit 50 is provided with a pipe 52 for discharging the carrier liquid after measurement. This pipe 52 joins the drainage pipe 39 of the separation and dissolution unit 30 and then goes to a waste liquid treatment facility (not shown). It is connected.

〔吸着装置の構成〕
次に、図2を参照して、吸着装置22cの構成について説明する。
[Configuration of adsorption device]
Next, the configuration of the adsorption device 22c will be described with reference to FIG.

図2は、本発明の一実施形態である吸着装置22cの構成を示す模式図である。図2に示すように、本発明の一実施形態である吸着装置22cは、二酸化炭素を吸着する特性を有するソーダライム(ソーダ石灰)22c1を内部に収容する収容容器22c2と、収容容器22c2内部に形成され、配管22bに連通する通気路22c3とを備えている。このような構成を有する吸着装置22cによれば、大気は通気路22c3を介して試薬タンク22a内に供給されることになる。このため、大気中に含まれる二酸化炭素は、通気路22c3を通過する過程でソーダライム22c1によって吸着され、試薬タンク22a内に供給される大気中に含まれる二酸化炭素は除去される。なお、大気とソーダライム22c1との接触面積及び接触時間を増加させるために、通気路22c3は収容容器22c2内を曲折させて形成することが望ましい。   FIG. 2 is a schematic diagram showing the configuration of the adsorption device 22c according to one embodiment of the present invention. As shown in FIG. 2, the adsorption device 22c according to an embodiment of the present invention includes a storage container 22c2 that stores soda lime (soda lime) 22c1 having a characteristic of adsorbing carbon dioxide inside, and a storage container 22c2. An air passage 22c3 that is formed and communicates with the pipe 22b is provided. According to the adsorption device 22c having such a configuration, the air is supplied into the reagent tank 22a through the air passage 22c3. For this reason, carbon dioxide contained in the atmosphere is adsorbed by the soda lime 22c1 in the process of passing through the ventilation path 22c3, and carbon dioxide contained in the atmosphere supplied into the reagent tank 22a is removed. In order to increase the contact area and contact time between the atmosphere and soda lime 22c1, it is desirable that the air passage 22c3 be formed by bending the inside of the storage container 22c2.

〔実験例〕
次に、図3を参照して、吸着装置22cによって大気中の二酸化炭素を除去した場合と除去しなかった場合とにおける経過日数に伴うトリハロメタンの測定濃度の変化について説明する。
[Experimental example]
Next, with reference to FIG. 3, the change of the measured concentration of trihalomethane with the elapsed days in the case where carbon dioxide in the atmosphere is removed by the adsorption device 22c and in the case where it is not removed will be described.

図3は、吸着装置22cによって大気中の二酸化炭素を除去した場合と除去しなかった場合とにおける経過日数に伴うトリハロメタンの測定濃度の変化を示す図である。図3に示すように、吸着装置22cを設けなかった場合、トリハロメタンの測定濃度(THM測定値)は経過日数が15日以上になると大きく変動した。一方、吸着装置22cを設けた場合には、トリハロメタンの測定濃度は経過日数が15日以上になっても大きく変動しなかった。以上のことから、試薬タンク22a内に供給される大気中に含まれる二酸化炭素を除去することによって、時間経過に伴うトリハロメタンの測定濃度の変動を抑制できることが知見された。   FIG. 3 is a diagram showing a change in the measured concentration of trihalomethane with the elapsed days when the carbon dioxide in the atmosphere is removed by the adsorption device 22c and when it is not removed. As shown in FIG. 3, when the adsorption device 22c was not provided, the measured concentration of trihalomethane (THM measured value) fluctuated greatly when the number of elapsed days was 15 days or more. On the other hand, when the adsorption device 22c was provided, the measured concentration of trihalomethane did not vary greatly even when the number of days elapsed was 15 days or more. From the above, it has been found that by removing carbon dioxide contained in the atmosphere supplied into the reagent tank 22a, variation in the measured concentration of trihalomethane over time can be suppressed.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

10 試料送液部
20 キャリア液送液部
22 支管
22a 試薬タンク
22b 配管
22c 吸着装置
22c1 ソーダライム
22c2 収容容器
22c3 通気路
30 分離溶解部
40 反応部
50 検出部
DESCRIPTION OF SYMBOLS 10 Sample liquid feeding part 20 Carrier liquid feeding part 22 Branch pipe 22a Reagent tank 22b Piping 22c Adsorption device 22c1 Soda lime 22c2 Container 22c3 Air passage 30 Separation / dissolution part 40 Reaction part 50 Detection part

Claims (2)

トリハロメタンを含む試料水と酸性還元剤溶液とを混合した試料溶液を送り出す試料送液部と、蛍光分析試薬と水酸化ナトリウム溶液とを混合したキャリア液を送り出すキャリア液送液部と、前記試料溶液と前記キャリア液とが供給され、前記試料溶液中のトリハロメタンを前記キャリア液中に溶解移行させる分離溶解部と、前記トリハロメタンが溶解移行したキャリア液が供給され、該キャリア液中のトリハロメタンと蛍光分析試薬とから蛍光物質を生成する反応部と、前記蛍光物質を含むキャリア液が供給され、該キャリア液中の蛍光物質の蛍光強度を測定することによってトリハロメタンを定量する検出部と、を備えるトリハロメタン測定装置であって、
前記水酸化ナトリウム溶液を貯留する試薬タンクと、
前記試薬タンク内を大気開放する大気導入路と、
前記大気導入路に設けられ、前記試薬タンク内に導入される大気中に含まれる二酸化炭素を除去する二酸化炭素除去手段と、
を備えることを特徴とするトリハロメタン測定装置。
A sample feeding part for sending out a sample solution in which a sample water containing trihalomethane and an acidic reducing agent solution are mixed; a carrier liquid feeding part for sending out a carrier liquid in which a fluorescent analysis reagent and a sodium hydroxide solution are mixed; and the sample solution And the carrier liquid are supplied, a separation and dissolution part for dissolving and transferring the trihalomethane in the sample solution into the carrier liquid, and a carrier liquid in which the trihalomethane is dissolved and transferred are supplied, and the trihalomethane and fluorescence analysis in the carrier liquid are supplied. A trihalomethane measurement comprising: a reaction unit that generates a fluorescent substance from a reagent; and a detection unit that is supplied with a carrier liquid containing the fluorescent substance and that quantifies trihalomethane by measuring the fluorescence intensity of the fluorescent substance in the carrier liquid. A device,
A reagent tank for storing the sodium hydroxide solution;
An air introduction path for opening the inside of the reagent tank to the atmosphere;
Carbon dioxide removing means for removing carbon dioxide contained in the atmosphere provided in the atmosphere introduction path and introduced into the reagent tank;
A trihalomethane measuring device comprising:
前記二酸化炭素除去手段は、前記試薬タンク内に導入される大気中に含まれる二酸化炭素を吸着するソーダライムを含むことを特徴とする請求項1に記載のトリハロメタン測定装置。   2. The trihalomethane measuring apparatus according to claim 1, wherein the carbon dioxide removing means includes soda lime that adsorbs carbon dioxide contained in the atmosphere introduced into the reagent tank.
JP2011031841A 2011-02-17 2011-02-17 Trihalomethane measurement system Active JP5658591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031841A JP5658591B2 (en) 2011-02-17 2011-02-17 Trihalomethane measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031841A JP5658591B2 (en) 2011-02-17 2011-02-17 Trihalomethane measurement system

Publications (2)

Publication Number Publication Date
JP2012172978A true JP2012172978A (en) 2012-09-10
JP5658591B2 JP5658591B2 (en) 2015-01-28

Family

ID=46976039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031841A Active JP5658591B2 (en) 2011-02-17 2011-02-17 Trihalomethane measurement system

Country Status (1)

Country Link
JP (1) JP5658591B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245087A (en) * 1985-04-23 1986-10-31 株式会社日立製作所 Nuclear power generating plant
JPH02145961A (en) * 1988-01-30 1990-06-05 Toyoaki Aoki Determination and analyzer of trihalomethane
JPH08105878A (en) * 1994-10-06 1996-04-23 Fuji Electric Co Ltd Trihalomethane generating capability automatic analyzer
JP2009014382A (en) * 2007-07-02 2009-01-22 Metawater Co Ltd Trihalomethane measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245087A (en) * 1985-04-23 1986-10-31 株式会社日立製作所 Nuclear power generating plant
JPH02145961A (en) * 1988-01-30 1990-06-05 Toyoaki Aoki Determination and analyzer of trihalomethane
JPH08105878A (en) * 1994-10-06 1996-04-23 Fuji Electric Co Ltd Trihalomethane generating capability automatic analyzer
JP2009014382A (en) * 2007-07-02 2009-01-22 Metawater Co Ltd Trihalomethane measuring instrument

Also Published As

Publication number Publication date
JP5658591B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
KR101370689B1 (en) Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
JP7117134B2 (en) Corrosion test apparatus and corrosion test method
JP6007959B2 (en) Mercury automatic measurement system and its pretreatment equipment
US9611160B2 (en) Wastewater treatment apparatus and method
JP6597043B2 (en) Reactor unit, gasifier, pretreatment device and mercury meter
Esquiroz-Molina et al. Influence of pH on gas phase controlled mass transfer in a membrane contactor for hydrogen sulphide absorption
WO2014058041A1 (en) Method for operating reverse osmotic membrane filtration plant, and biofilm formation monitoring device
JP5658591B2 (en) Trihalomethane measurement system
CN110749639A (en) Full-automatic calibration device and method for electrode-method residual chlorine instrument
WO2018218960A1 (en) Pre-treatment method for measuring total halogenated organic compound in water
TW200825407A (en) Biosensor type abnormal water quality monitoring device
KR20110128770A (en) A total organic carbon analyzer
JP6568434B2 (en) Iodine concentration measuring device
JP4850788B2 (en) Trihalomethane measurement system
JP2008286534A (en) Biosensor type abnormal water quality detector
JP2018132479A (en) Piping member, water quality inspection method, and water treatment device
CN111108381A (en) Carbon dioxide and/or hydrogen sulfide detection system and method and application thereof
JP6056824B2 (en) Mercury automatic measurement system and its pretreatment equipment
JP2010194479A (en) Pure-water production apparatus
JP2016221427A (en) Method for operating water treatment device
JP2009183848A (en) Biological treatment apparatus and method
JP2010071749A (en) Water-quality monitor
JP2010204043A (en) Water quality monitoring device
KR20120058819A (en) Tracer Analysis System
CN213780067U (en) Heating device of online automatic water quality analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5658591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250