JPS61245087A - Nuclear power generating plant - Google Patents

Nuclear power generating plant

Info

Publication number
JPS61245087A
JPS61245087A JP60087211A JP8721185A JPS61245087A JP S61245087 A JPS61245087 A JP S61245087A JP 60087211 A JP60087211 A JP 60087211A JP 8721185 A JP8721185 A JP 8721185A JP S61245087 A JPS61245087 A JP S61245087A
Authority
JP
Japan
Prior art keywords
carbon dioxide
exchange resin
nuclear power
condensate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60087211A
Other languages
Japanese (ja)
Other versions
JPH0631797B2 (en
Inventor
大角 克巳
新藤 紀一
和彦 赤嶺
久雄 伊藤
水庭 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Kyowa Engineering Co Ltd
Original Assignee
Hitachi Kyowa Kogyo Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kyowa Kogyo Ltd, Hitachi Ltd filed Critical Hitachi Kyowa Kogyo Ltd
Priority to JP60087211A priority Critical patent/JPH0631797B2/en
Publication of JPS61245087A publication Critical patent/JPS61245087A/en
Publication of JPH0631797B2 publication Critical patent/JPH0631797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Saccharide Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子力発電プラントに係り、特に炭酸ガス除去
装置を備えた原子力発電プラントに係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear power plant, and particularly to a nuclear power plant equipped with a carbon dioxide removal device.

〔発明の背景〕[Background of the invention]

沸騰水型原子力発電プラントでは、−次冷却水の水質を
純水に保つために、特開昭57−1870871号公報
に記載されているように、復水器の下流に復水脱塩器を
備えている。復水脱塩器粒状の陽イオン交換樹脂と陰イ
オン交換樹脂が混合充填され、数rn’/塔の脱塩塔が
数基から構成されている。このイオン交換樹脂は年間に
1〜2回の割合で薬品再生され、くり返えし使用される
。従来の薬品再生の方法の1例を第4図に示す、復水脱
塩塔7の脱塩性能が低下したイオン交換樹脂14はイオ
ン交換樹脂再生塔15に移送され、注入される用水16
.空気17により比重差により陰イオン交換樹脂18と
陽イオン交換樹脂19に分離される。分離された陰イオ
ン交換樹脂18は陰イオン交換樹脂再生塔20に移送さ
れる。陽イオン交換樹脂19は再生塔15で硫酸22に
より再生され、陰イオン交換樹脂18は再生塔20で水
酸化ナトリウム溶液21によって再生される。再生され
た樹脂は水で十分に洗浄された後、樹脂混合塔23に移
送、陽イオン交換樹脂と陰イオン交換樹脂を混合した後
、再び復水脱塩塔7に充填される。樹脂の混合、移送に
は用水及び空気17が使用される。これらの再生に伴っ
て発生する再生廃液の廃棄物等は沸騰水型原子力発電所
全体で発生する廃棄物量の約20%にも達する。しかる
に。
In boiling water nuclear power plants, in order to maintain the quality of secondary cooling water as pure water, a condensate demineralizer is installed downstream of the condenser, as described in Japanese Patent Application Laid-open No. 1870871/1987. We are prepared. Condensate demineralizer The granular cation exchange resin and anion exchange resin are mixed and filled, and the demineralizer is composed of several demineralizers of several rn'/tower. This ion exchange resin is chemically regenerated once or twice a year and used repeatedly. An example of a conventional chemical regeneration method is shown in FIG. 4. The ion exchange resin 14 whose desalination performance in the condensate demineralization tower 7 has decreased is transferred to the ion exchange resin regeneration tower 15, and the injected water 16 is transferred to the ion exchange resin regeneration tower 15.
.. The air 17 separates the resin into an anion exchange resin 18 and a cation exchange resin 19 due to the difference in specific gravity. The separated anion exchange resin 18 is transferred to an anion exchange resin regeneration tower 20. Cation exchange resin 19 is regenerated with sulfuric acid 22 in regeneration tower 15, and anion exchange resin 18 is regenerated with sodium hydroxide solution 21 in regeneration tower 20. The regenerated resin is sufficiently washed with water, then transferred to the resin mixing tower 23, where the cation exchange resin and anion exchange resin are mixed, and then charged into the condensate demineralization tower 7 again. Water and air 17 are used for mixing and transferring the resin. Wastes such as regenerated liquid waste generated during these regenerations amount to about 20% of the amount of waste generated in the entire boiling water nuclear power plant. However.

イオン交換樹脂のイオン除去性能は、吸着したイオンの
量が多くなると低下するが、特に陰イオン交換樹脂の性
能低下が早い。陰イオン交換樹脂は、樹脂の再生、洗浄
、移送等の操作中に、空気中の炭酸ガス及び炭酸ガスが
水に溶解して生じた重炭酸イオンを吸着してイオン負荷
となるほか、沸騰木型原子力発電所の定期点検において
行なわれる復水再循環運転では、空気と接した水が2〜
3塔の脱塩塔を大量通水するので、このときも空気中の
炭酸ガスに起因するイオン負荷が増加する。
The ion removal performance of ion exchange resins decreases as the amount of adsorbed ions increases, but the performance of anion exchange resins deteriorates particularly quickly. Anion exchange resins adsorb carbon dioxide gas in the air and bicarbonate ions generated when carbon dioxide gas dissolves in water during operations such as regenerating, cleaning, and transferring the resin, creating an ionic load. In the condensate recirculation operation performed during periodic inspections of type nuclear power plants, water in contact with air
Since a large amount of water is passed through the three desalination towers, the ion load due to carbon dioxide gas in the air also increases at this time.

従来の沸騰水型原子力発電所では、上述したような空気
中の炭酸ガスの陰イオン交換樹脂への悪影響への対策が
全くなされていないので、イオン交換樹脂の再生頻度が
多く、多量の再生廃液を発生する原因となっている。
In conventional boiling water nuclear power plants, no measures have been taken to prevent the negative effects of carbon dioxide in the air on the anion exchange resin as described above, so the ion exchange resin is regenerated frequently and a large amount of recycled waste liquid is generated. It is the cause of this.

ガス中の炭酸ガスの除去方法にはJIS  K2SO3
1975年 日本規格協会に、詳述されている。
JIS K2SO3 is the method for removing carbon dioxide from gas.
It was detailed in the Japanese Standards Association in 1975.

〔発明の目的〕[Purpose of the invention]

本発明の目的は−g子方力発電プラントおける復水脱塩
器のイオン交換樹脂の寿命を延長できる原子力発電プラ
ントを提供することにある。
An object of the present invention is to provide a nuclear power plant that can extend the life of the ion exchange resin in the condensate demineralizer in the nuclear power plant.

〔発明の概要〕[Summary of the invention]

本発明の原子力発電プラントは、原子炉、蒸気を凝縮す
る復水器、イオン交換器樹脂を用いて復水を浄化する復
水脱塩器および、給水加熱器を主たる構成要素とする原
子力発電プラントにおいてプラント内に流入する空気流
入口に空気中の炭酸ガスを除去する炭酸ガス除去装置を
設けたことを特徴とする。
The nuclear power plant of the present invention includes a nuclear reactor, a condenser for condensing steam, a condensate demineralizer for purifying condensate using ion exchanger resin, and a feedwater heater as the main components. The present invention is characterized in that a carbon dioxide removal device for removing carbon dioxide from the air is provided at the air inlet that flows into the plant.

本発明は以下の検討結果によってなされたものである。The present invention was made based on the following study results.

沸騰水型原子力発電所において、復水脱塩器で1年間使
用された陰イオン交換樹脂及び陽イオン交換樹脂の吸着
イオンの種類と吸着量の交換容量に対する百分率を第5
図に示す。陰イオン交換樹脂には炭酸イオンが7〜15
%、塩化物イオンと硫酸イオンは2%以下であった。陽
イオン交換樹脂には第二鉄イオンが5〜15%、銅、ニ
ッケル。
In a boiling water nuclear power plant, the types of adsorbed ions and the percentage of the adsorbed amount to the exchange capacity of the anion exchange resin and cation exchange resin used for one year in the condensate demineralizer are
As shown in the figure. Anion exchange resin contains 7 to 15 carbonate ions.
%, chloride ions and sulfate ions were less than 2%. The cation exchange resin contains 5-15% ferric ions, copper, and nickel.

亜鉛、コバルト等は合わせて1%以下であった。The total amount of zinc, cobalt, etc. was 1% or less.

陽イオン交換樹脂に吸着される鉄イオンは、復水器及び
その上流側のプラント構造材料の改善により低下する方
向にある。一方、陰イオンに吸着している炭酸イオンは
、脱塩器入口の運転時、導電率がすべて炭酸イオンによ
って占められとして計算した値より著しく多い。このこ
とから、陰イオン交換樹脂に吸着している炭酸イオンは
、運転中のプラント−次冷却水中に存在するものではな
く。
The amount of iron ions adsorbed by cation exchange resins is decreasing due to improvements in condensers and plant structural materials upstream thereof. On the other hand, the carbonate ions adsorbed on the anions are significantly larger than the value calculated assuming that the conductivity is entirely occupied by carbonate ions during operation at the demineralizer inlet. From this, the carbonate ions adsorbed on the anion exchange resin are not present in the sub-cooling water of the plant during operation.

例えば、樹脂の薬品再生操作及び原子炉停止時復水脱塩
器の運用、保管時等に混入するものと考えられる。そこ
で、空気中の炭酸ガスの影響について検討した。空気中
の炭酸ガスの濃度は1980年の調査では0.0338
%と報告されている(日本化学会、化学と工業、第38
巻第1号。
For example, it is thought to be mixed in during resin chemical regeneration operations, operation of condensate demineralizers during reactor shutdown, storage, etc. Therefore, we investigated the effects of carbon dioxide gas in the air. According to a 1980 survey, the concentration of carbon dioxide in the air was 0.0338.
% (Chemical Society of Japan, Chemistry and Industry, No. 38)
Volume No. 1.

pill、(1985))。炭酸ガスが水に溶解すると
(1)式のように炭酸を形成し、(2)のように解離し
て CO2+ H20= H2CO3・・・・・・(1)8
2 CO3”H”+HCO3−・・・(2)重炭酸イオ
ンを生成する。空気中の炭酸ガス濃度0.0338pp
mと溶解平衡にある水中の炭酸濃度をヘンリーの法則及
びブンゼン吸収係数(日本化学金錫 化学便覧 丸善 
1966)から算出すると、第6図のように、25℃で
0.44ppm溶解することになる。空気と接した水を
陰イオン交換樹脂に通水すると、これらの炭酸イオンは
、すべてイオン交換樹脂のOH−基と交換し吸着される
。また、陰イオン交換樹脂の再生に用いられる水酸化ナ
トリウム(NaOH)溶液は空気中の炭酸ガスと(3)
(4)式のように反応し、中和点近くまで炭酸ガスを溶
解することができる。
pill, (1985)). When carbon dioxide gas dissolves in water, it forms carbonic acid as shown in equation (1), and dissociates as shown in equation (2), resulting in CO2+ H20= H2CO3...(1)8
2 CO3"H"+HCO3-...(2) Generates bicarbonate ions. Carbon dioxide concentration in the air 0.0338pp
The carbon dioxide concentration in water that is in solubility equilibrium with
(1966), as shown in Figure 6, 0.44 ppm dissolves at 25°C. When water in contact with air is passed through an anion exchange resin, all of these carbonate ions are exchanged with the OH- groups of the ion exchange resin and adsorbed. In addition, the sodium hydroxide (NaOH) solution used to regenerate the anion exchange resin can interact with carbon dioxide gas in the air (3).
The reaction occurs as shown in equation (4), and carbon dioxide gas can be dissolved close to the neutralization point.

NaOH+CO24Na2 CO3−−(3)Na2 
CO342Na+C○3−− ・−(4)このように溶
解した炭酸イオンも陰イオン交換樹脂へ1部吸着する。
NaOH+CO24Na2 CO3−-(3)Na2
CO342Na+C○3-- *-(4) A portion of the carbonate ions dissolved in this manner are also adsorbed onto the anion exchange resin.

また、沸騰水型原子力発電所では、定期定検が年に一度
行なわれるが、この際、原子炉の運転停止及び運転開始
直前に復水、給水再循運転が行なわれる。これは、復水
系配管あるいは給水系配管を復水器及び復水脱塩器を通
じて純水を循環させるもので、原子炉停止中は復水器は
空気で満たされているために(1)(2)式に基づいて
、空気中の炭酸ガスが、炭酸イオンとなり復水脱塩器の
陰イオン交換樹脂に捕捉される。例えば復水再循環時の
復水脱塩器入口の水の導電率は0.15〜0.4μS 
/ amで、この導電率上昇は炭酸イオンによる。その
結果、復水再循環時に使用した脱塩塔の陰イオン交換樹
脂は、総イオン交換容量の約1/3炭酸イオンで占めら
れている。
Further, in boiling water nuclear power plants, periodic inspections are conducted once a year, and at this time, condensate and feed water recirculation operations are performed immediately before the reactor is shut down and started. This circulates pure water through the condensate system piping or water supply system piping through the condenser and condensate demineralizer, and since the condenser is filled with air when the reactor is shut down (1) Based on the formula 2), carbon dioxide gas in the air becomes carbonate ions and is captured by the anion exchange resin of the condensate demineralizer. For example, the conductivity of water at the inlet of the condensate demineralizer during condensate recirculation is 0.15 to 0.4μS.
/ am, this increase in conductivity is due to carbonate ions. As a result, the anion exchange resin in the demineralization tower used during condensate recirculation is occupied by about 1/3 carbonate ions of the total ion exchange capacity.

このようにして陰イオン交換樹脂に吸着したイオン負荷
は第7図に示したように貫流イオン交換容量(総イオン
交換容量と異り、樹脂層上部から塩化ナトリウム溶液を
流し、樹脂層下部の導電率が0.1μS / cmに達
したときの交換容量であり動的なイオン交換能力の指標
)を著しく減少させる。
The ion load adsorbed on the anion exchange resin in this way is determined by the flow-through ion exchange capacity (unlike the total ion exchange capacity), as shown in Figure 7. When the rate reaches 0.1 μS/cm, the exchange capacity (an indicator of dynamic ion exchange capacity) decreases significantly.

以上のような検討結果から、陰イオン交換樹脂の再生時
や、原子炉停止時の脱塩器の運用および運転において、
空気中の炭酸ガスに基づく炭酸イオンの陰イオン交換樹
脂への吸着を防止すれば。
Based on the above study results, it is important to consider the following in the operation and operation of the demineralizer during regeneration of anion exchange resin and during reactor shutdown.
If carbonate ions based on carbon dioxide gas in the air are prevented from being adsorbed to the anion exchange resin.

長期間にわたって再生操作をすることなく使用でき、再
生なしの運転(陰イオン交換樹脂の自然劣化による寿命
の2〜5年間再生しないで廃棄する)も可能であること
がわかった。
It has been found that it can be used for a long period of time without any regeneration operation, and that it is also possible to operate without regeneration (disposal without regeneration for 2 to 5 years of its life due to natural deterioration of the anion exchange resin).

一方、炭酸ガスの吸着剤として粒状のソーダ石灰ソーダ
アスベスト等が市販されており、これらを充填した炭酸
ガス吸収塔をプラントの1部に設置して水あるいは薬品
溶液と接する空気を、この炭酸ガス吸収塔を通じて供給
することで、上記炭酸ガスの影響が排除できる。
On the other hand, granular soda-lime soda asbestos, etc., are commercially available as carbon dioxide adsorbents, and a carbon dioxide absorption tower filled with these is installed in one part of the plant to absorb the carbon dioxide from the air that comes into contact with water or chemical solutions. By supplying through the absorption tower, the influence of the carbon dioxide gas can be eliminated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG. 1 below.

沸騰水型原子力発電所の運転時は、yK子炉1で発生し
た蒸気2はタービン3を駆動して復水器4で水となり、
ホットウェル5に集まり復水が過器6及び復水脱塩器7
で浄化され、給水加熱器8を通り原子炉1に戻る。定期
点検等のために原子炉を停止する場合、燃料の燃焼を停
止し、原子炉水の温度を下げたのち、復水器4は真空破
壊される。
During operation of a boiling water nuclear power plant, steam 2 generated in the yK subreactor 1 drives a turbine 3 and turns into water in a condenser 4.
Condensate collects in the hot well 5 and passes through the filter 6 and condensate demineralizer 7
The water is purified by water, passes through the feed water heater 8, and returns to the reactor 1. When a nuclear reactor is shut down for periodic inspection or the like, the condenser 4 is vacuum destroyed after fuel combustion is stopped and the temperature of the reactor water is lowered.

真空破壊は、真空破壊弁9を開放し、空気を導入する。To break the vacuum, the vacuum break valve 9 is opened and air is introduced.

蒸気2のタービン3への流入が停止した後。After the steam 2 has stopped flowing into the turbine 3.

復水は、給水再循環配管10、あるいは復水再循環配管
11を通して循環されるが、この再循環時の水は、復水
器4で空気と接触してガスを吸収する。復水器4の空気
取り入れ口に炭酸ガス吸収塔12を設置して復水器4内
部への炭酸ガスの流入を防止し、復水脱塩器4内の陰イ
オン交換樹脂への炭酸イオンの吸着を防止する。
The condensate is circulated through the feedwater recirculation pipe 10 or the condensate recirculation pipe 11, and the water during this recirculation comes into contact with air in the condenser 4 and absorbs gas. A carbon dioxide absorption tower 12 is installed at the air intake of the condenser 4 to prevent carbon dioxide from flowing into the condenser 4 and to prevent carbonate ions from flowing into the anion exchange resin in the condensate demineralizer 4. Prevent adsorption.

また、原子炉を起動する際は、復水器4の真空破壊弁9
を閉じ、復水真空ポンプ13によって、復水器4内を真
空としたのち原子炉1の核加熱が行なわれるが、この運
転開始前も復水再循環が行なわれる。この復水再循環操
作の前に、復水真空破壊弁9を開の状態で復水真空ポン
プ13を駆動し、炭酸ガス吸収塔12を通じて空気を導
入し、復水器4内に炭酸ガスが無い状態で復水再循環を
行なうことで、復水脱塩器への炭酸イオンの吸着が防止
できる。
In addition, when starting the reactor, the vacuum breaker valve 9 of the condenser 4
is closed and the inside of the condenser 4 is evacuated by the condensate vacuum pump 13, and then nuclear heating of the nuclear reactor 1 is performed, but condensate recirculation is also performed before the start of operation. Before this condensate recirculation operation, the condensate vacuum pump 13 is driven with the condensate vacuum break valve 9 open, air is introduced through the carbon dioxide absorption tower 12, and carbon dioxide gas is released into the condenser 4. By performing condensate recirculation in the absence of condensate, adsorption of carbonate ions to the condensate demineralizer can be prevented.

炭酸ガス吸収塔12に充填する炭酸ガス吸収剤の量は、
復水器4及びタービン室5の全空隙容積を5000mと
した場合、空気中の炭酸ガスの量は3.32kgとなる
から、原子炉運転停止後と、運転開始前の復水再循環で
、この5倍の空気が炭酸ガス吸収塔12を通過するとす
れば (ただし、ソーダ石灰を用いるとし、その吸収量は25
%(JIS  K2SO3(1975))とした。)が
必要である。
The amount of carbon dioxide absorbent filled in the carbon dioxide absorption tower 12 is
If the total pore volume of the condenser 4 and turbine room 5 is 5000 m, the amount of carbon dioxide in the air is 3.32 kg, so by recirculating the condensate after the reactor shuts down and before starting the operation, If 5 times this amount of air passes through the carbon dioxide absorption tower 12 (however, if soda lime is used, the absorption amount is 25
% (JIS K2SO3 (1975)). )is necessary.

本実施例によれば、原子炉停止中の復水脱塩器の運転時
に空気中の炭酸ガスによる陰イオン交換樹脂への炭酸イ
オン吸着が防止できるので、イオン交換樹脂の再生頻度
が従来の年に1〜2回がら2〜3年に1回にでき、再生
廃液の発生量を低減もしくは零にできる。
According to this embodiment, when the condensate demineralizer is operated while the nuclear reactor is shut down, adsorption of carbonate ions to the anion exchange resin due to carbon dioxide gas in the air can be prevented, so the regeneration frequency of the ion exchange resin can be reduced compared to the conventional year. This can be done from once or twice a year to once every two to three years, and the amount of recycled waste liquid generated can be reduced or eliminated.

〔発明の実施例〕[Embodiments of the invention]

第2の実施例を第2図に示す。 A second embodiment is shown in FIG.

沸騰水型原子力発電所に設備された複数の復水脱塩塔の
、イオン交換性能が低下した脱塩塔7のイオン交換樹脂
14の再生は、イオン交換樹脂14を、再生塔15に移
送し、用水16及び空気17を用い、比重差で陰イオン
交換樹脂18と陽イオン交換樹脂19に分離し、陰イオ
ン交換樹脂14は再生塔20に移送され、陰イオン交換
樹脂は水酸化ナトリウム溶液21で、陽イオン交換樹脂
19は、硫酸22によりそれぞれ再生され、用水16で
十分洗浄されたのち、両イオン交換樹脂は、混合塔23
で混合され、再び復水脱塩器7に返送される。このイオ
ン交換樹脂再生において、用水16は、原水24を脱塩
器25のイオン交換樹脂26で純水にし、純水タンク2
7に貯えられる。純水タンク27はマンホール等の開孔
部に脱炭酸ガス塔12を備え、純水タンクに出入する空
気は、この脱炭酸ガス塔12を通してのみ行なわせる。
To regenerate the ion exchange resin 14 of the demineralization tower 7 whose ion exchange performance has deteriorated among the plurality of condensate demineralization towers installed in a boiling water nuclear power plant, the ion exchange resin 14 is transferred to the regeneration tower 15. Using water 16 and air 17, the anion exchange resin 18 and cation exchange resin 19 are separated by the difference in specific gravity, and the anion exchange resin 14 is transferred to a regeneration tower 20, and the anion exchange resin is transferred to a sodium hydroxide solution 21. After the cation exchange resin 19 is regenerated with sulfuric acid 22 and sufficiently washed with water 16, both ion exchange resins are transferred to the mixing column 23.
The water is mixed in the condensate demineralizer 7 and sent back to the condensate demineralizer 7. In this ion exchange resin regeneration, the water 16 is purified by converting the raw water 24 into pure water using the ion exchange resin 26 of the demineralizer 25 and then adding it to the pure water tank 2.
It can be stored in 7. The pure water tank 27 is equipped with a decarbonation gas tower 12 in an opening such as a manhole, and air enters and leaves the pure water tank only through this decarbonation gas tower 12.

イオン交換樹脂の移送、分離等に用いる空気17は、外
気28を脱炭酸ガス塔12を通してコンプレッサー29
で圧縮されて用いられる。
Air 17 used for transporting, separating, etc. the ion exchange resin is obtained by passing outside air 28 through a decarbonation gas tower 12 to a compressor 29.
It is compressed and used.

陰イオン交換樹脂の再生に用いる水酸化ナトリウムは、
貯蔵タンク30の開孔部に脱炭酸ガス塔12を設け、タ
ンク30内の空気は脱炭酸ガス塔を通して行なわれるよ
うにし、この中で水酸化ナトリウムを溶解及び貯蔵する
Sodium hydroxide used for regenerating anion exchange resin is
A decarbonation gas column 12 is provided in the opening of the storage tank 30, so that the air in the tank 30 is passed through the decarbonation gas column, and sodium hydroxide is dissolved and stored therein.

脱炭酸ガス塔12の使用方法の1例を第3図に示した。An example of how the decarbonation gas tower 12 is used is shown in FIG.

貯蔵タンク27のマンホール31に配管32が固定でき
るようにし、配管32に、粒状のソーダライム33を充
填した脱炭酸ガス塔12を固定する。脱炭酸ガス塔12
は、取り付けおよび取り外しが可能であり、炭酸吸着剤
の取り替えが可能な構造とし、炭酸吸着剤は飛散を防ぐ
ために前後に網37を入れる。この炭酸ガス吸収塔の容
量は、貯蔵タンクの容量及び空気の通過量によって異る
。例えば、ソーダ石灰を吸着剤に用いた場合、炭酸ガス
吸収能力は25%(JIS K 86031975年)
である。一方、空気中の炭酸ガス濃度は0.0338%
である。空気1ボ中の炭酸ガスは0.0338 Qで、
この重量は標準状態で0.66gである。沸騰水型原子
力発電所の復水貯蔵タンク1基の容量を2000tとし
、タンク内の空気が5回入れ替わる場合に必要なソーダ
石炭の量は本実施例によれば、復水脱塩器のイオン交換
樹脂の移送、分離、逆洗、洗浄、再生等の操作において
、空気中の炭酸ガスが原因となって陰イオン交換樹脂に
吸着される炭酸イオン負荷を無くすることができるので
、樹脂の再生頻度を少なく、あるいは零とすることがで
き、原子力発電所から発生する廃棄物発生量が低減でき
る効果がある。
A pipe 32 can be fixed to a manhole 31 of a storage tank 27, and a decarbonation gas column 12 filled with granular soda lime 33 is fixed to the pipe 32. Decarbonation gas tower 12
The structure is such that it can be attached and removed, and the carbonic acid adsorbent can be replaced, and a net 37 is placed in the front and rear of the carbonic acid adsorbent to prevent it from scattering. The capacity of this carbon dioxide absorption tower varies depending on the capacity of the storage tank and the amount of air passing through. For example, when soda lime is used as an adsorbent, the carbon dioxide absorption capacity is 25% (JIS K 86031975)
It is. On the other hand, the carbon dioxide concentration in the air is 0.0338%
It is. The carbon dioxide gas in 1 volume of air is 0.0338 Q,
This weight is 0.66g in standard condition. According to this example, when the capacity of one condensate storage tank in a boiling water nuclear power plant is 2000 tons and the air in the tank is replaced five times, the amount of soda coal required is the ionization of the condensate demineralizer. During operations such as transferring, separating, backwashing, cleaning, and regenerating the exchange resin, it is possible to eliminate the carbonate ion load that is adsorbed on the anion exchange resin due to carbon dioxide gas in the air, making it possible to regenerate the resin. The frequency can be reduced or eliminated, which has the effect of reducing the amount of waste generated from nuclear power plants.

樹脂再生を零とすることにより、再生薬品を濃縮する腐
食性の高い濃縮廃液の発生を零とし、発生廃棄物の種類
および発生量の低減にとどまらず、プラント内の腐食性
環境の改善にも寄与する。
By reducing resin regeneration to zero, the generation of highly corrosive concentrated waste liquid that concentrates recycled chemicals is eliminated, which not only reduces the type and amount of waste generated, but also improves the corrosive environment within the plant. Contribute.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、復水脱塩器再生廃液を零とすること、
薬品再生系統の設備を小規模化すること、さらに、再生
廃液濃縮器を削除することができる。
According to the present invention, reducing the condensate demineralizer regenerated waste liquid to zero;
The equipment for the chemical regeneration system can be downsized, and the regeneration waste liquid concentrator can be eliminated.

したがって、沸騰水型原子力発電所から発生する廃棄物
の種類および発生量を低減でき、さらに。
Therefore, the type and amount of waste generated from boiling water nuclear power plants can be reduced and further.

設備コストを低減することができる。本発明の効果を表
1に示す。
Equipment costs can be reduced. Table 1 shows the effects of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例を示す沸騰水型原子
力発電所の主要系統図及び復水脱塩器まわりの系統を示
す。第3図は炭酸ガス吸収塔の構造と使用例を示す、第
4図は従来の復水脱塩器の再生方法を示す。第5[!I
は実際に使われた樹脂のイオン負荷量、第6図は空気中
の炭酸ガスの水への溶解度、第7図は炭酸イオンを吸着
した陰イオン交換樹脂の貫流イオン交換容量の低下の様
子をそれぞれ示す。 1・・・原子炉、3・・・タービン、4・・・復水器、
5・・・ホットウェル、6・・・復水濾過器、7・・・
復水脱塩器、8・・・給水加熱器、9・・・復水真空破
壊弁、10・・・給水再循環配管、11・・・復水再循
環配管、12・・・炭酸ガス吸着塔、13・・・復水真
空ポンプ、14・・・イオン交換樹脂、15・・・イオ
ン交換樹脂再生塔。 16・・・用水、17・・・空気、18・・・陰イオン
交換樹脂、19・・・陽イオン交換樹脂、20・・・陰
イオン交換樹脂再生塔、21・・・水酸化ナトリウム溶
液、22・・・硫酸、23・・・混合塔、24・・・原
水、25・・・純水製造装置、27・・・純水貯蔵タン
ク、28・・・外気、29・・・コンプレッサー、30
・・・水酸化ナトリウム溶液貯蔵タンク、31・・・マ
ンホール、32・・・配管、33・・・炭酸ガス吸着剤
、37・・・網。 第3図 第5図 陰イオン交換樹脂 陽イオン交換樹脂 幸町3 キガ
FIG. 1 and FIG. 2 show a main system diagram of a boiling water nuclear power plant and a system around a condensate desalination device showing an embodiment of the present invention. FIG. 3 shows the structure and usage example of a carbon dioxide absorption tower, and FIG. 4 shows a conventional method for regenerating a condensate demineralizer. Fifth [! I
is the ion load of the resin actually used, Figure 6 is the solubility of carbon dioxide in the air in water, and Figure 7 is the decrease in the through-flow ion exchange capacity of the anion exchange resin that has adsorbed carbonate ions. Each is shown below. 1... Nuclear reactor, 3... Turbine, 4... Condenser,
5... Hot well, 6... Condensate filter, 7...
Condensate demineralizer, 8... Feed water heater, 9... Condensate vacuum break valve, 10... Feed water recirculation piping, 11... Condensate recirculation piping, 12... Carbon dioxide adsorption Tower, 13... Condensate vacuum pump, 14... Ion exchange resin, 15... Ion exchange resin regeneration tower. 16... Water, 17... Air, 18... Anion exchange resin, 19... Cation exchange resin, 20... Anion exchange resin regeneration tower, 21... Sodium hydroxide solution, 22... Sulfuric acid, 23... Mixing column, 24... Raw water, 25... Pure water production equipment, 27... Pure water storage tank, 28... Outside air, 29... Compressor, 30
... Sodium hydroxide solution storage tank, 31... Manhole, 32... Piping, 33... Carbon dioxide adsorbent, 37... Net. Figure 3 Figure 5 Anion exchange resin Cation exchange resin Saiwaicho 3 Kiga

Claims (1)

【特許請求の範囲】 1、原子炉、蒸気タービン、蒸気を凝縮する復水器、イ
オン交換樹脂を用いて復水を浄化する復水脱塩器、及び
給水加熱器を主たる構成要素とする原子力発電プラント
において、プラント内に流入する空気流入口に空気中の
炭酸ガスを除去する炭酸ガス除去装置を設けたことを特
徴とする原子力発電プラント。 2、復水器の真空破壊弁を有する配管の一部に炭酸ガス
除去装置を設けたことを特徴とする特許請求の範囲第1
項記載の原子力発電プラント。 3、陰イオン交換樹脂再生装置に炭酸ガス除去装置を設
けたことを特徴とする特許請求の範囲第1項記載の原子
力発電プラント。 4、再生したイオン交換樹脂を水で洗浄する洗浄装置に
炭酸ガス除去装置を設けたことを特徴とする特許請求の
範囲第1項記載の原子力発電プラント。 5、炭酸ガス除去装置の炭酸ガス収収剤は、ソーダ石灰
又は、ソーダアスベストであることを特徴とする特許請
求の範囲第1項又は第2項記載の原子力発電プラント。
[Claims] 1. A nuclear power plant whose main components include a nuclear reactor, a steam turbine, a condenser that condenses steam, a condensate demineralizer that purifies condensate using an ion exchange resin, and a feedwater heater. A nuclear power generation plant characterized in that a carbon dioxide removal device for removing carbon dioxide from the air is provided at an air inlet that flows into the plant. 2. Claim 1, characterized in that a carbon dioxide removal device is provided in a part of the piping having the vacuum breaker valve of the condenser.
Nuclear power plant as described in section. 3. The nuclear power plant according to claim 1, wherein the anion exchange resin regeneration device is provided with a carbon dioxide removal device. 4. The nuclear power plant according to claim 1, characterized in that a washing device for washing the regenerated ion exchange resin with water is provided with a carbon dioxide removal device. 5. The nuclear power plant according to claim 1 or 2, wherein the carbon dioxide absorbent of the carbon dioxide removal device is soda lime or soda asbestos.
JP60087211A 1985-04-23 1985-04-23 Nuclear power plant Expired - Lifetime JPH0631797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087211A JPH0631797B2 (en) 1985-04-23 1985-04-23 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087211A JPH0631797B2 (en) 1985-04-23 1985-04-23 Nuclear power plant

Publications (2)

Publication Number Publication Date
JPS61245087A true JPS61245087A (en) 1986-10-31
JPH0631797B2 JPH0631797B2 (en) 1994-04-27

Family

ID=13908602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087211A Expired - Lifetime JPH0631797B2 (en) 1985-04-23 1985-04-23 Nuclear power plant

Country Status (1)

Country Link
JP (1) JPH0631797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172978A (en) * 2011-02-17 2012-09-10 Metawater Co Ltd Trihalomethane measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186093A (en) * 1982-04-23 1983-10-29 株式会社日立製作所 Method of obtaining long life of desalter of clean circuit in atomic power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186093A (en) * 1982-04-23 1983-10-29 株式会社日立製作所 Method of obtaining long life of desalter of clean circuit in atomic power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172978A (en) * 2011-02-17 2012-09-10 Metawater Co Ltd Trihalomethane measuring apparatus

Also Published As

Publication number Publication date
JPH0631797B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US9895661B2 (en) Process and device for desulphurization and denitration of flue gas
RU2297055C1 (en) Method for recovering still bottoms of liquid radioactive waste
JP2001215294A (en) Condensate demineralizer
JPS61245087A (en) Nuclear power generating plant
JP5589327B2 (en) Regeneration method of amine liquid
KR102511218B1 (en) Regeneration method of carbonic acid layered double hydroxide and acid exhaust gas treatment facility
CN205177419U (en) Use waste gas treatment system of pond formula ordinary pressure heat supply heap of spentnuclear fuel
CN112723513B (en) Treatment process for purifying chlorine-containing wastewater by ammonium salt crystallization
CN208594054U (en) A kind of poor amine liquid device of hybrid resin bed purification
JP2001133594A (en) Method of removing radionuclide from reactor cooling water
RU2066493C1 (en) Method of atomic power stations liquid radioactive wastes treatment
JP6211779B2 (en) Treatment method for boron-containing wastewater
JPH02303593A (en) Two-stage type reverse osmosis membrane device
CN107789953B (en) Method and device for flue gas desulfurization
JP5585025B2 (en) Regeneration method of amine liquid
JPS60132695A (en) Treatment of waste water containing sulfur compound
CN216273427U (en) Waste hydrochloric acid purification system for treating organic matters
CN216336958U (en) Intercooling circulating water bypass flow treatment system
JPH0447280B2 (en)
EP0261662A2 (en) Method for removal of iodine in gas
Vinnitskii et al. Radioactive waste management in PWR technology: some technical solutions for liquid radioactive media processing systems of the “nuclear island”
JPS6148798A (en) Sight bunker pool water purifying facility
JP6702544B2 (en) Sulfate ion reduction method, sulfate ion reduction device, and sulfate ion reactant
JPS5841913B2 (en) Condensate treatment method
Beker Treatment of geothermal wastewater by ion exchange method