JPH0447280B2 - - Google Patents

Info

Publication number
JPH0447280B2
JPH0447280B2 JP56172741A JP17274181A JPH0447280B2 JP H0447280 B2 JPH0447280 B2 JP H0447280B2 JP 56172741 A JP56172741 A JP 56172741A JP 17274181 A JP17274181 A JP 17274181A JP H0447280 B2 JPH0447280 B2 JP H0447280B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin
cation exchange
over
acidic cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56172741A
Other languages
Japanese (ja)
Other versions
JPS5876146A (en
Inventor
Shigeoki Nishimura
Tetsuro Adachi
Katsuya Ebara
Toshio Ogawa
Sankichi Takahashi
Kenkichi Izumi
Shoji Kubota
Yoshe Takashima
Seiichi Numazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56172741A priority Critical patent/JPS5876146A/en
Publication of JPS5876146A publication Critical patent/JPS5876146A/en
Publication of JPH0447280B2 publication Critical patent/JPH0447280B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 本発明は原子力プラントにおける復水の浄化に
使用されるイオン交換樹脂を用いた過脱塩装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an over-desalination apparatus using an ion exchange resin used for purifying condensate in a nuclear power plant.

第1図に示すように、原子力発電所のうち沸騰
水型の原子炉1を持つ従来のプラントにおいて
は、タービン2を駆動した蒸気は復水器3により
復水として回収される。この復水は、強酸性陽イ
オン交換樹脂および強塩基性陰イオン交換樹脂を
粉砕して粉末状としたものをプリコートした過
脱塩器4と通常の球形の強酸性および強塩基性の
粒状イオン交換樹脂を混床で用いた脱塩器5とを
シリーズにした浄化系にて浄化された後に、給水
加熱器6を経て原子炉1へ給水される。
As shown in FIG. 1, in a conventional nuclear power plant having a boiling water reactor 1, steam that drives a turbine 2 is recovered as condensate by a condenser 3. This condensate is collected by a super-demineralizer 4 pre-coated with powdered strong acidic cation exchange resin and strong basic anion exchange resin, and ordinary spherical strongly acidic and strongly basic granular ions. After being purified in a purification system including a demineralizer 5 using a mixed bed of exchange resin, water is supplied to the reactor 1 via a feed water heater 6.

復水中の不純物としては、陽イオンとしては、
復水器のコンデンサー管の海水リークによる
Na+、材料の腐食によるFe2+,Mn2+,Ni2+
Cr2+、陰イオンとしては、炭酸根、ケイ酸イオ
ン、塩素イオンなどが1〜10ppb程度含まれてお
り、さらにクラツドとよばれる酸化鉄を主成分と
する微粒子(粒径3μm程度)が10〜100ppb含ま
れている。従来の過脱塩器4においては、プリ
コート層の厚みが数mmと薄いこともあつて、イオ
ンの除去よりもクラツドの除去を主体として行な
つている。
As impurities in condensate, as cations,
Due to seawater leak in the condenser pipe of the condenser
Na + , Fe 2+ , Mn 2+ , Ni 2+ due to material corrosion,
Cr 2+ , anions include carbonate radicals, silicate ions, chloride ions, etc., which are about 1 to 10 ppb, and fine particles (particle size of about 3 μm) called clades, whose main component is iron oxide, are about 10 to 10 ppb. Contains ~100ppb. In the conventional over-desalination device 4, the thickness of the precoat layer is as thin as several millimeters, and therefore the removal of crud is mainly performed rather than the removal of ions.

現在、過脱塩器4にプリコートされている樹
脂の寿命は、樹脂にクラツドが付着することに起
因する樹脂層の目づまりにより過層の圧力損失
が増大して所定の値に達すると逆洗して樹脂を払
い落して使用済樹脂としており、使用済樹脂の発
生量が多い。この時、樹脂の使用されたイオン交
換容量は全体の1割〜2割程度であり、イオン交
換基の利用率は極めて悪い。
Currently, the lifespan of the resin pre-coated in the over-demineralizer 4 is limited to the time when the pressure loss of the over-layer increases due to clogging of the resin layer caused by the adhesion of crud to the resin and reaches a predetermined value. The resin is scraped off and used as used resin, resulting in a large amount of used resin. At this time, the ion exchange capacity of the resin used is about 10% to 20% of the total, and the utilization rate of the ion exchange groups is extremely poor.

クラツドは、前述した如く、腐食により生成し
た酸化鉄粒子であるが、その中に放射性物質
(Co60,Mn54)を含むため、クラツド自体も放射
性を持つ。そのため、クラツドを吸着除去した使
用済の粉末状樹脂も放射能を持ち、放射性廃棄物
として処理処分しなければならない。従つて、放
射性廃棄物となる使用済樹脂の発生量はなるべく
少ないことが望ましい。
As mentioned above, crud is iron oxide particles generated by corrosion, but since it contains radioactive substances (Co 60 , Mn 54 ), crud itself is radioactive. Therefore, the used powdered resin from which the crud has been adsorbed and removed also has radioactivity and must be disposed of as radioactive waste. Therefore, it is desirable to generate as little amount of used resin as radioactive waste as possible.

過脱塩器4と脱塩器5とをシリーズに用いて
いるのであるから、過脱塩器4においてはクラ
ツドを主体として除去し、その除去性能(率、お
よび量)を向上することができれば、復水の浄化
性能の向上および放射性廃棄物となる使用済樹脂
の発生量の削減に寄与できるものと考えられる。
Since the super demineralizer 4 and the demineralizer 5 are used in series, it is possible to mainly remove crud in the super demineralizer 4 and improve its removal performance (rate and amount). It is believed that this method can contribute to improving condensate purification performance and reducing the amount of used resin that becomes radioactive waste.

本発明は、粉末状イオン交換樹脂を用いた過
脱塩器と粒状イオン交換樹脂を用いた脱塩器とを
前者が後者の上流側にある様に直列に組合せてな
る原子力プラントの復水の過脱塩装置におい
て、上記過脱塩器には平均粒径約30μmの粉末
状のアクリル系カルボン酸型弱酸性陽イオン交換
樹脂と粉末状の強塩基性陰イオン交換樹脂との混
合物をフイルタエレメントにプリコートしたもの
を用い、上記脱塩器には粒状の強酸性陽イオン交
換樹脂と粒状の強塩基性陰イオン交換樹脂との混
床を用いたことを特徴とする。
The present invention provides condensate water for a nuclear power plant in which an over-desalination device using a powdered ion-exchange resin and a desalination device using a granular ion-exchange resin are combined in series so that the former is located upstream of the latter. In the over-desalination equipment, a mixture of a powdered acrylic carboxylic acid type weakly acidic cation exchange resin and a powdered strong basic anion exchange resin with an average particle size of approximately 30 μm is placed in the over-desalination equipment as a filter element. The demineralizer is characterized by using a mixed bed of a granular strongly acidic cation exchange resin and a granular strongly basic anion exchange resin.

従来、過脱塩器4に用いられている粉末状樹
脂は、原子炉復水の浄化に使用実績のある強酸性
陽イオン交換樹脂および強塩基性陰イオン交換樹
脂が用いられているが、強酸性陽イオン交換樹脂
の代表例であるベンゼンスルホン酸系樹脂は耐熱
性が高いので、使用済みとなつた後に、これを処
分するために500℃以上で熱分解しても、50wt%
程度の残渣が残る。これに対し、本発明に用いる
カルボン酸型弱酸性陽イオン交換樹脂であるアク
リル系カルボン酸型弱酸性陽イオン交換樹脂は、
耐熱性が低いために450℃以上で熱分解した場合
95wt%以上分解でき、わずかの残渣しか残らな
い。
Conventionally, the powdered resin used in the super-demineralizer 4 is a strongly acidic cation exchange resin and a strongly basic anion exchange resin, which have been used to purify nuclear reactor condensate. Benzene sulfonic acid resin, which is a typical example of cation exchange resin, has high heat resistance, so even if it is thermally decomposed at 500℃ or higher for disposal after being used, it will still retain 50wt%.
Some residue remains. On the other hand, the acrylic carboxylic acid type weakly acidic cation exchange resin, which is the carboxylic acid type weakly acidic cation exchange resin used in the present invention,
When thermally decomposed at 450℃ or higher due to low heat resistance
It can decompose more than 95wt%, leaving only a small amount of residue.

酸素含有雰囲気中で焼却処理した場合も結果は
同じになる。すなわち、従来のベンゼンスルホン
酸系樹脂は高耐熱性のためなかなか焼却できず、
かつ生成した残渣の一部が炉壁に付着して炉材の
寿命を短くする。これは焼却が800℃以上で行な
われるため、イオン交換樹脂の一部が溶融して炉
壁付着が起りやすいためである。これに対し、本
発明で用いるアクリル系カルボン酸型弱酸性陽イ
オン交換樹脂では上記のような問題はない。
The results are the same when incinerated in an oxygen-containing atmosphere. In other words, conventional benzenesulfonic acid resins are difficult to incinerate due to their high heat resistance.
In addition, some of the generated residue adheres to the furnace wall, shortening the life of the furnace material. This is because incineration is carried out at temperatures above 800°C, which tends to cause some of the ion exchange resin to melt and stick to the furnace walls. On the other hand, the acrylic carboxylic acid type weakly acidic cation exchange resin used in the present invention does not have the above problem.

また、従来使用されていたベンゼンスルホン酸
系樹脂を熱分解あるいは焼却すると、樹脂中に硫
黄を含んでいるため、H2SやSOxなどの有害ガ
スを発生する。これに対し、本発明で用いるカル
ボン酸型弱酸性陽イオン交換樹脂であるアクリル
系カルボン酸型樹脂は硫黄原子を含まないため、
これを熱分解あるいは焼却処理した場合でもH2
SやSOxを発生せず、ガス処理系を簡単化できる
と共に、H2S等による材料腐食も防止できる。
Furthermore, when conventionally used benzenesulfonic acid resins are thermally decomposed or incinerated, harmful gases such as H 2 S and SOx are generated because the resin contains sulfur. On the other hand, since the acrylic carboxylic acid type resin, which is the carboxylic acid type weakly acidic cation exchange resin used in the present invention, does not contain a sulfur atom,
Even if this is thermally decomposed or incinerated, H2
It does not generate S or SOx, simplifies the gas treatment system, and prevents material corrosion caused by H 2 S and the like.

強酸性の陽イオン交換樹脂は、その交換基とし
てスルフオン酸基をもつている。そのため、中性
塩たとえばNaClの分解は可能であるが、交換容
量は弱酸性の陽イオン交換樹脂に比べて少ない。
他方、弱酸性陽イオン交換樹脂は中性塩の分解能
力は低い。しかし、弱酸性の陽イオン交換樹脂の
交換基として用いられているカルボン酸基は
Fe2+等の重金属イオンとキレートを形成し、そ
の保持容量は極めて大きい、また重金属イオンは
通常2価又は3価のイオンとして存在するため、
カルボン酸のような弱いイオン交換基によつても
イオン交換反応が可能である。弱酸性陽イオン交
換樹脂の方が強酸性陽イオン交換樹脂よりも、単
位重量又は単位体積当りの交換基容量が多いの
で、重金属イオン特にクラツドのような複合酸化
物イオンに対する交換捕捉能力は高い。
Strongly acidic cation exchange resins have sulfonic acid groups as their exchange groups. Therefore, although it is possible to decompose neutral salts such as NaCl, the exchange capacity is lower than that of weakly acidic cation exchange resins.
On the other hand, weakly acidic cation exchange resins have a low ability to decompose neutral salts. However, the carboxylic acid group used as an exchange group in weakly acidic cation exchange resins is
It forms a chelate with heavy metal ions such as Fe 2+ , and its retention capacity is extremely large. Also, heavy metal ions usually exist as divalent or trivalent ions, so
Ion exchange reactions are also possible with weak ion exchange groups such as carboxylic acids. Since weakly acidic cation exchange resins have a larger exchange group capacity per unit weight or unit volume than strongly acidic cation exchange resins, they have a higher exchange and trapping ability for heavy metal ions, especially complex oxide ions such as cladding.

本発明においては、中性塩の分解・除去は主と
して後段の脱塩器で行ない、前段の過脱塩器は
中性塩の分解を目的としているのではなく、重金
属イオンおよび重金属酸化物微粒子を除去するこ
とを目的としている。従つて、この過脱塩器に
おいては、過差圧の上昇が性能限界の重要な判
断因子となるが、本発明による過脱塩器では差
圧上昇が緩やかになるという効果がある。本発明
において前段の過脱塩器に陽イオン交換樹脂と
してカルボン酸型弱酸性陽イオン交換樹脂を用い
るのは、重金属イオンに対するイオン交換能力の
大きさもあることながら、重金属酸化物微粒子の
捕捉が表面でのみ行なわれるのでなく、体積過
(フイルタ層たる樹脂粉末層内)となるので、差
圧上昇が緩やかになるからである。これを説明す
ると、陽イオン交換樹脂のイオン交換基の水素イ
オンが他の陽イオンとイオン交換を行なうに伴つ
て粉末状イオン交換樹脂の層は収縮するが、強酸
性陽イオン交換樹脂は単位重量もしくは単位体積
当りのイオン交換基の数が少ない(イオン交換基
の解離能力が高いためイオン反発力が強く、多く
の交換基の導入は困難)ので、少いイオン交換量
ですぐ体積収縮を起し、重金属酸化物微粒子の捕
捉が表面過になつてしまうのに対して、弱酸性
陽イオン交換樹脂は単位重量もしくは単位体積当
りのイオン交換基の数が多いので、粉末状イオン
交換樹脂層の収縮がなかなか起りにくく、重金属
酸化物微粒子の捕捉が表面過に移行しにくい。
また、イオン交換能力(イオンを強く保持する能
力)は強酸性陽イオン交換樹脂の方が大であるの
で、イオン交換そのものも、強酸性陽イオン交換
樹脂層の方が弱酸性陽イオン交換樹脂層に比較し
て、より表面から進行する。このように本発明に
おける過脱塩器ではクラツドを体積過で捕捉
し、差圧上昇が緩やかにあるので、それだけクラ
ツド捕捉量が多く、放射性廃棄物としての使用済
樹脂の発生量を減らすことができる。
In the present invention, decomposition and removal of neutral salts is mainly carried out in the desalination device in the latter stage, and the purpose of the over-desalination device in the former stage is not to decompose neutral salts, but to remove heavy metal ions and heavy metal oxide fine particles. It is intended to remove. Therefore, in this over-desalination device, the increase in differential pressure is an important factor in determining the performance limit, but the over-desalination device according to the present invention has the effect of slowing down the increase in differential pressure. In the present invention, the carboxylic acid type weakly acidic cation exchange resin is used as the cation exchange resin in the pre-stage over-desalination unit because it has a large ion exchange capacity for heavy metal ions, and the trapping of heavy metal oxide fine particles is difficult at the surface. This is because the difference in pressure rises more slowly because the volume is exceeded (inside the resin powder layer which is the filter layer). To explain this, the layer of powdered ion exchange resin contracts as the hydrogen ions in the ion exchange group of the cation exchange resin undergo ion exchange with other cations, but the strong acidic cation exchange resin Alternatively, because the number of ion exchange groups per unit volume is small (the ion exchange group has a high dissociation ability, the ion repulsion is strong, and it is difficult to introduce many exchange groups), volume contraction occurs immediately with a small amount of ion exchange. However, heavy metal oxide fine particles are trapped on the surface too much, whereas weakly acidic cation exchange resins have a large number of ion exchange groups per unit weight or unit volume, so it is difficult to capture heavy metal oxide particles on the surface. Shrinkage is difficult to occur, and heavy metal oxide fine particles are difficult to capture and migrate to the surface.
In addition, since the ion exchange capacity (ability to strongly hold ions) is greater in strongly acidic cation exchange resins, in terms of ion exchange itself, the strongly acidic cation exchange resin layer is better than the weakly acidic cation exchange resin layer. Compared to , it progresses from the surface more. In this way, the over-desalination device of the present invention traps crud in excess volume and the differential pressure rises slowly, so the amount of crud trapped is correspondingly large and the amount of used resin generated as radioactive waste can be reduced. can.

以下、実施例に従つて本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail according to Examples.

実施例 第1図に沸騰水型原子力発電所の浄化システム
を示す。原子炉1で発生した蒸気はタービン2を
駆動し、復水器3にて復水として回収される。復
水は、過脱塩器4、次いで脱塩器5にて処理さ
れ、給水加熱器6を通して原子炉1へと給水され
る。
Embodiment Figure 1 shows a purification system for a boiling water nuclear power plant. Steam generated in the nuclear reactor 1 drives a turbine 2 and is recovered as condensate in a condenser 3. The condensate is treated in a superdemineralizer 4 and then in a demineralizer 5, and is supplied to the reactor 1 through a feedwater heater 6.

このような過脱塩器4とその下流側の脱塩器
5とからなる復水過脱塩装置を小型に模擬した
実験装置で復水処理を行つた。
Condensate treatment was carried out using an experimental device that simulated a compact condensate over-desalination apparatus consisting of such an over-desalination device 4 and a desalination device 5 on the downstream side thereof.

この実験装置においては、下流側の脱塩器に
は、従来と同様、粒状の強酸性陽イオン交換樹脂
および強塩基性陰イオン交換樹脂を混床で用い
た。
In this experimental device, a mixed bed of granular strongly acidic cation exchange resin and strongly basic anion exchange resin was used in the downstream desalination device, as in the conventional case.

また、この実験装置においては、上流側の過
脱塩器には、平均粒径30μmのカルボン酸基をイ
オン交換基とする粉末状の弱酸性のアクリル系陽
イオン交換樹脂と強塩基性の粉末状の陰イオン交
換樹脂とを1対1で混合し、実機を模擬した小型
の過筒にプリコートして用いた。樹脂は過面
積1m2当り1Kg(乾燥重量)使用し、過流速を
8m/hとした。また復水としてイオン交換水に
水酸化鉄を加えたものを使用した。クラツド濃度
は実復水を模擬してFe 30ppbとした。このとき
の過筒の入口−出口間の圧力差の上昇カーブを
第2図中の曲線Aにて示す。
In addition, in this experimental device, the upstream super-demineralizer contains a powdered weakly acidic acrylic cation exchange resin with an average particle size of 30 μm and a carboxylic acid group as an ion exchange group, and a strongly basic powder. Anion exchange resin was mixed in a 1:1 ratio, and the mixture was pre-coated onto a small overtube simulating an actual machine. Use 1 kg (dry weight) of resin per 1 m2 of overflow area, and reduce the overflow rate.
The speed was set at 8m/h. In addition, ion-exchanged water with iron hydroxide added thereto was used as condensate. The clad concentration was set to 30 ppb of Fe to simulate real condensate. The rising curve of the pressure difference between the inlet and the outlet of the tube at this time is shown by curve A in FIG.

第2図には比較のため、平均粒径30μmのスル
ボン酸基をイオン交換基とする強酸性の粉末状陽
イオン交換樹脂を前述のカルボン酸型弱酸性陽イ
オン交換樹脂の代わりに用いた場合の圧力差の上
昇カーブBも併示した。
For comparison, Figure 2 shows a case where a strongly acidic powdered cation exchange resin with an average particle size of 30 μm and having a sulfonic acid group as an ion exchange group is used instead of the aforementioned carboxylic acid type weakly acidic cation exchange resin. An increase curve B of the pressure difference is also shown.

第2図に示される如く、カルボン酸型弱酸性陽
イオン交換樹脂を用いた場合には、クラツド付着
容量が強酸性陽イオン交換樹脂を用いた場合より
1.5倍以上大きいため、過筒の差圧上昇カーブ
の上り方がおそく、その割合だけクラツド捕捉量
が多く、放射性廃棄物発生量の低減に有利であ
る。
As shown in Figure 2, when a carboxylic acid type weakly acidic cation exchange resin is used, the cladding capacity is higher than when a strongly acidic cation exchange resin is used.
Since it is more than 1.5 times larger, the differential pressure rise curve of the overtube rises slowly, and the amount of crud captured is correspondingly large, which is advantageous in reducing the amount of radioactive waste generated.

弱酸性の陽イオン交換樹脂は加水分解を受けや
すいと言われているが、過脱塩器に使用した場
合は、その寿命は10日〜50日程度であり、また下
流側に脱塩器があるので、これは実際の使用上は
問題とならない。
It is said that weakly acidic cation exchange resins are susceptible to hydrolysis, but when used in a super-demineralizer, their lifespan is about 10 to 50 days, and if a demineralizer is installed downstream. Therefore, this does not pose a problem in actual use.

また、キレート樹脂のイオン交換基もイミドジ
カルボン酸基等であるのでキレート樹脂も弱酸性
陽イオン交換樹脂として使用が可能と考えられ
る。
Further, since the ion exchange group of the chelate resin is also an imidodicarboxylic acid group, it is considered that the chelate resin can also be used as a weakly acidic cation exchange resin.

過脱塩器における陰イオン交換樹脂としても
弱塩基性の陰イオン交換樹脂の使用が可能である
が、樹脂の物理、化学的強度及び、塩素イオンの
除去性能を考慮して、強塩基性陰イオン交換樹脂
を本実施例では使用した。
Although it is possible to use a weakly basic anion exchange resin as an anion exchange resin in the over-desalter, it is possible to use a strongly basic anion exchange resin in consideration of the physical and chemical strength of the resin and the ability to remove chlorine ions. An ion exchange resin was used in this example.

本実施例では、復水過脱塩装置として上記の
ような過脱塩器とその下流の脱塩器とをシリー
ズに組合せている。過脱塩器の部分で大半の重
金属イオンとクラツドを除去することが可能であ
るが、しかし、この過脱塩器では陽イオン交換
樹脂としては弱酸性陽イオン交換樹脂を用いてい
るため中性塩を完全に除去することはできないか
ら、これを下流の脱塩器で除去する。それ故に、
復水器3からの海水リークの可能性に対しても充
分対処できる。
In this embodiment, as a condensate over-desalination device, the above-described over-desalination device and a downstream desalination device are combined in series. It is possible to remove most of the heavy metal ions and cladding in the super-desalter, but since this super-desalter uses a weakly acidic cation exchange resin, it is neutral. Since salt cannot be completely removed, it is removed in a downstream desalter. Therefore,
The possibility of seawater leakage from the condenser 3 can also be adequately dealt with.

本発明によれば、前段の過脱塩器と後段の脱
塩器とをシリーズに組合せてなる原子力プラント
の復水の過脱塩装置において、前段の過脱塩
器における陽イオン交換樹脂としてカルボン酸型
弱酸性陽イオン交換樹脂を用いたことにより重金
属イオン及びクラツドの捕捉性能が向上し、クラ
ツドの捕捉が体積過となつて差圧の上昇が遅く
なるので、差圧の所定値到達で使用済となるまで
の樹脂の寿命が延長すると共に、それだけ放射性
廃棄物としての使用済樹脂の排出量を低減でき
る。さらに、この過脱塩器で除去できない中性
塩は後段(下流)の脱塩器で除去できる。
According to the present invention, in a super-desalinating device for condensate in a nuclear power plant, which is constructed by combining a first-stage super-desalinator and a second-stage demineralizer in series, carbon dioxide is used as the cation exchange resin in the first-stage super-desalinator. By using an acid type weakly acidic cation exchange resin, the trapping performance of heavy metal ions and cruds is improved, and the crud trapping exceeds the volume, which slows down the rise in differential pressure, so it can be used only when the differential pressure reaches a predetermined value. This not only extends the life of the resin until it is used up, but also reduces the amount of used resin discharged as radioactive waste. Furthermore, neutral salts that cannot be removed by this over-desalination device can be removed by a subsequent (downstream) desalination device.

また、アクリル系カルボン酸型弱酸性陽イオン
交換樹脂は熱的に容易に分解あるいは焼却できる
ので、廃棄物としての処理が極めて容易であるば
かりでなく、残渣が少いので、廃棄物の大幅な減
容が可能であるという利点がある。さらに、熱分
解あるいは焼却時に有害ガスを発生させる心配も
なく、焼却設備を簡素化できる利点もある。
In addition, acrylic carboxylic acid type weakly acidic cation exchange resins can be easily thermally decomposed or incinerated, making them extremely easy to dispose of as waste. It has the advantage of being able to be reduced in volume. Furthermore, there is no need to worry about generating harmful gases during thermal decomposition or incineration, and there is an advantage that incineration equipment can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子力プラントの全体構成
図、第2図は過脱塩器の圧力損失上昇カーブを
本発明の実施例と従来例とについて示す図であ
る。 1……原子炉、2……タービン、3……復水
器、4……過脱塩器、5……脱塩器、6……給
水加熱器。
FIG. 1 is an overall configuration diagram of a boiling water nuclear power plant, and FIG. 2 is a diagram showing a pressure loss increase curve of a super desalination device for an embodiment of the present invention and a conventional example. 1... Nuclear reactor, 2... Turbine, 3... Condenser, 4... Super desalination device, 5... Desalination device, 6... Feed water heater.

Claims (1)

【特許請求の範囲】[Claims] 1 粉末状イオン交換樹脂を用いた過脱塩器と
粒状イオン交換樹脂を用いた脱塩器とを前者が後
者の上流側にある様に直列に組合せてなる原子力
プラントの復水の過脱塩装置において、上記
過脱塩器には平均粒径約30μmの粉末状のアクリ
ル系カルボン酸型弱酸性陽イオン交換樹脂と粉末
状の強塩基性陰イオン交換樹脂との混合物をフイ
ルタエレメントにプリコートしたものを用い、上
記脱塩器には粒状の強酸性陽イオン交換樹脂と粒
状の強塩基性陰イオン交換樹脂との混床を用いた
ことを特徴とする原子力プラントの復水の過脱
塩装置。
1. Over-desalination of condensate in a nuclear power plant, in which an over-desalination device using powdered ion-exchange resin and a desalination device using granular ion-exchange resin are combined in series so that the former is located upstream of the latter. In the device, in the over-desalination device, the filter element was pre-coated with a mixture of a powdered acrylic carboxylic acid type weakly acidic cation exchange resin and a powdered strong basic anion exchange resin with an average particle size of about 30 μm. An over-desalination device for condensate in a nuclear power plant, characterized in that the demineralizer uses a mixed bed of a granular strongly acidic cation exchange resin and a granular strongly basic anion exchange resin. .
JP56172741A 1981-10-30 1981-10-30 Filtering and desalting system Granted JPS5876146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56172741A JPS5876146A (en) 1981-10-30 1981-10-30 Filtering and desalting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56172741A JPS5876146A (en) 1981-10-30 1981-10-30 Filtering and desalting system

Publications (2)

Publication Number Publication Date
JPS5876146A JPS5876146A (en) 1983-05-09
JPH0447280B2 true JPH0447280B2 (en) 1992-08-03

Family

ID=15947450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56172741A Granted JPS5876146A (en) 1981-10-30 1981-10-30 Filtering and desalting system

Country Status (1)

Country Link
JP (1) JPS5876146A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631848B2 (en) * 1985-07-10 1994-04-27 株式会社日立製作所 Method for purifying reactor cooling water, purifying apparatus, and ion-exchange resin composition used therefor
DE3672008D1 (en) * 1985-07-10 1990-07-19 Hitachi Ltd METHOD AND DEVICE FOR CLEANING THE COOLING WATER OF A NUCLEAR REACTOR.
JPS62232598A (en) * 1986-04-02 1987-10-13 オルガノ株式会社 Method of processing water containing radioactive substance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118990A (en) * 1978-03-08 1979-09-14 Hitachi Ltd Regeneration method of desalting type filter for atomic reactor condensate clarification system
JPS5551478A (en) * 1978-10-09 1980-04-15 Japan Organo Co Ltd Treating nuclear power plant utility water or waste water by using ion exchange fiber
JPS5642977A (en) * 1979-09-17 1981-04-21 Hitachi Cable Connecting crosslinkeddpolyethylene insulating cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118990A (en) * 1978-03-08 1979-09-14 Hitachi Ltd Regeneration method of desalting type filter for atomic reactor condensate clarification system
JPS5551478A (en) * 1978-10-09 1980-04-15 Japan Organo Co Ltd Treating nuclear power plant utility water or waste water by using ion exchange fiber
JPS5642977A (en) * 1979-09-17 1981-04-21 Hitachi Cable Connecting crosslinkeddpolyethylene insulating cable

Also Published As

Publication number Publication date
JPS5876146A (en) 1983-05-09

Similar Documents

Publication Publication Date Title
EP0209048B1 (en) Process and apparatus for cleaning nuclear reactor cooling water
JPH0447280B2 (en)
JP2925413B2 (en) Treatment of radioactive liquid waste
JP3119538B2 (en) Decontamination method for radioactive waste resin
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JPS5815016B2 (en) How to clean ion exchange resin
JPS61195400A (en) Method of treating waste liquor containing radioactive nuclide
JP7256061B2 (en) Method for treating hard-to-filter substances
KR102389011B1 (en) Method for treating waste liquid from foam decontamination process
JPS60122400A (en) Method of heating and decomposing used ion exchange resin
JP2938287B2 (en) Treatment of radioactive liquid waste
JPS6159794B2 (en)
JPH0563240B2 (en)
JPS6345595A (en) Method and device for purifying reactor cooling water
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JPS62250923A (en) Filtering method
JPS61245087A (en) Nuclear power generating plant
JPS6031094A (en) Treating facility for radioactive waste
RU2440631C1 (en) Method to decontaminate spend ion-exchange resin
JPS60120298A (en) Regenerator for rein in condensate desalting instrument
Roddy Evaluation of inorganic sorbent treatment for LWR coolant process streams
RU2230381C2 (en) Method for handling liquid radioactive wastes
JPS6189594A (en) Method of purifying reactor water
JP2006162316A (en) Waste liquid processing method and waste liquid processing system
SU1766501A1 (en) Method for regeneration of anion and cation exchanger filters at the first step of water-desalinating plant