JP2938287B2 - Treatment of radioactive liquid waste - Google Patents

Treatment of radioactive liquid waste

Info

Publication number
JP2938287B2
JP2938287B2 JP27470792A JP27470792A JP2938287B2 JP 2938287 B2 JP2938287 B2 JP 2938287B2 JP 27470792 A JP27470792 A JP 27470792A JP 27470792 A JP27470792 A JP 27470792A JP 2938287 B2 JP2938287 B2 JP 2938287B2
Authority
JP
Japan
Prior art keywords
treatment
waste liquid
radioactive waste
eluent
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27470792A
Other languages
Japanese (ja)
Other versions
JPH06130186A (en
Inventor
琢也 北端
修一 吉村
裕一 塚本
安夫 及川
清治 水越
悦夫 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAKUNENRYO SAIKURU KAIHATSU KIKO
Fuji Electric Co Ltd
Original Assignee
KAKUNENRYO SAIKURU KAIHATSU KIKO
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAKUNENRYO SAIKURU KAIHATSU KIKO, Fuji Electric Co Ltd filed Critical KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority to JP27470792A priority Critical patent/JP2938287B2/en
Publication of JPH06130186A publication Critical patent/JPH06130186A/en
Application granted granted Critical
Publication of JP2938287B2 publication Critical patent/JP2938287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラントの系統
除染処理に伴って発生する放射性廃液、ないしは該放射
性廃液の処理に使用した使用済イオン交換樹脂の溶離処
理過程で発生する溶離液を対象として減容,固化する放
射性廃液の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radioactive waste liquid generated in the decontamination treatment of a nuclear power plant or an eluent generated in the process of eluting a used ion exchange resin used for treating the radioactive waste liquid. The present invention relates to a method for treating a radioactive waste liquid which is reduced in volume and solidified.

【0002】[0002]

【従来の技術】原子力プラントから発生する放射性廃液
には、廃液中の放射性核種が金属錯塩の形態で含まれて
いる場合が多い。例えばプラント系統の除染処理廃液に
は、除染時に使用する除染剤の成分としてEDTA(エ
チレンジアミン四酢酸)などに代表されるキレート剤,
クエン酸,シュウ酸などを中心とする有機酸,無機酸、
還元剤、その他の腐蝕防止剤などが含まれており、この
ような放射性廃液は処理対象となるコバルト,マンガ
ン,鉄などの放射性核種(金属成分:M)がキレート剤
(Yn-)と錯体化して金属錯塩(例えばM−Y2-)を形
成している。
2. Description of the Related Art In many cases, radioactive effluents generated from nuclear power plants contain radionuclides in the effluents in the form of metal complex salts. For example, a decontamination treatment waste liquid of a plant system includes a chelating agent represented by EDTA (ethylenediaminetetraacetic acid) as a component of a decontamination agent used at the time of decontamination.
Organic acids and inorganic acids, mainly citric acid and oxalic acid,
It contains a reducing agent and other corrosion inhibitors, and such radioactive waste liquid is treated with a radionuclide (metal component: M) such as cobalt, manganese, or iron and a complex with a chelating agent ( Yn- ). To form a metal complex salt (for example, MY 2- ).

【0003】かかる放射性廃液の処理方法として、共沈
処理法,凝集沈澱法,蒸発濃縮法,逆浸透膜フィルタ法
などとして知られている処理方法で核種がイオン,金属
錯塩の形態で混在している放射性廃液を濃縮処理した
後、高放射能レベルの濃縮液をセメント固化法などによ
り固化処理した上で放射性固体廃棄物としてプラント敷
地内に貯蔵し、一方では濃縮処理で生じた上澄液(低放
射能レベルの処理液)については、固化処理して低放射
能レベルの廃棄物として処分するか、あるいは周囲環境
に影響を及ぼすことのないように化学処理により放射性
物質を除いた後に河川などに放出する処理方法が従来よ
り実施されている。
[0003] As a method for treating such radioactive liquid waste, nuclides are mixed in the form of ions or metal complex salts by a treatment method known as a coprecipitation treatment method, a coagulation sedimentation method, an evaporation concentration method, a reverse osmosis membrane filter method, or the like. After the radioactive waste liquid is concentrated, the concentrated liquid with a high radioactivity level is solidified by a cement solidification method, etc., and stored as radioactive solid waste at the plant premises. For low-radioactive-level treatment liquids), solidify and dispose of them as low-radioactive-level waste, or remove radioactive substances by chemical treatment so as not to affect the surrounding environment, and then remove rivers, etc. Conventionally, a treatment method for releasing the ash to the air has been practiced.

【0004】また、上記の除染処理廃液の処理に、陽イ
オン交換樹脂, 陰イオン交換樹脂を混床式として使用す
るイオン交換法により放射性核種をイオン交換樹脂に吸
着させる処理方法も広く採用されている。なお、陰イオ
ン交換樹脂は中長半減期の放射性核種は含まず、その放
射能レベルも低いのに対し、陽イオン交換樹脂は放射能
レベルが高い中長半減期の放射性核種(例えばCo−6
0などの陽イオン核種成分)を含む。なお、このイオン
交換法では、放射性廃液の処理系で使用したイオン交換
樹脂は使用済み後に二次廃棄物となって多量に発生す
る。しかも、前記のような放射性廃液の処理に使用した
使用済イオン交換樹脂、特に陽イオン交換樹脂は前記の
ように放射能濃度が高いことから、放射性廃棄物として
長期間保管するには無機体に転換して安定した形態に変
えるとともに、可能な限り減容化することが求められて
おり、そのための処理方法として、次記のような方法が
従来より知られている。
In the treatment of the above-mentioned decontamination treatment waste liquid, a treatment method of adsorbing radioactive nuclides to the ion exchange resin by an ion exchange method using a cation exchange resin and an anion exchange resin as a mixed bed type is widely adopted. ing. The anion exchange resin does not contain a radionuclide with a medium-long half-life and has a low radioactivity level, whereas the cation-exchange resin has a radionuclide with a medium-length and a half-life having a high radioactivity level (for example, Co-6).
A cation nuclide component such as 0). In this ion-exchange method, the ion-exchange resin used in the treatment system for radioactive waste liquid is generated in large quantities as secondary waste after use. Moreover, the spent ion exchange resin used for the treatment of the radioactive waste liquid as described above, particularly the cation exchange resin, has a high radioactivity concentration as described above. It is required to convert to a stable form and to reduce the volume as much as possible, and as a processing method therefor, the following method is conventionally known.

【0005】(1)放射性廃樹脂を直接セメント,アス
ファルト,プラスチックなどの固化材で固化し、高放射
能の固形廃棄物としてサイト内に貯蔵, 保管する。 (2)放射性廃樹脂を直接焼却法,熱分解法,湿式酸化
分解法などにより処理して減容化させる。 (3)溶離剤を用いて廃樹脂から放射性核種を溶離処理
した後に、低放射能化した樹脂を例えば焼却処理して無
機化し、一方の放射性核種を含む溶離液は中和処理後に
逆浸透膜フィルタ法,蒸発濃縮法などの濃縮処理した上
で、その濃縮液をセメントなどの無機体に封じ込めて固
形化する。
(1) The radioactive waste resin is directly solidified with a solidifying material such as cement, asphalt, plastic, or the like, and is stored and stored at the site as a high radioactive solid waste. (2) Reduce the volume by treating the radioactive waste resin by direct incineration, thermal decomposition, wet oxidative decomposition, or the like. (3) After the radionuclide is eluted from the waste resin using an eluent, the low-activity resin is mineralized by, for example, incineration, and the eluate containing one radionuclide is subjected to a reverse osmosis membrane after neutralization. After a concentration treatment such as a filter method or an evaporative concentration method, the concentrate is sealed in an inorganic substance such as cement and solidified.

【0006】[0006]

【発明が解決しようとする課題】ところで、前述した従
来の放射性廃液の処理方法では次記のような問題点があ
る。すなわち、共沈処理法,凝集処理法はキレート剤の
存在しない廃液では有効な方法であるが、キレート剤の
混在する廃液では放射性核種がキレート剤と結合して強
固な金属錯塩を形成し、これが共沈作用,凝集作用を阻
害する。そのために、共沈処理法,凝集処理法を有効に
機能させるには、処理過程で放射性核種とキレート剤と
の結合を解く処理工程が必要となるが、この手段として
従来実施されているイオン交換法では除染剤の成分によ
っては処理が困難な場合がある他にイオン交換樹脂の使
用量が多く、しかも使用済みのイオン交換樹脂は二次廃
棄物として多量に排出されるために放射性廃棄物の処
理,貯蔵管理が厄介である。
However, the above-mentioned conventional method for treating radioactive waste liquid has the following problems. That is, the coprecipitation method and the coagulation method are effective methods for a waste liquid in which a chelating agent is not present. However, in a waste liquid containing a chelating agent, a radionuclide combines with the chelating agent to form a strong metal complex salt. Inhibits coprecipitation and aggregation. For this reason, in order for the coprecipitation method and the coagulation method to function effectively, a treatment step for breaking the bond between the radionuclide and the chelating agent is required in the treatment process. According to the method, depending on the components of the decontamination agent, it may be difficult to treat.In addition, the amount of ion exchange resin used is large, and the used ion exchange resin is discharged in large quantities as secondary waste. Processing and storage management are troublesome.

【0007】また、蒸発濃縮法,逆浸透膜フィルタ法な
どの処理方法では、放射性核種を金属錯塩の形態(例え
ばM−Y2-)のまま濃縮処理することが基本的に可能で
あるが、高放射能レベルの放射性廃液を処理する場合に
は以下に示すような難点がある。すなわち、一般に蒸発
濃縮法,逆浸透膜フィルタ法では、前処理としてpH調
整による中和処理が必要であることから、放射性廃液を
濃縮処理すると濃縮液中には中和処理によって発生する
硫酸ナトリウム,硝酸ナトリウムが多量に含まれること
になり、しかもこれら成分は最終的にそのまま廃棄固化
体に移行して残存するために廃棄固化体の減容化が困難
である。また、蒸発濃縮法,逆浸透膜フィルタ法で処理
した濃縮液を最終的にセメント,アスファルト,プラス
チックなどで固化したとしても、放射性廃棄物固化体に
は処分の安全性に影響を与えるキレート剤が含まれたま
まとなる。(注:米国では放射性廃棄物処分場の受け入
れ条件として、廃棄物中に含まれるキレート剤の許容量
を規定している)なお、固化体を形成する前に放射性核
種とキレート剤が錯体化している濃縮液からキレート成
分を分離除去する方法として燃焼法,高温分解法などの
適用が考えられるが、放射能レベルだ高い濃縮液では燃
焼,熱分解排ガス中にキレート成分に同伴して高レベル
の放射能が排出するために、排ガス処理装置には大きな
放射能除去処理能力が要求され、そのために設備が複
雑,大型化する。しかも、燃焼,熱分解後でも、キレー
ト剤などの有機成分は残渣して残るほか、中和処理によ
って発生する硫酸ナトリウム,硝酸ナトリウムなども分
解残渣も固化体中に残存するために、放射性廃棄物を十
分に減容できない。
In a treatment method such as an evaporative concentration method or a reverse osmosis membrane filter method, it is basically possible to concentrate a radionuclide in the form of a metal complex salt (for example, MY 2− ). When treating a radioactive liquid waste having a high radioactivity level, there are the following problems. That is, in general, in the evaporative concentration method and the reverse osmosis membrane filter method, a neutralization treatment by pH adjustment is necessary as a pretreatment. Therefore, when the radioactive waste liquid is concentrated, sodium sulfate generated by the neutralization treatment is contained in the concentrated liquid. Since a large amount of sodium nitrate is contained, and these components are finally transferred to the waste solid as it is and remain there, it is difficult to reduce the volume of the waste solid. Even if the concentrated solution treated by the evaporative concentration method or reverse osmosis membrane filter method is finally solidified with cement, asphalt, plastic, etc., the solidified radioactive waste contains a chelating agent that affects the safety of disposal. Will remain included. (Note: In the United States, the conditions for accepting radioactive waste disposal sites stipulate the allowable amount of chelating agents contained in waste.) Before forming a solid, the radionuclide and chelating agent are complexed. Combustion and high-temperature decomposition methods can be applied to separate and remove the chelate components from the concentrated liquid. However, for concentrated liquids with high radioactivity levels, high levels of chelate components are included in the combustion and pyrolysis exhaust gases. In order to emit radioactivity, an exhaust gas treatment apparatus is required to have a large radioactivity removal treatment capacity, which makes the equipment complicated and large. In addition, even after combustion and thermal decomposition, organic components such as chelating agents remain as residues, and sodium sulfate, sodium nitrate, etc. generated by the neutralization treatment and decomposition residues also remain in the solidified form, so radioactive waste Cannot be reduced sufficiently.

【0008】また、先記した廃樹脂処理方法で高放射能
レベルの使用済イオン交換樹脂を処理する場合には次記
のような問題点が残る。すなわち、放射性廃樹脂を直接
セメントなどで固形化する方法では、廃樹脂が減容され
ないので固化体発生量が膨大となり、その保管管理が厄
介であるほか、廃樹脂が有機体であるために長期間保管
する上での安定性の確保に懸念がある。
Further, when the used ion exchange resin having a high radioactivity level is treated by the above-mentioned waste resin treatment method, the following problems remain. In other words, in the method of solidifying radioactive waste resin directly with cement or the like, the volume of solidified material is enormous because the volume of the waste resin is not reduced, and its storage management is troublesome. There is concern about ensuring stability during storage for a long period.

【0009】また、放射性廃樹脂を直接焼却により減容
させる処理方法では、焼却に伴う排ガス,炉内の放射性
濃度が増大し、排ガス処理系が複雑,大型化するほか、
焼却残渣の取扱いが厄介で、かつ残渣の発生量も廃樹脂
の性状,焼却条件によっては必ずしも期待した減容効果
が得られない。また、熱分解法,湿式酸化分解法におい
ても、焼却法と同様に多量の分解残渣が発生する。
Further, in the treatment method of reducing the volume of radioactive waste resin by direct incineration, the exhaust gas and the radioactive concentration in the furnace accompanying the incineration increase, and the exhaust gas treatment system becomes complicated and large.
The handling of incineration residues is troublesome, and the amount of residue generated does not always achieve the expected volume reduction effect depending on the properties of the waste resin and the incineration conditions. Also, in the thermal decomposition method and the wet oxidative decomposition method, a large amount of decomposition residue is generated as in the incineration method.

【0010】さらに、溶離剤を用いて廃樹脂から放射性
核種を溶離して廃樹脂を低放射能化する方法は、溶離後
の廃樹脂が低放射能廃棄物として処分可能となるので、
前記の処理方法に比べて高放射能廃棄物の発生量を大幅
に減容できる利点があるものの、廃樹脂から分離した溶
離液を逆浸透膜フィルタ法,蒸発濃縮法などで濃縮処理
すると、溶離処理,中和処理(pH調整)過程で添加,
発生する多量の硫酸ナトリウム,苛性ソーダなどの成分
が濃縮液中に移行するため、最終的な高放射能の固化体
量が増量する他、濃縮液を最終的にセメント,アスファ
ルト,プラスチックなどで固化したとしても、放射性廃
棄物固化体には処分の安全性に影響を与えるキレート剤
が含まれたままとなる。
[0010] Furthermore, the method of eluting radionuclides from waste resin using an eluent to reduce the radioactivity of the waste resin can be achieved by disposing the waste resin after elution as low radioactive waste.
Although there is an advantage that the amount of high radioactive waste generated can be significantly reduced compared to the above-mentioned treatment method, the eluate separated from the waste resin is concentrated by reverse osmosis membrane filter method, evaporative concentration method, etc. Treatment, neutralization process (pH adjustment) during the process,
A large amount of generated sodium sulfate, caustic soda and other components migrate into the concentrate, resulting in an increase in the amount of solidified material with high radioactivity. In addition, the concentrate was finally solidified with cement, asphalt, plastic, etc. Even so, the solidified radioactive waste will still contain chelating agents that affect the safety of disposal.

【0011】なお、溶離廃液の濃縮処理に共沈処理法,
凝集処理法の採用も考えられるが、これらの濃縮処理法
は先述のように廃液中の放射性核種がイオン形態で存在
している場合には有効であるが、キレート成分の存在す
る廃液系では放射性核種がキレート成分と結合して強固
な金属錯塩を形成して共沈,凝集作用を阻害するため
に、核種とキレート成分との結合を解いて金属錯塩の形
態を分解する処理が必要となる。
In addition, co-precipitation method,
The use of a coagulation treatment method is also conceivable, but these enrichment treatment methods are effective when the radionuclide in the waste liquid exists in the ionic form as described above. In order for the nuclide to combine with the chelate component to form a strong metal complex salt and to inhibit coprecipitation and coagulation, a treatment for breaking the bond between the nuclide and the chelate component to decompose the form of the metal complex salt is required.

【0012】本発明は上記の点にかんがみなされたもの
であり、その目的は頭記した金属錯塩を含む各種の放射
性廃液を対象に、前記課題を解消して放射性廃液を合理
的に処理し、その処理に伴って生じる高放射能廃液を無
機,安定化した固化体に変え、かつその発生量を可能な
限り少なくできるようにした処理方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to solve the above-mentioned problems and to rationally treat radioactive waste liquids for various radioactive waste liquids containing the metal complex salt described above. It is an object of the present invention to provide a processing method in which a highly radioactive waste liquid generated by the treatment is changed into an inorganic and stabilized solidified product, and the amount of the generated waste is reduced as much as possible.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の処理方法においては、放射性廃液をを電気
透析処理して液中から溶離剤などの成分を分離,回収す
る第1の処理工程と、溶離剤を回収した後の廃液を濃縮
処理する第2の処理工程と、前工程で生じた濃縮液を加
熱溶融して固化処理する第3の処理工程を経て処理する
ものとする。
In order to achieve the above-mentioned object, in the treatment method of the present invention, a radioactive waste liquid is subjected to an electrodialysis treatment to separate and recover components such as an eluent from the liquid. The treatment is performed through a treatment step, a second treatment step of concentrating waste liquid after collecting the eluent, and a third treatment step of heat-melting and solidifying the concentrated liquid generated in the preceding step. .

【0014】そうして、放射性廃液を濃縮する第2の処
理工程を、廃液にpH調整剤, 共沈剤,凝集剤を添加し
て溶離液中に含まれる核種を難溶解性の金属水酸化物に
変えて固液分離する共沈・凝集処理工程と、共沈・凝集
処理の上澄液を膜処理する膜分離工程とに分けて行うも
のとし、かつこの工程では廃液のpHを好ましくは10
〜13.5の範囲に調整する。
[0014] The second treatment step of concentrating the radioactive waste liquid is performed by adding a pH adjuster, a coprecipitant, and a flocculant to the waste liquid to remove nuclides contained in the eluate by hardly dissolving metal hydroxide. Co-precipitation / aggregation treatment step of solid-liquid separation in place of the material, and membrane separation step of membrane-treating the co-precipitation / aggregation treatment supernatant. In this step, the pH of the waste liquid is preferably adjusted. 10
Adjust to the range of ~ 13.5.

【0015】また、前記処理方法を実施するに際して、
次のような実施態様がある。 (1)前記の膜分離工程にて、限外ろ過膜の中空糸膜フ
ィルタを用いて膜処理する。 (2)濃縮液を加熱溶融固化する第3の処理工程では、
マイクロ波加熱溶融固化方法を用いて固化処理する。
In carrying out the processing method,
There are the following embodiments. (1) In the above-mentioned membrane separation step, membrane treatment is performed using a hollow fiber membrane filter of an ultrafiltration membrane. (2) In the third processing step of heating, melting and solidifying the concentrated liquid,
The solidification treatment is performed using a microwave heating melting solidification method.

【0016】[0016]

【作用】放射性廃液の処理系で使用した使用済イオン交
換樹脂を例に、まず廃樹脂に溶離剤(廃樹脂が陽イオン
交換樹脂である場合には硫酸H2 SO4 を使用し、陰イ
オン交換樹脂には苛性ソーダNaOHを使用する)を通
液すると、廃樹脂に吸着されていたCo,Mn,Feな
どの放射性核種が廃樹脂から溶離して溶離廃液中に移行
する。
[Action] Taking the used ion exchange resin used in the treatment system of radioactive waste liquid as an example, first use an eluent (if the waste resin is a cation exchange resin, use sulfuric acid H 2 SO 4 and an anion When caustic soda NaOH is used for the exchange resin), radionuclides, such as Co, Mn, and Fe, adsorbed on the waste resin are eluted from the waste resin and transferred into the eluted waste liquid.

【0017】ここで、発生した前記の溶離廃液を、第1
の処理工程で電気透析処理することにより溶離剤成分の
大半が放射性核種を含む溶離液から分離,回収され、核
種を含む残りの溶離廃液に含まれる溶離剤の濃度が大幅
に低下する。また、この処理工程で回収された溶離成分
は再び溶離剤として使用される。なお、この電気透析処
理にはイオン交換膜(分画分子量100〜300程度)
を使用する。これは放射性核種とEDTAなどと結合し
た金属錯塩(分子量が300以上)が溶離剤の回収液側
に移行するのをできる限り少なく抑えるためである。
Here, the generated elution waste liquid is used as the first
Most of the eluent components are separated and recovered from the eluent containing the radionuclide by electrodialysis in the treatment step, and the concentration of the eluent contained in the remaining eluate waste containing the nuclide is greatly reduced. The eluted components recovered in this processing step are used again as an eluent. In this electrodialysis treatment, an ion exchange membrane (fraction molecular weight: about 100 to 300) is used.
Use This is to minimize the migration of the metal complex salt (having a molecular weight of 300 or more) bound to the radionuclide and EDTA to the recovery liquid side of the eluent.

【0018】一方、Co,Mn,Feなどの放射性核種
を含む残りの溶離液は、第2の処理工程で中和処理して
pH10〜13.5の範囲に調整した後に、さらに共沈
剤,凝集剤を添加することにより、イオン形態の核種も
溶解性の金属水酸化物(コロイド状)として析出して濃
縮される。さらに、上澄液は次の工程で膜処理して液中
の残りの金属水酸化物を固液分離する。また、この膜処
理工程で限外ろ過膜の中空糸膜フィルタを採用すれば、
廃樹脂の溶離処理,中和処理過程で添加,発生する硫酸
2 SO4 ,硫酸ナトリウムNa2 SO4 ,苛性ソーダ
NaOH,硝酸ソーダNaNO3 などはフィルタ膜を透
過して逆洗液(濃縮液)には移行せず、膜を透過した処
理液とともに低放射性処理系にて処理される。
On the other hand, the remaining eluate containing a radionuclide such as Co, Mn, and Fe is neutralized in the second treatment step to adjust the pH to a range of 10 to 13.5, and then a coprecipitant, By adding the coagulant, nuclides in ionic form are also precipitated as soluble metal hydroxide (colloidal) and concentrated. Further, the supernatant is subjected to a membrane treatment in the next step to solid-liquid separate the remaining metal hydroxide in the liquid. In addition, if a hollow fiber membrane filter of an ultrafiltration membrane is adopted in this membrane treatment step,
Sulfuric acid H 2 SO 4 , sodium sulfate Na 2 SO 4 , caustic soda NaOH, sodium nitrate NaNO 3 , which are added and generated in the process of elution and neutralization of waste resin, pass through the filter membrane and are backwashed (concentrated solution) And is processed in a low-radiation processing system together with the processing solution that has passed through the membrane.

【0019】そして、前記の濃縮工程で得た放射性核種
を含む濃縮廃液(逆洗液を含む)は続く第3の処理工程
で加熱溶融固化処理して固形化される。この工程でマイ
クロ波加熱装置を採用することで、濃縮廃液の加熱減容
化が効率よく行え、かつ排ガス処理系への放射性の移行
量も少なくなる。しかも、前段の電気透析膜処理,濃縮
工程の膜処理工程では既に溶離剤の分離回収,およびp
H調整剤,共沈剤などの分離処理を行っているので、最
終の加熱溶融固化工程での処理対象は放射性核種の水酸
化物,およびその他のクラッドに代表される放射性物質
だけとなり、高放射能レベルの固化体発生量は最小とな
る。
Then, the concentrated waste liquid (including the backwash liquid) containing the radionuclide obtained in the above-mentioned concentration step is heated and melt-solidified in the subsequent third treatment step to be solidified. By employing a microwave heating device in this step, the volume of the concentrated waste liquid can be efficiently reduced by heating, and the amount of radioactive transfer to the exhaust gas treatment system can be reduced. In addition, the separation and recovery of the eluent, and the p
Since the separation process of H adjuster, coprecipitant, etc. is performed, only the radionuclide hydroxides and other radioactive substances represented by cladding can be processed in the final heat melting and solidification process, resulting in high radiation. The amount of solids generated at the functional level is minimized.

【0020】なお、溶離処理で放射性核種が取り除かれ
て低放射能化した廃樹脂は、低放射能廃棄物として貯蔵
保管後に焼却による減容処理,直接固化処理される。
The waste resin whose radioactivity is reduced by the elution treatment and whose radioactivity is reduced is subjected to volume reduction by incineration and direct solidification after storage and storage as low radioactive waste.

【0021】[0021]

【実施例】以下、使用済イオン交換樹脂を溶離処理する
過程で発生した放射性核種を含む溶離廃液を対象に、本
発明による処理方法の実施例を図1,図2に基づいて説
明する。なお、図1は処理工程図、図2は図1に基づく
処理装置のシステムフロー図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a treatment method according to the present invention will be described below with reference to FIGS. 1 and 2 for an elution waste liquid containing a radionuclide generated in a process of eluting a used ion exchange resin. 1 is a processing step diagram, and FIG. 2 is a system flow diagram of a processing apparatus based on FIG.

【0022】まず、高放射能を帯びた廃樹脂(原子力プ
ラントから発生する放射性廃液の処理に用いた使用済イ
オン交換樹脂)を、定量ずつ樹脂溶離槽1に充填した上
で、樹脂溶離槽1に溶離剤(廃樹脂が陽イオン交換樹脂
である場合には硫酸などの酸性溶離剤、廃樹脂が陰イオ
ン交換樹脂である場合にはアルカリ性溶離剤を使用す
る)を通液すると、廃樹脂から放射性核種が溶離して溶
離液が発生する。この溶離液は一旦廃液槽2に移され
る。なお、放射性核種が取り除かれて低放射能化した廃
樹脂は樹脂溶離槽1から取り出して貯蔵後に、焼却,固
化処理などにより減容化して低放射能廃棄物として処分
される。
First, a highly radioactive waste resin (spent ion exchange resin used for treating a radioactive waste liquid generated from a nuclear power plant) is charged into the resin elution tank 1 by a fixed amount, and then the resin elution tank 1 is charged. When an eluent (acidic eluent such as sulfuric acid is used when the waste resin is a cation exchange resin and alkaline eluent is used when the waste resin is an anion exchange resin) is passed through the eluent, The radionuclide elutes to generate an eluent. This eluent is once transferred to the waste liquid tank 2. It should be noted that the radioactive nuclide-removed waste resin which has been reduced in radioactivity is taken out of the resin elution tank 1 and stored, then reduced in volume by incineration, solidification, etc., and disposed of as low radioactive waste.

【0023】一方、廃液槽2に移された放射性核種を含
む溶離液は第1の処理工程で電気透析装置3に導き、こ
こで溶離液から溶離剤成分を分離,回収する。すなわ
ち、電気透析装置3の槽内は透析膜としてのイオン交換
膜(図示例では溶離剤が硫酸で陰イオン交換膜(アニオ
ン膜)Aを使用)が組み込まれており、これにより電圧
を印加しつつ槽内の左室に溶離液を流し、右室には水を
流す。これにより、陰イオン交換膜Aを境にSO4 2-な
どのイオンが左室より右室に移行した後に回収槽4に回
収される。これに対し放射性核種(Co2+,Mn2+,F
e2+)などは陽イオンであるためにイオン交換膜を透過
せずにそのまま左室から流出して廃液槽2に戻る。この
ようにして溶離液中の硫酸と核種との分離が行われる。
また、右室より回収槽4に回収された回収液は、未回収
分相当の硫酸を補給した上で再度溶離剤として使用され
る。
On the other hand, the eluent containing radionuclides transferred to the waste liquid tank 2 is led to the electrodialyzer 3 in the first treatment step, where the eluent components are separated and recovered from the eluate. That is, the inside of the tank of the electrodialysis apparatus 3 incorporates an ion exchange membrane (an eluent is sulfuric acid and an anion exchange membrane (anion membrane) A is used in the illustrated example) as a dialysis membrane. While the eluent is flowing in the left chamber in the tank, water is flowed in the right chamber. As a result, ions such as SO 4 2− are transferred from the left chamber to the right chamber at the boundary of the anion exchange membrane A, and are collected in the collection tank 4. On the other hand, radionuclides (Co2 +, Mn2 +, F
Since e2 +) is a cation, it does not pass through the ion exchange membrane and flows out of the left chamber as it is to return to the waste liquid tank 2. Thus, the separation of the sulfuric acid and the nuclide in the eluent is performed.
The recovered liquid recovered from the right chamber into the recovery tank 4 is used again as an eluent after replenishing sulfuric acid corresponding to the unrecovered amount.

【0024】次に廃液槽2に回収された核種を含む溶離
液は第2の処理工程で、共沈・凝集処理装置5に移さ
れ、ここでpH調整剤(例えばNaOH,Ca(OH)
2 )を添加してpH10〜13.5の範囲に調整し、さら
に共沈剤(例えばFeSO4 )を定量添加して混合撹拌
操作した後に静置し、処理槽内でコロイド状の沈澱濃縮
液(核種成分の金属水酸化物,およびクラッド)と上澄
液とに固液分離させるように共沈処理,凝集沈澱分別処
理を行う。そして、上澄液は次の膜分離工程で限外ろ膜
の中空糸膜フィルタ6に通液し、ここで上澄液に混在し
ているコロイド状の核種成分,クラッドを捕捉し、かつ
フィルタで捕捉された核種成分などは逆洗液(濃縮液)
として排出するとともに、フィルタを透過した処理液は
低放射能廃液として処理する。なお、前記した共沈・凝
集処理工程での廃液濃度が低い場合には、凝集沈澱分別
操作を行わずに共沈処理液を直接中空糸膜フィルタに通
液して膜分離処理を行うことも可能である。
Next, in the second treatment step, the eluent containing the nuclides recovered in the waste liquid tank 2 is transferred to a coprecipitation / aggregation treatment apparatus 5, where a pH adjuster (eg, NaOH, Ca (OH)) is used.
2 ) was added to adjust the pH to a range of 10 to 13.5, and a coprecipitant (eg, FeSO 4 ) was quantitatively added, mixed and stirred, and allowed to stand. A coprecipitation treatment and a coagulation sedimentation treatment are carried out so as to separate solid-liquid into (metal hydroxide of the nuclide component and clad) and the supernatant. Then, the supernatant is passed through a hollow fiber membrane filter 6 of an ultrafiltration membrane in the next membrane separation step, where the colloidal nuclide component and clad mixed in the supernatant are captured, and the filter is filtered. Nuclide components trapped in the backwash solution (concentrated solution)
And the treated liquid that has passed through the filter is treated as a low radioactive waste liquid. When the concentration of the waste liquid in the above-mentioned coprecipitation / aggregation treatment step is low, the membrane separation treatment may be performed by directly passing the coprecipitation treatment liquid through the hollow fiber membrane filter without performing the aggregation / sedimentation separation operation. It is possible.

【0025】次に、前工程で濃縮分離された共沈・凝集
処理装置5の沈澱濃縮液,および中空糸膜フィルタ6の
逆洗液は第3の処理工程でμ波加熱装置7に移され、こ
こで蒸発−乾燥−分解−溶融−固化処理を行う。これに
より、濃縮液は蒸発して減容し、さらに必要によりガラ
スなどの固化材を添加することで無機,安定化した高放
射能固化体を得る。なお、この処理で発生した排ガスは
排ガス処理系で処理される。また、図2に示した処理シ
ステムは廃樹脂の処理プロセスに合わせて自動化運転が
可能である。
Next, the sediment concentrate of the coprecipitation / coagulation treatment device 5 and the backwashing solution of the hollow fiber membrane filter 6 which have been concentrated and separated in the previous step are transferred to the microwave heating device 7 in the third treatment step. Here, an evaporation-drying-decomposition-melting-solidification treatment is performed. As a result, the concentrated liquid evaporates to reduce its volume, and if necessary, a solidifying material such as glass is added to obtain an inorganic and stabilized solidified substance with high radioactivity. The exhaust gas generated in this process is processed in an exhaust gas processing system. In addition, the processing system shown in FIG. 2 can perform an automatic operation in accordance with a waste resin processing process.

【0026】次に、原子力プラントの放射性廃液の処理
に使用した使用済イオン交換樹脂を実際に溶離処理して
得た放射性の溶離廃液と等価な模擬試験液を調製し、こ
れを試料として本発明者等が行った処理方法の評価試験
結果を以下に述べる。まず、模擬試験液は、廃樹脂の溶
離廃液として1N(規定)の硫酸水溶液を使用した場合
を想定し、硫酸濃度を49g/lとし、放射性核種成分
としてCo,Mnイオン濃度を5mg/l,Feイオン濃
度を500mg/lとして調製した。
Next, a simulation test liquid equivalent to the radioactive elution waste liquid obtained by actually eluting the used ion exchange resin used for the treatment of the radioactive waste liquid in a nuclear power plant was prepared and used as a sample according to the present invention. The results of evaluation tests on the treatment methods performed by persons and the like are described below. First, assuming that a 1N (standard) sulfuric acid aqueous solution was used as a waste resin elution waste solution, the simulation test solution had a sulfuric acid concentration of 49 g / l, and a radionuclide component of Co and Mn ion concentrations of 5 mg / l. The Fe ion concentration was adjusted to 500 mg / l.

【0027】そして、電気透析膜処理装置では、陰イオ
ン交換膜(分画分子量300,膜有効面積400c
m2 ),1回当たりの処理量10lの装置を使用して模
擬試験液を透析処理(酸回収処理)した。この結果、硫
酸H2 SO4 の回収率は90%、酸回収液に同伴するC
o,Mnイオンは5%以下(0.25mg/l以下)、Fe
イオンは10%以下(50mg/l以下)の結果が得られ
た。この回収液の硫酸濃度は約44g/lであり、1N
−H2 SO4 溶離剤の使用には約5gの硫酸を追加添加
することによ溶離剤として再生使用が可能である。一
方、核種を含む残りの溶離液の性状は硫酸濃度は約5g
/l,Co,Mnイオン濃度は4.8mg/l,Feイオン
濃度は450mg/lであった。
In the electrodialysis membrane processing apparatus, the anion exchange membrane (molecular weight cut off 300, effective membrane area 400 c
m 2 ), the simulated test solution was dialyzed (acid recovery treatment) using an apparatus having a processing volume of 10 l per time. As a result, the recovery rate of sulfuric acid H 2 SO 4 was 90%, and the C
o, Mn ions are 5% or less (0.25 mg / l or less), Fe
The result of the ion was 10% or less (50 mg / l or less). The sulfuric acid concentration of this recovered solution was about 44 g / l,
-H The use of 2 SO 4 eluents are possible reuse as by eluent in adding additional sulfuric acid to about 5g. On the other hand, the remaining eluate containing nuclides has a sulfuric acid concentration of about 5 g.
/ L, Co, Mn ion concentration was 4.8 mg / l, and Fe ion concentration was 450 mg / l.

【0028】次に、前記した酸回収処理後の溶離液を共
沈・凝集処理装置に移し、pH調整剤として苛性ソーダ
NaOHを添加してpH値を12に調整し、さらに共沈
処理剤として硫酸第1鉄(FeSO4 )を100mg/l
添加し、撹拌混合後に静置して沈澱濃縮液と上澄液とに
分離し、さらに上澄液を限外ろ過膜の中空糸膜フィルタ
(分画分子量150000)に通液して膜処理した。
Next, the eluate after the above-mentioned acid recovery treatment was transferred to a coprecipitation / aggregation treatment device, and the pH value was adjusted to 12 by adding caustic soda NaOH as a pH adjuster. 100 mg / l of ferrous iron (FeSO 4 )
After adding, stirring and mixing, the mixture was allowed to stand to separate into a concentrated precipitate and a supernatant, and the supernatant was passed through a hollow fiber membrane filter (fraction molecular weight: 150,000) of an ultrafiltration membrane to be subjected to membrane treatment. .

【0029】この膜分離処理による処理液について、そ
の性状を調べたところ次の結果が得られた。 Co,Mnイオン濃度:0.01mg/l以下 Fe イオン濃度 :0.05mg/l以下 NaSO4 濃度 :7.2 g/l NaOH 濃度 :0.4 g/l したがって、共沈処理−膜分離処理による核種成分の除
染係数DFは、Coで約480以上、Feで約1000
以上が得られたことになる。
When the properties of the treatment liquid obtained by this membrane separation treatment were examined, the following results were obtained. Co, Mn ion concentration: 0.01 mg / l or less Fe ion concentration: 0.05 mg / l or less NaSO 4 concentration: 7.2 g / l NaOH concentration: 0.4 g / l Therefore, coprecipitation treatment-membrane separation treatment The decontamination coefficient DF of nuclide components by Co is about 480 or more for Co and about 1000 for Fe.
The above is obtained.

【0030】一方、共沈・凝集処理による沈澱濃縮液,
および中空糸膜フィルタの逆洗液(濃縮液)を一括して
マイクロ波加熱装置を使用して加熱溶融固化処理した。
なお、ここで処理する濃縮液の成分,量を次に示す。 Coイオン濃度 :約480mg/l Mnイオン濃度 :約480mg/l Feイオン濃度 :約45000mg/l NaSO4 濃度 :7.2 g/l NaOH 濃度 :0.4 g/l また、廃樹脂の溶離液を年間100m3 処理するものと
想定して、上記の処理により発生する固化体の量を試算
した結果は次の通りである。但し、NaSO4,NaO
Hの濃度の算出に当たっては、濃縮液(沈澱液,逆洗
液)の濃縮率50倍,100倍の二つのケースを想定し
て試算した。
On the other hand, a concentrated concentrate obtained by coprecipitation / aggregation treatment,
The backwash liquid (concentrated liquid) of the hollow fiber membrane filter was heated and melt-solidified using a microwave heating device.
The components and amounts of the concentrated liquid to be treated here are shown below. Co ion concentration: about 480 mg / l Mn ion concentration: about 480 mg / l Fe ion concentration: about 45000 mg / l NaSO 4 concentration: 7.2 g / l NaOH concentration: 0.4 g / l Assuming that 100 m 3 is treated annually, the results of trial calculation of the amount of solidified matter generated by the above treatment are as follows. However, NaSO 4 , NaO
In calculating the concentration of H, a trial calculation was performed assuming two cases where the concentration ratio of the concentrated solution (precipitate solution, backwash solution) was 50 times and 100 times.

【0031】Coの固形分量 : 480g Mnの固形分量 : 480g Feの固形分量 : 45kg NaSO4 の固形分量: 7.2kg (濃縮倍率100倍,
発生量1m3 ) 14.4kg (濃縮倍率 50倍,発生量2m3 ) NaOH の固形分量: 0.4kg (濃縮倍率100倍,
発生量1m3 ) 0.8kg (濃縮倍率 50倍,発生量2m3 ) 但し、NaSO4 ,NaOHはマイクロ波加熱処理(加
熱温度100℃以下)では分解せずに固化体中に移行す
るものして試算した。
Solid content of Co: 480 g Solid content of Mn: 480 g Solid content of Fe: 45 kg Solid content of NaSO 4 : 7.2 kg (concentration ratio 100 times,
Generation amount 1 m 3) 14.4 kg (concentration rate 50 times, the amount 2m 3) solid content of the NaOH: 0.4 kg (concentration rate 100 times,
Generated amount 1m 3 ) 0.8kg (concentration ratio 50 times, generated amount 2m 3 ) However, NaSO 4 and NaOH are not decomposed by microwave heating treatment (heating temperature of 100 ° C or less) and migrate into the solidified body. Was calculated.

【0032】次に、本発明の処理方法の比較例として、
前記と同一な模擬試験液を図3に示した従来の処理方法
で処理し、その処理過程で発生する溶離液の性状、固化
体の成分,量を調査,試算した。その結果は以下のよう
になる。 (1)pH調整(中和)により発生するNaSO4
量: (a)溶離液中のNaSO4 の量が49g/lの場合
は、NaSO4 の濃度が70.6g/lとなる。
Next, as a comparative example of the processing method of the present invention,
The same simulated test solution as described above was treated by the conventional treatment method shown in FIG. 3, and the properties of the eluent generated during the treatment process and the components and amounts of solidified substances were investigated and estimated. The result is as follows. (1) Amount of NaSO 4 generated by pH adjustment (neutralization): (a) When the amount of NaSO 4 in the eluate is 49 g / l, the concentration of NaSO 4 becomes 70.6 g / l.

【0033】(b)溶離液中のNaSO4 の量が90%
回収されて4.9g/lの場合には、NaSO4 濃度は7.
1g/lとなる。(溶離液中の酸回収処理を上流側で実
施した場合) (2)濃縮処理過程における濃縮倍率を100と想定
し、かつ濃縮法の除染係数DFを100以上とすると、
処理液,濃縮液の性状は以下のようになる。
(B) The amount of NaSO 4 in the eluent is 90%
When 4.9 g / l is recovered, the NaSO 4 concentration is 7.9.
It becomes 1 g / l. (When the acid recovery process in the eluent is performed on the upstream side) (2) Assuming that the concentration ratio in the concentration process is 100 and the decontamination coefficient DF of the concentration method is 100 or more,
The properties of the processing solution and the concentrated solution are as follows.

【0034】処理液の性状: Coイオン濃度 :約0.05mg/l以下 Mnイオン濃度 :約0.05mg/l以下 Feイオン濃度 :約 5mg/l以下 NaSO4 濃度 : 0.76g/l以下〔前記
(a)のケース〕 0.071g/l以下〔前記(b)のケース〕 濃縮液の性状: Coイオン濃度 :約500mg/l Mnイオン濃度 :約500mg/l Feイオン濃度 :約50000mg/l NaSO4 濃度 :7060g/l〔前記(a)の
ケース〕 706g/l〔前記(b)のケース〕 また、溶離液の年間処理量100m3 に想定して濃縮倍
率100倍とすれば、濃縮処理による処理液の量は99
3 ,濃縮液の量は1m3 となるので、次の固化処理の
対象となる濃縮液の成分と量は次のようになる。
Properties of treatment liquid: Co ion concentration: about 0.05 mg / l or less Mn ion concentration: about 0.05 mg / l or less Fe ion concentration: about 5 mg / l or less NaSO 4 concentration: 0.76 g / l or less [ Case of the above (a)] 0.071 g / l or less [Case of the above (b)] Properties of concentrated solution: Co ion concentration: about 500 mg / l Mn ion concentration: about 500 mg / l Fe ion concentration: about 50,000 mg / l NaSO 4 concentration: 7060 g / l [case (a) above] 706 g / l [case (b) above] Further, if the concentration of the eluent is assumed to be 100 m 3 per year and the concentration magnification is 100 times, the concentration treatment is carried out. Of processing solution by
Since m 3 and the amount of the concentrated solution are 1 m 3 , the components and amounts of the concentrated solution to be subjected to the next solidification treatment are as follows.

【0035】Co成分の量 :約0,5kg Mn成分の量 :約0,5kg Fe成分の量 :約50kg NaSO4 成分の量 :7060kg〔前記(a)のケー
ス〕 706kg〔前記(b)のケース〕 そして、この濃縮液を直接セメントなどで固形化するに
は、濃縮液1m3 が対象となり、また濃縮液をマイクロ
波加熱して固化処理する場合には、濃縮液の水分1m3
が蒸発して固化体の成分より除去されることになる。
The amount of Co component: of 7060kg [said (a) of the case] 706kg [see (b): an amount of about 0,5Kg Mn components: an amount of about 0,5Kg Fe component: an amount of about 50 kg NaSO 4 components Case) In order to solidify the concentrated solution directly with cement or the like, the concentrated solution is 1 m 3 , and when the concentrated solution is solidified by microwave heating, the water content of the concentrated solution is 1 m 3.
Evaporates and is removed from the components of the solidified body.

【0036】以上のデータを基に、比較例(従来法)と
の固化体発生量を試算すると次のようになる。 Coの固形分量 :約0.50kg Mnの固形分量 :約0.50kg Feの固形分量 :約 50kg NaSO4 の固形分量:7060kg〔前記(a)のケー
ス〕 706kg〔前記(a)のケース〕 そして、固化体の大半を占めるNaSO4 の固形分量に
ついて、先記した本発明の処理方法と上記の比較例(従
来法)とを、本発明法/従来例の比で比較すると、 7.2kg/7060kg≒1/1000, 14.4kg/70
60kg≒1/500 7.2kg/706kg≒1/100, 14.4kg/70
6kg≒1/50 となり、処理条件にもよるが本発明の処理方法によれ
ば、比較例(従来法)と比べて固化体の減容効果が50
〜1000倍に向上することが判る。
Based on the above data, a trial calculation of the solidified body generation amount with the comparative example (conventional method) is as follows. Co of solid content: solid content of about 0.50 kg Mn: solid content of about 0.50 kg Fe: solid content of about 50kg NaSO 4: 7060kg [Case of (a) above] [wherein (a) Case] 706kg and As for the solid content of NaSO 4 occupying the majority of the solidified product, the treatment method of the present invention described above and the above comparative example (conventional method) were compared with the method of the present invention / conventional example in a ratio of 7.2 kg / 7060kg ≒ 1/1000, 14.4kg / 70
60kg ≒ 1/500 7.2kg / 706kg ≒ 1/100, 14.4kg / 70
According to the treatment method of the present invention, the effect of reducing the volume of the solidified body by 50% is obtained as compared with the comparative example (conventional method), depending on the treatment conditions.
It can be seen that the improvement is up to 1000 times.

【0037】[0037]

【発明の効果】以上述べたように、原子力プラントの系
統除染処理で発生した金属錯塩を含む放射性廃液、ある
いは該放射性廃液の処理系で使用した使用済イオン交換
樹脂から放射性核種を溶離する処理過程で発生した溶離
廃液などを対象とする放射性廃液の処理方法として、本
発明によれば、第1の処理工程で高放射能の核種成分を
含む廃液を電気透析処理して溶離剤などの成分を分離,
回収した後に、第2の処理工程で廃液を共沈・凝集処
理,膜分離処理して濃縮し、さらに第3の処理工程でマ
イクロ波加熱により溶融固化処理するようにしたので、
高放射能核種を含む放射性廃液を合理的,かつ最小量の
安定した固化体に変えて処理することができる。これに
より、原子力プラントのサイト内で貯蔵,保管する高放
射能廃棄物の減容化に大きく寄与する実益が得られる。
As described above, a process for eluting radioactive nuclides from a radioactive waste liquid containing a metal complex salt generated in the decontamination treatment of a nuclear power plant or a spent ion exchange resin used in a treatment system for the radioactive waste liquid. According to the present invention, in the first treatment step, a waste liquid containing a radioactive nuclide component is subjected to an electrodialysis treatment, and a component such as an eluent is treated in the first treatment step. Is separated,
After the recovery, the waste liquid was co-precipitated / coagulated in a second treatment step, concentrated by membrane separation treatment, and further melt-solidified by microwave heating in a third treatment step.
The radioactive liquid waste containing high radionuclide can be treated by converting it into a reasonable and minimal amount of stable solidified product. As a result, it is possible to obtain a profit that greatly contributes to reducing the volume of highly radioactive waste stored and stored at the site of the nuclear power plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による放射性廃樹脂溶離液の処
理方法の工程図
FIG. 1 is a process diagram of a method for treating a radioactive waste resin eluate according to an embodiment of the present invention.

【図2】図1に示す処理方法の実施に用いる処理装置の
システムフロー図
FIG. 2 is a system flow diagram of a processing apparatus used for implementing the processing method shown in FIG. 1;

【図3】本発明の比較例として挙げた従来法の処理工程
FIG. 3 is a process chart of a conventional method cited as a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1 樹脂溶離槽 3 電気透析装置 5 共沈・凝集処理装置 6 中空糸膜フィルタ 7 μ波加熱装置 Reference Signs List 1 resin elution tank 3 electrodialysis device 5 coprecipitation / coagulation treatment device 6 hollow fiber membrane filter 7 microwave heating device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚本 裕一 福井県敦賀市明神町3 動力炉・核燃料 開発事業団新型転換炉ふげん発電所内 (72)発明者 及川 安夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 水越 清治 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 大山 悦夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭62−62297(JP,A) 特開 昭50−60700(JP,A) (58)調査した分野(Int.Cl.6,DB名) G21F 9/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Tsukamoto 3 in Myojin-cho, Tsuruga-shi, Fukui Power Reactor and Nuclear Fuel Development Corporation Inside the new conversion reactor Fugen Power Plant (72) Inventor Yasuo Oikawa Arata Tanabe, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture No. 1-1 Fuji Electric Co., Ltd. (72) Inventor Seiji Mizukoshi 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. No. 1-1 Fuji Electric Co., Ltd. (56) References JP-A-62-62297 (JP, A) JP-A-50-60700 (JP, A) (58) Fields investigated (Int. Cl. 6 , (DB name) G21F 9/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子力プラントの系統除染処理により発生
した金属錯塩を含む放射性廃液、ないしは該放射性廃液
の処理に使用した使用済イオン交換樹脂の溶離処理過程
で発生する放射性核種を含む溶離液などを対象とする放
射性廃液の処理方法であって、放射性廃液を電気透析処
理して液中から溶離剤などの成分を分離,回収する第1
の処理工程と、溶離剤を回収した後の放射性核種を含む
廃液を濃縮処理する第2の処理工程、前工程で生じた濃
縮液を加熱溶融して固化処理する第3の処理工程を経て
処理する方法において、 前記第2の処理工程が、廃液にpH調整剤, 共沈剤,凝
集剤を添加し、溶離液中に含まれる放射性核種を難溶解
性の金属水酸化物に変えて固液分離する共沈・凝集処理
工程と、共沈・凝集処理の上澄液を膜処理する膜分離工
程とからなることを特徴とする放射性廃液の処理方法。
1. A radioactive waste liquid containing a metal complex salt generated by a system decontamination treatment of a nuclear power plant, or an eluent containing a radionuclide generated in an elution process of a used ion exchange resin used for the treatment of the radioactive waste liquid, etc. A method for treating a radioactive waste liquid, wherein the radioactive waste liquid is subjected to an electrodialysis treatment to separate and recover components such as an eluent from the liquid.
, A second processing step of concentrating a waste liquid containing a radionuclide after recovering the eluent, and a third processing step of heating and melting the solidified liquid generated in the previous step to solidify it. In the method, the second treatment step comprises adding a pH adjuster, a coprecipitant, and a flocculant to the waste liquid, converting radionuclides contained in the eluate into hardly soluble metal hydroxide, and solid-liquid A method for treating a radioactive waste liquid, comprising: a coprecipitation / aggregation treatment step of separating; and a membrane separation step of subjecting the supernatant of the coprecipitation / aggregation treatment to a membrane treatment.
【請求項2】請求項1記載の処理方法において、廃液を
pH10〜13.5の範囲に調整することを特徴とする放
射性廃液の処理方法。
2. The method for treating radioactive waste liquid according to claim 1, wherein the waste liquid is adjusted to have a pH in the range of 10 to 13.5.
【請求項3】請求項1記載の処理方法において、膜分離
工程にて、限外ろ過膜の中空糸膜フィルタを用いて膜処
理することを特徴とする放射性廃液の処理方法。
3. The method for treating radioactive waste liquid according to claim 1, wherein in the membrane separation step, membrane treatment is performed using a hollow fiber membrane filter of an ultrafiltration membrane.
【請求項4】請求項1記載の処理方法において、第3の
処理工程でマイクロ波加熱溶融固化方法を用いて固化処
理することを特徴とする放射性廃液の処理方法。
4. The method for treating a radioactive waste liquid according to claim 1, wherein the solidification treatment is carried out using a microwave heating melting solidification method in the third treatment step.
JP27470792A 1992-10-14 1992-10-14 Treatment of radioactive liquid waste Expired - Lifetime JP2938287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27470792A JP2938287B2 (en) 1992-10-14 1992-10-14 Treatment of radioactive liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27470792A JP2938287B2 (en) 1992-10-14 1992-10-14 Treatment of radioactive liquid waste

Publications (2)

Publication Number Publication Date
JPH06130186A JPH06130186A (en) 1994-05-13
JP2938287B2 true JP2938287B2 (en) 1999-08-23

Family

ID=17545446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27470792A Expired - Lifetime JP2938287B2 (en) 1992-10-14 1992-10-14 Treatment of radioactive liquid waste

Country Status (1)

Country Link
JP (1) JP2938287B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665802B2 (en) * 1998-06-09 2005-06-29 大機エンジニアリング株式会社 Treatment method of chemical decontamination waste liquid
JP3656602B2 (en) * 2002-01-08 2005-06-08 九州電力株式会社 Treatment method of chemical decontamination waste liquid
CN111524633B (en) * 2020-04-28 2023-08-01 一重集团大连工程技术有限公司 Volume reduction treatment method for radioactive organic waste

Also Published As

Publication number Publication date
JPH06130186A (en) 1994-05-13

Similar Documents

Publication Publication Date Title
CN103108677B (en) Concentrate processing system
JP2925413B2 (en) Treatment of radioactive liquid waste
JP2938287B2 (en) Treatment of radioactive liquid waste
Osteen et al. Treatment of radioactive laboratory waste for mercury removal
JP2925412B2 (en) Treatment of radioactive liquid waste
JP2985421B2 (en) Treatment of radioactive liquid waste
JPH0527094A (en) Processing for solid radioactive waste
JP2938286B2 (en) Treatment of radioactive liquid waste
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JP3119538B2 (en) Decontamination method for radioactive waste resin
Epimakhov et al. Reverse-osmosis filtration based water treatment and special water purification for nuclear power systems
JP2509654B2 (en) Chemical decontamination waste liquid treatment method
JPH06130187A (en) Method for processing radioactive waste liquid
JP4225659B2 (en) Decontamination method of radioactive liquid waste
JP5072334B2 (en) Method and apparatus for treating radioactive waste
JP7256061B2 (en) Method for treating hard-to-filter substances
Campbell et al. Low-level liquid waste decontamination by ion exchange
JP3058854B2 (en) Radioactive waste treatment method
JP5543926B2 (en) Conditioning method for radioactive ion exchange resin
Tuthill et al. Studies on ion exchange and glass formation as applied to ultimate waste disposal
Russell Anion Exchange Recovery of Plutonium from Reduction Residues
JPH0611599A (en) Processing method for radioactive waste and processing equipment
JP2023055201A (en) Method for treating hard-to-filter substances
Hobbs Evaluation of alternate materials and methods for strontium and alpha removal from Savannah River Site High-Level Waste solutions
Jarvinen et al. Removal and recovery of metal ions from process and waste streams using polymer filtration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080611

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090611

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130611