JP6211779B2 - Treatment method for boron-containing wastewater - Google Patents

Treatment method for boron-containing wastewater Download PDF

Info

Publication number
JP6211779B2
JP6211779B2 JP2013066072A JP2013066072A JP6211779B2 JP 6211779 B2 JP6211779 B2 JP 6211779B2 JP 2013066072 A JP2013066072 A JP 2013066072A JP 2013066072 A JP2013066072 A JP 2013066072A JP 6211779 B2 JP6211779 B2 JP 6211779B2
Authority
JP
Japan
Prior art keywords
water
boron
wastewater
desulfurization
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013066072A
Other languages
Japanese (ja)
Other versions
JP2014188444A (en
Inventor
和仁 市原
和仁 市原
聡 小木
聡 小木
武井 昇
昇 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2013066072A priority Critical patent/JP6211779B2/en
Publication of JP2014188444A publication Critical patent/JP2014188444A/en
Application granted granted Critical
Publication of JP6211779B2 publication Critical patent/JP6211779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排水からホウ素を回収除去する処理後に系外に放流される排水量を低減するためのホウ素含有排水の処理方法に関する。   The present invention relates to a method for treating boron-containing wastewater for reducing the amount of wastewater discharged out of the system after treatment for recovering and removing boron from wastewater.

ホウ素は、人間の中枢神経に障害をきたしたり、植物の成長阻害を起こしたりすることから環境規制の対象となっている一方、ネオジウム磁石等の新エネルギー素材としての用途が高く評価されており、有価金属として排水から回収される場合がある。
このようなホウ素を含有するホウ素含有排水の処理方法として、イオン交換樹脂等のホウ素を吸着する樹脂により、排水からのホウ素の回収除去が行われている(例えば、特許文献1参照)。これにより、排水からホウ素を除去できるだけでなく、ホウ素を回収することが可能になる。
ホウ素が吸着されてホウ素濃度が低下した排水は、系外に放流される。
Boron is subject to environmental regulations because it damages the central nervous system of humans and inhibits plant growth, while its use as a new energy material such as neodymium magnets is highly appreciated. It may be recovered from wastewater as a valuable metal.
As a treatment method of such boron-containing wastewater containing boron, recovery and removal of boron from wastewater is performed by a resin that adsorbs boron such as an ion exchange resin (for example, see Patent Document 1). Thereby, not only can boron be removed from the waste water, but also boron can be recovered.
Waste water in which boron is adsorbed and the boron concentration is reduced is discharged out of the system.

また、樹脂に吸着されたホウ素は、酸溶液やアルカリ溶液や薬品等を用いて樹脂から脱着され、この脱着に用いられた溶液を例えば精製塔で精製して高純度のホウ酸を回収する。
また、このようなホウ素を含む排水としては、例えば、火力発電所等のボイラーの排気から亜硫酸ガス等の硫黄酸化物を除去する脱硫設備からの排水が知られており、この排水からホウ素を回収除去することが行われている。
Further, boron adsorbed on the resin is desorbed from the resin using an acid solution, an alkali solution, a chemical, or the like, and the solution used for the desorption is purified by, for example, a purification tower to recover high purity boric acid.
Moreover, as such waste water containing boron, for example, waste water from a desulfurization facility that removes sulfur oxides such as sulfurous acid gas from the exhaust of boilers such as thermal power plants is known, and boron is recovered from this waste water. It has been done to remove.

特開2002−233869号公報Japanese Patent Laid-Open No. 2002-233869

ところで、脱硫設備では、例えば、補給水として工水(工業用水)を連続供給しており、工水を比較的多量に必要とする。
また、上述のように樹脂に吸着されたホウ素を脱着して精製して高純度のホウ酸を得る際に、ホウ素を吸着する樹脂の再生や、精製塔の再生のために工業用水が用いられ、排水が増えることになる。
By the way, in the desulfurization equipment, for example, industrial water (industrial water) is continuously supplied as makeup water, and a relatively large amount of industrial water is required.
Moreover, when desorbing and purifying boron adsorbed on the resin as described above to obtain high-purity boric acid, industrial water is used for regeneration of the resin that adsorbs boron and regeneration of the purification tower. The drainage will increase.

また、ホウ素回収後に系外に放流する排水量が多い場合に、排水排出量規制への対応や周囲の環境への対応や、設備上の問題、例えば、排水の排出量に限界がある既設の排水設備を用いる場合等の理由により排水量を減容化する必要に迫られる場合がある。このような場合に、処理済みの排水の貯槽にスチームを導入し、排水を放散させて減容化することが行われる。この場合に、最終的に系外に排水を放流する前に、エネルギーを必要とするとともにそれに伴ってコストがかかることになる。また、蒸気を発生するためにボイラー等の設備を必要とし、設備コストも高くなる。 In addition, when there is a large amount of wastewater discharged outside the system after boron recovery, it is possible to respond to wastewater discharge regulations, to the surrounding environment, and to prevent problems with equipment, such as existing wastewater that has a limit in wastewater discharge. There are cases where it is necessary to reduce the volume of wastewater for reasons such as when equipment is used. In such a case, steam is introduced into the treated wastewater storage tank, and the wastewater is diffused to reduce the volume. In this case, energy is required before the waste water is finally discharged out of the system, and the cost is accordingly increased. Moreover, in order to generate | occur | produce a vapor | steam, facilities, such as a boiler, are required, and installation cost also becomes high.

本発明は、前記事情に鑑みて為されたものであり、脱硫設備から排出される排水の処理に際し、総合排水処理後に、ホウ素の回収除去を行った際に生じるホウ素吸着樹脂・精製樹脂の洗浄排水(以下、単に「再生水」という。)を脱硫設備に補給水として供給することにより、系外への処理後の排水の排出量を低減することができるホウ素含有排水の処理方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in the treatment of wastewater discharged from a desulfurization facility , after the comprehensive wastewater treatment, the boron adsorption resin / refined resin produced when the boron is recovered and removed To provide a method for treating boron-containing wastewater that can reduce the amount of wastewater discharged outside the system by supplying wastewater (hereinafter simply referred to as “reclaimed water”) to the desulfurization facility as make-up water. With the goal.

前記課題を解決するために、本発明のホウ素含有排水の処理方法は、
脱硫設備の排水からのホウ素の回収除去に用いた設備の再生により生じた再生水を、前記脱硫設備に供給される工業用水の少なくとも一部に代えて前記脱硫設備に供給するホウ素含有排水の処理方法であって、
前記再生水の性状および/または前記脱硫設備の前記排水の性状に係わる特定の制御指標を監視し、前記制御指標に基づいて、前記工業用水の少なくとも一部に代えて前記脱硫設備に供給される前記再生水の供給量を制御することを特徴とするホウ素含有排水の処理方法
In order to solve the above problems, the method for treating boron-containing wastewater of the present invention is as follows.
A method for treating boron-containing wastewater that supplies recycled water generated by regeneration of equipment used for recovery and removal of boron from wastewater of desulfurization equipment to the desulfurization equipment instead of at least part of industrial water supplied to the desulfurization equipment Because
A specific control index related to the property of the reclaimed water and / or the property of the waste water of the desulfurization facility is monitored, and the at least a part of the industrial water is supplied to the desulfurization facility based on the control index A method for treating boron-containing wastewater, wherein the supply amount of reclaimed water is controlled .

このような構成によれば、比較的多くの工業用水(工水)を必要とする脱硫設備に工水の少なくとも一部に代えて、ホウ素の回収除去の際に生じた再生水を脱硫設備に供給することにより、工業用水の使用量を削減できるとともに、系外に放流される排水量を低減することができる。   According to such a configuration, instead of at least a part of the industrial water for the desulfurization facility that requires a relatively large amount of industrial water (engineering water), the regenerated water generated during the recovery and removal of boron is supplied to the desulfurization facility. By doing this, the amount of industrial water used can be reduced, and the amount of waste water discharged outside the system can be reduced.

また、再生水の性状および/または脱硫設備から排出される前記排水の性状に係わる特定の制御指標に基づいて再生水の脱硫設備への供給量を制御しているので、例えば、脱硫設備からの排水または再生水の制御指標が排水や再生水の性状の悪化、例えば、排水の溶解物濃度の増加や、浮遊物質の増加を示す場合に、再生水の供給量を減らし、工業用水を増やすことにより、脱硫設備に供給される水の性状を好適な状態に維持することができる。
これにより、再生水の循環利用により脱硫設備に悪影響(所謂、不活性化現象)が生じるのを防止することができる。
Further, since the supply amount to the desulfurization facility is controlled based on the specific control index related to the property of the reclaimed water and / or the property of the waste water discharged from the desulfurization facility, for example, the waste water from the desulfurization facility or If the control index of the reclaimed water shows a deterioration in the properties of the wastewater or the reclaimed water, for example, increases in the concentration of dissolved matter in the wastewater or increases in suspended solids, by reducing the supply of reclaimed water and increasing industrial water, The properties of the supplied water can be maintained in a suitable state.
Thereby, it is possible to prevent an adverse effect (so-called deactivation phenomenon) from occurring on the desulfurization facility due to the recycled use of the recycled water.

本発明の前記構成において、前記再生水および/または前記脱硫設備の前記排水における前記制御指標が、TDS、SS、塩素、珪素、ナトリウムの含有量であることが好ましい。   The said structure of this invention WHEREIN: It is preferable that the said control parameter | index in the said waste water of the said reclaimed water and / or the said desulfurization equipment is content of TDS, SS, chlorine, silicon, and sodium.

このような構成によれば、特定指標が、TDS(Total Dissolved Salt)、SS(Suspended Solid)、塩素、珪素、ナトリウムの含有量とされており、これらの含有量が高くなる場合に、脱硫設備への再生水の供給量を減少させることにより、脱硫設備で使用される水における水質の悪化を防止できる。なお、ナトリウムについては、後述のような効果があり、排水や再生水に所定濃度以上含まれていることが好ましい。   According to such a configuration, the specific index is the content of TDS (Total Dissolved Salt), SS (Suspended Solid), chlorine, silicon, and sodium. When these contents increase, the desulfurization equipment By reducing the amount of recycled water supplied to the water, it is possible to prevent deterioration of water quality in water used in the desulfurization facility. In addition, about sodium, there exists an effect as mentioned later and it is preferable that predetermined concentration or more is contained in waste_water | drain or reclaimed water.

また、本発明の前記構成において、前記脱硫設備の前記排水のナトリウム濃度が1000〜4000mg/Lに制御されることが好ましい。   Moreover, the said structure of this invention WHEREIN: It is preferable that the sodium concentration of the said waste_water | drain of the said desulfurization equipment is controlled by 1000-4000 mg / L.

このような構成によれば、ナトリウムの影響により、上記不活性化現象の防止のみならず、硫黄酸化物を石膏として排水から分離する場合に、石膏の脱水分離性能の向上に繋げることができる。なお、この場合も、例えば、上述のナトリウム濃度範囲において、ナトリウム濃度が高くなる場合に再生水の脱硫設備への供給量を減少させ、ナトリウム濃度が低くなる場合に再生水の供給量を増やすことで対応することができる。また、再生水を供給してもナトリウム濃度が低い場合に、脱硫設備の吸収液が貯留されている吸収槽や、供給する再生水や工業用水にナトリウムを添加してもよい。   According to such a configuration, due to the influence of sodium, not only the inactivation phenomenon can be prevented, but also when the sulfur oxide is separated from the waste water as gypsum, it is possible to improve the dehydration separation performance of gypsum. In this case, for example, in the above-mentioned sodium concentration range, the supply amount to the desulfurization facility of the reclaimed water is decreased when the sodium concentration becomes high, and the supply amount of the reclaimed water is increased when the sodium concentration becomes low. can do. Further, when the concentration of sodium is low even if regenerated water is supplied, sodium may be added to the absorption tank in which the absorption liquid of the desulfurization facility is stored, the supplied reclaimed water or industrial water.

本発明によれば、脱硫設備から排出される排水の排水処理後にホウ素を回収除去する処理を行う場合に、ホウ素の回収除去の際に生じた再生水を脱硫設備に戻すことにより、工業用水の使用量と、排水の排出量を低減することができる。
また、再生水の供給量を再生水および脱硫設備の排水の制御指標に基づいて制御することにより、水の性状の悪化によって脱硫設備に悪影響(不活性化現象)が生じるのを防止することができる。
According to the present invention, when performing the process of recovering and removing boron after the wastewater treatment of the wastewater discharged from the desulfurization facility, the industrial water is used by returning the recycled water generated during the recovery and removal of boron to the desulfurization facility. The amount and discharge amount of waste water can be reduced.
Further, by controlling the supply amount of the reclaimed water based on the control index of the reclaimed water and the drainage of the desulfurization facility, it is possible to prevent the desulfurization facility from being adversely affected (deactivation phenomenon) due to the deterioration of the water properties.

本発明の実施の形態におけるホウ素含有排水の処理方法で用いられる脱硫設備およびホウ素処理設備を含む排水処理のシステムを示す概略図である。It is the schematic which shows the system of the waste water treatment containing the desulfurization equipment and boron treatment equipment which are used with the processing method of the boron containing waste water in embodiment of this invention. 脱硫設備の吸収液中ナトリウム濃度による未反応炭化カルシウム濃度の変化を示すグラフである。It is a graph which shows the change of the unreacted calcium carbide concentration by the sodium concentration in the absorption liquid of a desulfurization facility.

以下、本発明の実施の形態について説明する。
図1に示すように、この実施の形態のホウ素含有排水の処理方法では、排煙脱硫装置を備える脱硫設備1から排出される排水を総合排水処理設備2で処理した後に、処理後の排水からホウ素を回収除去し、このホウ素の回収除去により生じた再生水を工水の少なくとも一部に代えて脱硫設備1に供給するようになっている。
Embodiments of the present invention will be described below.
As shown in FIG. 1, in the processing method of the boron containing waste water of this embodiment, after processing the waste_water | drain discharged | emitted from the desulfurization equipment 1 provided with a flue gas desulfurization apparatus with the comprehensive waste water treatment equipment 2, from the waste water after a process. Boron is recovered and removed, and the reclaimed water generated by the recovery and removal of boron is supplied to the desulfurization facility 1 in place of at least part of the industrial water.

ここで、脱硫設備1では、例えば、石灰(炭酸カルシウム)スラリーを含む吸収液に排煙としての排気ガスが気液接触させられ、主に亜硫酸ガスである硫黄酸化物が吸収液に吸収され、吸収された亜硫酸ガスが酸化させられるとともに石灰と反応して石膏(硫酸カルシウム)となる。前記吸収液と排ガスとが気液接触させられる吸収槽では、石膏とともに吸収液が抜き出され、石膏が分離された吸収液が排水として排出される。それに対応して前記吸収槽には、補給水として工水(工業用水)が導入されている。また、吸収液を有する吸収槽を備える吸収塔では、デッキ等の内部構造物の洗浄のために工水(洗浄水)が用いられている。これら脱硫設備1で用いられる工水の一部が上述の再生水に代えられることになる。   Here, in the desulfurization facility 1, for example, exhaust gas as flue gas is brought into gas-liquid contact with an absorption liquid containing lime (calcium carbonate) slurry, and sulfur oxide, which is mainly sulfurous acid gas, is absorbed by the absorption liquid, The absorbed sulfurous acid gas is oxidized and reacts with lime to form gypsum (calcium sulfate). In the absorption tank in which the absorption liquid and the exhaust gas are brought into gas-liquid contact, the absorption liquid is extracted together with gypsum, and the absorption liquid from which the gypsum is separated is discharged as waste water. Correspondingly, industrial water (industrial water) is introduced into the absorption tank as makeup water. Further, in an absorption tower including an absorption tank having an absorption liquid, industrial water (cleaning water) is used for cleaning internal structures such as a deck. A part of the industrial water used in these desulfurization facilities 1 is replaced with the above-mentioned reclaimed water.

この実施の形態においては、上述の補給水や洗浄水の少なくとも一部が工水から再生水に代えられることになる。
上述の総合排水設備2では、脱硫設備1以外の、例えば、システム内に配置されるボイラーやその他の設備から発生する排水も処理するようになっている。脱硫設備1以外の設備から排出される排水には、塩素濃度の高い高塩素排水と、塩素濃度の低い低塩素排水とが含まれる。
In this embodiment, at least a part of the above-described makeup water and cleaning water is replaced from the industrial water to the reclaimed water.
In the general drainage facility 2 described above, wastewater generated from, for example, a boiler and other facilities other than the desulfurization facility 1 is also treated. Wastewater discharged from facilities other than the desulfurization facility 1 includes high chlorine wastewater having a high chlorine concentration and low chlorine wastewater having a low chlorine concentration.

脱硫設備1から排出される排水は、経路11を通って総合排水処置設備2に送られる。この総合排水設備2では、各種規制値を下回るように周知の排水処理が行われ、この排水処理で処理された処理水は、ホウ素を除けば系外に放流可能となっている。総合排水設備2から排出される処理水には、ホウ素が含まれており、このホウ素を含む処理水が経路12を通ってホウ素吸着塔3に送られる。   Waste water discharged from the desulfurization facility 1 is sent to the comprehensive waste water treatment facility 2 through the path 11. In this general drainage facility 2, well-known wastewater treatment is performed so as to be less than various regulation values, and the treated water treated in this wastewater treatment can be discharged outside the system except for boron. The treated water discharged from the general drainage facility 2 contains boron, and the treated water containing boron is sent to the boron adsorption tower 3 through the path 12.

ホウ素吸着塔3内には、ホウ素を吸着する樹脂が充填されている。ここでは、例えば、ホウ素に対応する陰イオン交換樹脂が充填されている。この陰イオン交換樹脂が充填されたホウ素吸着塔3内に総合排水処理設備2から排出された処理水を通水する。ホウ素吸着塔3内に通水された処理水は陰イオン交換樹脂と接触しながらホウ素吸着塔3内の入口から出口に流動して排出される。この際に、陰イオン交換樹脂にホウ素が吸着されて回収され、所定の規定値以下となるようにホウ素が処理水から除去される。   The boron adsorption tower 3 is filled with a resin that adsorbs boron. Here, for example, an anion exchange resin corresponding to boron is filled. The treated water discharged from the general waste water treatment facility 2 is passed through the boron adsorption tower 3 filled with the anion exchange resin. The treated water passed through the boron adsorption tower 3 flows from the inlet to the outlet in the boron adsorption tower 3 and is discharged while being in contact with the anion exchange resin. At this time, boron is adsorbed and recovered by the anion exchange resin, and boron is removed from the treated water so as to be a predetermined specified value or less.

ホウ素吸着塔3を通過した処理水は、ホウ素が除去されて系外に放流可能な状態となっており、経路13を通して系外に排出される。   The treated water that has passed through the boron adsorption tower 3 is in a state in which boron is removed and can be discharged out of the system, and is discharged out of the system through the path 13.

また、ホウ素吸着塔3は、複数並列に設けられており、これら並列のホウ素吸着塔3を順次切り替えて使用するようになっている。すなわち、例えば、1つ(複数でも可)のホウ素吸着塔3に所定量の処理水を流し、吸着可能なホウ素量が飽和状態に近づいた際に、処理水を流すホウ素吸着塔3を切り替える。処理水の流入が停止されたホウ素吸着塔3では、吸着したホウ素の脱着が行われる。   Further, a plurality of boron adsorption towers 3 are provided in parallel, and these parallel boron adsorption towers 3 are sequentially switched and used. That is, for example, when a predetermined amount of treated water is passed through one (or a plurality of) boron adsorption towers 3 and the amount of adsorbable boron approaches a saturated state, the boron adsorption tower 3 through which the treated water flows is switched. In the boron adsorption tower 3 where the inflow of the treated water is stopped, the adsorbed boron is desorbed.

ホウ素の脱着に際しては、アルカリ溶液や酸溶液やその他の薬品等が用いられ、ホウ素吸着塔3で工水による洗浄が複数回行われ、最終的にホウ素吸着用の樹脂が再生された状態となる。これにより、主に洗浄水として用いられた再生水は、経路14を通して全て貯槽5に送られる。 At the time of desorption of boron, an alkaline solution, an acid solution, other chemicals, or the like is used, and the boron adsorption tower 3 is washed with industrial water a plurality of times, and finally the boron adsorption resin is regenerated. . As a result, all of the reclaimed water mainly used as washing water is sent to the storage tank 5 through the path 14.

ホウ素の脱着に用いられ、脱着されたホウ酸を含む溶液は、経路15を通って精製塔4に送られる。
精製塔4に送られたホウ素を含む溶液は、精製塔4で精製されるとともに濃縮されて、例えば、99%以上の高純度のホウ酸が回収される。また、精製塔4においても、洗浄水等として再生のために工水が用いられ、精製塔4で用いられた洗浄用の工水等に基づく再生用排水(再生水)は、経路16を通って貯槽5に送られる。
The solution used for the desorption of boron and containing the desorbed boric acid is sent to the purification tower 4 through the path 15.
The solution containing boron sent to the purification tower 4 is purified by the purification tower 4 and concentrated to recover, for example, 99% or more of high-purity boric acid. Also in the purification tower 4, industrial water is used for regeneration as washing water or the like, and wastewater for regeneration (reclaimed water) based on the industrial water for washing used in the purification tower 4 passes through the path 16. It is sent to the storage tank 5.

貯槽5では、送られてくる再生水を貯留するようになっている。また、貯槽5に付設されている排水減容化設備6に貯槽5から再生水が送られることにより、この排水減容化設備6に貯留された再生水は、蒸気により排水量が削減された後、貯槽5に返送され、経路17を通って系外に排出される。また、貯槽5に貯留されている再生水の一部は、経路18を通って脱硫設備1に送られる。上述のホウ素吸着塔3、精製塔4、貯槽5、排水減容化設備6からホウ素処理設備が構成されている。 In the storage tank 5, the recycled water sent is stored. In addition, when the reclaimed water is sent from the storage tank 5 to the drainage volume reducing equipment 6 attached to the storage tank 5, the reclaimed water stored in the wastewater volume reduction equipment 6 is stored in the storage tank after the amount of drainage is reduced by steam. 5 and is discharged out of the system through the path 17. A part of the reclaimed water stored in the storage tank 5 is sent to the desulfurization facility 1 through the path 18. A boron treatment facility is constituted by the boron adsorption tower 3, the purification tower 4, the storage tank 5, and the wastewater volume reduction equipment 6 described above.

貯槽5に付設された排水減容化設備6へ供給される蒸気により貯留している再生水が加温されて再生水の一部を放散することにより、再生水を減容化している。
脱硫設備1に送られる工水の量は工水用のバルブ7で調整され、脱硫設備1に経路18を通って貯槽5から送られる再生水の量は経路18に設けられた再生水用のバルブ8により調整される。
The reclaimed water is reduced in volume by warming the reclaimed water stored by the steam supplied to the drainage volume reducing equipment 6 attached to the storage tank 5 and releasing a part of the reclaimed water.
The amount of industrial water sent to the desulfurization equipment 1 is adjusted by a valve 7 for industrial water, and the amount of reclaimed water sent from the storage tank 5 through the path 18 to the desulfurization equipment 1 is the valve 8 for reclaimed water provided in the path 18. It is adjusted by.

これらバルブ7,8の開閉および開度は、制御装置9により制御される。制御装置9には、制御指標として、貯槽5から経路18を通って脱硫設備に送られる再生水のTDS、SS、塩素、珪素、ナトリウムの含有量の測定値が各含有量を測定可能なセンサまたは測定装置から送信されている。同様に、脱硫設備1から排出される排水のTDS、SS、塩素、珪素、ナトリウムの含有量の測定値が各含有量を測定可能なセンサまたは測定装置から制御装置9に送信される。
これら排水、再生水のTDS,SS、塩素、珪素、ナトリウムの含有量には、貯槽5から脱硫設備に送られる再生水および脱硫設備から排出される排水に対して、それぞれ上限値が設定されている。また、ナトリウムの含有量については下限値も設定されている。
The opening / closing and opening of these valves 7 and 8 are controlled by the control device 9. As a control index, the control device 9 is a sensor that can measure the content of each of the TDS, SS, chlorine, silicon, and sodium content of reclaimed water sent from the storage tank 5 through the path 18 to the desulfurization facility. It is transmitted from the measuring device. Similarly, measured values of the content of TDS, SS, chlorine, silicon, and sodium in the wastewater discharged from the desulfurization facility 1 are transmitted to the control device 9 from a sensor or a measuring device that can measure each content.
For the contents of TDS, SS, chlorine, silicon, and sodium of these wastewater and reclaimed water, upper limit values are set for the reclaimed water sent from the storage tank 5 to the desulfurization facility and the wastewater discharged from the desulfurization facility, respectively. Moreover, the lower limit is also set about content of sodium.

再生水におけるTDSの上限値は、5,000〜10,000mg/Lであり、SSの上限値は、50〜100mg/Lであり、塩素の上限値は、50〜100mg/Lであり、珪素の上限値は、50mg/Lである。     The upper limit of TDS in reclaimed water is 5,000 to 10,000 mg / L, the upper limit of SS is 50 to 100 mg / L, the upper limit of chlorine is 50 to 100 mg / L, The upper limit is 50 mg / L.

脱硫設備から排出される排水におけるTDSの上限値は、30,000〜50,000g/Lであり、SSの上限値は、200,000〜300,000mg/Lであり、塩素の上限値は、10,000〜30,000mg/Lである。   The upper limit of TDS in the wastewater discharged from the desulfurization facility is 30,000 to 50,000 g / L, the upper limit of SS is 200,000 to 300,000 mg / L, and the upper limit of chlorine is 10,000 to 30,000 mg / L.

制御装置9は、制御指標のいずれかが上限値に近づくと経路18の再生水用のバルブを閉じるか開度を下げ、かつ、工水用のバルブを閉から開とするか、開度を上げる。これにより、脱硫設備1に供給する水のうちの再生水の量を減少させ、工水の量を増加させる。再生水の量が減少し、工水の量が増加すると、工水によって脱硫設備から排出される排水が薄められることになり、この排水において、各制御指標となるTDS、SS、塩素、珪素の含有量が減少する。これに基づいて、制御指標となる各含有量が上限値を超えないように再生水の脱硫設備1への導入量が決定される。また、再生水については、再生水の脱硫設備1への供給量を下げ、工水の脱硫設備1への供給量を上げても、直接的に再生水の制御指標が増減しない可能性があり、たとえば、フィードバック制御ではなく、再生水の前記制御指標に基づいて、再生水および工水の脱硫設備1への供給量が制御される。この際、再生水の上述の制御指標が上限値を超えてしまった場合に、再生水の脱硫設備1の供給を止めるものとしてもよい。   When any of the control indices approaches the upper limit value, the control device 9 closes or lowers the reclaimed water valve in the path 18 and opens or raises the industrial water valve from closed to open. . Thereby, the quantity of the reclaimed water of the water supplied to the desulfurization facility 1 is decreased, and the quantity of the construction water is increased. When the amount of reclaimed water decreases and the amount of industrial water increases, the wastewater discharged from the desulfurization equipment is diluted by the industrial water. In this wastewater, the contents of TDS, SS, chlorine, and silicon, which are the control indices, are contained. The amount decreases. Based on this, the amount of reclaimed water introduced into the desulfurization facility 1 is determined so that each content serving as a control index does not exceed the upper limit value. Moreover, about the reclaimed water, even if the supply amount to the desulfurization facility 1 of the reclaimed water is lowered and the supply amount to the desulfurization facility 1 of the industrial water is increased, the control index of the reclaimed water may not increase or decrease directly. The supply amount of the reclaimed water and the industrial water to the desulfurization facility 1 is controlled based on the control index of the reclaimed water, not the feedback control. At this time, when the above-described control index of the reclaimed water exceeds the upper limit value, the supply of the desulfurization facility 1 for the reclaimed water may be stopped.

これにより、脱硫設備1に対する悪影響が生じないレベルで、脱硫設備1に再生水を供給することが可能になる。なお、制御指標として、再生水の制御指標に基づいて再生水の脱硫設備1への導入量を制御してもよいし、脱硫設備1から排出される排水の制御指標に基づいて再生水の脱硫設備1への導入量を制御してもよい。また、再生水と脱硫設備の排水との両方の制御指標に基づいて再生水の脱硫設備1への導入量を制御してもよい。   This makes it possible to supply reclaimed water to the desulfurization facility 1 at a level that does not adversely affect the desulfurization facility 1. As the control index, the introduction amount to the desulfurization facility 1 may be controlled based on the control index of the reclaimed water, or to the desulfurization facility 1 based on the control index of the wastewater discharged from the desulfurization facility 1. The amount of introduction may be controlled. Further, the introduction amount of the reclaimed water into the desulfurization facility 1 may be controlled based on the control indexes of both the reclaimed water and the drainage of the desulfurization facility.

また、脱硫設備1から総合排水処理設備2に送られる排水においては、上述のようにナトリウム含有量が測定され、このナトリウム含有量が1000〜4000mg/Lとなるように、脱硫設備1への再生水の導入量が制御される。なお、ナトリウム濃度が低い場合、脱硫設備1における上述の気液接触を行う吸収槽内の石灰スラリーや、吸収槽に供給される工業用水および再生水にナトリウムを導入するものとしてもよい。例えば、脱硫設備1の排水のナトリウム濃度が低くいにも係わらず、上述のナトリウム以外の制御指標のいずれかが高く、再生水の導入量を下げるような場合に、上述のようにナトリウム(例えば、水酸化ナトリウム)を吸収槽に導入してもよい。 In the wastewater sent from the desulfurization facility 1 to the general wastewater treatment facility 2, the sodium content is measured as described above, and the reclaimed water to the desulfurization facility 1 is set so that the sodium content becomes 1000 to 4000 mg / L. The amount of introduction is controlled. In addition, when sodium concentration is low, it is good also as what introduce | transduces sodium into the lime slurry in the absorption tank which performs the above-mentioned gas-liquid contact in the desulfurization equipment 1, industrial water supplied to an absorption tank, and reclaimed water. For example, in the case where any one of the control indexes other than the above-mentioned sodium is high and the introduction amount of reclaimed water is lowered despite the low sodium concentration of the waste water from the desulfurization facility 1, sodium (for example, Sodium hydroxide) may be introduced into the absorption tank.

ナトリウム含有量を1000mg/L以上とすることにより、脱硫装置内の不活性化現象が低下し、吸収液中の炭酸カルシウムの溶解度が高まり、吸収された硫黄酸化物との反応が促進され、吸収液中の未反応の炭酸カルシウム濃度が低下する。これにより、吸収液中の未反応の炭酸カルシウム濃度が高くなることにより未溶解の炭酸カルシウムイオンの溶解速度が遅くなるのを防止できる。   By setting the sodium content to 1000 mg / L or more, the deactivation phenomenon in the desulfurization apparatus is reduced, the solubility of calcium carbonate in the absorption liquid is increased, the reaction with the absorbed sulfur oxide is promoted, and the absorption The unreacted calcium carbonate concentration in the liquid decreases. Thereby, it can prevent that the melt | dissolution rate of the undissolved calcium carbonate ion becomes slow by the unreacted calcium carbonate concentration in an absorption liquid becoming high.

すなわち、脱硫反応での不活性化現象を示す不活性化度を抑制する効果がある。なお、不活性化度とは、吸収液中の炭酸カルシウム濃度が高まり、炭酸カルシウムの溶解速度が低下する度合いのことである。また、炭酸カルシウムの溶解速度が低下した場合に、硫黄酸化物を吸収するための吸収液中の溶解した炭酸カルシウムの供給速度が遅くなることから、炭酸カルシウムの供給量が足らないと判断されて炭酸カルシウムをさらに補給する状態となる虞があり、最終的に炭酸カルシウムの使用量が増加することになる。   That is, there is an effect of suppressing the degree of inactivation indicating an inactivation phenomenon in the desulfurization reaction. The degree of inactivation is the degree to which the calcium carbonate concentration in the absorbent increases and the dissolution rate of calcium carbonate decreases. In addition, when the dissolution rate of calcium carbonate is reduced, the supply rate of dissolved calcium carbonate in the absorbent for absorbing sulfur oxides is slowed down. There is a risk of further replenishment of calcium carbonate, which ultimately increases the amount of calcium carbonate used.

また、ナトリウム含有量を1000mg/L以上とすることにより、吸収液中で生成する石膏粒子の粒子径を大きく保つことができ、石膏の粒子径を大きくすることにより石膏の分離操作を円滑にすることが可能になる。   Further, by setting the sodium content to 1000 mg / L or more, the particle size of the gypsum particles generated in the absorbing liquid can be kept large, and by increasing the particle size of the gypsum, the separation operation of the gypsum is made smooth. It becomes possible.

このようなホウ素含有排水の処理方法によれば、脱硫設備からの排水を排水処理した後に、ホウ素の回収除去を行うことにより、ホウ素吸着塔3や、精製塔4の洗浄等の再生用の排水が増加するのに対して、ホウ素を回収除去した際に生じた再生水を脱硫設備1に戻すことにより、系外に排出すべき排水の量を低減することができる。また、排水の減容化のために蒸気を用いて排水を放散させている場合に、この放散に必要とする熱エネルギーの低減を図ることができる。また、蒸気使用量を減らすことが可能なことから、排水減容化設備6等の蒸気が供給される設備への蒸気供給量を減らすことが可能になる。これにより、より小さな排水減容化設備となり、初期設備規模を縮小して設備コストの低減を図ることができる。   According to such a treatment method of boron-containing wastewater, wastewater from desulfurization equipment is treated with wastewater, and then boron is recovered and removed, so that wastewater for regeneration such as cleaning of the boron adsorption tower 3 and the purification tower 4 is recovered. However, the amount of waste water to be discharged out of the system can be reduced by returning the recycled water generated when boron is recovered and removed to the desulfurization facility 1. Moreover, when the waste water is diffused using steam for reducing the volume of the waste water, it is possible to reduce the thermal energy required for the diffusion. Moreover, since it is possible to reduce the amount of steam used, it is possible to reduce the amount of steam supplied to facilities to which steam is supplied, such as the wastewater volume reduction facility 6. Thereby, it becomes a smaller drainage volume reduction facility, and it is possible to reduce the facility cost by reducing the initial facility scale.

また、脱硫設備へ供給される再生水の量は、上述の再生水および/または脱硫設備の排水の性状を示す制御指標に基づいて制御されるので、制御指標により排水や再生水の性状の悪化が認められる場合に、再生水の導入量を減らし、工水の導入量を増やすことにより性状を安定させることができる。   Further, since the amount of the reclaimed water supplied to the desulfurization facility is controlled based on the above-described control index indicating the properties of the reclaimed water and / or the drainage of the desulfurization facility, deterioration of the properties of the waste water and the reclaimed water is recognized by the control index. In some cases, the properties can be stabilized by reducing the amount of reclaimed water introduced and increasing the amount of industrial water introduced.

上述の制御指標は、再生水および/または排水の例えば、TDS、SS、塩素、珪素、ナトリウムの含有量であり、再生水の導入量を減らして工水の導入量を増やすことにより、脱硫設備1において、これらの濃度が低下することになる。   The above-mentioned control index is the content of reclaimed water and / or wastewater, for example, TDS, SS, chlorine, silicon, sodium, and in the desulfurization facility 1 by reducing the amount of reclaimed water introduced and increasing the amount of work water introduced. These concentrations will decrease.

脱硫設備の排水において、排水のナトリウム含有量の制御に際し、ナトリウ含有量を1000〜4000mg/Lの範囲に維持することにより、硫黄酸化物の吸収液への吸収と石膏化とを安定して行うことが可能になるとともに、吸収液に析出する石膏粒子の径を大きくするこができ、これにより石膏の分離操作を円滑に行うことが可能になる。   In the drainage of desulfurization equipment, when controlling the sodium content of the wastewater, the sodium oxide content is maintained in the range of 1000 to 4000 mg / L, so that the absorption of sulfur oxide into the absorbent and the plasterization are stably performed. In addition, it is possible to increase the diameter of the gypsum particles precipitated in the absorption liquid, thereby enabling the gypsum separation operation to be performed smoothly.

次に、本発明の実施例を説明する。
上述のように脱硫設備1から排出される排水を排水処理した後に、ホウ素を回収除去することにより生じた処理水等を再生水として、脱硫設備1で用いられる工水の少なくとも一部に代えて脱硫設備1に供給することになる。
Next, examples of the present invention will be described.
After the wastewater discharged from the desulfurization facility 1 is treated as described above, the treated water generated by recovering and removing boron is used as reclaimed water, replacing at least part of the industrial water used in the desulfurization facility 1 with desulfurization. It will be supplied to the facility 1.

この実施例の実験では、脱硫設備1から排出されるとともに排水処理された処理後の排水からホウ素を回収除去した際に、ホウ素吸着塔3や精製塔4を再生するための洗浄等に用いられた工水を再生水として、脱硫設備1に供給するようになっている。ここで、脱硫設備1から排出される排水の総合排水処理後におけるホウ素含量は、650mg/Lであった。なお、この排水には、脱硫設備1から排出される排水の他に、他の設備からの低塩素排水および高塩素排水が混合された状態で総合排水処理が行われている。
また、ホウ素吸着塔3によるホウ素の吸着により、ホウ素吸着塔3に通水された処理水のホウ素濃度は、略230mg/L以下(海域放流の場合)になるように樹脂量や通水時の流量等が設定されている。また、総合排水処理設備2から排出される処理水のホウ素濃度と、ホウ素吸着塔3から排出される処理水のホウ素濃度は、ホウ素濃度の自動分析計により計測されている。
In the experiment of this example, when boron is recovered and removed from the treated wastewater discharged from the desulfurization facility 1 and treated as wastewater, it is used for washing to regenerate the boron adsorption tower 3 and the purification tower 4. The industrial water is supplied to the desulfurization facility 1 as reclaimed water. Here, the boron content after the comprehensive waste water treatment of the waste water discharged from the desulfurization facility 1 was 650 mg / L. In addition to this waste water discharged from the desulfurization facility 1, the waste water is subjected to comprehensive waste water treatment in a state where low chlorine waste water and high chlorine waste water from other facilities are mixed.
Further, the boron concentration of the treated water passed through the boron adsorption tower 3 due to the adsorption of boron by the boron adsorption tower 3 is about 230 mg / L or less (in the case of ocean discharge) at the time of resin flow or water passage. The flow rate is set. Further, the boron concentration of the treated water discharged from the general waste water treatment facility 2 and the boron concentration of the treated water discharged from the boron adsorption tower 3 are measured by an automatic analyzer of the boron concentration.

実施例としてケース1とケース2とを行い、ケース1では精製塔4の再生に用いられた再生用排水(再生水)を脱硫設備1に再生水として戻し、ケース2では、精製塔4の再生に用いられた再生用排水(再生水)と、ホウ素吸着塔3の再生に用いられた再生用排水(再生数位)との両方を脱硫設備1に再生水として戻している。 As an example, Case 1 and Case 2 are performed. In Case 1, the wastewater for regeneration ( reclaimed water ) used for regeneration of the purification tower 4 is returned to the desulfurization facility 1 as regeneration water, and in Case 2, it is used for regeneration of the purification tower 4. Both the wastewater for regeneration (reclaimed water) and the wastewater for regeneration (recycled number) used for regeneration of the boron adsorption tower 3 are returned to the desulfurization facility 1 as reclaimed water.

また、実験では、再生水を脱硫設備1のデッキの洗浄水として用いるものとした。なお、この洗浄水は、脱硫設備1の他の排水と同様に、脱硫設備1から排出されて排水として処理された後に、ホウ素の回収除去処理が行われることになる。
また、再生水を脱硫設備1に戻す際の再生水の流量を制御指標としてのTDS、SS、塩素、珪素の濃度で制御した。すなわち、TDS濃度の上限を10000mg/Lとし、SS濃度の上限を100mg/Lとし、塩素濃度の上限を100mg/Lとし、珪素濃度の上限を50mg/Lとした。
In the experiment, reclaimed water was used as washing water for the desulfurization equipment 1 deck. This washing water is discharged from the desulfurization facility 1 and treated as wastewater, as with other wastewater of the desulfurization facility 1, and then boron recovery and removal processing is performed.
Further, the flow rate of the reclaimed water when returning the reclaimed water to the desulfurization facility 1 was controlled by the concentrations of TDS, SS, chlorine, and silicon as control indices. That is, the upper limit of TDS concentration was 10000 mg / L, the upper limit of SS concentration was 100 mg / L, the upper limit of chlorine concentration was 100 mg / L, and the upper limit of silicon concentration was 50 mg / L.

例えばフィードバック制御等により、各濃度のいずれかが上限濃度に近づく場合に、再生水の脱硫設備1への導入量を減少させ、全ての濃度が上限濃度から離れている場合または離れる場合に再生水の導入量を増加するように制御する。また、脱硫設備1に供給される工水は、再生水の導入量に応じて、脱硫設備1に供給される水(再生水+工水)の量が必要量となるように制御される。   For example, when any one of the concentrations approaches the upper limit concentration due to feedback control or the like, the introduction amount of the reclaimed water into the desulfurization facility 1 is decreased, and when all the concentrations are separated from the upper limit concentration, or the reclaimed water is introduced. Control to increase the amount. Further, the industrial water supplied to the desulfurization facility 1 is controlled so that the amount of water (regenerated water + industrial water) supplied to the desulfurization facility 1 becomes a required amount according to the introduction amount of the regenerated water.

したがって、制御指標となる各濃度が上限値より低い状態が続けば、再生水の脱硫設備1への供給量が増加し、それにより系外に放流される処理水の量が減少することになる。
それに対して、実験の比較例では、ホウ素吸着塔及び精製塔の再生水を脱硫設備1に戻すことなく、全て系外に放流するものとした。但し、実施例および比較例において、上述の蒸気を用いた放散により系外に放流される再生水の減容化を行っており、これにより再生水の放流量が減らされている。
Therefore, if each concentration as a control index continues to be lower than the upper limit value, the supply amount of the reclaimed water to the desulfurization facility 1 increases, thereby reducing the amount of treated water discharged out of the system.
On the other hand, in the comparative example of the experiment, all the recycled water of the boron adsorption tower and the purification tower was discharged outside the system without returning to the desulfurization facility 1. However, in the examples and comparative examples, the volume of reclaimed water discharged outside the system is reduced by the diffusion using the above-mentioned steam, thereby reducing the discharge flow rate of the reclaimed water.

この実験の実施例のケース1と、ケース2と、比較例の実験結果を表1に示す。   Table 1 shows the experimental results of Case 1, Case 2, and Comparative Example of this experimental example.

Figure 0006211779
Figure 0006211779

表1において、脱硫装置送液流量とは、貯槽5から経路18(A)を介して排煙脱硫装置を有する脱硫設備1に至る再生水の流量である。ケース1では、精製塔4の洗浄水等の再生用排水が再生水として一日当たり480mの流量で脱硫設備1に送液される。 In Table 1, the desulfurization apparatus liquid feed flow rate is the flow rate of reclaimed water from the storage tank 5 to the desulfurization facility 1 having the flue gas desulfurization device via the path 18 (A). In Case 1, wastewater for regeneration such as washing water for the purification tower 4 is sent to the desulfurization facility 1 at a flow rate of 480 m 3 per day as recycled water.

また、ケース2では、精製塔4の再生用排水に加えてホウ素吸着塔3の再生用排水が脱硫設備1に送液されるので、一日当たりの流量が780mになる。
それに対して比較例では、再生水を脱硫設備1に送液していない。
減容化のために排水減容化設備6に送られる蒸気の蒸気使用量(B)は、後述のように系外に放流される水量が、実施例では比較例に対して減少するため、比較例に対して実施例の蒸気使用量を予め減らす設定としている。
Moreover, in case 2, since the waste water for regeneration of the boron adsorption tower 3 is sent to the desulfurization facility 1 in addition to the waste water for regeneration of the purification tower 4, the flow rate per day becomes 780 m 3 .
In contrast, in the comparative example, the recycled water is not sent to the desulfurization facility 1.
Since the amount of steam used (B) of the steam sent to the waste water volume reduction facility 6 for volume reduction is reduced as compared with the comparative example in the embodiment, the amount of water discharged outside the system as described later, It is set to reduce the amount of steam used in the example in advance with respect to the comparative example.

脱硫設備1から排出され、総合排水処理設備2で処理されて経路12を介してホウ素吸着塔3に通水される設備入口排水流量(C)は、実施例のケース1と、ケース2と、比較例とで同じ1000m/dに設定した。 The facility inlet drainage flow rate (C) discharged from the desulfurization facility 1, processed by the general wastewater treatment facility 2 and passed through the path 12 to the boron adsorption tower 3 is the case 1 of the example, the case 2 The same 1000 m 3 / d was set in the comparative example.

出口排水流量(D)が最終的にホウ素処理設備から系外に放流された排水の流量であり、比較例に対して実施例は出口排水流量を減少させている。特に、精製塔4からの再生処理水だけを脱硫設備1に送液したケース1よりも、精製塔4とホウ素吸着塔3の両方の再生用排水を脱硫設備1に送液したケース2の方が出口排水流量を大きく減らすことが可能になる。   The outlet drainage flow rate (D) is the flow rate of the wastewater finally discharged out of the system from the boron treatment facility, and the embodiment reduces the outlet drainage flow rate relative to the comparative example. In particular, the case 2 in which the regeneration wastewater from both the purification tower 4 and the boron adsorption tower 3 is sent to the desulfurization facility 1 than the case 1 in which only the regenerated water from the purification tower 4 is sent to the desulfurization facility 1. However, it becomes possible to greatly reduce the outlet drainage flow rate.

したがって、制御指標に基づいて脱硫設備1に戻す排水の量を制御するものとしても、制御指標が上限になるまで余裕があるものと思われ、さらに脱硫設備1に戻す排水量の設定を増やすことにより、系外への排水の放流量を減らせる可能性がある。   Therefore, even if the amount of drainage returned to the desulfurization facility 1 is controlled based on the control index, it seems that there is a margin until the control index reaches the upper limit, and by further increasing the setting of the amount of drainage returned to the desulfurization facility 1 There is a possibility that the discharge of wastewater to the outside of the system can be reduced.

また、実施例の実験として、脱硫設備1から排出される排水のナトリウム濃度が2000mg/L(ppm)となるように制御した場合と、ナトリウム濃度が0mg/L(ppm)となるように制御した場合の脱硫設備1の吸収液(石膏スラリー)における未反応炭酸カルシウム濃度(mmol/L)を求め、図2のグラフに示した。ナトリウム濃度が2000ppmの場合に明らかに0ppmの場合に比較して、未反応炭酸カルシウムの濃度が減少している。   Moreover, as experiment of an Example, when controlling so that the sodium concentration of the waste_water | drain discharged | emitted from the desulfurization equipment 1 might be 2000 mg / L (ppm), it controlled so that a sodium concentration might be 0 mg / L (ppm). The unreacted calcium carbonate concentration (mmol / L) in the absorption liquid (gypsum slurry) of the desulfurization facility 1 was determined and shown in the graph of FIG. When the sodium concentration is 2000 ppm, the concentration of unreacted calcium carbonate is clearly lower than when the sodium concentration is 0 ppm.

これは、ナトリウムにより炭酸カルシウムの溶解度が増し、硫黄酸化物との反応が促進され、未反応炭酸カルシウム濃度が低下するものである。
したがって、脱硫設備1から排出される排水のナトリウム濃度を1000mg/Lから4000mg/Lに制御し、炭酸カルシウムの溶解度を高めることによって、上述のように不活性化現象を防止し、かつ、石膏粒子の粒子径を大きくして石膏の分離を円滑にすることができる。
This is because sodium carbonate increases the solubility of calcium carbonate, promotes the reaction with sulfur oxides, and lowers the unreacted calcium carbonate concentration.
Therefore, by controlling the sodium concentration of the waste water discharged from the desulfurization facility 1 from 1000 mg / L to 4000 mg / L and increasing the solubility of calcium carbonate, the inactivation phenomenon is prevented as described above, and the gypsum particles The particle size of the gypsum can be increased to facilitate the separation of gypsum.

1 脱硫設備(排煙脱硫装置)
2 総合排水処理設備
3 ホウ素吸着塔
4 精製塔
5 貯槽
6 排水減容化設備
7 工水用バルブ
8 再生水用バルブ
9 制御装置
1 Desulfurization equipment (smoke desulfurization equipment)
2 General waste water treatment equipment 3 Boron adsorption tower 4 Purification tower 5 Storage tank 6 Waste water volume reduction equipment 7 Industrial water valve 8 Reclaimed water valve 9 Control device

Claims (2)

脱硫設備の排水から吸着樹脂を用いてホウ素を吸着する設備の再生に際して前記吸着樹脂の工水による洗浄で生じた洗浄排水を、前記脱硫設備に供給される工業用水の少なくとも一部に代えて前記脱硫設備に供給するホウ素含有排水の処理方法であって、
前記脱硫設備の前記排水のナトリウム濃度を監視し、前記排水のナトリウム濃度に基づいて、前記工業用水の少なくとも一部に代えて前記脱硫設備に供給される前記洗浄排水の供給量を制御することを特徴とするホウ素含有排水の処理方法。
Washing wastewater generated by washing the adsorbing resin with industrial water during regeneration of the equipment that adsorbs boron from the wastewater of the desulfurization equipment using the adsorbent resin is replaced with at least part of the industrial water supplied to the desulfurization equipment. A method for treating boron-containing wastewater to be supplied to a desulfurization facility,
Monitoring the sodium concentration of the wastewater of the desulfurization facility, and controlling the supply amount of the washing wastewater supplied to the desulfurization facility in place of at least a part of the industrial water based on the sodium concentration of the wastewater. A method for treating boron-containing wastewater.
前記脱硫設備の前記排水のナトリウム濃度が1000〜4000mg/Lに制御されることを特徴とする請求項1に記載のホウ素含有排水の処理方法。   The method for treating boron-containing wastewater according to claim 1, wherein the concentration of sodium in the wastewater of the desulfurization facility is controlled to 1000 to 4000 mg / L.
JP2013066072A 2013-03-27 2013-03-27 Treatment method for boron-containing wastewater Active JP6211779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066072A JP6211779B2 (en) 2013-03-27 2013-03-27 Treatment method for boron-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066072A JP6211779B2 (en) 2013-03-27 2013-03-27 Treatment method for boron-containing wastewater

Publications (2)

Publication Number Publication Date
JP2014188444A JP2014188444A (en) 2014-10-06
JP6211779B2 true JP6211779B2 (en) 2017-10-11

Family

ID=51835335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066072A Active JP6211779B2 (en) 2013-03-27 2013-03-27 Treatment method for boron-containing wastewater

Country Status (1)

Country Link
JP (1) JP6211779B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6651382B2 (en) * 2016-02-24 2020-02-19 三菱日立パワーシステムズ環境ソリューション株式会社 Wastewater treatment method and wastewater treatment device
JP7225544B2 (en) * 2018-02-20 2023-02-21 栗田工業株式会社 Method for producing pure water or ultrapure water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704652B2 (en) * 1989-02-09 1998-01-26 バブコツク日立株式会社 Wet flue gas desulfurization method
JP3600458B2 (en) * 1997-09-08 2004-12-15 三菱重工業株式会社 Treatment of flue gas desulfurization wastewater
JP2006247633A (en) * 2005-03-11 2006-09-21 Shoei:Kk Electric power control method by inverter using residual chlorine, ph, and orp
JP5157941B2 (en) * 2009-01-30 2013-03-06 栗田工業株式会社 Method for treating boron-containing water
WO2011104840A1 (en) * 2010-02-25 2011-09-01 三菱重工業株式会社 Exhaust gas treatment system, and exhaust gas treatment method

Also Published As

Publication number Publication date
JP2014188444A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
RU2541357C2 (en) System for concentrate purification
WO2017022113A1 (en) Water treatment system, power generation plant, and method for controlling water treatment system
US10247414B2 (en) Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method
JP5157941B2 (en) Method for treating boron-containing water
JP5874925B2 (en) Incineration plant wastewater treatment method and treatment equipment
JP2007007612A (en) Exhaust gas treatment device and exhaust gas treatment method
JP2011200848A (en) Treatment method of wastewater
JP5371172B2 (en) Exhaust gas treatment apparatus and method
US20160340216A1 (en) Method for removing boron from boron-containing waste water
JP6211779B2 (en) Treatment method for boron-containing wastewater
JP5222242B2 (en) Incinerator exhaust gas removal method
CN109200627B (en) Purification method of alcohol amine solution
JP2008188536A (en) Method for treating selenium-containing drainage
JP2006263676A (en) Combustion waste gas-purification system
CN106268241A (en) Copper making ring collection fume desulphurization method and device
JP7057212B2 (en) Water treatment method
JP6651382B2 (en) Wastewater treatment method and wastewater treatment device
WO2014153623A1 (en) Silica removal from coal seam gas water
CN211770651U (en) Complex sewage treatment system for active carbon flue gas desulfurization and acid preparation
CN111701397B (en) Process for removing sulfate ions and chloride ions in organic amine desulfurization solution and reducing loss of organic amine solution
JP5913087B2 (en) Wastewater treatment system
JP2021094522A (en) Water treatment method
JP2006021119A (en) Fluid treatment method and fluid treatment system
CN204981298U (en) Chlorine residue of chemical industry waste water reduces discharging device
JPS60132695A (en) Treatment of waste water containing sulfur compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R150 Certificate of patent or registration of utility model

Ref document number: 6211779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250