JP2010204043A - Water quality monitoring device - Google Patents

Water quality monitoring device Download PDF

Info

Publication number
JP2010204043A
JP2010204043A JP2009052520A JP2009052520A JP2010204043A JP 2010204043 A JP2010204043 A JP 2010204043A JP 2009052520 A JP2009052520 A JP 2009052520A JP 2009052520 A JP2009052520 A JP 2009052520A JP 2010204043 A JP2010204043 A JP 2010204043A
Authority
JP
Japan
Prior art keywords
test water
water
iron
sulfamic acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009052520A
Other languages
Japanese (ja)
Inventor
Osamu Ueno
修 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009052520A priority Critical patent/JP2010204043A/en
Priority to CN 201010113303 priority patent/CN101824381A/en
Publication of JP2010204043A publication Critical patent/JP2010204043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To monitor mixing of hazardous material except nitrous acid by removing nitrous acid from water to be inspected. <P>SOLUTION: A water quality monitoring device includes a measuring tank 26 to which water to be inspected (hereinafter, test water) is supplied, a gas supply device 16 that is immersed in the measuring tank and supplies oxygen to the test water, a dissolved oxygen electrode 28 for measuring the amount of oxygen permeating a microbial membrane containing iron-oxidizing bacteria, a test water introduction pipe 19 for supplying, to the measuring tank 26, the test water where dissolved oxygen is in a saturated state, and a chemical introduction pipe 24 for introducing iron liquid containing sulfamic acid solution or acidic solution containing sulfamic acid solution into the test water introduction pipe 19. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、浄水場や下水処理場等において、取水口から混入する有害物質をバイオセンサを用いて検知するバイオセンサ型水質監視装置に関する。   The present invention relates to a biosensor-type water quality monitoring device that uses a biosensor to detect harmful substances mixed from a water intake in water purification plants, sewage treatment plants, and the like.

従来、浄水場では河川等の水源から取水した原水を沈殿ろ過槽等で浄水処理し、飲料水として配水している。このような通常の処理では除去できない有害物質、すなわち、各種の重金属や農薬および環境ホルモン等といった物質が河川水に混入した場合は、取水停止という非常事態に至る。   Conventionally, in a water purification plant, raw water taken from a water source such as a river is purified by a precipitation filtration tank or the like and distributed as drinking water. When harmful substances that cannot be removed by such normal treatment, that is, substances such as various heavy metals, agricultural chemicals, and environmental hormones are mixed in the river water, an emergency situation occurs in which water intake is stopped.

一方、下水処理場では、突発事故や不注意により、工場あるいは化学プラントの排水に各種の重金属イオンや有機溶媒およびヒ素シアン等が混入することがあり、これらが流入すると、下水処理プロセスにおける活性汚泥微生物が大きな阻害を受け、その結果、活性汚泥の活性が低下して処理能力の回復までに多大の時間を必要とする。   On the other hand, in a sewage treatment plant, various heavy metal ions, organic solvents, arsenic cyanide, etc. may be mixed into the effluent of factories or chemical plants due to sudden accidents or carelessness. Microorganisms are greatly inhibited, and as a result, the activity of activated sludge is reduced, and a great deal of time is required until the treatment capacity is restored.

したがって、浄水場および下水処理場等において、上記各種の有害物質が混入したとき、これを迅速かつ感度良く検出する装置が望まれていた。   Therefore, there has been a demand for a device that can quickly and sensitively detect the various harmful substances when they are mixed in water purification plants and sewage treatment plants.

この要望に応えて、浄水場では魚行動監視型の毒物検出装置、あるいは、各種の微生物膜を溶存酸素電極に取付けて、その呼吸活性の測定から毒物を検出する装置が設置されている。また、下水処理場では、特定化学物質の混入した排水を検知する各種のセンサが、それぞれの取水口等に設置されている。   In response to this demand, a fish activity monitoring type poisonous detection device or a device for detecting a poisonous substance by measuring its respiratory activity by attaching various microbial membranes to a dissolved oxygen electrode is installed in a water purification plant. In the sewage treatment plant, various sensors that detect wastewater mixed with a specific chemical substance are installed at each water intake.

これらのうち、浄水場に設置されている魚行動監視型の毒物検出装置は、魚類が毒物に反応するまでに時間がかかるため、その検出に長時間を要する。また、魚類の反応感度も飼育されている魚類の種類や個体差、および飼育の環境状態によってかなり異なり、さらに魚行動監視型の毒物検出装置は、その装置自体が大掛かりで、魚類の飼育や管理面において必要経費が大きい等の問題がある。   Among these, the fish activity monitoring type poison detection device installed in the water purification plant takes a long time for the fish to react with the poison, and therefore requires a long time for detection. In addition, the response sensitivity of fish varies considerably depending on the type and individual differences of the fish being bred and the environmental conditions of the breeding. Furthermore, the fish behavior monitoring-type poison detection device itself is large-scale, and the breeding and management of fish There are problems such as large necessary expenses.

そこで水質検査システムが開発されている。一例として、有害物質や雑菌等が繁殖し難い比較的低いpH値で作動させることができる鉄酸化細菌(鉄バクテリア)をプローブとして用いるバイオセンサ型の水質監視装置がある(例えば、特許文献1参照)。   Therefore, a water quality inspection system has been developed. As an example, there is a biosensor-type water quality monitoring device that uses iron-oxidizing bacteria (iron bacteria) that can be operated at a relatively low pH value that is difficult for toxic substances and bacteria to propagate (see, for example, Patent Document 1). ).

図4に一例を示すバイオセンサ型の水質監視装置1では、検査すべき水源すなわち被検水源の被検水(例えば、河川の流入や、浄水場への流入水、下水処理場への流入水など)を中空糸膜フィルタ11でろ過し、供給ポンプ12により配管ヒータ13および導入管14を介して、散気水槽15に供給する。配管ヒータ13では、冬期等の低水温対策として、ろ過された水を30℃付近に加熱する。散気水槽15に送られた被検水には、気体供給器16から空気あるいは酸素濃度を一定に調整した気体が供給される。溶存酸素濃度が飽和状態となった被検水は、弁17及び被検水供給ポンプ18を有する被検水導入管19に送出され、測定槽26に流入する。この被検水は、気体供給器16から供給される気体によって溶存酸素濃度が飽和状態とされた状態である。なお、導入管14から散気水槽15に供給された被検水のうち、被検水導入管19に送水されない被検水は、排出管20を介して排出される。   In the biosensor-type water quality monitoring device 1 shown in FIG. 4 as an example, the water source to be examined, that is, the test water of the test water source (for example, the inflow of the river, the inflow water to the water purification plant, the inflow water to the sewage treatment plant Etc.) is filtered by the hollow fiber membrane filter 11 and supplied to the diffused water tank 15 through the pipe heater 13 and the introduction pipe 14 by the supply pump 12. The pipe heater 13 heats the filtered water to around 30 ° C. as a countermeasure for low water temperature in winter and the like. The test water sent to the diffused water tank 15 is supplied with air or a gas whose oxygen concentration is adjusted to a constant level from the gas supply device 16. The test water in which the dissolved oxygen concentration is saturated is sent to the test water introduction pipe 19 having the valve 17 and the test water supply pump 18 and flows into the measurement tank 26. This test water is in a state in which the dissolved oxygen concentration is saturated by the gas supplied from the gas supplier 16. Of the test water supplied from the introduction pipe 14 to the diffused water tank 15, the test water that is not sent to the test water introduction pipe 19 is discharged through the discharge pipe 20.

また、薬液供給ポンプ21により、鉄液パック22から弁23、薬液導入管24を介して硫酸第一鉄含有溶液が供給され、被検水導入管19で被検水と混合され、被検水導入管19から測定槽26内に流入される。   Also, the ferrous sulfate-containing solution is supplied from the iron solution pack 22 through the valve 23 and the chemical solution introduction pipe 24 by the chemical solution supply pump 21, and mixed with the test water in the test water introduction pipe 19. It flows into the measuring tank 26 from the introduction pipe 19.

測定槽26は温度調整器27から供給される循環温水によって常時保温されるフローセル25内に収納され、温度調整されている。これは、測定槽26には飽和溶存酸素濃度が飽和状態にされた被検水が供給されるが、飽和溶存酸素濃度は液温度により変化するため、測定槽26の温度を一定にして酸素電極28の出力の最大値を安定させるためである。測定槽26内には、酸素を利用して硫酸第一鉄を硫酸第二鉄に変えることができる鉄酸化細菌を保持する微生物膜29が取付けられた酸素電極28が設けられている。さらに、酸素電極28からの電気出力が取り出され、その電気出力を変換演算器30によって増幅・変換し、演算を施して被検水の異常水質を判別する。微生物膜29に保持される鉄酸化細菌は、例えば、Thiobacillusferrooxidansである。測定槽26を通った被検水は排出管31を介して排出される。   The measuring tank 26 is housed in a flow cell 25 that is always kept warm by circulating hot water supplied from a temperature regulator 27, and the temperature is adjusted. This is because the test water in which the saturated dissolved oxygen concentration is saturated is supplied to the measurement tank 26, but the saturated dissolved oxygen concentration varies depending on the liquid temperature. This is to stabilize the maximum value of the 28 outputs. In the measurement tank 26, there is provided an oxygen electrode 28 to which a microbial film 29 holding iron-oxidizing bacteria that can convert ferrous sulfate to ferric sulfate using oxygen is attached. Further, the electrical output from the oxygen electrode 28 is taken out, and the electrical output is amplified and converted by the conversion calculator 30 and subjected to calculation to determine the abnormal water quality of the test water. The iron-oxidizing bacteria held in the microbial membrane 29 is, for example, Thiobacillus ferrooxidans. The test water that has passed through the measurement tank 26 is discharged through the discharge pipe 31.

この化学的挙動は、化学反応式(1)のようになる。   This chemical behavior is represented by the chemical reaction formula (1).

4FeSO4+O2+2H2SO4→2Fe2(SO43+2H2O ・・・(1)
化学反応式(1)のように、2Fe2(SO43は水中で電離し、Fe3+イオンが生成される。このFe3+イオンがさらに水(H2O)と反応して、水酸化鉄Fe(OH)3となり沈殿することになる。微生物膜29に保持される鉄酸化細菌としては、Thiobacillus ferrooxidans以外にも、上記化学反応式の働きを持つすべての微生物が適用可能である。例えば、Gallionella ferruginea、Leptospirillum ferrOoxidans、Leptothrix、Sphaerotilus等が適していることが確認されている。
4FeSO 4 + O 2 + 2H 2 SO 4 → 2Fe 2 (SO 4 ) 3 + 2H 2 O (1)
As in the chemical reaction formula (1), 2Fe 2 (SO 4 ) 3 is ionized in water to generate Fe 3+ ions. This Fe 3+ ion further reacts with water (H 2 O) to precipitate as iron hydroxide Fe (OH) 3 . As the iron-oxidizing bacteria held in the microbial membrane 29, all microorganisms having the above chemical reaction formula can be applied in addition to Thiobacillus ferrooxidans. For example, it has been confirmed that Gallionella ferruginea, Leptospirillum ferrOoxidans, Leptothrix, Sphaerotilus and the like are suitable.

なお、鉄酸化細菌の活性、すなわち鉄の酸化量は、温度の影響によっても変化する可能性があるため、測定槽26は温度調整器27によって、鉄酸化細菌の活性が安定するような温度に維持されるのが望ましい。温度調整器27は、そういう意味で設けられているものである。   Note that the activity of the iron-oxidizing bacteria, that is, the amount of iron oxidation may change due to the influence of temperature, so the measuring tank 26 is adjusted to a temperature at which the activity of the iron-oxidizing bacteria is stabilized by the temperature regulator 27. It is desirable to be maintained. The temperature regulator 27 is provided in that sense.

図4に示すバイオセンサ型の水質監視装置1は、鉄酸化細菌をプローブとして取付けた酸素電極28に被検水と鉄液の混合液を被検水供給ポンプ18および薬液供給ポンプ21によって送液し、この送液時における酸素電極28からの電気出力を監視するものである。このとき、被検水中の水溶性の有害物質が混入した場合、その有害物質が微生物膜29上の鉄酸化細菌の呼吸活性を低下させる。その結果、鉄酸化細菌に消費されなかった酸素が微生物膜29を透過するため、酸素電極28に到達する酸素量が増加する。その結果、酸素電極28が出力する電流値が増加するので、これによって有害物質の混入を判断する。   The biosensor-type water quality monitoring apparatus 1 shown in FIG. 4 feeds a mixed solution of test water and iron liquid to an oxygen electrode 28 attached with iron-oxidizing bacteria as a probe by a test water supply pump 18 and a chemical liquid supply pump 21. Then, the electrical output from the oxygen electrode 28 during the liquid feeding is monitored. At this time, when a water-soluble harmful substance in the test water is mixed, the harmful substance reduces the respiratory activity of iron-oxidizing bacteria on the microbial membrane 29. As a result, oxygen that has not been consumed by the iron-oxidizing bacteria permeates the microbial membrane 29, so that the amount of oxygen that reaches the oxygen electrode 28 increases. As a result, since the current value output from the oxygen electrode 28 increases, it is determined whether or not harmful substances are mixed.

このような水質監視装置1は、連続運転されると、被検水中の汚濁物質が各配管の内壁に付着し堆積してくる。また、鉄液中の硫酸第一鉄の一部が硫酸第二鉄に酸化されて、これも徐々に堆積してくる。これらは、配管系の閉塞や、異常水質検出の感度低下につながり、検出精度を低下させる原因となる。そのため、図4に示す水質監視装置1には、被検水と硫酸第一鉄含有溶液の混合液が送液される被検水導入管19に、酸性溶液パック32から弁33、薬液供給ポンプ21および薬液導入管24を介して酸性溶液を供給し、被検水導入管19や測定槽26などの被検水通流路に付着堆積している汚濁物質および酸化鉄を除去し、排出する「酸洗浄」を行なうことができるようにしている。   When such a water quality monitoring device 1 is continuously operated, the pollutant in the test water adheres to and accumulates on the inner wall of each pipe. Moreover, a part of the ferrous sulfate in the iron solution is oxidized to ferric sulfate, and this also gradually accumulates. These lead to blockage of the piping system and a decrease in sensitivity of abnormal water quality detection, which causes a decrease in detection accuracy. Therefore, in the water quality monitoring device 1 shown in FIG. 4, a valve 33, a chemical solution supply pump is provided from the acidic solution pack 32 to the test water introduction pipe 19 to which the test water and the ferrous sulfate-containing solution are sent. 21 and the chemical solution introduction pipe 24 are supplied with an acidic solution to remove and discharge the pollutant and iron oxide adhering to and depositing on the test water passage such as the test water introduction pipe 19 and the measurement tank 26. “Acid cleaning” can be performed.

特開2005−249664号公報JP 2005-249664 A

上述したバイオセンサ型の水質監視装置に使用する鉄酸化細菌は、被検水中に約0.6mg/L以上の亜硝酸が含まれていると、呼吸活性が阻害されて鉄液を消費することが困難となり、酸素電極28に到達する酸素量が増加して、水質異常と判定される。   The iron-oxidizing bacteria used in the above-described biosensor-type water quality monitoring device consumes iron solution because respiratory activity is inhibited if the test water contains about 0.6 mg / L or more of nitrous acid. It becomes difficult to increase the amount of oxygen reaching the oxygen electrode 28, and it is determined that the water quality is abnormal.

亜硝酸は、人や魚等に悪影響を及ぼす物質であるため、亜硝酸濃度が0.6mg/L以上になった場合には異常を検出し、処理することが望ましい。一方、汚染が進んだ河川や、肥料や家畜のふん尿や生活排水に含まれるアンモニアが多量に流れ込む河川では、アンモニアの酸性物である亜硝酸の平均濃度が高く、亜硝酸の濃度が常時0.6mg/L以上である河川もある。   Since nitrous acid is a substance that adversely affects humans and fish, it is desirable to detect and treat abnormalities when the nitrous acid concentration is 0.6 mg / L or more. On the other hand, in polluted rivers and rivers into which a large amount of ammonia contained in fertilizers, livestock excreta and domestic wastewater flows, the average concentration of nitrous acid, which is an acid of ammonia, is high, and the concentration of nitrous acid is always 0. Some rivers are above 6 mg / L.

ここで、鉄酸化細菌の亜硝酸に対する感度は、一般的な魚や人体と比較して極端に敏感であるため、亜硝酸が存在する河川水の水質監視の際には亜硝酸の影響を除く必要がある。   Here, the sensitivity of iron-oxidizing bacteria to nitrite is extremely sensitive compared to general fish and the human body. There is.

上記課題に鑑み、本発明は、被検水から亜硝酸を除去して亜硝酸以外の有害物質の困窮を監視する水質監視装置を提供する。   In view of the above problems, the present invention provides a water quality monitoring device that removes nitrous acid from test water and monitors the need for harmful substances other than nitrous acid.

上記の課題を解決するために、被検水が送水される測定槽と、当該測定槽内に浸漬され、鉄酸化細菌を保持する微生物膜を透過する酸素量を測定する溶存酸素電極と、測定槽に送水される被検水に酸素を供給する気体供給装置とを備え、溶存酸素電極によって測定された被検水の酸素量に基づいて、被検水に含まれる有害物質の混入を監視する水質監視装置であって、溶存酸素が飽和状態の被検水を測定槽に送水する被検水導入管と、被検水導入管に、スルファミン酸溶液を含む鉄液又はスルファミン酸溶液を含む酸性溶液を導入する薬液導入管とを備える。   In order to solve the above problems, a measurement tank to which test water is fed, a dissolved oxygen electrode that measures the amount of oxygen that is immersed in the measurement tank and permeates the microbial membrane holding iron-oxidizing bacteria, and measurement A gas supply device for supplying oxygen to the test water sent to the tank, and monitoring the contamination of harmful substances contained in the test water based on the oxygen amount of the test water measured by the dissolved oxygen electrode A water quality monitoring device, a test water introduction pipe for feeding test water saturated with dissolved oxygen to a measurement tank, and an acid containing an iron solution or a sulfamic acid solution containing a sulfamic acid solution in the test water introduction pipe And a chemical solution introduction pipe for introducing the solution.

本発明は、被検水から亜硝酸を除去して亜硝酸以外の有害物質の混入を監視することができる。   In the present invention, nitrous acid can be removed from the water to be tested, and contamination of harmful substances other than nitrous acid can be monitored.

本発明の第1の実施形態に係る水質監視装置の構成を説明する図である。It is a figure explaining the composition of the water quality monitoring device concerning a 1st embodiment of the present invention. スルファミン酸の注入量と亜硝酸濃度の関係について説明する図である。It is a figure explaining the relationship between the injection amount of sulfamic acid, and nitrous acid concentration. 本発明の第2の実施形態に係る水質監視装置の構成を説明する図である。It is a figure explaining the structure of the water quality monitoring apparatus which concerns on the 2nd Embodiment of this invention. 従来の水質監視装置の構成を説明する図である。It is a figure explaining the structure of the conventional water quality monitoring apparatus.

以下に、図面を用いて本発明の各実施形態に係る固液分離システムについて説明する。以下の説明において、同一の構成については同一の符号を付して説明を省略する。また、図4を用いて上述した従来の水質監視装置と同様の構成については、同様の符号を付して説明を省略する。   The solid-liquid separation system according to each embodiment of the present invention will be described below with reference to the drawings. In the following description, the same components are denoted by the same reference numerals and description thereof is omitted. Moreover, about the structure similar to the conventional water quality monitoring apparatus mentioned above using FIG. 4, the same code | symbol is attached | subjected and description is abbreviate | omitted.

〈第1の実施形態〉
図1を用いて、第1の実施形態に係る水質監視装置1aについて説明する。図1に示すように、第1の実施形態に係る水質監視装置1aは、河川等の水源から取水した水を被検水としてろ過する中空糸膜フィルタ11と、ろ過された被検水を送水する供給ポンプ12と、被検水を約30℃に加温する配管ヒータ13と、導入管14を介して供給された被検水を貯留する散気水槽15と、散気水槽15内の被検水に酸素を含む気体を送り込んで溶存酸素濃度を飽和させる気体供給器16と、弁17と被検水供給ポンプ18を有し、溶存酸素濃度が飽和された被検水の送水に利用する被検水導入管19を備えている。
<First Embodiment>
The water quality monitoring device 1a according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the water quality monitoring apparatus 1a according to the first embodiment supplies a hollow fiber membrane filter 11 that filters water taken from a water source such as a river as test water, and feeds the filtered test water. A supply pump 12, a pipe heater 13 for heating the test water to about 30 ° C., an aeration water tank 15 for storing the test water supplied via the introduction pipe 14, and a test object in the aeration water tank 15. It has a gas supply unit 16 for sending a gas containing oxygen to the test water to saturate the dissolved oxygen concentration, a valve 17 and a test water supply pump 18, and is used for water supply of the test water with the dissolved oxygen concentration saturated. A test water introduction pipe 19 is provided.

また、水質監視装置1aは、鉄液として硫酸第一鉄含有溶液を貯留する鉄液パック22aと、鉄液パック22aから硫酸第一鉄含有溶液を薬液導入管24に導く弁23と、洗浄液となる酸性溶液を貯留する酸性溶液パック32aと、酸性溶液パック32aから酸性溶液を取り込み、薬液導入管24に導く弁33と、薬液導入管24から硫黄第一鉄含有溶液または酸性溶液を被検水導入管19に送水する薬液供給ポンプ21を備えている。   The water quality monitoring device 1a includes an iron liquid pack 22a that stores a ferrous sulfate-containing solution as an iron liquid, a valve 23 that guides the ferrous sulfate-containing solution from the iron liquid pack 22a to the chemical liquid introduction pipe 24, a cleaning liquid, An acidic solution pack 32a for storing the acidic solution, a valve 33 for taking the acidic solution from the acidic solution pack 32a and leading it to the chemical solution introduction tube 24, and a ferrous sulfur-containing solution or acidic solution from the chemical solution introduction tube 24 A chemical supply pump 21 for feeding water to the introduction pipe 19 is provided.

さらに、水質監視装置1aは、フローセル25と、フローセル25内に配置され、被検水供給ポンプ18によって被検水が送水されるとともに、薬液供給ポンプ21によって硫酸第一鉄含有溶液または酸性溶液が送水される測定槽26と、フローセル25に温水を循環して測定槽26の温度を一定に保持させる温度調整器27と、測定槽26内に配置され、被検水中の硫酸第一鉄を取り込み、硫酸第二鉄にする鉄酸化細菌を保持する微生物膜29と、測定槽26内に配置され、微生物膜29を透過した酸素の濃度に応じた電流を出力する酸素電極28と、酸素電極28から出力される電流を増幅した後、演算を行い被検水の水質が異常かどうかを判定する変換演算器30とを備えている。   Furthermore, the water quality monitoring device 1a is arranged in the flow cell 25 and the flow cell 25, and the test water is supplied by the test water supply pump 18, and the ferrous sulfate-containing solution or acidic solution is supplied by the chemical supply pump 21. A measuring tank 26 to be supplied with water, a temperature regulator 27 for circulating the warm water through the flow cell 25 to keep the temperature of the measuring tank 26 constant, and a ferrous sulfate in the test water are taken in the measuring tank 26 A microbial membrane 29 holding iron-oxidizing bacteria to be converted into ferric sulfate, an oxygen electrode 28 arranged in the measurement tank 26 and outputting a current according to the concentration of oxygen that has permeated through the microbial membrane 29, and an oxygen electrode 28 A conversion arithmetic unit 30 is provided for determining whether or not the water quality of the test water is abnormal after amplifying the current output from.

通常は微生物膜29上の鉄酸化細菌が気体供給器16から被検水に供給された酸素を消費している。一方、被検水中に水溶性の有害物質が混入した場合、この有害物質が鉄酸化細菌の呼吸活性を低下させる。したがって、鉄酸化細菌に消費されなかった酸素が微生物膜29を透過し、酸素電極28に到達する酸素量が増加する。したがって、酸素電極28から出力される電流値が増加するので、この電流値の増加によって有害物質の混入を判断する。例えば、被検水中に亜硝酸を含んでいる場合にも亜硝酸によって鉄酸化細菌の呼吸活性が低下して、酸素電極28から出力される電流量が増加する。   Normally, iron-oxidizing bacteria on the microbial membrane 29 consume oxygen supplied from the gas supplier 16 to the test water. On the other hand, when water-soluble harmful substances are mixed in the test water, the harmful substances reduce the respiratory activity of iron-oxidizing bacteria. Therefore, oxygen that has not been consumed by the iron-oxidizing bacteria permeates the microbial membrane 29 and the amount of oxygen that reaches the oxygen electrode 28 increases. Therefore, since the current value output from the oxygen electrode 28 increases, it is determined that harmful substances are mixed by the increase in the current value. For example, even when nitrite is contained in the test water, the respiratory activity of the iron-oxidizing bacteria is reduced by nitrous acid, and the amount of current output from the oxygen electrode 28 is increased.

図1に示す水質監視装置1aの鉄液パック22aが貯留する鉄液にはスルファミン酸を混合させている。また、酸性溶液パック32aが貯留する酸性溶液にもスルファミン酸を混合させている。   Sulfamic acid is mixed with the iron solution stored in the iron solution pack 22a of the water quality monitoring device 1a shown in FIG. Also, sulfamic acid is mixed with the acidic solution stored in the acidic solution pack 32a.

通常、スルファミン酸は、化学反応式(2)に示すように、亜硝酸と反応し、亜硝酸を硫酸と窒素に分解する。すなわち、亜硝酸を含む被検水にスルファミン酸を混合した場合には、スルファミン酸が亜硝酸と反応して、亜硝酸を分解することができる。   Usually, sulfamic acid reacts with nitrous acid to decompose nitrous acid into sulfuric acid and nitrogen as shown in chemical reaction formula (2). That is, when sulfamic acid is mixed with test water containing nitrous acid, the sulfamic acid can react with nitrous acid to decompose nitrous acid.

HNO2+(NH2)HSO3 → H2SO4+N2+H2O ・・・(2)
例えば、化学反応式(2)から、河川水中の亜硝酸濃度を最大3mg/Lと過程すると、被検水供給ポンプ18による被検水の流量が100mL/hのとき、測定槽26に流入する亜硝酸の量は0.3mg/hとなる。この場合、薬液供給ポンプ21の流量が10mL/hとすると、理論上は、鉄液および酸性溶液に予め62mg/Lの濃度のスルファミン酸を混合すれば、被検水中の亜硝酸は、スルファミン酸と反応して、被検水が測定槽26に到達する前に、亜硝酸を硫酸と窒素とに分解できることとなる。
HNO 2 + (NH 2 ) HSO 3 → H 2 SO 4 + N 2 + H 2 O (2)
For example, from the chemical reaction formula (2), when the nitrous acid concentration in the river water is set to 3 mg / L at the maximum, the flow into the measuring tank 26 is 100 mL / h when the flow rate of the test water by the test water supply pump 18 is 100 mL / h. The amount of nitrous acid is 0.3 mg / h. In this case, assuming that the flow rate of the chemical solution supply pump 21 is 10 mL / h, theoretically, if sulfamic acid having a concentration of 62 mg / L is mixed in advance with the iron solution and the acidic solution, the nitrous acid in the test water is sulfamic acid. Nitrous acid can be decomposed into sulfuric acid and nitrogen before the test water reaches the measuring tank 26.

すなわち、理想では、被処理水に含まれる亜硝酸が3mg/Lのとき、注入するスルファミン酸量は6.2g/Lになり、亜硝酸の分解には、被処理水に混入している亜硝酸の2倍程度のスルファミン酸が必要になる。しかしながら、亜硝酸を2倍程度の量のスルファミン酸で分解することができるのは、被処理水及びスルファミン酸の温度、反応時間(分解に必要な時間)等が理想的な場合である。また、反応時間は、スルファミン酸と亜硝酸を攪拌の有無にも影響される。したがって、被検水に含有される亜硝酸量の2倍のスルファミン酸を用いたとしても、微生物膜29の鉄酸化細菌に影響を与えない程度に亜硝酸を分解することは困難である。   That is, ideally, when the amount of nitrous acid contained in the water to be treated is 3 mg / L, the amount of sulfamic acid to be injected is 6.2 g / L. About twice as much sulfamic acid as nitric acid is required. However, nitrous acid can be decomposed with about twice as much sulfamic acid when the temperature of the water to be treated and sulfamic acid, the reaction time (time required for decomposition), etc. are ideal. The reaction time is also affected by the presence or absence of stirring of sulfamic acid and nitrous acid. Therefore, even if sulfamic acid twice the amount of nitrite contained in the test water is used, it is difficult to decompose nitrite to the extent that it does not affect the iron-oxidizing bacteria of the microbial membrane 29.

たとえば、被検水に含まれる亜硝酸と鉄液や酸性溶液に含まれるスルファミン酸は被検水導入管19中で攪拌等は行なわずに混合させる。ここで、水質監視装置1aでは、被検水に含有される有害物質を早急に検出するため、被検水導入管19の長さを短くすることで、被検水や薬品が通過する時間を短く(数分程度)設定している。したがって、被検水導入管19で亜硝酸とスルファミン酸とを混合する時間は極めて短く、被検水に含まれる亜硝酸を十分に分解するためには、スルファミン酸の供給量を理論値よりも多くする必要がある。   For example, nitrous acid contained in the test water and sulfamic acid contained in the iron solution or acidic solution are mixed in the test water introduction pipe 19 without stirring. Here, in the water quality monitoring device 1a, in order to quickly detect harmful substances contained in the test water, the length of the test water introduction pipe 19 is shortened so that the time for the test water and the chemical to pass through is reduced. It is set short (about several minutes). Therefore, the time for mixing nitrous acid and sulfamic acid in the test water introduction pipe 19 is extremely short, and in order to sufficiently decompose nitrous acid contained in the test water, the supply amount of sulfamic acid is lower than the theoretical value. There is a need to do more.

例えば、図2に示す例では、pH2の条件下において、亜硝酸濃度が0.3mg/L程度(亜硝酸酸性窒素の濃度が0.925mg/L)の被検水にときに1〜2分の反応時間で亜硝酸を分解するためには、スルファミン酸を200mg/L程度注入する必要であるという実験結果が得られた。   For example, in the example shown in FIG. 2, when the test water has a nitrite concentration of about 0.3 mg / L (the concentration of acidic nitrogen nitrite is 0.925 mg / L) under the condition of pH 2, it takes 1 to 2 minutes. In order to decompose nitrous acid with this reaction time, an experimental result was obtained that about 200 mg / L of sulfamic acid had to be injected.

被検水導入管19を通過して測定槽26に被検水が到達するまでに、亜硝酸とスルファミン酸から化学反応式(2)の反応によって硫酸が発生して被検水のpH値は低下するが、酸素電極28では至適pH値が2〜3の酸性領域である鉄酸化細菌をプローブとしているため、pH値の低下による水質監視への悪影響はない。また、窒素も鉄酸化細菌に無害であるため、窒素の含有による水質監視への悪影響もない。   By passing the test water introduction pipe 19 and the test water reaching the measurement tank 26, sulfuric acid is generated from the nitrous acid and sulfamic acid by the reaction of the chemical reaction formula (2), and the pH value of the test water is However, since the oxygen electrode 28 uses iron-oxidizing bacteria, which are acidic regions having an optimum pH value of 2 to 3, as probes, there is no adverse effect on water quality monitoring due to a decrease in pH value. Also, since nitrogen is harmless to iron-oxidizing bacteria, there is no adverse effect on water quality monitoring due to the nitrogen content.

上述したように、第1の実施形態に係る水質監視装置1aによれば、鉄液及び酸性溶液にスルファミン酸を混合し、スルファミン酸によって被検水中の亜硝酸を分解する。これにより、水質監視装置1aでは、亜硝酸濃度が0.6mg/L以上の被検水においても、鉄酸化細菌の呼吸活性が阻害されることが無く、安定した異常水質の検出を可能とすることができる。   As described above, according to the water quality monitoring apparatus 1a according to the first embodiment, sulfamic acid is mixed with the iron solution and the acidic solution, and nitrous acid in the test water is decomposed with the sulfamic acid. Thereby, in the water quality monitoring apparatus 1a, even in the test water having a nitrite concentration of 0.6 mg / L or more, the respiratory activity of the iron-oxidizing bacteria is not inhibited, and stable abnormal water quality can be detected. be able to.

〈第2の実施形態〉
図3を用いて、第2の実施形態に係る水質監視装置1bについて説明する。図3に示すように、第2の実施形態に係る水質監視装置1bは、図1を用いて上述した第1の実施形態に係る水質監視装置1aと比較して、スルファミン酸溶液を貯留するスルファミン酸溶液パック34と、スルファミン酸溶液パック34からスルファミン酸溶液をスルファミン酸導入管35に導く弁36と、被検水導入管19に送水するスルファミン酸溶液の量を制御するスルファミン酸供給ポンプ37とを備えている点で異なる。また、水質監視装置1bでは、鉄液パック22aに代えて鉄液パック22を備え、酸性溶液パック32aに代えて、酸性溶液パック32を備えている点で異なる。鉄液パック22に貯留する硫酸第一鉄含有溶液にはスルファミン酸は混合されておらず、酸性溶液パック32で貯留している酸性溶液にもスルファミン酸は混合されていない。
<Second Embodiment>
The water quality monitoring device 1b according to the second embodiment will be described with reference to FIG. As shown in FIG. 3, the water quality monitoring device 1b according to the second embodiment is a sulfamine that stores a sulfamic acid solution as compared with the water quality monitoring device 1a according to the first embodiment described above with reference to FIG. An acid solution pack 34, a valve 36 that guides the sulfamic acid solution from the sulfamic acid solution pack 34 to the sulfamic acid introduction pipe 35, and a sulfamic acid supply pump 37 that controls the amount of the sulfamic acid solution fed to the test water introduction pipe 19. It differs in that it has. Further, the water quality monitoring device 1b is different in that an iron solution pack 22 is provided instead of the iron solution pack 22a, and an acid solution pack 32 is provided instead of the acid solution pack 32a. The sulfamic acid is not mixed in the ferrous sulfate-containing solution stored in the iron solution pack 22, and the sulfamic acid is not mixed in the acidic solution stored in the acidic solution pack 32.

水質監視装置1bでは、被検水導入管19に、被検水供給ポンプ18によって被検水が供給され、薬液供給ポンプ21によって鉄液又は酸性溶液が供給されるとともに、スルファミン酸溶液供給ポンプ37によってスルファミン酸が供給される。したがって、被検水導入管19で亜硝酸とスルファミン酸とが混合され、亜硝酸とスルファミン酸とが化学反応式(2)のように反応し、亜硝酸を硫酸と窒素とに分解する。   In the water quality monitoring device 1b, the test water is supplied to the test water introduction pipe 19 by the test water supply pump 18, the iron solution or the acidic solution is supplied by the chemical solution supply pump 21, and the sulfamic acid solution supply pump 37 is supplied. Provides sulfamic acid. Therefore, nitrous acid and sulfamic acid are mixed in the test water introduction pipe 19, and nitrous acid and sulfamic acid react as shown in the chemical reaction formula (2) to decompose nitrous acid into sulfuric acid and nitrogen.

HNO2+(NH2)HSO3 → H2SO4+N2+H2O ・・・(2)
スルファミン酸供給ポンプ37によって供給するスルファミン酸の量は、調節することができるため、被検水の亜硝酸含有量に応じて調整することができる。したがって、河川水中の亜硝酸濃度の変動が大きい場合でも、スルファミン酸供給ポンプ37でスルファミン酸の供給量を制御し、被検水が測定槽26に到達する前に、被検水中の亜硝酸を適量のスルファミン酸と反応させて、亜硝酸を硫酸と窒素に分解することができる。
HNO 2 + (NH 2 ) HSO 3 → H 2 SO 4 + N 2 + H 2 O (2)
Since the amount of sulfamic acid supplied by the sulfamic acid supply pump 37 can be adjusted, it can be adjusted according to the nitrous acid content of the test water. Therefore, even when the fluctuation of the nitrous acid concentration in the river water is large, the sulfamic acid supply pump 37 controls the supply amount of sulfamic acid, and before the test water reaches the measuring tank 26, the nitrous acid in the test water is reduced. By reacting with an appropriate amount of sulfamic acid, nitrous acid can be decomposed into sulfuric acid and nitrogen.

スルファミン酸は、測定槽26より前で亜硝酸を含む被検水と混合させれば良い。したがって、被検水が弁17を通過したより後であれば、例えば、被検水供給ポンプ18を通過する前にスルファミン酸を混合させてもよいし、被検水供給ポンプ18を通過した直後にスルファミン酸を混合させてもよい。早い時点で被検水にスルファミン酸を混合させることで、亜硝酸とスルファミン酸との混合時間を長くすることができる。   The sulfamic acid may be mixed with test water containing nitrous acid before the measuring tank 26. Therefore, if the test water is after passing through the valve 17, for example, sulfamic acid may be mixed before passing through the test water supply pump 18, or immediately after passing through the test water supply pump 18. May be mixed with sulfamic acid. By mixing sulfamic acid with test water at an early point, the mixing time of nitrous acid and sulfamic acid can be lengthened.

水質監視装置1bにおいても、化学反応式(2)の反応後、硫酸が発生して被検水のpH値がさらに低下するが、酸素電極28では至適pH値が2〜3の酸性領域である鉄酸化細菌をプローブとしているため、pH値の低下による悪影響はない。また、窒素も鉄酸化細菌に無害であるため、窒素の含有による悪影響もない。   Even in the water quality monitoring device 1b, sulfuric acid is generated after the reaction of the chemical reaction formula (2) and the pH value of the test water is further lowered. However, the oxygen electrode 28 is in an acidic region where the optimum pH value is 2 to 3. Since a certain iron-oxidizing bacterium is used as a probe, there is no adverse effect due to a decrease in pH value. Also, since nitrogen is harmless to iron-oxidizing bacteria, there is no adverse effect due to the nitrogen content.

上述したように、第2の実施形態に係る水質監視装置1bによれば、被検水にスルファミン酸を混合し、スルファミン酸によって被検水中の亜硝酸を分解する。これにより、水質監視装置1bでは、亜硝酸濃度が0.6mg/L以上の被検水においても、鉄酸化細菌の呼吸活性が阻害されることが無く、安定した異常水質の検出を可能とすることができる。   As described above, according to the water quality monitoring apparatus 1b according to the second embodiment, sulfamic acid is mixed in the test water, and nitrous acid in the test water is decomposed by the sulfamic acid. Thereby, in the water quality monitoring apparatus 1b, even in the test water having a nitrite concentration of 0.6 mg / L or more, the respiratory activity of the iron-oxidizing bacteria is not inhibited, and stable abnormal water quality can be detected. be able to.

1a,1b…水質監視装置
11…中空糸膜フィルタ
12…供給ポンプ
13…配管ヒータ
14…導入管
15…散気水槽
16…気体供給器
17…弁
18…被検水供給ポンプ
19…被検水導入管
20…排出管
21…薬液供給ポンプ
22…鉄液パック
23…弁
24…薬液導入管
25…フローセル
26…測定槽
27…温度調整器
28…酸素電極
29…微生物膜
30…変換演算器
31…排出管
32…酸性溶液パック
33…弁
34…スルファミン酸溶液パック
35…スルファミン酸導入管
36…弁
37…スルファミン酸供給ポンプ
DESCRIPTION OF SYMBOLS 1a, 1b ... Water quality monitoring apparatus 11 ... Hollow fiber membrane filter 12 ... Supply pump 13 ... Piping heater 14 ... Introducing pipe 15 ... Aeration water tank 16 ... Gas supply device 17 ... Valve 18 ... Test water supply pump 19 ... Test water Introduction pipe 20 ... Drain pipe 21 ... Chemical liquid supply pump 22 ... Iron liquid pack 23 ... Valve 24 ... Chemical liquid introduction pipe 25 ... Flow cell 26 ... Measurement tank 27 ... Temperature regulator 28 ... Oxygen electrode 29 ... Microbial membrane 30 ... Conversion calculator 31 ... discharge pipe 32 ... acidic solution pack 33 ... valve 34 ... sulfamic acid solution pack 35 ... sulfamic acid introduction pipe 36 ... valve 37 ... sulfamic acid supply pump

Claims (2)

被検水が送水される測定槽と、当該測定槽内に浸漬され、鉄酸化細菌を保持する微生物膜を透過する酸素量を測定する溶存酸素電極と、測定槽に送水される被検水に酸素を供給する気体供給装置とを備え、前記溶存酸素電極によって測定された被検水の酸素量に基づいて、被検水に含まれる有害物質の混入を監視する水質監視装置であって、
溶存酸素が飽和状態の被検水を前記測定槽に送水する被検水導入管と、
前記被検水導入管に、スルファミン酸溶液を含む鉄液又はスルファミン酸溶液を含む酸性溶液を導入する薬液導入管と、
を備えることを特徴とする水質監視装置。
The measurement tank to which the test water is sent, the dissolved oxygen electrode that measures the amount of oxygen that is immersed in the measurement tank and permeates the microbial membrane holding the iron-oxidizing bacteria, and the test water that is sent to the measurement tank A water supply monitoring device for monitoring the mixing of harmful substances contained in the test water based on the oxygen amount of the test water measured by the dissolved oxygen electrode, comprising a gas supply device for supplying oxygen,
A test water introduction pipe for sending test water saturated with dissolved oxygen to the measurement tank;
A chemical solution introduction tube for introducing an iron solution containing a sulfamic acid solution or an acidic solution containing a sulfamic acid solution into the test water introduction tube;
A water quality monitoring device comprising:
被検水に酸素を供給する気体供給装置と、鉄酸化細菌を保持する微生物膜を透過する酸素量を測定する溶存酸素電極と、内部に前記溶存酸素電極が配置されるとともに被検水が送水される測定槽とを有し、前記溶存酸素電極によって測定された被検水の酸素量に基づいて、被検水に含まれる有害物質の混入を監視する水質監視装置であって、
溶存酸素が飽和状態の被検水を前記測定槽に送水する被検水導入管と、
前記被検水導入管に、鉄液又は酸性溶液を導入する薬液導入管と、
前記被検水導入管に、スルファミン酸溶液を導入するスルファミン酸導入管と、
を備えることを特徴とする水質監視装置。
A gas supply device that supplies oxygen to the test water, a dissolved oxygen electrode that measures the amount of oxygen that permeates through a microbial membrane that holds iron-oxidizing bacteria, and the dissolved oxygen electrode that is disposed inside the test water A water quality monitoring device that monitors the mixing of harmful substances contained in the test water based on the oxygen amount of the test water measured by the dissolved oxygen electrode,
A test water introduction pipe for sending test water saturated with dissolved oxygen to the measurement tank;
A chemical introduction pipe for introducing an iron solution or an acidic solution into the test water introduction pipe,
A sulfamic acid introduction tube for introducing a sulfamic acid solution into the test water introduction tube;
A water quality monitoring device comprising:
JP2009052520A 2009-03-05 2009-03-05 Water quality monitoring device Pending JP2010204043A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009052520A JP2010204043A (en) 2009-03-05 2009-03-05 Water quality monitoring device
CN 201010113303 CN101824381A (en) 2009-03-05 2010-02-24 Water quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052520A JP2010204043A (en) 2009-03-05 2009-03-05 Water quality monitoring device

Publications (1)

Publication Number Publication Date
JP2010204043A true JP2010204043A (en) 2010-09-16

Family

ID=42688545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052520A Pending JP2010204043A (en) 2009-03-05 2009-03-05 Water quality monitoring device

Country Status (2)

Country Link
JP (1) JP2010204043A (en)
CN (1) CN101824381A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087235B2 (en) * 2014-12-26 2022-06-21 メディサイエンス・エスポア株式会社 Oxygen solution and frozen ice
KR101970936B1 (en) * 2017-02-22 2019-04-19 미쯔비시 케미컬 주식회사 Siphon-type air diffuser, membrane separation activated sludge device, water treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247967A (en) * 2001-12-19 2003-09-05 Toshiba Corp Biosensor type water quality monitoring system and device
JP2005249664A (en) * 2004-03-05 2005-09-15 Toshiba Corp Water quality detector
JP2008196861A (en) * 2007-02-08 2008-08-28 Toshiba Corp Abnormal water quality detector and method therefor for predicting response sensitivity to toxic substance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271441A (en) * 2003-03-11 2004-09-30 Toshiba Corp Biosensor type detector for abnormality of water quality
JP2008286534A (en) * 2007-05-15 2008-11-27 Toshiba Corp Biosensor type abnormal water quality detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247967A (en) * 2001-12-19 2003-09-05 Toshiba Corp Biosensor type water quality monitoring system and device
JP2005249664A (en) * 2004-03-05 2005-09-15 Toshiba Corp Water quality detector
JP2008196861A (en) * 2007-02-08 2008-08-28 Toshiba Corp Abnormal water quality detector and method therefor for predicting response sensitivity to toxic substance

Also Published As

Publication number Publication date
CN101824381A (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP4538060B2 (en) Abnormal water quality detection device
JP2008032691A (en) Water quality monitoring system and method
CN101825641B (en) Water quality total nitrogen on-line automatic monitoring device
JP4410264B2 (en) Abnormal water quality detection device and its toxic response sensitivity prediction method
US8569045B2 (en) Water toxicity detecting apparatus and method using sulfur particles
JP4999742B2 (en) Toxic substance detection method and toxic substance detection apparatus
JP4693912B2 (en) Abnormal water quality detection device
JP2010204043A (en) Water quality monitoring device
JP2008286534A (en) Biosensor type abnormal water quality detector
JP4988005B2 (en) Abnormal water quality detection apparatus and abnormal water quality detection method
JP4223799B2 (en) Biosensor type water quality monitoring system and apparatus
JP3721087B2 (en) Biosensor type abnormal water quality detection device
JP2010071749A (en) Water-quality monitor
JP4982106B2 (en) Water quality inspection system
JP3672455B2 (en) Abnormal water quality detection device
JP2005249413A (en) Water quality detector
JPH1137969A (en) Abnormal water quality detector
JP4227044B2 (en) Water quality detector
JP2008232711A (en) Quality inspection system of water
JP3837765B2 (en) Nitric acid concentration measuring device
JP2004037273A (en) Water analyzing method and device
JP2004279105A (en) Biosensor type abnormal water quality detector
JP3077461B2 (en) How to monitor hazardous substances in water
JP3497806B2 (en) Water quality monitoring device
KR100467173B1 (en) virulence sensing apparatus of waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115