JP2004279105A - Biosensor type abnormal water quality detector - Google Patents

Biosensor type abnormal water quality detector Download PDF

Info

Publication number
JP2004279105A
JP2004279105A JP2003068152A JP2003068152A JP2004279105A JP 2004279105 A JP2004279105 A JP 2004279105A JP 2003068152 A JP2003068152 A JP 2003068152A JP 2003068152 A JP2003068152 A JP 2003068152A JP 2004279105 A JP2004279105 A JP 2004279105A
Authority
JP
Japan
Prior art keywords
water
test water
heating
tank
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003068152A
Other languages
Japanese (ja)
Inventor
Osamu Ueno
野 修 上
Akihiko Shirota
田 昭 彦 城
Satoshi Haraguchi
口 智 原
Tokusuke Hayami
見 徳 介 早
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003068152A priority Critical patent/JP2004279105A/en
Publication of JP2004279105A publication Critical patent/JP2004279105A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously obtain a stable long-term operation by preventing bubbles generated by the temperature difference between water to be inspected and the inside of a measuring bath from adhering to the surface of a microbe film surface. <P>SOLUTION: A biosensor type abnormal water quality detector comprises a means 23 for heating water to be inspected to be preheated before supplying to the measuring bath 16; and a temperature control means 24 for controlling the means 23 for heating water to be inspected so that the temperature difference between the water to be inspected and the measuring bath 16 is reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、散気水槽によって飽和溶存酸素状態とされた被検水を、酸素電極に微生物膜を保持した測定槽に導入し、微生物膜を透過する酸素量によって被検水への有害物質の混入を検出するバイオセンサ型異常水質検出装置に関するものである。
【0002】
【従来の技術】
従来、浄水場では河川水を取水し、この取水を沈殿ろ過槽に通して飲料水を供給している。このような通常の処理では除去できない有害物質、すなわち、各種の重金属や農薬および環境ホルモン等といった物質が河川水中に混入した場合は、取水停止という非常事態に至る。
【0003】
一方、下水処理場では、突発事故や不注意により、工場あるいは化学プラントの排水に各種の重金属イオンやヒ素シアン等が混入し、これらが流入すると、下水処理プロセスにおける活性汚泥微生物が大きな被害を受け、その結果、活性汚泥の活性が低下して処理能力の回復までに多大の時間を必要とする。
【0004】
したがって、浄水場および下水処理場において、上記各種の有害物質が混入した場合、流入水を迅速かつ感度良く検出する装置が望まれていた。
【0005】
この要望に応えて、浄水場では、魚行動監視型の毒物検出装置、あるいは各種の微生物膜を溶存酸素電極に取付けて、その呼吸活性の測定から毒物を検出する装置が、また、下水処理場では、特定化学物質の混入した排水を検知する各種のセンサが、それぞれの取水口等に設置されている。
【0006】
これらのうち、浄水場に設置されている魚行動監視型の毒物検出装置は、魚類が毒物に反応するまでの時間がかかるため、その検出に長時間を有する。また、魚類の反応感度も飼育されている魚類の種類や個体差、および飼育の環境状態によってかなり異なり、さらに魚行動監視型の毒物検出装置は、装置自体が大掛かりで、魚類の飼育や管理面においての必要経費が大きい等の問題がある。
【0007】
そこで、有害物質や雑菌等が繁殖し難い比較的低いpH値のところで作動させることができる鉄酸化細菌をプローブとして用いるバイオセンサ型の水質監視装置が開発されている(例えば、特許文献1参照)。そのバイオセンサ型水質監視装置では、図4に示すように、検査すべき水源すなわち被検水源の被検水(例えば、河川の流水や、浄水場への流入水、下水処理場への流入水など)をポンプ1により被検水導入管2を介して被検水タンク3に一旦貯留し、被検水タンク3からポンプ4により散気水槽5に被検水を送給する。散気水槽5に送られた被検水には気体供給器6から空気あるいは酸素濃度を一定に調整した気体が供給され、溶存酸素濃度が飽和状態とされた状態でポンプ7により被検水導入管8に送出される。被検水導入管8には、酸性溶液パック9からポンプ10および酸性溶液配管11を介して酸性溶液が供給されるとともに、鉄液パック12から鉄液供給ポンプ13および鉄液配管14を介して第一鉄含有溶液が供給され、ここで被検水と混合される。この混合液は、気体供給器6から供給される気体によって溶存酸素濃度が飽和状態とされた状態で導入口15から測定槽16内に流入される。
【0008】
測定槽16は温度調整器17によって温度調整される。測定槽16に被検水を供給する前に、空気あるいは酸素濃度を一定に調整した気体を気体供給器6から供給して、常に被検水を飽和溶存酸素濃度にして、酸素電極19の出力の最大値を安定させる必要がある。ここで、飽和溶存酸素濃度は液温度により変化するため、この点において、温度調整器17によって測定槽16を一定の温度に維持することは重要なことである。測定槽16内には、酸素を利用して第一鉄を第二鉄に変えることができる鉄バクテリアを保持する微生物膜18が取付けられた酸素電極19が設けられている。さらに、酸素電極19からの電気出力が取り出され、その電気出力を変換演算手段20によって増幅・変換し、演算を施して被検水の異常水質を判別する。微生物膜18に保持される鉄バクテリアは、例えば、Thiobacillus ferrooxidansである。測定槽16を通った被検水は排出チューブ管21から排出配管22を介して排水される。
【0009】
この化学的挙動の化学反応式は、
4FeSO+O+2HSO → 2Fe(SO+2H
のようになり、これによってFe3+イオンが生成される。このFe3+イオンがさらに水(HO)と反応して水酸化鉄Fe(OH)となり、沈殿することになる。微生物膜18に保持される鉄バクテリアとしては、Thiobacillus ferrooxidans以外にも、上記化学反応式の働きを持つすべての微生物が適用可能である。例えば、Thiobacillus ferrooxidans、Gallionella ferruginea、Leptospirillum ferrooxidans、Leptothrix、Sphaerotilus等が適していることが確認されている。
【0010】
なお、鉄バクテリアの活性すなわち鉄の酸化量は、温度の影響によっても変化する可能性があるため、測定槽16は温度調整器17によって、鉄バクテリアの活性が安定するような温度に維持されるのが望ましい。温度調整器17は、そういう意味で設けられているものである。図4の水質検出装置では、鉄酸化細菌をプローブとして取付けた溶存酸素電極19に被検水と鉄液の混合液をポンプ7によって送液し、この送液時における酸素電極19からの電気出力を監視するものである。その場合、被検水中に水溶性の有害物質が混入した場合、その有害物質は鉄酸化細菌の呼吸活性の低下により隔膜を透過して酸素電極19に到達し酸素濃度が高くなる。その結果、これを検知する電流値が増加するので、これによって有害物質の混入を検知する。
【0011】
このようなバイオセンサ型水質検出装置は連続運転されると、被検水中の汚濁物質が排水配管22の内面に徐々に付着し堆積してくる。また、鉄液中の第一鉄の一部が第二鉄に酸化されて、これも徐々に堆積してくる。これらは、配管系の閉塞や、水質検出測定の感度低下につながり、検出精度を低下させる原因となり得る。そのため、図4の装置には、被検水と第一鉄液含有溶液の混合液が送液される導入管8に、酸性溶液パック9からポンプ10および酸性溶液配管11を介して酸性溶液を供給し、導入管8や測定槽16等の被検水通流路に付着堆積している汚濁物質および酸化鉄を除去し、排出する「酸洗浄」を行うことができるようにしている。
【0012】
【特許文献1】
特開2000−321233号公報 (図1,2とその説明)
【0013】
【発明が解決しようとする課題】
微生物をプローブとして用いたバイオセンサ型の異常水質検出装置では、微生物の活性を常に一定に保つことによって有害物質の検出感度を安定化させる必要があるため、通常使用する中温菌においては、最適温度で30℃付近に保つ必要がある。一方、冬期における河川水の温度は4℃以下にまで低下する。この河川水を被検水として、散気水槽5で十分に酸素を飽和させた後に、測定槽16内に導入すると、被検水は測定槽16内で急激な温度変化を受ける。通常、気体の水に対する溶解度は温度の上昇に従って低下するため、溶存空気が気化して気泡となって電極表面に付着し、微生物膜18への被検水の流れを阻害する。その結果、異常水質の検出感度を低下させる。また、通常、バイオセンサ型異常水質検出装置では、微生物の活性を長期間維持する必要があるため、微生物に対する栄養物質を被検水に混合して供給する必要がある。しかし、上記作用によって、微生物への栄養供給量も減少し、微生物の安定的増殖を維持することができない。
【0014】
したがって本発明の目的は、被検水と測定槽内の間の温度差によって生じる気泡が微生物膜表面に付着する事態を防止し、それにより、微生物膜への被検水の流れが阻害されることなく、安定した長期運転を継続し得るバイオセンサ型異常水質検出装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、散気水槽によって飽和溶存酸素状態とされた被検水を、酸素電極に微生物膜を保持した測定槽に導入し、微生物膜を透過する酸素量によって被検水への有害物質の混入を検出するバイオセンサ型異常水質検出装置において、被検水を測定槽に供給する前に予熱する被検水加熱手段と、被検水と測定槽との間の温度差を減少させるように被検水加熱手段を制御する温度制御手段とを備えたことを特徴とする。
【0016】
請求項2に係る発明は、請求項1に記載のバイオセンサ型異常水質検出装置において、被検水加熱手段として、散気水槽の上流側で被検水を加熱する加温ヒータが設けられ、温度制御手段として、加温ヒータを制御する温度調節器が設けられていることを特徴とする。
【0017】
請求項3に係る発明は、請求項1に記載のバイオセンサ型異常水質検出装置において、被検水加熱手段として、散気水槽内の被検水を加熱する加温ヒータが設けられ、温度制御手段として、加温ヒータを制御する温度調節器が設けられていることを特徴とする。
【0018】
請求項4に係る発明は、請求項1に記載のバイオセンサ型異常水質検出装置において、散気水槽と測定槽との間に被検水とは絶縁された状態で共通の温水を循環させるように構成された温水循環系が構成され、被検水加熱手段として、温水循環系を循環する温水を加温する加温ヒータが設けられ、温度制御手段として、温水の温度を調整するために加温ヒータを制御する温度制御器が設けられていることを特徴とする。
【0019】
【発明の実施形態】
以下、図面を参照して本発明の実施形態について説明する。
【0020】
<第1の実施形態>
図1は本発明の第1の実施形態によるバイオセンサ型異常水質検出装置を示す構成図である。
【0021】
図示の異常水質検出装置は、一つの実施形態として、図4に示した異常水質検出装置に基づいて構成されている。この実施形態においては、散気水槽5の上流側で被検水を加熱する加熱手段として加温ヒータ23を設け、温度制御手段として、加温ヒータ23を介して被検水の温度を制御する温度制御器24を設けている。測定槽16に送られる被検水の温度が測定槽16内の温度と同等になるように温度制御器24により加温ヒータ23を制御する。
【0022】
このように測定槽16内に導入する被検水を予め加温し、測定槽16内の既存の被検水との温度差を無くすか僅かなものとすることによって、測定槽16内での気泡発生を防止し、微生物膜18表面への気泡付着を防止する。
したがって本実施形態によれば、微生物膜18への被検水の流れが阻害されることなく、装置の安定した長期運転を継続することができる。
【0023】
(第2の実施形態)
図2は本発明の第2の実施形態によるバイオセンサ型異常水質検出装置を示す概略構成図である。
【0024】
本実施形態では、加熱手段を、散気水槽5の上流ではなく、散気水槽5そのものに設ける。すなわち、被検水を加熱する加温ヒータ25を散気水槽5に設けるとともに、加温ヒータ25にその発生熱を制御する温度制御器26を設ける。加温ヒータ25は温度制御器26による制御のもとに、散気水槽5内の被検水を測定槽16内と同等の温度にまで加温する。
【0025】
これにより、被検水と測定槽16内との温度差による気泡発生を抑制し、微生物膜18の表面に気泡が付着する事態を防止することができる。その結果、微生物膜18への被検水の流れが気泡によって阻害されることがなく、装置の安定した長期運転を継続することができる。
【0026】
<第3の実施形態>
図3は本発明の第3の実施形態によるバイオセンサ型異常水質検出装置を示す構成概略図である。
【0027】
本実施形態では、上述の散気水槽5および測定槽16に代わる散気水槽27および測定槽28を、被検水とは絶縁され温度制御された温水が循環し得るように構成し、両者間を、配管29,30を介して共通の温水が循環する温水循環系統を形成している。さらに配管30内に、循環水を加温するための加温ヒータ31と、ここで加温された温水を温水循環系統内に循環させるためのポンプ32を配置する。加温ヒータ31には、加温ヒータ31を介して循環水の温度を制御する温度制御器33が設けられる。被検水の通流系統は、すでに述べた図1,2のものと変わりがない。ただし、この実施形態では、測定槽28は温度調整器を兼ねている形であり、特別な温度調整器17(図1等)を設ける必要はない。
【0028】
本実施形態では、測定槽28と散気水槽27を共通の温水で保温する循環型温度制御システムを構成しており、測定槽28に導入される被検水とその中の既存の被検水とが同等の温度に制御され、したがって測定槽28内に気泡を発生することがなく、測定槽28内の被検水とそこに導入される被検水との間の温度差によって微生物膜18の表面に気泡が付着する事態を防止することができる。それにより、微生物膜18への被検水の流れが阻害されることなく、装置の安定した長期運転を継続することができる。
【0029】
【発明の効果】
以上のように本発明によれば、導入される被検水と測定槽内の温度差を緩和することにより、水に対する空気の溶解度の相違を生じることなく、バイオセンサ型異常水質検出装置の酸素電極先端に保持した微生物膜に気泡が付着する事態を防止し、したがって微生物膜への被検水の流れが阻害されることなく、異常水質の検出感度の低下を防止することができる。
【0030】
通常、バイオセンサ型の異常水質検出装置では、微生物の活性を長期間維持するため、微生物に対する栄養物質を被検水に混合して供給するが、被検水の温度制御により微生物膜の微生物への栄養供給量も安定する。この結果、微生物の安定的増殖を維持することができ、装置の安定した長期運転を継続することができる。
【図面の簡単な説明】
【図1】本発明によるバイオセンサ型異常水質検出装置の第1の実施形態を示す概略構成図。
【図2】本発明によるバイオセンサ型異常水質検出装置の第2の実施形態を示す概略構成図。
【図3】本発明によるバイオセンサ型異常水質検出装置の第3の実施形態を示す概略構成図。
【図4】公知のバイオセンサ型異常水質検出装置の構成例を示す概略構成図。
【符号の説明】
1 ポンプ
2 被検水導入管
3 被検水タンク
4 ポンプ
5 散気水槽
6 気体供給器
7 ポンプ
8 被検水導入管
9 酸性溶液パック
10 ポンプ
11 酸性溶液配管
12 鉄液パック
13 鉄液供給ポンプ
14 鉄液配管
15 導入口
16 測定槽
17 温度調整器
18 微生物膜
19 酸素電極
20 変換演算手段
21 排出チューブ管
22 排出配管
23 加温ヒータ
24 温度制御器
25 加温ヒータ
26 温度制御器
27 散気水槽
28 測定槽
29 配管
30 配管
31 加温ヒータ
32 ポンプ
33 温度制御器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention introduces test water, which has been brought into a saturated dissolved oxygen state by a diffuser water tank, into a measurement tank holding a microbial membrane on an oxygen electrode, and removes harmful substances to the test water by the amount of oxygen passing through the microbial membrane. The present invention relates to a biosensor type abnormal water quality detection device that detects contamination.
[0002]
[Prior art]
Conventionally, a water purification plant takes in river water, and supplies the drinking water through a sedimentation filtration tank. When harmful substances that cannot be removed by such normal treatment, that is, substances such as various heavy metals, pesticides, and environmental hormones, are mixed into river water, an emergency situation occurs in which water intake is stopped.
[0003]
At the sewage treatment plant, on the other hand, various heavy metal ions and arsenic cyanide are mixed into the wastewater of factories or chemical plants due to sudden accidents or carelessness. As a result, the activity of the activated sludge is reduced, and a large amount of time is required until the treatment capacity is restored.
[0004]
Therefore, in a water purification plant and a sewage treatment plant, when the above-mentioned various harmful substances are mixed, a device which detects inflow water quickly and with high sensitivity has been desired.
[0005]
In response to this demand, water purification plants have installed fish behavior monitoring type toxic substance detection devices or devices that attach various microbial membranes to dissolved oxygen electrodes and detect toxic substances by measuring their respiratory activity. In, various sensors for detecting wastewater mixed with a specific chemical substance are installed at respective water intakes.
[0006]
Among them, the fish behavior monitoring type toxic substance detection device installed in the water purification plant takes a long time until the fishes react to the toxic substance, so that the detection takes a long time. In addition, the reaction sensitivity of fish varies considerably depending on the type and individual differences of the breed fish and the environmental conditions of breeding.Furthermore, the toxicological detection device of the fish behavior monitoring type is large-scale, and the breeding and management of fish is difficult. There is a problem that the required expenses are large.
[0007]
Therefore, a biosensor-type water quality monitoring device using, as a probe, an iron-oxidizing bacterium that can be operated at a relatively low pH value at which harmful substances and various germs are not easily propagated has been developed (for example, see Patent Document 1). . In the biosensor type water quality monitoring device, as shown in FIG. 4, the water source to be inspected, that is, the test water of the test water source (for example, flowing water of a river, inflow water to a water purification plant, inflow water to a sewage treatment plant, ) Is once stored in the test water tank 3 by the pump 1 via the test water introduction pipe 2, and the test water is supplied from the test water tank 3 to the aeration tank 5 by the pump 4. The test water sent to the water diffuser tank 5 is supplied with air or a gas whose oxygen concentration is adjusted to be constant from the gas supply unit 6 and the test water is introduced by the pump 7 in a state where the dissolved oxygen concentration is in a saturated state. It is delivered to tube 8. An acidic solution is supplied to the test water introduction pipe 8 from the acidic solution pack 9 via a pump 10 and an acidic solution pipe 11, and from the iron solution pack 12 via an iron solution supply pump 13 and an iron solution pipe 14. A ferrous-containing solution is provided, where it is mixed with the test water. This mixed liquid is introduced into the measuring tank 16 from the inlet 15 in a state where the dissolved oxygen concentration is saturated by the gas supplied from the gas supply device 6.
[0008]
The temperature of the measuring tank 16 is adjusted by a temperature adjuster 17. Before supplying the test water to the measuring tank 16, air or a gas whose oxygen concentration is adjusted to be constant is supplied from the gas supply device 6, and the test water is always set to the saturated dissolved oxygen concentration, and the output of the oxygen electrode 19 is output. It is necessary to stabilize the maximum value of. Here, since the saturated dissolved oxygen concentration changes depending on the liquid temperature, it is important at this point to maintain the measurement tank 16 at a constant temperature by the temperature controller 17. An oxygen electrode 19 provided with a microbial membrane 18 holding an iron bacterium capable of converting ferrous iron to ferric iron using oxygen is provided in the measuring tank 16. Further, the electrical output from the oxygen electrode 19 is taken out, the electrical output is amplified and converted by the conversion calculating means 20, and the calculation is performed to determine the abnormal water quality of the test water. The iron bacterium held on the microbial membrane 18 is, for example, Thiobacillus ferrooxidans. The test water passing through the measuring tank 16 is drained from the discharge tube pipe 21 via the discharge pipe 22.
[0009]
The chemical equation of this chemical behavior is
4FeSO 4 + O 2 + 2H 2 SO 4 → 2Fe 2 (SO 4 ) 3 + 2H 2 O
This produces Fe 3+ ions. The Fe 3+ ions further react with water (H 2 O) to form iron hydroxide Fe (OH) 3 , which precipitates. As the iron bacteria held on the microbial membrane 18, all microorganisms having the function of the above chemical reaction formula can be applied, in addition to Thiobacillus ferrooxidans. For example, it has been confirmed that Thiobacillus ferrooxidans, Gallionella ferruginea, Leptospirillum ferrooxidans, Leptothrix, Sphaerotilus, and the like are suitable.
[0010]
Since the activity of iron bacteria, that is, the amount of oxidized iron, may change due to the influence of temperature, the measuring tank 16 is maintained at a temperature at which the activity of iron bacteria is stabilized by the temperature controller 17. It is desirable. The temperature controller 17 is provided in that sense. In the water quality detection device shown in FIG. 4, a mixed solution of test water and iron solution is sent to the dissolved oxygen electrode 19 equipped with iron oxidizing bacteria as a probe by the pump 7, and the electric output from the oxygen electrode 19 at the time of sending the solution. Is to monitor. In this case, when a water-soluble harmful substance is mixed into the test water, the harmful substance permeates the diaphragm and reaches the oxygen electrode 19 due to a decrease in the respiratory activity of the iron-oxidizing bacteria, and the oxygen concentration increases. As a result, the current value for detecting this is increased, thereby detecting the contamination of harmful substances.
[0011]
When such a biosensor type water quality detection device is continuously operated, pollutants in the test water gradually adhere to and accumulate on the inner surface of the drainage pipe 22. In addition, part of ferrous iron in the iron liquid is oxidized to ferric iron, and this is gradually deposited. These may lead to blockage of the piping system and decrease in sensitivity of water quality detection measurement, which may cause a decrease in detection accuracy. Therefore, in the apparatus of FIG. 4, the acidic solution is supplied from the acidic solution pack 9 to the introduction pipe 8 through which the mixed solution of the test water and the ferrous solution is sent through the pump 10 and the acidic solution pipe 11. It is possible to perform "acid cleaning" in which contaminants and iron oxide which are supplied and adhered and deposited in the test water passage such as the introduction pipe 8 and the measuring tank 16 are removed and discharged.
[0012]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-32233 (FIGS. 1 and 2 and description thereof)
[0013]
[Problems to be solved by the invention]
In a biosensor type abnormal water quality detection device using microorganisms as a probe, it is necessary to stabilize the detection sensitivity of harmful substances by always keeping the activity of microorganisms constant. It is necessary to keep around 30 ° C. On the other hand, the temperature of river water in winter falls to 4 ° C or less. When the river water is used as the test water, the oxygen is sufficiently saturated in the aeration tank 5 and then introduced into the measurement tank 16, the test water undergoes a rapid temperature change in the measurement tank 16. Normally, the solubility of gas in water decreases as the temperature rises, so that the dissolved air vaporizes and becomes air bubbles and adheres to the electrode surface, obstructing the flow of the test water to the microbial membrane 18. As a result, the detection sensitivity for abnormal water quality is reduced. In addition, usually, in the biosensor type abnormal water quality detection device, it is necessary to maintain the activity of the microorganism for a long period of time. However, due to the above action, the amount of nutrient supply to the microorganism also decreases, and stable growth of the microorganism cannot be maintained.
[0014]
Therefore, an object of the present invention is to prevent a situation in which bubbles generated due to a temperature difference between the test water and the inside of the measurement tank adhere to the surface of the microbial membrane, thereby inhibiting the flow of the test water to the microbial membrane. It is an object of the present invention to provide a biosensor type abnormal water quality detection device capable of continuing stable long-term operation without any problem.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 introduces test water, which has been brought into a saturated dissolved oxygen state by a diffuser water tank, into a measurement tank holding a microbial membrane on an oxygen electrode and transmits the microbial membrane. In a biosensor type abnormal water quality detection device that detects contamination of test water with harmful substances based on the amount of oxygen to be measured, a test water heating means for preheating the test water before supplying it to the measurement tank, Temperature control means for controlling the test water heating means so as to reduce the temperature difference between the tank and the tank.
[0016]
The invention according to claim 2 is the biosensor-type abnormal water quality detection device according to claim 1, wherein a heating heater that heats the test water upstream of the diffused water tank is provided as the test water heating unit, A temperature controller for controlling the heating heater is provided as the temperature control means.
[0017]
According to a third aspect of the present invention, in the biosensor type abnormal water quality detection device according to the first aspect, a heating heater for heating the test water in the diffused water tank is provided as the test water heating means, and the temperature control is performed. As means, a temperature controller for controlling the heating heater is provided.
[0018]
According to a fourth aspect of the present invention, in the biosensor type abnormal water quality detecting device according to the first aspect, common hot water is circulated between the diffused water tank and the measurement tank while the test water is insulated. The heating water circulating system is configured as described above, and a heating heater for heating the hot water circulating in the hot water circulating system is provided as the heating means for the test water, and as the temperature control means, a heater for adjusting the temperature of the hot water is provided. A temperature controller for controlling the heater is provided.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
<First embodiment>
FIG. 1 is a configuration diagram showing a biosensor type abnormal water quality detection device according to a first embodiment of the present invention.
[0021]
The illustrated abnormal water quality detection device is configured based on the abnormal water quality detection device illustrated in FIG. 4 as one embodiment. In this embodiment, a heating heater 23 is provided as heating means for heating the test water on the upstream side of the aeration water tank 5, and the temperature of the test water is controlled via the heating heater 23 as the temperature control means. A temperature controller 24 is provided. The heating controller 23 is controlled by the temperature controller 24 so that the temperature of the test water sent to the measuring tank 16 becomes equal to the temperature in the measuring tank 16.
[0022]
As described above, the test water introduced into the measurement tank 16 is heated in advance, and the temperature difference between the test water and the existing test water in the measurement tank 16 is eliminated or made small. The generation of air bubbles is prevented, and the adhesion of air bubbles to the surface of the microbial membrane 18 is prevented.
Therefore, according to the present embodiment, the stable long-term operation of the apparatus can be continued without obstructing the flow of the test water to the microorganism membrane 18.
[0023]
(Second embodiment)
FIG. 2 is a schematic configuration diagram showing a biosensor type abnormal water quality detection device according to a second embodiment of the present invention.
[0024]
In this embodiment, the heating means is provided not in the upstream of the diffused water tank 5 but in the diffused water tank 5 itself. That is, a heating heater 25 for heating the test water is provided in the diffuser water tank 5, and the heating heater 25 is provided with a temperature controller 26 for controlling the generated heat. The heating heater 25 heats the test water in the diffused water tank 5 to the same temperature as that in the measurement tank 16 under the control of the temperature controller 26.
[0025]
Thereby, the generation of bubbles due to the temperature difference between the test water and the inside of the measurement tank 16 can be suppressed, and the situation in which bubbles adhere to the surface of the microbial membrane 18 can be prevented. As a result, the flow of the test water to the microbial membrane 18 is not hindered by air bubbles, and the stable long-term operation of the apparatus can be continued.
[0026]
<Third embodiment>
FIG. 3 is a schematic configuration diagram showing a biosensor type abnormal water quality detection device according to a third embodiment of the present invention.
[0027]
In the present embodiment, the diffusing water tank 27 and the measuring tank 28 in place of the above-described diffusing water tank 5 and the measuring tank 16 are configured so that warm water whose temperature is controlled and insulated from the test water can be circulated. To form a hot water circulation system through which common hot water circulates via pipes 29 and 30. Further, a heating heater 31 for heating the circulating water and a pump 32 for circulating the warm water heated here in the hot water circulation system are arranged in the pipe 30. The heating heater 31 is provided with a temperature controller 33 that controls the temperature of the circulating water via the heating heater 31. The flow system of the test water is the same as that of FIGS. However, in this embodiment, the measuring tank 28 also serves as a temperature controller, and there is no need to provide a special temperature controller 17 (FIG. 1 and the like).
[0028]
In the present embodiment, a circulating temperature control system is configured to keep the measurement tank 28 and the diffused water tank 27 in common hot water, and the test water introduced into the measurement tank 28 and the existing test water therein are configured. Are controlled to the same temperature, so that no air bubbles are generated in the measuring tank 28, and the temperature difference between the test water in the measuring tank 28 and the test water introduced therein causes the microbial membrane 18 A situation in which air bubbles adhere to the surface of the substrate can be prevented. Thereby, stable long-term operation of the apparatus can be continued without obstructing the flow of the test water to the microorganism membrane 18.
[0029]
【The invention's effect】
As described above, according to the present invention, by reducing the temperature difference between the test water to be introduced and the inside of the measurement tank, the difference in solubility of air in water does not occur, and the oxygen of the biosensor type abnormal water quality detection device is reduced. It is possible to prevent air bubbles from adhering to the microbial membrane held at the tip of the electrode, thus preventing the flow of the test water to the microbial membrane from being hindered and preventing the detection sensitivity of abnormal water quality from lowering.
[0030]
Normally, in a biosensor type abnormal water quality detection device, nutrients for microorganisms are mixed with and supplied to the test water in order to maintain the activity of the microorganisms for a long period of time. Nutrient supply is also stable. As a result, stable growth of microorganisms can be maintained, and stable long-term operation of the device can be continued.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment of a biosensor type abnormal water quality detection device according to the present invention.
FIG. 2 is a schematic configuration diagram showing a second embodiment of a biosensor type abnormal water quality detection device according to the present invention.
FIG. 3 is a schematic configuration diagram showing a third embodiment of a biosensor type abnormal water quality detection device according to the present invention.
FIG. 4 is a schematic configuration diagram showing a configuration example of a known biosensor type abnormal water quality detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pump 2 Test water introduction pipe 3 Test water tank 4 Pump 5 Aeration tank 6 Gas supply device 7 Pump 8 Test water introduction pipe 9 Acid solution pack 10 Pump 11 Acid solution pipe 12 Iron solution pack 13 Iron solution supply pump 14 Iron Liquid Pipe 15 Inlet 16 Measurement Tank 17 Temperature Controller 18 Microbial Membrane 19 Oxygen Electrode 20 Conversion Calculation Means 21 Discharge Tube Pipe 22 Discharge Pipe 23 Heating Heater 24 Temperature Controller 25 Heating Heater 26 Temperature Controller 27 Spray Water tank 28 Measurement tank 29 Piping 30 Piping 31 Heating heater 32 Pump 33 Temperature controller

Claims (4)

散気水槽によって飽和溶存酸素状態とされた被検水を、酸素電極に微生物膜を保持した測定槽に導入し、前記微生物膜を透過する酸素量によって前記被検水への有害物質の混入を検出するバイオセンサ型異常水質検出装置において、前記被検水を前記測定槽に供給する前に予熱する被検水加熱手段と、前記被検水と前記測定槽との間の温度差を減少させるように前記被検水加熱手段を制御する温度制御手段とを備えたことを特徴とするバイオセンサ型異常水質検出装置。The test water brought into the saturated dissolved oxygen state by the aeration water tank is introduced into a measurement tank holding a microbial membrane on an oxygen electrode, and contamination of the test water with harmful substances is determined by the amount of oxygen passing through the microbial membrane. In the biosensor type abnormal water quality detection device for detecting, a test water heating means for preheating the test water before supplying the test water to the measurement tank, and reducing a temperature difference between the test water and the measurement tank. And a temperature control means for controlling the test water heating means as described above. 前記被検水加熱手段として、前記散気水槽の上流側で被検水を加熱する加温ヒータが設けられ、前記温度制御手段として、前記加温ヒータを制御する温度調節器が設けられていることを特徴とする請求項1に記載のバイオセンサ型異常水質検出装置。As the test water heating means, a heating heater for heating the test water upstream of the diffused water tank is provided, and as the temperature control means, a temperature controller for controlling the heating heater is provided. The biosensor type abnormal water quality detection device according to claim 1, wherein: 前記被検水加熱手段として、前記散気水槽内の被検水を加熱する加温ヒータが設けられ、前記温度制御手段として、前記加温ヒータを制御する温度調節器が設けられていることを特徴とする請求項1に記載のバイオセンサ型異常水質検出装置。A heating heater for heating the test water in the aeration tank is provided as the test water heating means, and a temperature controller for controlling the heating heater is provided as the temperature control means. The biosensor type abnormal water quality detection device according to claim 1, wherein: 前記散気水槽と前記測定槽との間に被検水とは絶縁された状態で共通の温水を循環させるように構成された温水循環系が構成され、前記被検水加熱手段として、前記温水循環系を循環する温水を加温する加温ヒータが設けられ、前記温度制御手段として、前記温水の温度を調整するために前記加温ヒータを制御する温度制御器が設けられていることを特徴とする請求項1に記載のバイオセンサ型異常水質検出装置。A hot water circulation system configured to circulate common hot water in a state where the test water is insulated between the aeration water tank and the measurement tank is configured, and the hot water circulating system is configured as the test water heating unit. A heating heater for heating hot water circulating in a circulation system is provided, and a temperature controller for controlling the heating heater for adjusting the temperature of the hot water is provided as the temperature control means. The biosensor type abnormal water quality detection device according to claim 1.
JP2003068152A 2003-03-13 2003-03-13 Biosensor type abnormal water quality detector Pending JP2004279105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068152A JP2004279105A (en) 2003-03-13 2003-03-13 Biosensor type abnormal water quality detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068152A JP2004279105A (en) 2003-03-13 2003-03-13 Biosensor type abnormal water quality detector

Publications (1)

Publication Number Publication Date
JP2004279105A true JP2004279105A (en) 2004-10-07

Family

ID=33285566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068152A Pending JP2004279105A (en) 2003-03-13 2003-03-13 Biosensor type abnormal water quality detector

Country Status (1)

Country Link
JP (1) JP2004279105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276330A (en) * 2008-05-19 2009-11-26 Toshiba Corp Device for detecting abnormal water quality
JP2010160169A (en) * 2010-04-21 2010-07-22 Toshiba Corp Apparatus and method for detecting abnormality in water quality
JP2010197225A (en) * 2009-02-25 2010-09-09 Toshiba Corp Abnormal water quality detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276330A (en) * 2008-05-19 2009-11-26 Toshiba Corp Device for detecting abnormal water quality
JP4538060B2 (en) * 2008-05-19 2010-09-08 株式会社東芝 Abnormal water quality detection device
JP2010197225A (en) * 2009-02-25 2010-09-09 Toshiba Corp Abnormal water quality detection device
JP4693912B2 (en) * 2009-02-25 2011-06-01 株式会社東芝 Abnormal water quality detection device
JP2010160169A (en) * 2010-04-21 2010-07-22 Toshiba Corp Apparatus and method for detecting abnormality in water quality

Similar Documents

Publication Publication Date Title
JP4538060B2 (en) Abnormal water quality detection device
JPH0510921A (en) Poison detecting apparatus and water-quality monitoring system using this apparatus
JP4693912B2 (en) Abnormal water quality detection device
JP5129463B2 (en) Water quality abnormality detection method
JP4410264B2 (en) Abnormal water quality detection device and its toxic response sensitivity prediction method
JP4988005B2 (en) Abnormal water quality detection apparatus and abnormal water quality detection method
JP2004279105A (en) Biosensor type abnormal water quality detector
JP3721087B2 (en) Biosensor type abnormal water quality detection device
JP2009222667A (en) Toxic substance detecting method and toxic substance detector
JP2008286534A (en) Biosensor type abnormal water quality detector
EP1170585A1 (en) Water-based water treatment method
JP2005156204A (en) Monitoring method for toxic substance
JP2010071749A (en) Water-quality monitor
JPH1137969A (en) Abnormal water quality detector
JP4982106B2 (en) Water quality inspection system
JP2010204043A (en) Water quality monitoring device
JP2001228110A (en) Biosensor-applied water quality meter
JP3672455B2 (en) Abnormal water quality detection device
JP2004037273A (en) Water analyzing method and device
JP4227044B2 (en) Water quality detector
JP3678093B2 (en) Methods for detecting harmful substances in environmental water
JP2005249413A (en) Water quality detector
JP3077461B2 (en) How to monitor hazardous substances in water
JPH0735741A (en) Bod measuring equipment
JP2008232711A (en) Quality inspection system of water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324