JP2010160169A - Apparatus and method for detecting abnormality in water quality - Google Patents

Apparatus and method for detecting abnormality in water quality Download PDF

Info

Publication number
JP2010160169A
JP2010160169A JP2010097779A JP2010097779A JP2010160169A JP 2010160169 A JP2010160169 A JP 2010160169A JP 2010097779 A JP2010097779 A JP 2010097779A JP 2010097779 A JP2010097779 A JP 2010097779A JP 2010160169 A JP2010160169 A JP 2010160169A
Authority
JP
Japan
Prior art keywords
water
temperature
test
introduction pipe
test water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097779A
Other languages
Japanese (ja)
Other versions
JP4988005B2 (en
Inventor
Osamu Ueno
修 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010097779A priority Critical patent/JP4988005B2/en
Publication of JP2010160169A publication Critical patent/JP2010160169A/en
Application granted granted Critical
Publication of JP4988005B2 publication Critical patent/JP4988005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for detecting an abnormality in water quality which prevents the generation of bubbles in a measuring tank, keeps the temperature of water to be tested within a predetermined range, and therefore prevents a false warning of "abnormality in water quality" from being caused by bubbles and/or low temperatures. <P>SOLUTION: The apparatus for detecting the presence or absence of an abnormality in the quality of water to be tested while keeping the temperature of the water to be tested within a predetermined temperature range includes a water temperature adjustment device for supplying a temperature-adjusting water into an area around an introduction pipe through which the water to be tested is introduced, the temperature-adjusting water having been controlled so that its temperature is close to the temperature range, and for approximating the temperature of the water to be tested to the temperature of the temperature-adjusting water by transfer of heat through the introduction pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出する異常水質検出装置及び異常水質検出方法に関する。   The present invention relates to an abnormal water quality detection apparatus and an abnormal water quality detection method for detecting the presence or absence of an abnormality in the water quality while maintaining the test water in a preset temperature range.

従来、浄水場では通常の処理として、河川水等を取水し、この取水を沈殿ろ過槽に通して飲料水を供給している。もし、このような通常の処理では除去できない有害物質、例えば、各種の重金属や農薬および環境ホルモン等といった物質が河川水中に混入した場合は、取水停止という非常事態に至る。   Conventionally, in a water treatment plant, river water or the like is taken as a normal treatment, and this water is passed through a sedimentation filtration tank to supply drinking water. If harmful substances that cannot be removed by such normal treatment, such as various heavy metals, agricultural chemicals, and environmental hormones, are mixed in the river water, an emergency situation will occur where water intake is stopped.

一方、下水処理場では、突発事故や不注意により、工場あるいは化学プラントの排水に各種の重金属イオンや有機溶媒およびヒ素シアン等が混入し、これらが流入すると、下水処理プロセスにおける活性汚泥微生物が大きな阻害を受け、その結果、活性汚泥の活性が低下して処理能力の回復までに多大の時間を必要とする。   On the other hand, in a sewage treatment plant, due to sudden accidents or carelessness, various heavy metal ions, organic solvents, arsenic cyanide, etc. are mixed in the wastewater of factories or chemical plants. As a result, the activity of the activated sludge is reduced, and a great deal of time is required until the treatment capacity is restored.

したがって、浄水場および下水処理場等において、上記各種の有害物質が混入した場合、流入水を迅速かつ感度良く検出する装置が望まれていた。   Therefore, there has been a demand for a device that detects inflow water quickly and with high sensitivity when the above-mentioned various harmful substances are mixed in water purification plants and sewage treatment plants.

この要望に応えて、浄水場では魚行動監視型の毒物検出装置、あるいは、各種の微生物膜を溶存酸素電極に取付けて、その呼吸活性の測定から毒物を検出する装置が用いられている。また、下水処理場では、特定化学物質の混入した排水を検知する各種のセンサが、それぞれの取水口等に設置されている。   In response to this demand, a fish behavior monitoring type poison detection device or a device for detecting a poison from the measurement of respiratory activity by attaching various microbial membranes to a dissolved oxygen electrode is used at a water purification plant. In the sewage treatment plant, various sensors that detect wastewater mixed with a specific chemical substance are installed at each water intake.

これらのうち、浄水場に設置されている魚行動監視型の毒物検出装置は、魚類が毒物反応するまでに時間がかかるため、その検出に長時間を要する。また、魚類の反応感度も飼育されている魚類の種類や個体差、および飼育の環境状態によってかなり異なる。さらに、魚行動監視型の毒物検出装置は、その装置自体が大掛かりで、魚類の飼育や管理面において必要経費が大きい等の問題がある。   Among these, the fish activity monitoring type poison detection device installed in the water purification plant takes a long time for the fish to react with the poison, so that a long time is required for the detection. In addition, the reaction sensitivity of fish varies considerably depending on the type of fish being bred, individual differences, and the environmental conditions of the breeding. Furthermore, the fish behavior monitoring-type poison detection device has a problem that the device itself is large and the cost for raising and managing fish is high.

そこで、バイオセンサ型の異常水質検出装置が開発されている。一例として、有害物質や雑菌等が繁殖し難い比較的低いpH値のところで作動させることができる鉄酸化細菌をプローブとして用いるものがある(例えば、特許文献1参照)。   Accordingly, biosensor-type abnormal water quality detection devices have been developed. As an example, there is one that uses an iron-oxidizing bacterium that can be operated at a relatively low pH value where toxic substances and bacteria are difficult to propagate as a probe (see, for example, Patent Document 1).

このバイオセンサ型水質監視装置では、先ず、検査すべき水を散気水槽において空気あるいは酸素濃度を一定に調整した気体により散気し、溶存酸素濃度が飽和の状態とする。このようにした被検水に対し硫酸第一鉄含有溶液を供給して被検水と混合する。この混合液は、溶存酸素濃度が飽和状態とされた状態で測定槽内に流入される。   In this biosensor-type water quality monitoring apparatus, first, water to be examined is diffused with air or a gas whose oxygen concentration is adjusted to be constant in an aeration water tank so that the dissolved oxygen concentration is saturated. A ferrous sulfate-containing solution is supplied to the test water thus prepared and mixed with the test water. This mixed solution flows into the measurement tank in a state where the dissolved oxygen concentration is saturated.

測定槽には酸素電極が設けられるが、空気あるいは酸素濃度を一定に調整した気体の供給により常に被検水を飽和溶存酸素濃度にしておき、酸素電極の出力の最大値を安定させておく。前記酸素電極は、先端に微生物膜が取り付けられ、その先端が測定槽内の被検水中に浸漬された状態で設けられている。微生物膜は酸素を利用して硫酸第一鉄を硫酸第二鉄に変えることができる鉄酸化細菌(鉄バクテリアとも言う)を保持している。この酸素電極からの電気出力は変換演算手段によって増幅・変換され、所定の演算が施されて被検水の異常水質が判別される。   The measurement tank is provided with an oxygen electrode, but the test water is always kept at the saturated dissolved oxygen concentration by supplying air or a gas whose oxygen concentration is adjusted to be constant, so that the maximum value of the output of the oxygen electrode is stabilized. The oxygen electrode is provided with a microbial membrane attached to the tip, and the tip is immersed in the test water in the measurement tank. The microbial membrane holds iron-oxidizing bacteria (also called iron bacteria) that can convert ferrous sulfate to ferric sulfate using oxygen. The electrical output from the oxygen electrode is amplified and converted by the conversion calculation means, and a predetermined calculation is performed to determine the abnormal water quality of the test water.

測定槽において被検水と接触した微生物膜での鉄バクテリアによる化学的挙動の化学反応式は、以下のとおりである。   The chemical reaction formula of the chemical behavior by iron bacteria in the microbial membrane in contact with the test water in the measurement tank is as follows.

4FeSO4 + O2 + 2H2SO4 → 2Fe2(SO4)3 + 2H2O ・・・(1)
上記(1)式において、2Fe2(SO4)3は水中で電離し、Fe3+イオンが生成される。このFe3+イオンがさらに水(H2O)と反応して、水酸化鉄Fe(OH)3となり沈殿することになる。
4FeSO 4 + O 2 + 2H 2 SO 4 → 2Fe 2 (SO 4 ) 3 + 2H 2 O (1)
In the above formula (1), 2Fe 2 (SO 4 ) 3 is ionized in water to generate Fe 3+ ions. This Fe 3+ ion further reacts with water (H 2 O) and precipitates as iron hydroxide Fe (OH) 3 .

この異常水質検出装置では、鉄酸化細菌をプローブとして取付けた溶存酸素電極に被検水と鉄液の混合液を送液し、この送液時における酸素電極からの電気出力を監視するものである。すなわち、被検水に有害物質が混入していない場合は、被検水中の溶存酸素は鉄の酸化に消費されるため、酸素電極によって検出される値は極めて低くなる。これに対して、被検水中に水溶性の有害物質が混入した場合、その有害物質が微生物膜上の鉄酸化細菌の呼吸活性を低下させる。その結果、鉄酸化細菌に消費されなかった酸素が微生物膜を透過するため、酸素電極に到達する酸素量が増加し、酸素電極の出力する電流値が増加する。したがって、酸素電極の出力電流値を閾値と比較することで有害物質の混入を判断する。   In this abnormal water quality detection device, a mixed liquid of test water and iron liquid is fed to a dissolved oxygen electrode attached with iron-oxidizing bacteria as a probe, and the electrical output from the oxygen electrode at the time of feeding is monitored. . That is, when no harmful substance is mixed in the test water, the dissolved oxygen in the test water is consumed for iron oxidation, so the value detected by the oxygen electrode is extremely low. On the other hand, when a water-soluble harmful substance is mixed in the test water, the harmful substance reduces the respiratory activity of iron-oxidizing bacteria on the microbial membrane. As a result, oxygen that has not been consumed by the iron-oxidizing bacteria permeates the microbial membrane, so that the amount of oxygen that reaches the oxygen electrode increases and the current value output by the oxygen electrode increases. Therefore, the mixing of harmful substances is determined by comparing the output current value of the oxygen electrode with a threshold value.

なお、このようなバイオセンサ型異常水質検出装置は連続運転されると、被検水中の汚濁物質が各配管の内壁に付着し堆積してくる。また、鉄液中の硫酸第一鉄の一部が硫酸第二鉄に酸化されて、これも除々に堆積してくる。これらは、配管系の閉塞や、異常水質検出の感度低下につながり、検出精度を低下させる原因となる。そのため、被検水と硫酸第一鉄含有溶液の混合液が送液される被検水導入管に酸性溶液を供給し、被検水導入管や測定槽などの被検水通流路に付着堆積している汚濁物質および酸化鉄を除去し、排出する「酸洗浄」を行なうようにしている。   In addition, when such a biosensor type abnormal water quality detection apparatus is continuously operated, the pollutant in the test water adheres to and accumulates on the inner wall of each pipe. In addition, a part of ferrous sulfate in the iron solution is oxidized to ferric sulfate, which gradually accumulates. These lead to blockage of the piping system and a decrease in sensitivity of abnormal water quality detection, which causes a decrease in detection accuracy. Therefore, an acidic solution is supplied to the test water introduction pipe through which the mixture of the test water and the ferrous sulfate-containing solution is sent, and adheres to the test water passage such as the test water introduction pipe or the measurement tank. It removes accumulated pollutants and iron oxide and performs “acid cleaning” to discharge.

特開2004−271441号公報JP 2004-271441 A

このようなバイオセンサ型異常水質検出装置では、一度「水質異常」の警報が発報されると、例えば浄水場ではテロ対策処置等の緊急体制が敷かれ、取水停止かそれに相当する臨時処置がとられる。しかし、その「水質異常」警報が誤警報となった場合、装置を設置している施設に多大な迷惑が掛かるだけでなく、取水停止により、施設内設備の稼動が一時的にストップし、少なくない損害が発生する。それゆえ「水質異常」警報に対する信頼性が要求される。   In such a biosensor-type abnormal water quality detection device, once an alarm of “water quality abnormality” is issued, an emergency system such as anti-terrorism measures is laid at a water purification plant, for example, and water intake is stopped or a temporary measure equivalent to it is taken. Be taken. However, if the “water quality abnormality” alarm becomes a false alarm, not only will the facility where the equipment is installed be greatly inconvenienced, but the operation of the facilities in the facility will be temporarily stopped due to the suspension of water intake. There will be no damage. Therefore, reliability for “water quality abnormality” warning is required.

このため、センサ部の鉄バクテリアを保持する微生物膜の温度管理はシビアとなる。すなわち、通常バイオセンサの水質検査対象となる浄水場取水は、河川表流水であり、夏季の水温は20〜25℃まで上昇するが、冬季は4℃程度まで低下する。特に、厳寒地の河川では、河川表層が凍結し、その氷の下層から取水するため、その水温は氷点下付近まで冷えることも珍しくない。このような冷えた被検水を何も加温しないまま、センサ部の鉄バクテリアを保持する微生物膜に供給した場合、鉄バクテリアの活性が極度に低下し、有害物質混入時の酸素消費の挙動と差別化できないため、適正な水質監視ができない。   For this reason, the temperature control of the microbial film holding the iron bacteria in the sensor unit becomes severe. In other words, the water purification plant intake that is normally subject to water quality inspection by a biosensor is river surface water, and the water temperature in summer rises to 20-25 ° C, but falls to about 4 ° C in winter. Particularly in rivers in extremely cold regions, the surface of the river freezes and water is taken from the bottom of the ice, so it is not uncommon for the water temperature to cool to near freezing. If such a chilled sample water is supplied to a microbial membrane holding iron bacteria in the sensor section without heating anything, the activity of the iron bacteria is extremely reduced, and the behavior of oxygen consumption when contaminated with harmful substances Therefore, proper water quality monitoring is not possible.

そのため、まず冷えた被検水を、センサ部や測定槽を常時30℃に保温するため、測定槽を囲むように設けられた熱交換機能を有するフローセル内に十分通過させて、ある程度加温した後にセンサ部に供給することになっている。   Therefore, in order to keep the sensor part and the measurement tank at 30 ° C. at all times, the cooled test water is first sufficiently passed through a flow cell having a heat exchange function provided so as to surround the measurement tank and heated to some extent. It will be supplied to the sensor unit later.

しかし、図2で示すように、一般的に水は低温になるほど溶存空気量が多くなる。このため、低温の水を急激に加温すると、飽和溶存空気量の低下により、溶けきれずに出現した空気が気泡となって、センサ部や測定槽付近に付着する。このように気泡が生じると、鉄酸化細菌の栄養源(硫酸第一鉄)の供給を阻害し、応答上は鉄バクテリアが有害物質によりダメージを受けて栄養源が消費できない場合と同等の反応を示す。このため、装置は「水質異常」と誤認して警報を発報する。   However, as shown in FIG. 2, the amount of dissolved air generally increases as the temperature of water decreases. For this reason, when low-temperature water is heated rapidly, the air that appears without being dissolved becomes bubbles due to a decrease in the amount of saturated dissolved air, and adheres to the vicinity of the sensor unit and the measurement tank. When bubbles are generated in this way, the supply of nutrients for iron-oxidizing bacteria (ferrous sulfate) is inhibited, and in response, the reaction is the same as when iron bacteria are damaged by harmful substances and cannot be consumed. Show. For this reason, the device falsely recognizes “water quality abnormality” and issues an alarm.

気泡の問題だけであれば、後述するように、測定槽の上流側に位置し、バッファタンクの役割をする散気水槽内にヒータを設けて常時加温すれば、気泡は散気水槽内で発生するため、この問題は解決できる。しかし、被検水は流通状態であるため、流量変動などが生じやすく、この流通状態の被検水を目標とする温度まで正確に加温することは極めて難しい。このような場合、散気水槽の容積を増やして熱容量を大きして貯留状態にすれば、被検水を目標温度まで正確に加温することが可能となる。   If there is only a problem of bubbles, as will be described later, if a heater is installed in the diffused water tank that is located upstream of the measurement tank and serves as a buffer tank, the bubbles will remain in the diffused water tank. This problem can be solved. However, since the test water is in a circulating state, flow rate fluctuations and the like are likely to occur, and it is extremely difficult to accurately heat the test water in this circulating state to a target temperature. In such a case, if the volume of the diffused water tank is increased to increase the heat capacity to the storage state, the test water can be accurately heated to the target temperature.

ここで、本装置の制約条件として、迅速な有害物質の検出が不可欠である。これに対し、散気水槽を大きくすると、原水に有害物質が混入している場合、大容積の散気水槽内で原水が拡散され、一時的に有害物質濃度が減少する。このため、原水と散気水槽内被検水との有害物質濃度が互いに同等になるためにはかなりの時間を要することとなり、有害物質の検出に時間がかかる。よって、バッファタンクである散気水槽の容積は最小限のままであることが望ましく、したがって、散気水槽より上流側の流水中で加温する必要が生じる。   Here, rapid detection of harmful substances is indispensable as a constraint condition of this apparatus. On the other hand, when the diffused water tank is enlarged, if harmful substances are mixed in the raw water, the raw water is diffused in the large volume diffused water tank, and the concentration of harmful substances is temporarily reduced. For this reason, it takes a considerable amount of time for the harmful substance concentrations in the raw water and the test water in the diffused water tank to be equal to each other, and it takes time to detect the harmful substances. Therefore, it is desirable that the volume of the diffused water tank that is a buffer tank is kept to a minimum, and therefore, it is necessary to heat in the running water upstream of the diffused water tank.

本発明の目的は、気泡発生や低温状態などに起因する『水質異常』の誤警報を防止できる異常水質検出装置及び異常水質検出方法を提供することにある。   An object of the present invention is to provide an abnormal water quality detection device and an abnormal water quality detection method capable of preventing a false alarm of “water quality abnormality” due to bubble generation, a low temperature state, or the like.

本発明の異常水質検出装置は、被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出する異常水質検出装置であって、被検水の導入管路の周囲を、前記温度範囲に近い温度に制御された温度調整水に接触させ、前記導入管路を介した伝熱により、被検水の温度を前記温度調整水の温度に近付ける水温調整装置を備え、前記水温調整装置は、前記被検水の導入管路の所定の長さ部分を、前記温度調整水が貯留されたタンク内に設置した構造であり、前記導入管路の、前記水温調整装置より上流側に、この導入管路を流れる被検水を加熱する加熱器を設けたことを特徴とする。   The abnormal water quality detection device of the present invention is an abnormal water quality detection device that detects the presence or absence of an abnormality in the water quality while maintaining the test water in a preset temperature range, and is arranged around the introduction pipe of the test water. A water temperature adjusting device that is brought into contact with the temperature adjustment water controlled to a temperature close to the temperature range, and brings the temperature of the test water close to the temperature of the temperature adjustment water by heat transfer through the introduction pipe line, The water temperature adjusting device has a structure in which a predetermined length portion of the introduction pipe of the test water is installed in a tank in which the temperature adjusting water is stored, and is upstream of the water temperature adjusting device of the introduction pipe. On the side, a heater for heating the test water flowing through the introduction pipe line is provided.

本発明の異常水質検出方法は、被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出する異常水質検出方法であって、導入管路を流れる被検水を、第1段ヒータである加熱器により、ある程度以上の温度に加熱し、ある程度以上に加熱された被検水を、その被検水の導入管路の所定の長さ部分が、前記温度範囲に近い温度に制御された温度調整水を貯留するタンク内に設置された水温調整装置に流し、この被検水の導入管路の周囲を、温度調整水に接触させ、前記導入管路を介した伝熱により、被検水の温度を前記温度調整水の温度に近付けることを特徴とする。   The abnormal water quality detection method of the present invention is an abnormal water quality detection method for detecting the presence or absence of an abnormality in the water quality in a state in which the test water is maintained in a preset temperature range, and the test water flowing through the introduction pipe line, The test water heated to a certain level or higher by a heater that is a first stage heater, and the test water heated to a certain level has a predetermined length portion of the test water introduction pipe line close to the temperature range. The temperature-adjusted water controlled by the temperature is passed through a water temperature adjusting device installed in a tank, and the periphery of the introduction water line of the test water is brought into contact with the temperature-adjusted water and transmitted through the introduction line. The temperature of the test water is brought close to the temperature of the temperature adjustment water by heat.

本発明によれば、流入する被検水の温度および流量に関係なく、散気水槽流入前に水温を適温に漸近させるので、測定槽内での気泡の発生を防ぎことができ、しかも被検水の温度を所定範囲に保持できるので、発泡や低温状態に影響されることなく被検水の異常状態を正確に検出することができる。   According to the present invention, the water temperature is asymptotically approached to an appropriate temperature before entering the diffused water tank regardless of the temperature and flow rate of the inflowing test water, so that generation of bubbles in the measurement tank can be prevented, and Since the temperature of the water can be maintained within a predetermined range, the abnormal state of the test water can be accurately detected without being affected by foaming or a low temperature state.

本発明による異常水質検出装置の一実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of an abnormal water quality detection device according to the present invention. 一般的な水温と酸素溶解度との関係を示す特性図である。It is a characteristic view which shows the relationship between general water temperature and oxygen solubility.

以下、本発明による異常水質検出装置の実施の形態について、図面を用いて詳細に説明する。   Hereinafter, embodiments of an abnormal water quality detection device according to the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施の形態の全体構成を示している。この異常検出装置は、被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出するもので、その一例として、測定槽4内に、酸素電極10が設けられた構造のものを使用している。この酸素電極10の先端(測定槽4内の図示下端部)には微生物膜9を取り付けている。また、この測定槽4は被検水導入管2に連結しており、被検水が導入される。さらに、この測定槽4は、その周囲に設けられた温度調整器5によって所定温度に調整される。この温度調整器5は、循環式温度調節器24と連結しており、所定温度に加温された温度調節水が循環供給される。   FIG. 1 shows the overall configuration of an embodiment of the present invention. This abnormality detection device detects the presence or absence of an abnormality in the water quality while maintaining the test water in a preset temperature range, and as an example, a structure in which an oxygen electrode 10 is provided in the measurement tank 4 Are using things. A microbial membrane 9 is attached to the tip of the oxygen electrode 10 (the lower end in the figure in the measurement tank 4). Further, the measurement tank 4 is connected to the test water introduction pipe 2 and the test water is introduced. Further, the measuring tank 4 is adjusted to a predetermined temperature by a temperature adjuster 5 provided around the measuring tank 4. The temperature regulator 5 is connected to a circulating temperature regulator 24, and temperature-regulated water heated to a predetermined temperature is circulated and supplied.

前記微生物膜9は、酸素を利用して硫酸第一鉄を硫酸第二鉄に変えることができる鉄バクテリアを保持している。酸素電極10は、この微生物膜9を取り付けた先端部が、測定槽4内の被検水中に浸漬する状態で設置されている。また、酸素電極10には変換演算手段11が接続されており、この変換演算手段11は酸素電極10から取り出された電気出力を増幅・変換し、所定の演算を施して、後述するように被検水の異常水質を判別する。   The microbial membrane 9 holds iron bacteria that can convert ferrous sulfate to ferric sulfate using oxygen. The oxygen electrode 10 is installed in a state where the tip end portion to which the microbial membrane 9 is attached is immersed in the test water in the measurement tank 4. Further, a conversion calculation means 11 is connected to the oxygen electrode 10, and the conversion calculation means 11 amplifies and converts the electrical output taken out from the oxygen electrode 10, performs a predetermined calculation, and is subjected to a process as described later. Determine abnormal water quality of sample water.

散気水槽7は、前述のように、測定槽4に被検水を供給する際のバッファを兼ねるものであり、検査すべき水源の原水(例えば、河川の流入や、浄水場への流入水、下水処理場への流入水など)が、中空糸膜等によるフィルタ21を通して導入され、ろ過水ポンプ18により、導入管路17上に構成される配管用の加熱器22、及び水温調整装置23を介して被検水として導入される。   As described above, the aeration water tank 7 also serves as a buffer for supplying the test water to the measurement tank 4, and the raw water of the water source to be inspected (for example, the inflow of the river or the inflow water to the water purification plant) Inflow water to a sewage treatment plant, etc.) is introduced through a filter 21 made of a hollow fiber membrane or the like, and is heated by a filtered water pump 18 and is connected to a pipe heater 22 and a water temperature adjusting device 23 on an introduction pipe line 17. Is introduced as test water.

この散気水槽7では、導入された被検水に対し、気体供給器8から空気あるいは酸素濃度を一定に調整した気体を供給し、溶存酸素濃度が飽和の状態の被検水とする。このように溶存酸素濃度が飽和の状態となった被検水は、電磁弁20を介して被検水供給ポンプ6により前記被検水導入管2に送出され、測定槽4に供給される。   In the diffused water tank 7, air or a gas with a constant oxygen concentration is supplied from the gas supply device 8 to the introduced test water, and the test water is in a state where the dissolved oxygen concentration is saturated. The test water in which the dissolved oxygen concentration is saturated in this way is sent to the test water introduction pipe 2 by the test water supply pump 6 via the electromagnetic valve 20 and supplied to the measurement tank 4.

この被検水導入管2には、酸性溶液パック12、鉄液パック13が、対応する電磁弁14,15、共通の薬液導入管19、及び薬液供給ポンプ16を介して連通している。   An acidic solution pack 12 and an iron solution pack 13 communicate with the test water introduction tube 2 via corresponding electromagnetic valves 14 and 15, a common chemical solution introduction tube 19, and a chemical solution supply pump 16.

水温調整装置23は、被検水が流通する管路の周囲を、循環式温度調節器24によって、測定槽4を所定の温度範囲に保つための温度に制御された温度調整水と接触させ、被検水が流通する管路を介した伝熱により、被検水の温度を前記温度調整水の温度に近付ける。この水温調整装置23としては、循環式温度調節器24内の循環温水貯留タンクに、熱効率の良いコイル状配管を設けている。すなわち、このコイル状配管を水温調整装置23として用いており、循環式温度調節器24内の循環温水貯留タンク内の循環温水により、コイル状配管内を流れる被検出水を目標温度である30℃に漸近させている。   The water temperature adjusting device 23 is brought into contact with the temperature adjusted water controlled to a temperature for keeping the measurement tank 4 in a predetermined temperature range by the circulating temperature controller 24 around the pipe line through which the test water flows. The temperature of the test water is brought close to the temperature of the temperature-adjusted water by heat transfer through a pipe line through which the test water flows. As the water temperature adjusting device 23, a coiled pipe having a high thermal efficiency is provided in a circulating hot water storage tank in the circulating temperature controller 24. That is, this coiled pipe is used as the water temperature adjusting device 23, and the detected water flowing in the coiled pipe is set to a target temperature of 30 ° C. by circulating hot water in the circulating hot water storage tank in the circulating temperature controller 24. Asymptotically.

循環式温度調節器24は、図示しないヒータを有し、内部に貯留される温度調整水を所定の温度に維持するべく加熱制御される。内部に貯留される温度調整水は、循環路24aによって、測定槽4周囲の温度調整器5に循環供給される。   The circulation type temperature controller 24 has a heater (not shown), and is heated and controlled to maintain the temperature adjustment water stored therein at a predetermined temperature. The temperature adjustment water stored inside is circulated and supplied to the temperature adjuster 5 around the measurement tank 4 by the circulation path 24a.

水温調整装置23の上流側に設けられた加熱器22としては、管路の周囲に電気ヒータを設けたいわゆる配管ヒータを用いる。前述のように、流通状態の被検水を目標とする温度まで正確に加温することは極めて難しいので、この加熱器22では細かな温度制御は行わずに、原水温度がある程度以下であればオン、ある温度以上となればオフというような使い方を行う。例えば、冬季などにおいて原水(河川水など)が10℃以下になる場合、水温調整装置23だけで原水温度を目標値(例えば、30℃程度)まで上昇させることは、循環する温度調節水の低下をもたらし、測定槽4の温度維持を行うことが困難になるなどの問題が生じる。そこで、この加熱器22は、先ず第1段のヒータとして、原水温度をある程度以上の温度に加熱するために用いる。したがって、原水温度が20℃を越える夏季などでは、この加熱器22は用いない。   As the heater 22 provided on the upstream side of the water temperature adjusting device 23, a so-called pipe heater in which an electric heater is provided around the pipe line is used. As described above, it is extremely difficult to heat the test water in a circulating state to a target temperature accurately. Therefore, the heater 22 does not perform fine temperature control and the raw water temperature is below a certain level. Use it to turn it on and turn it off when it exceeds a certain temperature. For example, when the raw water (river water, etc.) becomes 10 ° C. or lower in winter, etc., raising the raw water temperature to the target value (for example, about 30 ° C.) using only the water temperature adjusting device 23 is a decrease in circulating temperature-controlled water. Resulting in problems such as difficulty in maintaining the temperature of the measuring tank 4. Therefore, the heater 22 is used as a first stage heater to heat the raw water temperature to a certain level or higher. Therefore, the heater 22 is not used in summer when the raw water temperature exceeds 20 ° C.

被検水は、前述のように、散気水槽7において、気体供給器8から供給された空気あるいは酸素濃度を一定に調整した気体により、常に飽和溶存酸素濃度となっている。また、酸性溶液パック12から酸性溶液が供給されるとともに、鉄液パック13から硫酸第一鉄含有溶液が供給され、被検水導入管2で被検水と混合される。この混合液は、上述のように溶存酸素濃度が飽和状態とされた状態で被検水導入管2から測定槽4内に流入される。   As described above, the test water always has a saturated dissolved oxygen concentration in the diffused water tank 7 by the air supplied from the gas supplier 8 or the gas whose oxygen concentration is adjusted to be constant. Further, the acidic solution is supplied from the acidic solution pack 12, and the ferrous sulfate-containing solution is supplied from the iron solution pack 13, and mixed with the test water in the test water introduction pipe 2. This mixed liquid flows into the measurement tank 4 from the test water introduction pipe 2 in a state where the dissolved oxygen concentration is saturated as described above.

前記測定槽4に導入される被検水は、常に飽和溶存酸素濃度にして、酸素電極10の出力の最大値を安定させる必要がある。飽和溶存酸素濃度は液温度により変化するため、前述のように、温度調整器5によって測定槽4を一定の温度に維持することは重要である。   The test water introduced into the measurement tank 4 must always have a saturated dissolved oxygen concentration to stabilize the maximum value of the output of the oxygen electrode 10. Since the saturated dissolved oxygen concentration varies depending on the liquid temperature, it is important to maintain the measurement tank 4 at a constant temperature by the temperature regulator 5 as described above.

また、測定槽4内では、酸素電極10の先端に設けられた、酸素を利用して硫酸第一鉄を硫酸第二鉄に変えることができる鉄バクテリアを保持する微生物膜9と被検水との間で、以下の反応か生じる。微生物膜9に保持された鉄バクテリアは、例えば、Thiobacillus ferrooxidansである。この化学的挙動の化学反応式は、前記(1)式のようになり、2Fe2(SO4)3は水中で電離し、Fe3+イオンが生成される。このFe3+イオンがさらに水(H2O)と反応して、水酸化鉄Fe(OH)3となり沈殿することになる。 Further, in the measurement tank 4, a microbial membrane 9 that holds iron bacteria that can convert ferrous sulfate to ferric sulfate using oxygen provided at the tip of the oxygen electrode 10, test water, The following reactions occur between: The iron bacteria held in the microbial membrane 9 is, for example, Thiobacillus ferrooxidans. The chemical reaction formula of this chemical behavior is as shown in the above formula (1), and 2Fe 2 (SO 4 ) 3 is ionized in water to generate Fe 3+ ions. This Fe 3+ ion further reacts with water (H 2 O) and precipitates as iron hydroxide Fe (OH) 3 .

なお、微生物膜9に保持される鉄バクテリアとしては、Thiobacillus ferrooxidans以外にも、上記化学反応式の働きを持つすべての微生物が適用可能である。例えば、Gallionella ferruginea、Leptospirillum ferrooxidans、Leptothrix、Sphaerotilus等が適していることが確認されている。   In addition to the Thiobacillus ferrooxidans, all microorganisms having the function of the above chemical reaction formula can be applied as the iron bacteria held in the microbial membrane 9. For example, it has been confirmed that Gallionella ferruginea, Leptospirillum ferrooxidans, Leptothrix, Sphaerotilus and the like are suitable.

鉄バクテリアの活性、すなわち鉄の酸化量は、温度の影響によっても変化する可能性があるため、測定槽4は温度調整器5によって、鉄バクテリアの活性が安定するような温度に維持されるのが望ましい。温度調整器5の設置は、そういう意味でも重要である。   Since the activity of iron bacteria, that is, the amount of oxidation of iron, may change due to the influence of temperature, the measuring tank 4 is maintained at a temperature at which the activity of iron bacteria is stabilized by the temperature regulator 5. Is desirable. The installation of the temperature regulator 5 is also important in this sense.

このように、異常水質検出装置は、鉄酸化細菌をプローブとして取付けた溶存酸素電極10に被検水と鉄液の混合液を被検水供給ポンプ6および薬液供給ポンプ16よって送液し、この送液時における酸素電極10からの電気出力を監視するものである。そして、被検水中の水溶性の有害物質が混入した場合、その有害物質が微生物膜9上の鉄酸化細菌の呼吸活性を低下させる。その結果、鉄酸化細菌に消費されなかった酸素が微生物膜9を透過するため、酸素電極10に到達する酸素量が増加する。その結果、酸素電極10が出力する電流値が増加するので、これによって有害物質の混入を判断する。   As described above, the abnormal water quality detection device sends the mixed solution of the test water and the iron solution to the dissolved oxygen electrode 10 attached with the iron-oxidizing bacteria as a probe by the test water supply pump 6 and the chemical solution supply pump 16. The electric output from the oxygen electrode 10 at the time of liquid feeding is monitored. And when the water-soluble harmful | toxic substance in test water mixes, the harmful | toxic substance reduces the respiratory activity of the iron oxidation bacteria on the microbial membrane 9. FIG. As a result, oxygen that has not been consumed by the iron-oxidizing bacteria permeates through the microbial membrane 9, so that the amount of oxygen that reaches the oxygen electrode 10 increases. As a result, since the current value output from the oxygen electrode 10 increases, it is determined whether or not harmful substances are mixed.

次に、装置全体の動作を説明する。異常水質検出装置は、前述のように被検水源から得た被検水を、鉄液あるいは酸性溶液と混合して測定槽4に導入し、被検水の水質検査後、排出管3を介して排水する。本発明では、原水を中空糸膜フィルタ21でろ過した被検水を、まず、配管ヒータ22で+10℃程度加温する。次に、水温調整装置23により、循環式温度調節器24に貯留された循環温水と外部接触させ、目標とする温度、例えば30℃付近まで漸近加温する。   Next, the operation of the entire apparatus will be described. The abnormal water quality detection device mixes the test water obtained from the test water source as described above with the iron solution or the acidic solution and introduces it into the measurement tank 4. Drain. In the present invention, the test water obtained by filtering the raw water with the hollow fiber membrane filter 21 is first heated to about + 10 ° C. with the pipe heater 22. Next, the water temperature adjusting device 23 is brought into external contact with the circulating hot water stored in the circulating temperature controller 24, and asymptotically heated to a target temperature, for example, around 30 ° C.

通常、被検水となる河川原水の温度が設置地域、季節、天候、時間単位の気温変動に応じて、0〜25℃の間で変動する。ここで、配管ヒータ22のみの加温であれば、上記水温変動に柔軟に追随して、流水状態の被検水を常時30℃付近に維持・制御することが難しい。すなわち、配管ヒータ22の出力の選定計算において、流入水の温度条件を低温寄りに設定すると、流入条件がある程度高温なると、30℃を超えやすくなるため、配管ヒータ22のON/OFFの頻度が多くなり、リレースイッチ等の機器の消耗が激しくなる。一方、流入水の温度条件を高温寄りに設定すると、年間を通して配管ヒータ22の頻繁なON/OFFは回避できるが、低温の被検水を30℃付近に維持・制御することが難しい。   Usually, the temperature of river raw water used as test water varies between 0 to 25 ° C. according to the installation area, season, weather, and hourly temperature fluctuation. Here, if only the pipe heater 22 is heated, it is difficult to flexibly follow the water temperature fluctuation and to maintain and control the test water in a flowing state at around 30 ° C. at all times. That is, when the temperature condition of the influent water is set closer to a low temperature in the selection calculation of the output of the pipe heater 22, it tends to exceed 30 ° C. when the inflow condition is somewhat high, so the frequency of ON / OFF of the pipe heater 22 is high. As a result, the consumption of devices such as relay switches becomes severe. On the other hand, if the temperature condition of the influent water is set closer to the high temperature, frequent ON / OFF of the pipe heater 22 can be avoided throughout the year, but it is difficult to maintain and control the low-temperature test water at around 30 ° C.

さらに、流水状態の被検水は中空糸膜フィルタ21によるろ過水であるため、原水濁度の状況によりろ過流量が変化し、そのため、配管ヒータ22への流入流量条件が大きく変動する。流量が小さくなるほど、加温効率が向上するため、配管ヒータ22単体での30℃付近の維持・制御が難しい。また、高度な配管ヒータ22制御は装置のコストを大幅に上昇させるため、採用し難い。   Furthermore, since the test water in the flowing water state is filtered water by the hollow fiber membrane filter 21, the flow rate of filtration changes depending on the state of the raw water turbidity, and therefore the condition of the flow rate of flow into the pipe heater 22 varies greatly. Since the heating efficiency improves as the flow rate decreases, it is difficult to maintain and control around 30 ° C. with the piping heater 22 alone. Further, the advanced piping heater 22 control greatly increases the cost of the apparatus and is difficult to adopt.

そこで、本実施の形態では、配管ヒータ22の後段(下流側)に水温調整装置23を設けている。この水温調整装置23は、循環式温度調節器24内の循環温水貯留タンクに、熱効率の良いコイル状配管を設けており、循環式温度調節器24内の循環温水貯留タンク内の循環温水により、コイル状配管内を流れる被検出水を目標温度である30℃に漸近させる。水温調整装置23への循環温水の流入温度が30℃を越えない条件下では、被検水の温度は30℃付近に漸近するにしても、30℃以上にはならない。夏季のように、被検水となる原水温度が20℃以上に達する場合は、配管ヒータ22を常時OFFすることにより対応できる。   Therefore, in the present embodiment, the water temperature adjusting device 23 is provided at the rear stage (downstream side) of the pipe heater 22. This water temperature adjusting device 23 is provided with a heat-efficient coiled pipe in the circulating hot water storage tank in the circulating temperature controller 24, and by the circulating hot water in the circulating hot water storage tank in the circulating temperature controller 24, The detected water flowing in the coiled pipe is made asymptotic to 30 ° C. which is the target temperature. Under the condition where the inflow temperature of the circulating hot water to the water temperature adjusting device 23 does not exceed 30 ° C., the temperature of the test water does not become 30 ° C. or higher even if it gradually approaches 30 ° C. When the temperature of the raw water serving as test water reaches 20 ° C. or more as in summer, it can be dealt with by always turning off the pipe heater 22.

なお、水温調整装置23のみの加温の場合、温度上昇幅を広げるためには、循環式温度調節器24の容量アップが必要となる。そこで、前述のように、前段の配管ヒータ22である程度加温(4℃→20℃付近)して、引き続き水温調整装置23で30℃付近に漸近させるほうが、装置の機器実装スペースおよびコスト上有利である。   In the case of heating only the water temperature adjusting device 23, the capacity of the circulating temperature controller 24 needs to be increased in order to widen the temperature increase range. Therefore, as described above, it is advantageous in terms of equipment mounting space and cost to heat the pipe heater 22 in the previous stage to some extent (around 4 ° C. → 20 ° C.) and then gradually bring it closer to 30 ° C. with the water temperature adjusting device 23. It is.

以上により、酸素電極10の先端に微生物膜9を保持し、この微生物膜9を透過する酸素量を溶存酸素電極10で測定して、有害物質の混入を検出するバイオセンサ型異常水質検出装置1では、被検水を加温する方式として、前段に配管ヒータ22、後段に水温調整装置23を配置したので、流入する被検水の温度および流量に関係なく、散気水槽7への流入前に水温を適温に漸近させ、測定槽4内での気泡の発生を防ぎ、それに起因する「水質異常」の誤警報を防止することが可能となる。   As described above, the microbial membrane 9 is held at the tip of the oxygen electrode 10, the amount of oxygen permeating through the microbial membrane 9 is measured with the dissolved oxygen electrode 10, and the biosensor-type abnormal water quality detection device 1 detects the contamination of harmful substances. Then, as a method of heating the test water, the pipe heater 22 is arranged in the front stage and the water temperature adjusting device 23 is arranged in the rear stage. Therefore, before the inflow to the aeration tank 7 regardless of the temperature and flow rate of the inflow of the test water. As a result, the water temperature is made asymptotic to an appropriate temperature to prevent the generation of bubbles in the measurement tank 4 and to prevent a false alarm of “water quality abnormality” resulting therefrom.

4 水質の異常有無を検出する測定槽
17 被検水の導入管路
22 加熱器
23 水温調整装置
24 循環式温度調節器
24a 温水の循環路
4 Measuring tank for detecting presence or absence of water quality 17 Test water introduction pipe 22 Heater 23 Water temperature adjustment device 24 Circulating temperature controller 24a Hot water circulation path

Claims (2)

被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出する異常水質検出装置であって、
被検水の導入管路の周囲を、前記温度範囲に近い温度に制御された温度調整水に接触させ、前記導入管路を介した伝熱により、被検水の温度を前記温度調整水の温度に近付ける水温調整装置を備え、
前記水温調整装置は、前記被検水の導入管路の所定の長さ部分を、前記温度調整水が貯留されたタンク内に設置した構造であり、
前記導入管路の、前記水温調整装置より上流側に、この導入管路を流れる被検水を加熱する加熱器を設けた
ことを特徴とする異常水質検出装置。
An abnormal water quality detection device that detects the presence or absence of an abnormality in the water quality while maintaining the test water in a preset temperature range,
The periphery of the introduction pipe of the test water is brought into contact with temperature adjustment water controlled to a temperature close to the temperature range, and the temperature of the test water is adjusted by heat transfer through the introduction pipe. Equipped with a water temperature adjustment device that approaches the temperature,
The water temperature adjustment device is a structure in which a predetermined length portion of the test water introduction pipe is installed in a tank in which the temperature adjustment water is stored,
An abnormal water quality detection device, characterized in that a heater for heating the test water flowing through the introduction pipe is provided upstream of the water temperature adjustment device in the introduction pipe.
被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出する異常水質検出方法であって、
導入管路を流れる被検水を、第1段ヒータである加熱器により、ある程度以上の温度に加熱し、
ある程度以上に加熱された被検水を、その被検水の導入管路の所定の長さ部分が、前記温度範囲に近い温度に制御された温度調整水を貯留するタンク内に設置された水温調整装置に流し、
この被検水の導入管路の周囲を、温度調整水に接触させ、前記導入管路を介した伝熱により、被検水の温度を前記温度調整水の温度に近付ける
ことを特徴とする異常水質検出方法。
An abnormal water quality detection method for detecting the presence or absence of an abnormality in the water quality while maintaining the test water in a preset temperature range,
The test water flowing through the introduction pipe is heated to a temperature above a certain level by a heater that is a first stage heater,
The temperature of the test water heated to a certain level is set in a tank that stores temperature-adjusted water in which a predetermined length of the introduction pipe of the test water is controlled to a temperature close to the temperature range. Poured into the adjusting device,
An abnormality characterized in that the periphery of the introduction pipe of the test water is brought into contact with the temperature adjustment water, and the temperature of the test water is brought close to the temperature adjustment water by heat transfer through the introduction pipe Water quality detection method.
JP2010097779A 2010-04-21 2010-04-21 Abnormal water quality detection apparatus and abnormal water quality detection method Active JP4988005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097779A JP4988005B2 (en) 2010-04-21 2010-04-21 Abnormal water quality detection apparatus and abnormal water quality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097779A JP4988005B2 (en) 2010-04-21 2010-04-21 Abnormal water quality detection apparatus and abnormal water quality detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008130739A Division JP4538060B2 (en) 2008-05-19 2008-05-19 Abnormal water quality detection device

Publications (2)

Publication Number Publication Date
JP2010160169A true JP2010160169A (en) 2010-07-22
JP4988005B2 JP4988005B2 (en) 2012-08-01

Family

ID=42577398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097779A Active JP4988005B2 (en) 2010-04-21 2010-04-21 Abnormal water quality detection apparatus and abnormal water quality detection method

Country Status (1)

Country Link
JP (1) JP4988005B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331486A (en) * 2011-07-13 2012-01-25 浙江沁园水处理科技有限公司 Intelligent water quality detection device
JP2013015512A (en) * 2011-06-07 2013-01-24 Metawater Co Ltd Water quality measuring apparatus and filtration unit
CN106975431A (en) * 2017-03-22 2017-07-25 张硕人 A kind of experimental box for carrying and doing chemical experiment suitable for middle school student

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123851A (en) * 1989-10-09 1991-05-27 Central Kagaku Kk Bod measuring instrument
JPH08145981A (en) * 1994-11-25 1996-06-07 Fuji Electric Co Ltd Bod measuring instrument
JP2000074870A (en) * 1998-08-28 2000-03-14 Fuji Electric Co Ltd Bod biosensor measuring device
JP2001165893A (en) * 1999-12-07 2001-06-22 Fuji Electric Co Ltd Detecting method for toxic substance in environmental water
JP2004279105A (en) * 2003-03-13 2004-10-07 Toshiba Corp Biosensor type abnormal water quality detector
JP2006242749A (en) * 2005-03-03 2006-09-14 Toshiba Corp Pretreatment device for measuring quality of water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123851A (en) * 1989-10-09 1991-05-27 Central Kagaku Kk Bod measuring instrument
JPH08145981A (en) * 1994-11-25 1996-06-07 Fuji Electric Co Ltd Bod measuring instrument
JP2000074870A (en) * 1998-08-28 2000-03-14 Fuji Electric Co Ltd Bod biosensor measuring device
JP2001165893A (en) * 1999-12-07 2001-06-22 Fuji Electric Co Ltd Detecting method for toxic substance in environmental water
JP2004279105A (en) * 2003-03-13 2004-10-07 Toshiba Corp Biosensor type abnormal water quality detector
JP2006242749A (en) * 2005-03-03 2006-09-14 Toshiba Corp Pretreatment device for measuring quality of water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015512A (en) * 2011-06-07 2013-01-24 Metawater Co Ltd Water quality measuring apparatus and filtration unit
CN102331486A (en) * 2011-07-13 2012-01-25 浙江沁园水处理科技有限公司 Intelligent water quality detection device
CN102331486B (en) * 2011-07-13 2013-11-06 浙江沁园水处理科技有限公司 Intelligent water quality detection device
CN106975431A (en) * 2017-03-22 2017-07-25 张硕人 A kind of experimental box for carrying and doing chemical experiment suitable for middle school student
CN106975431B (en) * 2017-03-22 2019-08-27 郑修志 A kind of experimental box carrying and do chemical experiment suitable for middle school student

Also Published As

Publication number Publication date
JP4988005B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4538060B2 (en) Abnormal water quality detection device
US5268092A (en) Two water control system using oxidation reduction potential sensing
ES2741651T3 (en) Method and device to monitor and control the status of a process stream
CN204143214U (en) A kind of water quality early-warning and control discharge system
JP4693912B2 (en) Abnormal water quality detection device
CN101598719B (en) Waste flow quantity, ammonia nitrogen concentration and ammonia nitrogen total content water quality on-line combined tester
JP4988005B2 (en) Abnormal water quality detection apparatus and abnormal water quality detection method
JP5129463B2 (en) Water quality abnormality detection method
JP4410264B2 (en) Abnormal water quality detection device and its toxic response sensitivity prediction method
JP2008286534A (en) Biosensor type abnormal water quality detector
JP4982106B2 (en) Water quality inspection system
JP3721087B2 (en) Biosensor type abnormal water quality detection device
KR101809021B1 (en) System and sensor measuring total organic carbon using conductivity method
JP2010071749A (en) Water-quality monitor
JP2010204043A (en) Water quality monitoring device
JP2005156204A (en) Monitoring method for toxic substance
JP2004279105A (en) Biosensor type abnormal water quality detector
JPH1137969A (en) Abnormal water quality detector
JP2008232711A (en) Quality inspection system of water
JP3672455B2 (en) Abnormal water quality detection device
JP4227044B2 (en) Water quality detector
JP2001228110A (en) Biosensor-applied water quality meter
JPH0735741A (en) Bod measuring equipment
JP2005249413A (en) Water quality detector
JP3497806B2 (en) Water quality monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R151 Written notification of patent or utility model registration

Ref document number: 4988005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3