JP4693912B2 - Abnormal water quality detection device - Google Patents
Abnormal water quality detection device Download PDFInfo
- Publication number
- JP4693912B2 JP4693912B2 JP2009042619A JP2009042619A JP4693912B2 JP 4693912 B2 JP4693912 B2 JP 4693912B2 JP 2009042619 A JP2009042619 A JP 2009042619A JP 2009042619 A JP2009042619 A JP 2009042619A JP 4693912 B2 JP4693912 B2 JP 4693912B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- temperature
- pipe
- circulation path
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明は、被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出する異常水質検出装置に関する。 The present invention relates to an abnormal water quality detection device that detects the presence or absence of an abnormality in the water quality while maintaining the test water in a preset temperature range.
従来、浄水場では通常の処理として、河川水等を取水し、この取水を沈殿ろ過槽に通して飲料水を供給している。もし、このような通常の処理では除去できない有害物質、例えば、各種の重金属や農薬および環境ホルモン等といった物質が河川水中に混入した場合は、取水停止という非常事態に至る。 Conventionally, in a water treatment plant, river water or the like is taken as a normal treatment, and this water is passed through a sedimentation filtration tank to supply drinking water. If harmful substances that cannot be removed by such normal treatment, such as various heavy metals, agricultural chemicals, and environmental hormones, are mixed in the river water, an emergency situation will occur where water intake is stopped.
一方、下水処理場では、突発事故や不注意により、工場あるいは化学プラントの排水に各種の重金属イオンや有機溶媒およびヒ素シアン等が混入し、これらが流入すると、下水処理プロセスにおける活性汚泥微生物が大きな阻害を受け、その結果、活性汚泥の活性が低下して処理能力の回復までに多大の時間を必要とする。 On the other hand, in a sewage treatment plant, due to sudden accidents or carelessness, various heavy metal ions, organic solvents, arsenic cyanide, etc. are mixed into the effluent of factories or chemical plants. As a result, the activity of the activated sludge is reduced, and a great deal of time is required until the treatment capacity is restored.
したがって、浄水場および下水処理場等において、上記各種の有害物質が混入した場合、流入水を迅速かつ感度良く検出する装置が望まれていた。 Therefore, there has been a demand for a device that detects inflow water quickly and with high sensitivity when the above-mentioned various harmful substances are mixed in water purification plants and sewage treatment plants.
この要望に応えて、浄水場では魚行動監視型の毒物検出装置、あるいは、各種の微生物膜を溶存酸素電極に取付けて、その呼吸活性の測定から毒物を検出する装置が用いられている。また、下水処理場では、特定化学物質の混入した排水を検知する各種のセンサが、それぞれの取水口等に設置されている。 In response to this demand, a fish behavior monitoring type poison detection device or a device for detecting a poison from the measurement of respiratory activity by attaching various microbial membranes to a dissolved oxygen electrode is used at a water purification plant. In the sewage treatment plant, various sensors that detect wastewater mixed with a specific chemical substance are installed at each water intake.
これらのうち、浄水場に設置されている魚行動監視型の毒物検出装置は、魚類が毒物に反応するまでに時間がかかるため、その検出に長時間を要する。また、魚類の反応感度も飼育されている魚類の種類や個体差、および飼育の環境状態によってかなり異なる。さらに、魚行動監視型の毒物検出装置は、その装置自体が大掛かりで、魚類の飼育や管理面において必要経費が大きい等の問題がある。 Among these, the fish activity monitoring type poison detection device installed in the water purification plant takes a long time for the fish to react with the poison, and therefore requires a long time for detection. In addition, the reaction sensitivity of fish varies considerably depending on the type of fish being bred, individual differences, and the environmental conditions of the breeding. Furthermore, the fish behavior monitoring-type poison detection device has a problem that the device itself is large and the cost for raising and managing fish is high.
そこで、バイオセンサ型の異常水質検出装置が開発されている。一例として、有害物質や雑菌等が繁殖し難い比較的低いpH値のところで作動させることができる鉄酸化細菌をプローブとして用いるものがある(例えば、特許文献1参照)。 Accordingly, biosensor-type abnormal water quality detection devices have been developed. As an example, there is one that uses an iron-oxidizing bacterium that can be operated at a relatively low pH value where harmful substances, germs, etc. are difficult to propagate as a probe (see, for example, Patent Document 1).
このバイオセンサ型水質監視装置では、先ず、検査する水を散気水槽において空気あるいは酸素濃度を一定に調整した気体により散気し、溶存酸素濃度が飽和の状態とする。このようにした被検水に対し硫酸第一鉄含有溶液を供給して被検水と混合する。この混合液は、溶存酸素濃度が飽和状態とされた状態で測定槽内に流入される。 In this biosensor-type water quality monitoring apparatus, first, water to be examined is diffused with air or a gas whose oxygen concentration is adjusted to be constant in an aeration water tank so that the dissolved oxygen concentration is saturated. A ferrous sulfate-containing solution is supplied to the test water thus prepared and mixed with the test water. This mixed solution flows into the measurement tank in a state where the dissolved oxygen concentration is saturated.
測定槽には酸素電極が設けられるが、空気あるいは酸素濃度を一定に調整した気体の供給により常に被検水を飽和溶存酸素濃度にしておき、酸素電極の出力の最大値を安定させておく。前記酸素電極は、先端に微生物膜が取り付けられ、その先端が測定槽内の被検水中に浸漬された状態で設けられている。微生物膜は酸素を利用して硫酸第一鉄を硫酸第二鉄に変えることができる鉄酸化細菌(鉄バクテリアとも言う)を保持している。この酸素電極からの電気出力は変換演算手段によって増幅・変換され、所定の演算が施されて被検水の異常水質が判別される。 The measurement tank is provided with an oxygen electrode, but the test water is always kept at the saturated dissolved oxygen concentration by supplying air or a gas whose oxygen concentration is adjusted to be constant, so that the maximum value of the output of the oxygen electrode is stabilized. The oxygen electrode is provided with a microbial membrane attached to the tip, and the tip is immersed in the test water in the measurement tank. The microbial membrane holds iron-oxidizing bacteria (also called iron bacteria) that can convert ferrous sulfate to ferric sulfate using oxygen. The electrical output from the oxygen electrode is amplified and converted by the conversion calculation means, and a predetermined calculation is performed to determine the abnormal water quality of the test water.
測定槽において被検水と接触した微生物膜での鉄バクテリアによる化学的挙動の化学反応式は、以下のとおりである。 The chemical reaction formula of the chemical behavior by iron bacteria in the microbial membrane in contact with the test water in the measurement tank is as follows.
4FeSO4 + O2 + 2H2SO4 → 2Fe2(SO4)3 + 2H2O ・・・(1)
上記(1)式において、2Fe2(SO4)3は水中で電離し、Fe3+イオンが生成される。このFe3+イオンがさらに水(H2O)と反応して、水酸化鉄Fe(OH)3となり沈殿することになる。
4FeSO 4 + O 2 + 2H 2 SO 4 → 2Fe 2 (SO 4 ) 3 + 2H 2 O (1)
In the above formula (1), 2Fe 2 (SO 4 ) 3 is ionized in water to generate Fe 3+ ions. This Fe 3+ ion further reacts with water (H 2 O) and precipitates as iron hydroxide Fe (OH) 3 .
この異常水質検出装置では、鉄酸化細菌をプローブとして取付けた溶存酸素電極に被検水と鉄液の混合液を送液し、この送液時における酸素電極からの電気出力を監視するものである。すなわち、被検水に有害物質が混入していない場合は、被検水中の溶存酸素は鉄の酸化に消費されるため、酸素電極によって検出される値は極めて低くなる。これに対して、被検水中に水溶性の有害物質が混入した場合、その有害物質が微生物膜上の鉄酸化細菌の呼吸活性を低下させる。その結果、鉄酸化細菌に消費されなかった酸素が微生物膜を透過するため、酸素電極に到達する酸素量が増加し、酸素電極の出力する電流値が増加する。したがって、酸素電極の出力電流値を閾値と比較することで有害物質の混入を判断する。 In this abnormal water quality detection device, a mixed liquid of test water and iron liquid is fed to a dissolved oxygen electrode attached with iron-oxidizing bacteria as a probe, and the electrical output from the oxygen electrode at the time of feeding is monitored. . That is, when no harmful substance is mixed in the test water, the dissolved oxygen in the test water is consumed for iron oxidation, so the value detected by the oxygen electrode is extremely low. On the other hand, when a water-soluble harmful substance is mixed in the test water, the harmful substance reduces the respiratory activity of iron-oxidizing bacteria on the microbial membrane. As a result, oxygen that has not been consumed by the iron-oxidizing bacteria permeates the microbial membrane, so that the amount of oxygen that reaches the oxygen electrode increases and the current value output by the oxygen electrode increases. Therefore, the mixing of harmful substances is determined by comparing the output current value of the oxygen electrode with a threshold value.
なお、このようなバイオセンサ型異常水質検出装置は連続運転されると、被検水中の汚濁物質が各配管の内壁に付着し堆積してくる。また、鉄液中の硫酸第一鉄の一部が硫酸第二鉄に酸化されて、これも除々に堆積してくる。これらは、配管系の閉塞や、異常水質検出の感度低下につながり、検出精度を低下させる原因となる。そのため、被検水と硫酸第一鉄含有溶液の混合液が送液される被検水導入管に酸性溶液を供給し、被検水導入管や測定槽などの被検水通流路に付着堆積している汚濁物質および酸化鉄を除去し、排出する「酸洗浄」を行なうようにしている。 In addition, when such a biosensor type abnormal water quality detection device is continuously operated, the pollutant in the test water adheres to and accumulates on the inner wall of each pipe. Moreover, a part of ferrous sulfate in the iron solution is oxidized to ferric sulfate, and this is gradually deposited. These lead to blockage of the piping system and a decrease in the sensitivity of abnormal water quality detection, which causes a decrease in detection accuracy. Therefore, an acidic solution is supplied to the test water introduction pipe through which the mixture of the test water and the ferrous sulfate-containing solution is sent, and adheres to the test water passage such as the test water introduction pipe or the measurement tank. “Acid cleaning” that removes and discharges accumulated pollutants and iron oxide is performed.
このようなバイオセンサ型異常水質検出装置では、一度「水質異常」の警報が発報されると、例えば浄水場ではテロ対策処置等の緊急体制が敷かれ、取水停止かそれに相当する臨時処置がとられる。しかし、その「水質異常」警報が誤警報となった場合、装置を設置している施設に多大な迷惑が掛かるだけでなく、取水停止により、施設内設備の稼動が一時的にストップし、少なくない損害が発生する。それゆえ「水質異常」警報に対する信頼性が要求される。 In such a biosensor-type abnormal water quality detection device, once an alarm of “water quality abnormality” is issued, an emergency system such as anti-terrorism measures is laid at a water purification plant, for example, and water intake is stopped or a temporary measure equivalent to it is taken. Be taken. However, if the “water quality abnormality” alarm becomes a false alarm, not only will the facility where the equipment is installed be greatly inconvenienced, but the operation of the facilities in the facility will be temporarily stopped due to the suspension of water intake. There will be no damage. Therefore, reliability for “water quality abnormality” warning is required.
このため、センサ部の鉄バクテリアを保持する微生物膜の温度管理はシビアとなる。すなわち、鉄バクテリアの至適温度は25〜32℃付近であり、30℃付近で最も活性が良いとされる。 For this reason, the temperature control of the microbial film holding the iron bacteria in the sensor unit becomes severe. That is, the optimum temperature of iron bacteria is around 25 to 32 ° C., and the activity is best at around 30 ° C.
環境温度が25℃を下回った場合は、鉄バクテリアは休眠状態となって呼吸活性が低下し、鉄バクテリアに消費されなかった酸素が微生物膜を透過するため、酸素電極に到達する酸素量が増加する。その結果、酸素電極が出力する電流値が増加するので、水質異常の誤検出に繋がるが、通常は温度異常警報が先に発報される。このとき、低下した環境温度が4〜25℃の範囲内であれば、鉄バクテリアは死滅することはないため、温度管理を鉄バクテリアの至適温度に戻せば、水質監視を再開することができる。 When the ambient temperature falls below 25 ° C, the iron bacteria become dormant, the respiratory activity decreases, and oxygen that has not been consumed by the iron bacteria permeates the microbial membrane, increasing the amount of oxygen that reaches the oxygen electrode. To do. As a result, the current value output from the oxygen electrode increases, leading to erroneous detection of water quality abnormality, but usually a temperature abnormality alarm is issued first. At this time, if the lowered environmental temperature is within the range of 4 to 25 ° C., the iron bacteria will not be killed. Therefore, if the temperature control is returned to the optimum temperature of the iron bacteria, the water quality monitoring can be resumed. .
一方、環境温度が一度でも32℃を超えると、鉄バクテリアは休眠ではなく死滅に向かうため、上記の水質異常誤検出(先に温度異常警報が発報される)だけでなく、再度、環境温度が鉄バクテリアの至適温度に戻っても、その鉄バクテリアは使用できない。そのため、微生物膜の交換を要し、交換後も使用可能な活性に到達するまで、水質監視を再開することができない。 On the other hand, if the ambient temperature exceeds 32 ° C even once, the iron bacteria will go to death instead of dormancy. Therefore, not only the above-mentioned water quality abnormality detection error (the temperature abnormality alarm will be issued first) but also the environmental temperature again. Even if the temperature returns to the optimum temperature for iron bacteria, the iron bacteria cannot be used. Therefore, the microbial membrane needs to be replaced, and the water quality monitoring cannot be resumed until reaching a usable activity after the replacement.
よって、温度管理を鉄バクテリアの至適温度範囲内に維持することが、長期間安定した装置の運用に繋がる。特に、高温環境下において鉄バクテリアを連続的に使用するためには、環境温度を高温側に遷移させないようにして、鉄バクテリアの死滅を防ぐことが不可欠である。 Therefore, maintaining temperature control within the optimum temperature range of iron bacteria leads to stable operation of the apparatus for a long period of time. In particular, in order to continuously use iron bacteria in a high temperature environment, it is indispensable to prevent the death of iron bacteria by preventing the environmental temperature from transitioning to a high temperature side.
しかし、バイオセンサを浄水場の取水場等、本館とは別の建屋に設置する場合は、屋内ではあるものの冷房が完備されているとは限らず、夏期においては40℃近くまで気温が上昇する場所もある。その環境下で、鉄バクテリアの活性を維持するためには、鉄バクテリアを飼育するユニットであるフローセルの温度を制御する循環水を30℃以下に冷却することが不可欠である。 However, if the biosensor is installed in a building other than the main building, such as a water intake at a water purification plant, it is not necessarily fully air-conditioned, but the temperature rises to nearly 40 ° C in summer. There is also a place. In order to maintain the activity of the iron bacteria under the environment, it is indispensable to cool the circulating water that controls the temperature of the flow cell that is a unit for breeding the iron bacteria to 30 ° C. or lower.
しかし、一般的に冷媒蒸発式の冷却機能を備えた循環水の温調器は高価であり、かつ、24時間連続運転に耐えうる機能を備えていない。また、高価な冷媒蒸発式の温調器を設置することは、年間を通して夏期の一時期のみの使用に対して、バイオセンサ本体の高スペック化に繋がりかねない。 However, in general, a circulating water temperature controller having a refrigerant evaporative cooling function is expensive and does not have a function capable of withstanding continuous operation for 24 hours. In addition, the installation of an expensive refrigerant evaporation type temperature controller may lead to a higher specification of the biosensor body for use only during the summer season throughout the year.
本発明の目的は、バイオセンサの設置環境が30℃以上に達する高温環境においても、冷媒蒸発式の冷却機能を用いることなしに、鉄バクテリアの死滅とそれに起因する『水質異常』の誤警報を防止できる異常水質検出装置を提供することにある。 The object of the present invention is to provide a false alarm for the death of iron bacteria and the resulting “water quality abnormality” without using the refrigerant evaporative cooling function even in a high temperature environment where the biosensor installation environment reaches 30 ° C. or higher. An object of the present invention is to provide an abnormal water quality detection device that can be prevented.
本発明の異常水質検出装置は、温度調整部により予め設定した温度範囲に保たれた測定槽に被検水を導入してその水質の異常の有無を検出する異常水質検出装置であって、前記測定槽を所定の温度範囲に保つために、前記温度調整部に連結して温度調整水を循環供給する循環路と、前記被検水の導入管路の所定の長さ部分を前記被検水が流れる内管とし、この内管の周囲を覆う外管を設けて二重管構造とし、前記外管が前記循環路の一部となるようにこの循環路に連結し、この外管に前記温度調整水を流通させる二重管式熱交換器と、前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部を有する循環水温調器とを備えたことを特徴とする。 The abnormal water quality detection device of the present invention is an abnormal water quality detection device that detects the presence or absence of an abnormality in the water quality by introducing test water into a measurement tank maintained in a temperature range set in advance by a temperature adjustment unit, In order to keep the measurement tank in a predetermined temperature range, a circulation path connected to the temperature adjustment section for circulating the temperature adjustment water and a predetermined length portion of the introduction pipe for the test water are connected to the test water. An inner pipe through which an outer pipe is provided to form a double pipe structure, and the outer pipe is connected to the circulation path so as to become a part of the circulation path. A double-pipe heat exchanger that circulates temperature-adjusted water, and a circulating water temperature controller that is connected to the circulation path and has a heating unit that adjusts the temperature-adjusted water to the predetermined temperature range. And
また、本発明の異常水質検出装置は、前記循環路と、前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水の導入管に連結され、この被検水を低熱源とする冷却部を有する循環水温調器とを備えた構成でもよい。 The abnormal water quality detection device of the present invention is connected to the circulation path, a heating unit that is connected to the circulation path and adjusts the temperature-adjusted water to the predetermined temperature range, and an introduction pipe of the test water. A configuration may also be provided that includes a circulating water temperature controller having a cooling section that uses the test water as a low heat source.
また、本発明の異常水質検出装置は、前記循環路と、前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水とは別系統の供給水管に連結され、この供給水を低熱源とする冷却部を有する循環水温調器とを備えた構成でもよい。 Further, the abnormal water quality detection device of the present invention is connected to the circulation path, a heating unit that is connected to the circulation path and adjusts the temperature-adjusted water to the predetermined temperature range, and supply of a system different from the test water The structure provided with the circulating water temperature controller which has a cooling part connected with a water pipe and uses this supply water as a low heat source may be sufficient.
また、本発明の異常水質検出装置は、前記循環路と、前記被検水の導入管路の所定の長さ部分を前記被検水が流れる内管とし、この内管の周囲を覆う外管を設けて二重管構造とし、前記外管が前記循環路の一部となるようにこの循環路に連結し、この外管に前記温度調整水を流通させる二重管式熱交換器と、前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水とは別系統の供給水管に連結され、この供給水を低熱源とする冷却部を有する循環水温調器とを備えた構成でもよい。 Further, the abnormal water quality detection device of the present invention uses an outer pipe that covers the circumference of the inner pipe, with the circulation path and a predetermined length portion of the introduction pipe of the test water as an inner pipe through which the test water flows. A double pipe structure, connected to this circulation path so that the outer pipe becomes a part of the circulation path, and a double pipe heat exchanger for circulating the temperature-adjusted water to the outer pipe, A heating unit that is connected to the circulation path and that adjusts the temperature-adjusted water to the predetermined temperature range, and a cooling unit that is connected to a supply water pipe that is different from the test water and uses the supplied water as a low heat source. The structure provided with the circulating water temperature controller which has may be sufficient.
さらに、本発明の異常水質検出装置は、
前記循環路に連結され、前記循環路と、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水の導入管に連結され、この被検水を低熱源とする冷却部を有する循環水温調器と、前記循環路の所定の長さ部分を前記温度調整水が流れる内管とし、この内管の周囲を覆う外管を設けて二重管構造とし、前記外管に前記被検水とは別系統の供給水管を連結して供給水を流通させる二重管式熱交換器とを備えた構成でもよい。
Furthermore, the abnormal water quality detection device of the present invention,
Cooling connected to the circulation path, connected to the circulation path, a heating unit for adjusting the temperature-adjusted water to the predetermined temperature range, and an introduction pipe for the test water, and using the test water as a low heat source A circulating water temperature controller having a portion, and a predetermined length portion of the circulation path as an inner pipe through which the temperature adjustment water flows, and an outer pipe covering the circumference of the inner pipe is provided to form a double pipe structure, and the outer pipe In addition, a configuration including a double-pipe heat exchanger that connects a supply water pipe different from the test water to circulate the supply water may be used.
本発明によれば、夏期においても気温よりも低い水道水又は河川水等を低熱源として、温度調節用循環水を冷却し、かつ必要に応じて加熱することにより、高温環境下においても被検水の温度を所定範囲に保持できるので、被検水の異常状態を正確に検出することができる。 According to the present invention, even in the summer, by using tap water or river water that is lower than the temperature as a low heat source, cooling the temperature-regulating circulating water and heating it as necessary, even in a high-temperature environment. Since the temperature of the water can be maintained within a predetermined range, the abnormal state of the test water can be accurately detected.
以下、本発明による異常水質検出装置の実施の形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of an abnormal water quality detection device according to the present invention will be described in detail with reference to the drawings.
図1は本発明の第1の実施の形態の全体構成を示している。この異常検出装置は、被検水を予め設定した温度範囲に保った状態でその水質の異常の有無を検出するもので、その一例として、測定槽4内に、酸素電極10が設けられた構造のものを使用している。この酸素電極10の先端(測定槽4内の図示下端部)には微生物膜9を取り付けている。また、この測定槽4は被検水導入管2に連結しており、被検水が導入される。さらに、この測定槽4は、その周囲に設けられたフローセルとも呼ばれる熱交換機能を有する温度調整部5によって所定温度に調整される。この温度調整部5は、温度調整水の循環路24と連結しており、循環式温調器23によって所定温度に調整された温度調整水が循環供給される。 FIG. 1 shows the overall configuration of the first embodiment of the present invention. This abnormality detection device detects the presence or absence of an abnormality in the water quality while maintaining the test water in a preset temperature range, and as an example, a structure in which an oxygen electrode 10 is provided in the measurement tank 4 Are using things. A microbial membrane 9 is attached to the tip of the oxygen electrode 10 (the lower end in the figure in the measurement tank 4). Moreover, this measuring tank 4 is connected to the test water introduction pipe 2, and the test water is introduced. Further, the measuring tank 4 is adjusted to a predetermined temperature by a temperature adjusting unit 5 having a heat exchanging function called a flow cell provided around the measuring tank 4. The temperature adjustment unit 5 is connected to a temperature adjustment water circulation path 24, and temperature adjustment water adjusted to a predetermined temperature by a circulation temperature controller 23 is circulated and supplied.
前記微生物膜9は、酸素を利用して硫酸第一鉄を硫酸第二鉄に変えることができる鉄バクテリアを保持している。酸素電極10は、この微生物膜9を取り付けた先端部が、測定槽4内の被検水中に浸漬する状態で設置されている。また、酸素電極10には変換演算手段11が接続されており、この変換演算手段11は酸素電極10から取り出された電気出力を増幅・変換し、所定の演算を施して、後述するように被検水の異常水質を判別する。 The microbial membrane 9 holds iron bacteria that can convert ferrous sulfate to ferric sulfate using oxygen. The oxygen electrode 10 is installed in a state where the tip end portion to which the microbial membrane 9 is attached is immersed in the test water in the measurement tank 4. Further, a conversion calculation means 11 is connected to the oxygen electrode 10, and the conversion calculation means 11 amplifies and converts the electrical output taken out from the oxygen electrode 10, performs a predetermined calculation, and is subjected to a process as described later. Determine abnormal water quality of sample water.
散気水槽7は、測定槽4に被検水を供給する際のバッファを兼ねるものであり、検査すべき水源のからの被検水(例えば、河川の流入や、浄水場への流入水、下水処理場への流入水など)が、中空糸膜等によるフィルタ21を通して導入され、ろ過水ポンプ18により、導入管路17上に構成される二重管式熱交換器22を介して導入される。 The aeration water tank 7 also serves as a buffer for supplying the test water to the measurement tank 4, and the test water from the water source to be inspected (for example, inflow of rivers, inflow water to the water purification plant, Inflow water to a sewage treatment plant, etc.) is introduced through a filter 21 made of a hollow fiber membrane or the like, and is introduced by a filtrate water pump 18 through a double-pipe heat exchanger 22 configured on the introduction pipe line 17. The
この散気水槽7では、導入された被検水に対し、気体供給器8から空気あるいは酸素濃度を一定に調整した気体を供給し、溶存酸素濃度が飽和の状態の被検水とする。このように溶存酸素濃度が飽和の状態となった被検水は、電磁弁20を介して被検水供給ポンプ6により被検水導入管2に送出され、測定槽4に供給される。 In the diffused water tank 7, air or a gas with a constant oxygen concentration is supplied from the gas supply device 8 to the introduced test water, and the test water is in a state where the dissolved oxygen concentration is saturated. The test water in which the dissolved oxygen concentration is saturated in this way is sent to the test water introduction pipe 2 by the test water supply pump 6 via the electromagnetic valve 20 and supplied to the measurement tank 4.
被検水導入管2には、酸性溶液パック12、鉄液パック13が、対応する電磁弁14,15、共通の薬液導入管19、及び薬液供給ポンプ16を介して連通している。鉄液パック13からは硫酸第一鉄含有溶液が供給され、被検水導入管2で被検水と混合される。この混合液は、溶存酸素濃度が飽和状態とされた状態で被検水導入管2から測定槽4内に流入される。なお、洗浄時には、酸性溶液パック12から酸性溶液が洗浄液とし供給され、被検水導入管2で被検水と混合され、測定槽4部分を洗浄した後、排液として排出される。 An acidic solution pack 12 and an iron solution pack 13 communicate with the test water introduction tube 2 via corresponding electromagnetic valves 14 and 15, a common chemical solution introduction tube 19, and a chemical solution supply pump 16. A ferrous sulfate-containing solution is supplied from the iron solution pack 13 and mixed with the test water in the test water introduction pipe 2. This mixed liquid is introduced into the measurement tank 4 from the test water introduction pipe 2 in a state where the dissolved oxygen concentration is saturated. At the time of cleaning, the acidic solution is supplied from the acidic solution pack 12 as a cleaning liquid, mixed with the test water in the test water introduction pipe 2, and after the measurement tank 4 is cleaned, it is discharged as a drainage liquid.
測定槽4に導入される被検水は、常に飽和溶存酸素濃度にして、酸素電極10の出力の最大値を安定させる必要がある。飽和溶存酸素濃度は液温度により変化するため、温度調整部5によって測定槽4を一定の温度に維持することは重要である。 The test water introduced into the measurement tank 4 must always have a saturated dissolved oxygen concentration to stabilize the maximum value of the output of the oxygen electrode 10. Since the saturated dissolved oxygen concentration varies depending on the liquid temperature, it is important to maintain the measurement tank 4 at a constant temperature by the temperature adjusting unit 5.
測定槽4内では、酸素電極10の先端に設けられた微生物膜9と被検水との間で、以下の反応か生じる。微生物膜9に保持された鉄バクテリアは、酸素を利用して硫酸第一鉄を硫酸第二鉄に変えることができるもので、例えば、Thiobacillus ferrooxidansである。この化学的挙動の化学反応式は、前記(1)式のようになり、2Fe2(SO4)3は水中で電離し、Fe3+イオンが生成される。このFe3+イオンがさらに水(H2O)と反応して、水酸化鉄Fe(OH)3となり沈殿することになる。 In the measurement tank 4, the following reaction occurs between the microbial membrane 9 provided at the tip of the oxygen electrode 10 and the test water. The iron bacteria held in the microbial membrane 9 can convert ferrous sulfate to ferric sulfate using oxygen, and is, for example, Thiobacillus ferrooxidans. The chemical reaction formula of this chemical behavior is as shown in the above formula (1), and 2Fe 2 (SO 4 ) 3 is ionized in water to generate Fe 3+ ions. This Fe 3+ ion further reacts with water (H 2 O) and precipitates as iron hydroxide Fe (OH) 3 .
なお、微生物膜9に保持される鉄バクテリアとしては、Thiobacillus ferrooxidans以外にも、上記化学反応式の働きを持つすべての微生物が適用可能である。例えば、Gallionella ferruginea、Leptospirillum ferrooxidans、Leptothrix、Sphaerotilus等が適していることが確認されている。 In addition to the Thiobacillus ferrooxidans, all microorganisms having the function of the above chemical reaction formula can be applied as the iron bacteria held in the microbial membrane 9. For example, it has been confirmed that Gallionella ferruginea, Leptospirillum ferrooxidans, Leptothrix, Sphaerotilus and the like are suitable.
鉄バクテリアの活性、すなわち鉄の酸化量は、温度の影響によっても変化する可能性があるため、測定槽4は温度調整部5によって、鉄バクテリアの活性が安定するような温度に維持されるのが望ましい。温度調整部5の設置は、そういう意味でも重要である。 Since the activity of iron bacteria, that is, the oxidation amount of iron, may change due to the influence of temperature, the measuring tank 4 is maintained at a temperature at which the activity of iron bacteria is stabilized by the temperature adjusting unit 5. Is desirable. The installation of the temperature adjustment unit 5 is also important in this sense.
このように、異常水質検出装置は、鉄酸化細菌をプローブとして取付けた溶存酸素電極10に被検水と鉄液の混合液を被検水供給ポンプ6および薬液供給ポンプ16よって送液し、この送液時における酸素電極10からの電気出力を監視する。被検水中に水溶性の有害物質が混入した場合は、その有害物質が微生物膜9上の鉄酸化細菌の呼吸活性を低下させる。その結果、鉄酸化細菌に消費されなかった酸素が微生物膜9を透過するため、酸素電極10に到達する酸素量が増加する。その結果、酸素電極10が出力する電流値が増加するので、これによって有害物質の混入を判断する。 As described above, the abnormal water quality detection device sends the mixed solution of the test water and the iron solution to the dissolved oxygen electrode 10 attached with the iron-oxidizing bacteria as a probe by the test water supply pump 6 and the chemical solution supply pump 16. The electrical output from the oxygen electrode 10 during liquid feeding is monitored. When water-soluble harmful substances are mixed in the test water, the harmful substances reduce the respiratory activity of iron-oxidizing bacteria on the microbial membrane 9. As a result, oxygen that has not been consumed by the iron-oxidizing bacteria permeates through the microbial membrane 9, so that the amount of oxygen that reaches the oxygen electrode 10 increases. As a result, since the current value output from the oxygen electrode 10 increases, it is determined whether or not harmful substances are mixed.
前述した二重管式熱交換器22は、被検水の導入管路を構成するろ過水(被検水)道入管17の所定の長さ部分を、図2で示すような二重管構造としている。この二重管構造の内管22aには被検水を流し、この内管22aの周囲を覆う外管22bは温度調整水の循環路24の一部として、温度調整水を流すように構成する。 The double-pipe heat exchanger 22 described above has a double-pipe structure in which a predetermined length portion of the filtered water (test water) inlet pipe 17 constituting the test water introduction pipe is shown in FIG. It is said. The test water is allowed to flow through the inner pipe 22a having the double pipe structure, and the outer pipe 22b covering the periphery of the inner pipe 22a is configured to flow the temperature adjustment water as a part of the circulation path 24 of the temperature adjustment water. .
循環水温調器23は、温度調整水循環路24に流れる温度調整水を、所定の温度範囲に調整するもので、温度調整用の図示しない加熱部を有し、内部に貯留される温度調整水を所定の温度に維持するべく、必要に応じて加熱制御される。 The circulating water temperature adjuster 23 adjusts the temperature adjustment water flowing through the temperature adjustment water circulation path 24 to a predetermined temperature range, and has a heating unit (not shown) for temperature adjustment, and the temperature adjustment water stored inside is adjusted. Heating control is performed as necessary to maintain a predetermined temperature.
次に、装置全体の動作を説明する。異常水質検出装置は、被検水源から得た被検水を、鉄液あるいは酸性溶液と混合して測定槽4に導入し、被検水の水質検査後、排出管3を介して排水する。本発明では、原水を中空糸膜フィルタ21でろ過した被検水を、二重管式熱交換器22の内管22aに流し、外管22bに流れる温度調整水との間で熱交換させる。 Next, the operation of the entire apparatus will be described. The abnormal water quality detection device mixes the test water obtained from the test water source with the iron solution or the acidic solution, introduces it into the measurement tank 4, and drains it through the discharge pipe 3 after the water quality test of the test water. In the present invention, the test water obtained by filtering the raw water with the hollow fiber membrane filter 21 is passed through the inner tube 22a of the double-pipe heat exchanger 22, and heat exchange is performed between the temperature-adjusted water flowing through the outer tube 22b.
酸素電極10を含むバイオセンサの設置場所は、夏期においては40℃近くまで気温が上昇する場所もある。その環境下で、鉄バクテリアの活性を維持するためには、鉄バクテリアを飼育するユニットであるフローセルの温度を制御する温度調整水を30℃以下に冷却することが不可欠である。 There are places where the temperature of the biosensor including the oxygen electrode 10 increases to close to 40 ° C. in the summer. In order to maintain the activity of the iron bacteria under the environment, it is indispensable to cool the temperature adjustment water for controlling the temperature of the flow cell, which is a unit for breeding the iron bacteria, to 30 ° C. or lower.
被検水である例えば河川水は、気温が35℃以上に上昇する夏期でも、水温が30℃を超えることは稀である。これは、水の比熱の大きさに加え、気温が高くなっても、蒸発による潜熱損失により気温が上がり難いためである。バイオセンサは河川水の水質監視が基本であるため、この河川水特有の低熱源を利用して温度調整水を冷却することができる。すなわち、比較的低温(30℃未満)の被検水を二重管式熱交換器22の内管22aに流す。このとき、外管22bには、測定槽4を30℃程度まで冷却した後の、比較的高温の温度調整水が流れており、この比較的高温の温度調整水は、内管22aを流れる比較的低温の被検水により冷却されることとなる。 For example, river water, which is the test water, rarely exceeds 30 ° C. even in summer when the temperature rises to 35 ° C. or higher. This is because, in addition to the specific heat of water, even if the temperature rises, it is difficult to raise the temperature due to latent heat loss due to evaporation. Since the biosensor is basically based on the water quality monitoring of the river water, the temperature adjustment water can be cooled using a low heat source peculiar to the river water. That is, the test water having a relatively low temperature (less than 30 ° C.) is caused to flow through the inner tube 22 a of the double tube heat exchanger 22. At this time, the comparatively high temperature adjustment water after cooling the measurement tank 4 to about 30 ° C. flows in the outer pipe 22b, and this comparatively high temperature adjustment water flows through the inner pipe 22a. It will be cooled by the test water of low temperature.
この場合、温度調整水は被検水の水温により、冷却後の温度低下が異なる。例えば、雨天時など、被検水温度は大幅に低下する。また、被検水に対する有害物質の検出は24時間連続で実施されるので、二重管式熱交換器22に対する通水も24時間連続で実施される。このため、夜間などにおいては、晴天時においても被検水の温度はかなり低下する。このように被検水は、環境条件によって大きく変動し、雨天時や夜間時等の低温時には、温度調整水を冷却しすぎることがある。前述のように、環境温度が25℃を下回った場合は、鉄バクテリアは休眠状態となって呼吸活性が低下し、水質異常の誤検出に繋がる。 In this case, the temperature adjustment water varies in temperature drop after cooling depending on the water temperature of the test water. For example, the temperature of the test water is greatly reduced during rainy weather. Further, since the detection of harmful substances in the test water is performed continuously for 24 hours, the water flow through the double-pipe heat exchanger 22 is also performed continuously for 24 hours. For this reason, in the nighttime etc., the temperature of test water falls considerably also at the time of fine weather. Thus, the test water varies greatly depending on the environmental conditions, and the temperature adjustment water may be overcooled at low temperatures such as in the rain or at night. As described above, when the environmental temperature falls below 25 ° C., the iron bacteria become dormant and the respiratory activity decreases, leading to false detection of water quality abnormality.
このような場合に備え、循環式温調器23には加熱部を設けており、温度調整水を加熱して所定の温度範囲まで水温調整する、すなわち、循環式温調器23では、二重管式熱交換器22から送られてくる温度調整水の水温を検出し、その水温が所定の温度となるように、図示しない加熱部をオン/オフ制御する。このため、測定槽4における環境温度は、常に30℃付近に制御される。 In preparation for such a case, the circulating temperature controller 23 is provided with a heating unit, and the temperature adjustment water is heated to adjust the water temperature to a predetermined temperature range. The temperature of the temperature-adjusted water sent from the tubular heat exchanger 22 is detected, and a heating unit (not shown) is on / off controlled so that the water temperature becomes a predetermined temperature. For this reason, the environmental temperature in the measurement tank 4 is always controlled around 30 ° C.
一般にヒータによる加温制御は、クーラー等による冷却制御よりも機構が単純であり、24時間連続運転しても、特に故障の発生率が低い。したがって、設備コストを低減化することもできる。 In general, the heating control using a heater has a simpler mechanism than the cooling control using a cooler or the like, and the failure rate is particularly low even if the operation is continued for 24 hours. Therefore, the equipment cost can be reduced.
以上により、酸素電極10の先端に微生物膜9を保持し、微生物膜9を透過する酸素量を溶存酸素電極10で測定して、有害物質の混入を検出するバイオセンサ型の水質監視装置において、装置の設置環境が30℃以上に達する高温環境においても測定部分を常に所定の温度範囲に維持することができる。すなわち、ろ過水ポンプ18と散気水槽7の間に二重管式熱交換器22を設置して、その内管22aに被検水を、外管22bにフローセル5から流れ出た温度調整水を流し、その温度を30℃以下に制御する。一方、下げ過ぎた水温は、循環式温調器23内の加熱部をヒータオン/オフ制御するにより30℃近傍に再調整する。温度調整後の温度調整水を再びフローセル5に通水させて、フローセル5内の温度を常に30℃近傍に維持し、微生物膜9の活性を安定化させ、それに起因する『水質異常』の誤警報を防止している。 As described above, in the biosensor type water quality monitoring apparatus that holds the microbial membrane 9 at the tip of the oxygen electrode 10, measures the amount of oxygen that permeates the microbial membrane 9 with the dissolved oxygen electrode 10, and detects contamination of harmful substances. Even in a high-temperature environment where the installation environment of the apparatus reaches 30 ° C. or higher, the measurement portion can always be maintained within a predetermined temperature range. That is, a double-pipe heat exchanger 22 is installed between the filtered water pump 18 and the diffused water tank 7, and the test water is supplied to the inner pipe 22a and the temperature-adjusted water flowing out of the flow cell 5 is supplied to the outer pipe 22b. The temperature is controlled to 30 ° C. or lower. On the other hand, the excessively lowered water temperature is readjusted to around 30 ° C. by controlling the heater on / off of the heating unit in the circulating temperature controller 23. The temperature-adjusted water after the temperature adjustment is passed through the flow cell 5 again, and the temperature in the flow cell 5 is always maintained at around 30 ° C., the activity of the microbial membrane 9 is stabilized, and an error of “water quality abnormality” resulting therefrom The alarm is prevented.
次に、図3で示す実施の形態を説明する。この実施の形態では、図1で示した二重管式熱交換器22に代って、循環路24に流れる温度調整水を、循環水温調器23によって冷却しようとするものである。すなわち、温度調整水は、フローセル5と循環水温調器23との間に形成された循環路24を循環するように構成する。また、循環水温調器23は、温度調整水を所定の温度範囲に調整する図示しない加熱部を有すると共に、その内部に、熱効率の良いコイル状配管を設けて被検水を低熱源とする冷却部23aを構成している。このため、冷却部23aを構成するコイル状配管は被検水の導入管17に連結され、ろ過水ポンプ18から散気水槽7に通じる導入管17の一部となるように構成される。その他の構成は、図1と同じである。 Next, the embodiment shown in FIG. 3 will be described. In this embodiment, instead of the double-pipe heat exchanger 22 shown in FIG. 1, the temperature adjustment water flowing in the circulation path 24 is to be cooled by the circulation water temperature controller 23. That is, the temperature adjustment water is configured to circulate through a circulation path 24 formed between the flow cell 5 and the circulating water temperature controller 23. The circulating water temperature controller 23 has a heating unit (not shown) that adjusts the temperature-adjusted water to a predetermined temperature range, and is provided with a heat-efficient coiled pipe inside to cool the test water as a low heat source. Part 23a is configured. For this reason, the coil-shaped piping which comprises the cooling part 23a is connected with the introduction pipe | tube 17 of to-be-tested water, and is comprised so that it may become a part of introduction pipe | tube 17 which leads from the filtrate water pump 18 to the diffused water tank 7. FIG. Other configurations are the same as those in FIG.
上記構成において、被検水源から得た被検水を、鉄液あるいは酸性溶液と混合して測定槽4に導入し、被検水の水質検査後、排出管3を介して排水する主系統は、図1と変わりがない。この実施の形態では、循環式温調器23の循環水貯留水槽に、熱効率の良いコイル状配管を設けて、中空糸膜フィルタ21でろ過した被検水を通過させ、循環水貯留水槽内の水温を30℃以下に下げている。もし温度調整水の水温を下げすぎた場合は、循環式温調器23に備わっている加熱部により加熱する。したがって、温度調整水の水温は常に30℃付近に制御される。 In the above configuration, the main system for draining the test water obtained from the test water source with the iron solution or the acidic solution into the measuring tank 4 and draining the water through the discharge pipe 3 after the water quality test of the test water is as follows. The same as FIG. In this embodiment, the circulating water storage tank of the circulating temperature controller 23 is provided with a coiled pipe with good thermal efficiency, and the test water filtered by the hollow fiber membrane filter 21 is allowed to pass through. The water temperature is lowered below 30 ° C. If the temperature of the temperature adjusting water is lowered too much, it is heated by the heating unit provided in the circulating temperature controller 23. Accordingly, the temperature of the temperature adjustment water is always controlled around 30 ° C.
以上により装置の設置環境が30℃以上に達する高温環境においても、循環式温調器23の循環水貯留水槽に設けた熱効率の良いコイル状配管に被検水を通過させて、循環水貯留水槽内の温度調整水を30℃以下に下げることができる。また、水温を下げすぎた場合は、循環式温調器23内の加熱部をオン/オフ制御することにより、温度調整水を30℃近傍に再調整する。このようにして、温度調整を行った温度調整水をフローセル5に通水させるので、フローセル5内の測定槽4における温度を常に30℃近傍に維持できる。その結果、微生物膜9の活性を安定化させ、それに起因する『水質異常』の誤警報を防止することが可能となる。 As described above, even in a high-temperature environment where the installation environment of the apparatus reaches 30 ° C. or higher, the test water is passed through the coiled pipe with high thermal efficiency provided in the circulating water storage tank of the circulating temperature controller 23, and the circulating water storage tank The temperature adjustment water inside can be lowered to 30 ° C. or less. Further, when the water temperature is lowered too much, the temperature adjustment water is readjusted to around 30 ° C. by controlling on / off of the heating unit in the circulating temperature controller 23. In this way, the temperature-adjusted water whose temperature has been adjusted is passed through the flow cell 5, so that the temperature in the measurement tank 4 in the flow cell 5 can always be maintained near 30 ° C. As a result, it is possible to stabilize the activity of the microbial membrane 9 and prevent a false alarm of “water quality abnormality” resulting therefrom.
次に、図4で示す実施の形態を説明する。この実施の形態は、図3で示した実施の形態と同様に、フローセル5と循環水温調器23との間に循環路24を形成し、ここに温度調整水を循環させるように構成する。循環水温調器23は、温度調整水を所定の温度範囲に調整する図示しない加熱部を有すると共に、その内部に、熱効率の良いコイル状配管を設けて冷却部23aを構成している。ただし、冷却部23aのコイル状配管には被検水に代って、この被検水とは別系統の供給水を流して、これを低熱源とする。別系統の供給水としては水道水や地下から汲み上げられた井戸水などを用いればよい。また、中空糸膜フィルタ21でろ過した被検水は、ろ過水導入管17により散気槽7内に直接導入する。その他の構成は、図3と同じである。 Next, the embodiment shown in FIG. 4 will be described. In this embodiment, similarly to the embodiment shown in FIG. 3, a circulation path 24 is formed between the flow cell 5 and the circulating water temperature adjuster 23, and temperature adjusted water is circulated therein. The circulating water temperature controller 23 includes a heating unit (not shown) that adjusts the temperature-adjusted water to a predetermined temperature range, and a cooling unit 23a is configured by providing a coiled pipe with high thermal efficiency therein. However, instead of the test water, supply water of a system different from the test water is allowed to flow through the coiled pipe of the cooling unit 23a, and this is used as a low heat source. As supply water for another system, tap water or well water pumped from the ground may be used. Further, the test water filtered by the hollow fiber membrane filter 21 is directly introduced into the aeration tank 7 through the filtrate introduction pipe 17. Other configurations are the same as those in FIG.
上記構成において、被検水源から得た被検水を、鉄液あるいは酸性溶液と混合して測定槽4に導入し、被検水の水質検査後、排出管3を介して排水する主系統は、前述した各実施の形態と変わりがない。この実施の形態では、循環式温調器23の循環水貯留水槽にコイル状配管による冷却部23aを設け、ここに被検水とは別系統の供給水、例えば、水道水を流通させ、循環水貯留水槽内の水温を30℃以下に下げている。 In the above configuration, the main system for draining the test water obtained from the test water source with the iron solution or the acidic solution into the measuring tank 4 and draining the water through the discharge pipe 3 after the water quality test of the test water is as follows. There is no difference from the above-described embodiments. In this embodiment, the circulating water storage tank of the circulating temperature controller 23 is provided with a cooling portion 23a by a coiled pipe, and supply water of a system different from the test water, for example, tap water, is circulated and circulated. The water temperature in the water storage tank is lowered to 30 ° C. or lower.
ここで、冷却部23aのコイル状配管に、水道水を流通させた場合、水道水は地中に埋設された配管を通って供給されることから、夏季における高温環境下では、被処理水(例えば、河川水)より一般的に低温である。また、冷却部23aのコイル状配管に、井戸水を流通させた場合も、夏季における高温環境下では、被処理水より低温である。したがって、図3で示した、被検水により循環式温調器23の循環水貯留水槽内を冷却する場合に比べ、より一層効果的に温度調整水を冷却することができる。このことから、図3の場合より、より高温環境下で使用する場合に適する。 Here, when the tap water is circulated through the coiled pipe of the cooling unit 23a, the tap water is supplied through a pipe buried in the ground. For example, it is generally cooler than river water). Even when well water is circulated through the coiled piping of the cooling unit 23a, the temperature is lower than that of the water to be treated in a high temperature environment in summer. Therefore, compared with the case where the inside of the circulating water storage tank of the circulating temperature controller 23 is cooled by the test water shown in FIG. 3, the temperature adjustment water can be cooled more effectively. Therefore, it is suitable for use in a higher temperature environment than in the case of FIG.
なお、温度調整水の水温を下げすぎた場合は、循環式温調器23に備わっている加熱部の加熱により、水温を常に30℃付近に制御することは同じである。 In addition, when the water temperature of temperature adjustment water is lowered too much, it is the same that the water temperature is always controlled around 30 ° C. by heating the heating unit provided in the circulating temperature controller 23.
以上により装置の設置環境が30℃以上に達する高温環境においても、循環式温調器23の循環水貯留水槽に設けた熱効率の良いコイル状配管に、被検水とは別系統の供給水を流通させて、循環水貯留水槽内にて温度調整水を30℃以下に下げることができる。また、水温を下げすぎた場合は、循環式温調器23内の加熱部をオン/オフ制御することにより、温度調整水を30℃近傍に再調整する。このようにして、温度調整を行った温度調整水をフローセル5に通水させるので、フローセル5内の測定槽4における温度を常に30℃近傍に維持できる。その結果、微生物膜9の活性を安定化させ、それに起因する『水質異常』の誤警報を防止することが可能となる。 As described above, even in a high temperature environment where the installation environment of the apparatus reaches 30 ° C. or higher, the supply water of a system different from the test water is supplied to the coiled pipe with high thermal efficiency provided in the circulating water storage tank of the circulating temperature controller 23. The temperature-adjusted water can be lowered to 30 ° C. or lower in the circulating water reservoir. Further, when the water temperature is lowered too much, the temperature adjustment water is readjusted to around 30 ° C. by controlling on / off of the heating unit in the circulating temperature controller 23. In this way, the temperature-adjusted water whose temperature has been adjusted is passed through the flow cell 5, so that the temperature in the measurement tank 4 in the flow cell 5 can always be maintained near 30 ° C. As a result, it is possible to stabilize the activity of the microbial membrane 9 and prevent a false alarm of “water quality abnormality” resulting therefrom.
次に、図5で示す実施の形態を説明する。この実施の形態は、図1で示した実施の形態のように、バイオセンサが設置される測定槽4の温度調整部5は、二重管式熱交換器22及び循環式温調器23と連結して循環路24を構成しており、この循環路24を循環する温度調整水により所定温度に調節される。二重管式熱交換器22は、その内管22aに被検水を流し、この内管22aの周囲を覆う外管22bには温度調整水を流しており、外管22bは、前述のように、循環路24の一部を構成している。また、内管22aを通った被検水は、散気水槽7に導入される。 Next, the embodiment shown in FIG. 5 will be described. In this embodiment, as in the embodiment shown in FIG. 1, the temperature adjustment unit 5 of the measurement tank 4 in which the biosensor is installed includes a double-pipe heat exchanger 22 and a circulation temperature controller 23. The circulation path 24 is connected and is adjusted to a predetermined temperature by temperature adjustment water circulating through the circulation path 24. The double-pipe heat exchanger 22 allows test water to flow through the inner tube 22a, and allows temperature-adjusted water to flow through the outer tube 22b that covers the periphery of the inner tube 22a. In addition, a part of the circulation path 24 is configured. Further, the test water that has passed through the inner pipe 22 a is introduced into the diffused water tank 7.
一方、循環水温調器23は、図4で示す実施の形態と同様に、温度調整水を所定の温度範囲に調整する図示しない加熱部を有すると共に、その内部に、熱効率の良いコイル状配管を設けて冷却部23aを構成している。この冷却部23aのコイル状配管には、被検水とは別系統の供給水(水道水や井戸水)などを流して低熱源としている。その他の構成は、図1と同じである。 On the other hand, the circulating water temperature controller 23 has a heating unit (not shown) that adjusts the temperature-adjusted water to a predetermined temperature range in the same manner as the embodiment shown in FIG. The cooling unit 23a is provided. A supply water (tap water or well water) or the like of a system different from the test water is allowed to flow through the coiled pipe of the cooling unit 23a as a low heat source. Other configurations are the same as those in FIG.
上記構成において、被検水源から得た被検水を、鉄液あるいは酸性溶液と混合して測定槽4に導入し、被検水の水質検査後、排出管3を介して排水する主系統は、前述した各実施の形態と変わりがない。この実施の形態では、高温環境下において、測定槽4を30℃程度まで冷却した後の比較的高温の温度調整水を、まず、二重管式熱交換器22において、その外管22bに流し、内管22aを流れる比較的低温の被検水により冷却する。さらに、この二重管式熱交換器22で冷却された温度調整水は、循環水温調器23において、その冷却部23aに流れる水道水や井戸水などの供給水により再度冷却する。すなわち、循環路24に流れる温度調整水は2段階にわたって冷却される。このため、周囲環境が著しい高温下であっても効果的に冷却することができる。この場合も、温度調整水が30℃以下に冷却された場合は、循環式温調器23に備わっている加熱部により、常に30℃付近に制御すればよい。 In the above configuration, the main system for draining the test water obtained from the test water source with the iron solution or the acidic solution into the measuring tank 4 and draining the water through the discharge pipe 3 after the water quality test of the test water is as follows. There is no difference from the above-described embodiments. In this embodiment, in a high-temperature environment, the relatively high-temperature temperature-adjusted water after cooling the measuring tank 4 to about 30 ° C. is first flowed to the outer tube 22b in the double-tube heat exchanger 22. The sample water is cooled by a relatively low temperature test water flowing through the inner pipe 22a. Further, the temperature-adjusted water cooled by the double-pipe heat exchanger 22 is cooled again by the circulating water temperature controller 23 with supply water such as tap water and well water flowing through the cooling unit 23a. That is, the temperature adjustment water flowing in the circulation path 24 is cooled in two stages. For this reason, it can cool effectively even if the surrounding environment is under extremely high temperature. Also in this case, when the temperature-adjusted water is cooled to 30 ° C. or lower, it may be always controlled around 30 ° C. by the heating unit provided in the circulating temperature controller 23.
以上により、装置の設置環境が著しい高温環境であっても、フローセル5から流れ出た高温の温度調整水を、二重管式熱交換器22により、その内管22aに流れる被検水により冷却すると共に、さらに、循環式温調器23の冷却部23aに流れる水道水や井戸水などの供給水によって冷却するので、温度調整水を確実に30℃以下に下げることができる。また、水温を下げすぎた場合は、循環式温調器23内の加熱部をオン/オフ制御することにより、温度調整水を30℃近傍に再調整する。このようにして、温度調整を行った温度調整水をフローセル5に通水させるので、フローセル5内の測定槽4における温度を常に30℃近傍に維持できる。その結果、微生物膜9の活性を安定化させ、それに起因する『水質異常』の誤警報を防止することが可能となる。 As described above, even in a high temperature environment where the installation environment of the apparatus is remarkably high, the temperature-controlled water flowing out from the flow cell 5 is cooled by the double-pipe heat exchanger 22 with the test water flowing in the inner pipe 22a. At the same time, since cooling is performed with supply water such as tap water and well water flowing through the cooling unit 23a of the circulating temperature controller 23, the temperature adjustment water can be reliably lowered to 30 ° C. or lower. Further, when the water temperature is lowered too much, the temperature adjustment water is readjusted to around 30 ° C. by controlling on / off of the heating unit in the circulating temperature controller 23. In this way, the temperature-adjusted water whose temperature has been adjusted is passed through the flow cell 5, so that the temperature in the measurement tank 4 in the flow cell 5 can always be maintained near 30 ° C. As a result, it is possible to stabilize the activity of the microbial membrane 9 and prevent a false alarm of “water quality abnormality” resulting therefrom.
次に、図6で示す実施の形態を説明する。この実施の形態では、バイオセンサが設置される測定槽4の温度調整部5は、二重管式熱交換器22及び循環式温調器23と連結して循環路24を構成しており、この循環路24を循環する温度調整水により所定温度に調節される。二重管式熱交換器22は、その内管22aに温度調整水を流しており、循環路24の一部を構成している。この内管22aの周囲を覆う外管22bには、被検水とは別系統の供給水(水道水や井戸水など)を流しており、内管22aに流れる温度調整水を冷却している。循環水温調器23は、温度調整水を所定の温度範囲に調整するために、図示しない加熱部を有する。また、その内部には、図3の実施の形態と同様に、熱効率の良いコイル状配管を設けて被検水を低熱源とする冷却部23aを構成している。この冷却部23aを通った被検水は、散気水槽7に導入される。また、循環水温調器23を経た温度調整部5へ循環させている。 Next, the embodiment shown in FIG. 6 will be described. In this embodiment, the temperature adjustment unit 5 of the measurement tank 4 in which the biosensor is installed is connected to the double-pipe heat exchanger 22 and the circulation temperature controller 23 to form a circulation path 24. The temperature is adjusted to a predetermined temperature by temperature adjusting water circulating in the circulation path 24. The double-pipe heat exchanger 22 flows temperature adjustment water through the inner pipe 22 a and constitutes a part of the circulation path 24. The outer pipe 22b that covers the periphery of the inner pipe 22a is supplied with supply water (tap water, well water, etc.) that is different from the test water, and cools the temperature-adjusted water that flows through the inner pipe 22a. The circulating water temperature controller 23 includes a heating unit (not shown) in order to adjust the temperature adjustment water to a predetermined temperature range. Further, in the same manner as in the embodiment of FIG. 3, a cooling unit 23 a is provided in which a coiled pipe with high thermal efficiency is provided and the test water is a low heat source. The test water that has passed through the cooling unit 23 a is introduced into the aeration water tank 7. Further, it is circulated to the temperature adjusting unit 5 through the circulating water temperature controller 23.
上記構成において、被検水源から得た被検水を、鉄液あるいは酸性溶液と混合して測定槽4に導入し、被検水の水質検査後、排出管3を介して排水する主系統は、前述した各実施の形態と変わりがない。この実施の形態では、高温環境下において、測定槽4を30℃程度まで冷却した比較的高温の温度調整水を、まず、二重管式熱交換器22の内管22aに流し、その外管22bに流れる水道水や井戸水などの供給水により冷却する。次に、この温度調整水を循環水温調器23において、その冷却部23aに流れる比較的低温の被検水により冷却する。すなわち、循環路24に流れる温度調整水は2段階にわたって冷却される。このため、周囲環境が著しい高温下であっても効果的に冷却することができる。この場合も、温度調整水が30℃以下に冷却された場合は、循環式温調器23に備わっている加熱部により、常に30℃付近に制御すればよい。 In the above configuration, the main system for draining the test water obtained from the test water source with the iron solution or the acidic solution into the measuring tank 4 and draining the water through the discharge pipe 3 after the water quality test of the test water is as follows. There is no difference from the above-described embodiments. In this embodiment, in a high-temperature environment, relatively high-temperature temperature-adjusted water that has cooled the measuring tank 4 to about 30 ° C. is first flowed into the inner tube 22a of the double-pipe heat exchanger 22, and the outer tube It cools with supply water, such as the tap water and well water which flow into 22b. Next, the temperature-adjusted water is cooled in the circulating water temperature controller 23 by the relatively low-temperature test water flowing through the cooling unit 23a. That is, the temperature adjustment water flowing in the circulation path 24 is cooled in two stages. For this reason, it can cool effectively even if the surrounding environment is under extremely high temperature. Also in this case, when the temperature-adjusted water is cooled to 30 ° C. or lower, it may be always controlled around 30 ° C. by the heating unit provided in the circulating temperature controller 23.
以上により、装置の設置環境が著しい高温環境であっても、フローセル5から流れ出た高温の温度調整水を、二重管式熱交換器22の内管22aに流し、その外管22bに流れる水道水や井戸水などの供給水によって冷却すると共に、さらに、循環式温調器23の冷却部23aに流れる被検水により冷却するので、温度調整水を確実に30℃以下に下げることができる。また、水温を下げすぎた場合は、循環式温調器23内の加熱部をオン/オフ制御することにより、温度調整水を30℃近傍に再調整する。このようにして、温度調整を行った温度調整水をフローセル5に通水させるので、フローセル5内の測定槽4における温度を常に30℃近傍に維持できる。その結果、微生物膜9の活性を安定化させ、それに起因する『水質異常』の誤警報を防止することが可能となる。 As described above, even in a high temperature environment where the installation environment of the apparatus is remarkably high, the temperature-controlled water flowing out from the flow cell 5 flows into the inner tube 22a of the double-pipe heat exchanger 22 and flows into the outer tube 22b. While cooling with supply water such as water and well water, and further cooling with test water flowing through the cooling section 23a of the circulating temperature controller 23, the temperature adjustment water can be reliably lowered to 30 ° C. or lower. Further, when the water temperature is lowered too much, the temperature adjustment water is readjusted to around 30 ° C. by controlling on / off of the heating unit in the circulating temperature controller 23. In this way, the temperature-adjusted water whose temperature has been adjusted is passed through the flow cell 5, so that the temperature in the measurement tank 4 in the flow cell 5 can always be maintained near 30 ° C. As a result, it is possible to stabilize the activity of the microbial membrane 9 and prevent a false alarm of “water quality abnormality” resulting therefrom.
4…水質の異常有無を検出する測定槽
5…温度調整部
17…被検水の導入管路
22…二重管式熱交換器
22a…内管
22b…外管
23…循環式温調器
23a・・・冷却部
24…循環路
4 ... Measuring tank for detecting presence / absence of abnormality of water quality 5 ... Temperature adjusting unit 17 ... Pipe for introducing test water 22 ... Double pipe heat exchanger 22a ... Inner pipe 22b ... Outer pipe 23 ... Circulating temperature controller 23a ... Cooling section 24 ... Circuit path
Claims (5)
前記測定槽を所定の温度範囲に保つために、前記温度調整部に連結して温度調整水を循環供給する循環路と、
前記被検水の導入管路の所定の長さ部分を前記被検水が流れる内管とし、この内管の周囲を覆う外管を設けて二重管構造とし、前記外管が前記循環路の一部となるようにこの循環路に連結し、この外管に前記温度調整水を流通させる二重管式熱交換器と、
前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部を有する循環水温調器と、
を備えたことを特徴とする異常水質検出装置。 An abnormal water quality detection device that introduces test water into a measurement tank maintained in a temperature range set in advance by a temperature adjustment unit and detects the presence or absence of an abnormality in the water quality,
In order to keep the measuring tank in a predetermined temperature range, a circulation path connected to the temperature adjusting unit and circulatingly supplying temperature adjusted water;
A predetermined length portion of the test water introduction pipe line is an inner pipe through which the test water flows, and an outer pipe covering the periphery of the inner pipe is provided to form a double pipe structure, and the outer pipe is the circulation path. A double-pipe heat exchanger that is connected to the circulation path so as to be a part of the outer pipe and circulates the temperature-adjusted water through the outer pipe,
A circulating water temperature controller connected to the circulation path and having a heating unit for adjusting the temperature adjusted water to the predetermined temperature range;
An abnormal water quality detection device comprising:
前記測定槽を所定の温度範囲に保つために、前記温度調整部に連結して温度調整水を循環供給する循環路と、
前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水の導入管に連結され、この被検水を低熱源とする冷却部を有する循環水温調器と、
を備えたことを特徴とする異常水質検出装置。 An abnormal water quality detection device that introduces test water into a measurement tank maintained in a temperature range set in advance by a temperature adjustment unit and detects the presence or absence of an abnormality in the water quality,
In order to keep the measuring tank in a predetermined temperature range, a circulation path connected to the temperature adjusting unit and circulatingly supplying temperature adjusted water;
A circulating water temperature having a heating unit that is connected to the circulation path and adjusts the temperature-adjusted water to the predetermined temperature range, and a cooling unit that is connected to the test water introduction pipe and uses the test water as a low heat source. Tones,
An abnormal water quality detection device comprising:
前記測定槽を所定の温度範囲に保つために、前記温度調整部に連結して温度調整水を循環供給する循環路と、
前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水とは別系統の供給水管に連結され、この供給水を低熱源とする冷却部を有する循環水温調器と、
を備えたことを特徴とする異常水質検出装置。 An abnormal water quality detection device that introduces test water into a measurement tank maintained in a temperature range set in advance by a temperature adjustment unit and detects the presence or absence of an abnormality in the water quality,
In order to keep the measuring tank in a predetermined temperature range, a circulation path connected to the temperature adjusting unit and circulatingly supplying temperature adjusted water;
A heating unit that is connected to the circulation path and that adjusts the temperature-adjusted water to the predetermined temperature range, and a cooling unit that is connected to a supply water pipe that is different from the test water and uses the supplied water as a low heat source. A circulating water temperature controller,
An abnormal water quality detection device comprising:
前記測定槽を所定の温度範囲に保つために、前記温度調整部に連結して温度調整水を循環供給する循環路と、
前記被検水の導入管路の所定の長さ部分を前記被検水が流れる内管とし、この内管の周囲を覆う外管を設けて二重管構造とし、前記外管が前記循環路の一部となるようにこの循環路に連結し、この外管に前記温度調整水を流通させる二重管式熱交換器と、
前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水とは別系統の供給水管に連結され、この供給水を低熱源とする冷却部を有する循環水温調器と、
を備えたことを特徴とする異常水質検出装置。 An abnormal water quality detection device that introduces test water into a measurement tank maintained in a temperature range set in advance by a temperature adjustment unit and detects the presence or absence of an abnormality in the water quality,
In order to keep the measuring tank in a predetermined temperature range, a circulation path connected to the temperature adjusting unit and circulatingly supplying temperature adjusted water;
A predetermined length portion of the test water introduction pipe line is an inner pipe through which the test water flows, and an outer pipe covering the periphery of the inner pipe is provided to form a double pipe structure, and the outer pipe is the circulation path. A double-pipe heat exchanger that is connected to the circulation path so as to be a part of the outer pipe and circulates the temperature-adjusted water through the outer pipe,
A heating unit that is connected to the circulation path and that adjusts the temperature-adjusted water to the predetermined temperature range, and a cooling unit that is connected to a supply water pipe that is different from the test water and uses the supplied water as a low heat source. A circulating water temperature controller,
An abnormal water quality detection device comprising:
前記測定槽を所定の温度範囲に保つために、前記温度調整部に連結して温度調整水を循環供給する循環路と、
前記循環路に連結され、前記温度調整水を前記所定の温度範囲に調整する加熱部、及び前記被検水の導入管に連結され、この被検水を低熱源とする冷却部を有する循環水温調器と、
前記循環路の所定の長さ部分を前記温度調整水が流れる内管とし、この内管の周囲を覆う外管を設けて二重管構造とし、前記外管に前記被検水とは別系統の供給水管を連結して供給水を流通させる二重管式熱交換器と、
を備えたことを特徴とする異常水質検出装置。 An abnormal water quality detection device that introduces test water into a measurement tank maintained in a temperature range set in advance by a temperature adjustment unit and detects the presence or absence of an abnormality in the water quality,
In order to keep the measuring tank in a predetermined temperature range, a circulation path connected to the temperature adjusting unit and circulatingly supplying temperature adjusted water;
A circulating water temperature having a heating unit that is connected to the circulation path and adjusts the temperature-adjusted water to the predetermined temperature range, and a cooling unit that is connected to the test water introduction pipe and uses the test water as a low heat source. Tones,
A predetermined length portion of the circulation path is an inner pipe through which the temperature-adjusted water flows, and an outer pipe covering the circumference of the inner pipe is provided to form a double pipe structure, and the outer pipe is separated from the test water. A double-pipe heat exchanger that connects the supply water pipes to distribute the supply water,
An abnormal water quality detection device comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009042619A JP4693912B2 (en) | 2009-02-25 | 2009-02-25 | Abnormal water quality detection device |
CN 201010003233 CN101812402B (en) | 2009-02-25 | 2010-01-11 | Inspecting device for abnormal water quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009042619A JP4693912B2 (en) | 2009-02-25 | 2009-02-25 | Abnormal water quality detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010197225A JP2010197225A (en) | 2010-09-09 |
JP4693912B2 true JP4693912B2 (en) | 2011-06-01 |
Family
ID=42619769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009042619A Active JP4693912B2 (en) | 2009-02-25 | 2009-02-25 | Abnormal water quality detection device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4693912B2 (en) |
CN (1) | CN101812402B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6126387B2 (en) * | 2013-01-25 | 2017-05-10 | 株式会社日立ハイテクノロジーズ | Electrolyte analyzer with double tube structure sample suction nozzle |
CN103885469A (en) * | 2014-04-16 | 2014-06-25 | 湖南科技学院 | Automatic pesticide concentration blending system and control device |
FR3053359B1 (en) * | 2016-06-30 | 2021-01-08 | Suez Groupe | PROCESS FOR CONTROL OF THE CONCENTRATION OF BACTERIA IN A WATER DISTRIBUTION NETWORK |
KR101856464B1 (en) * | 2016-12-12 | 2018-05-11 | 한전원자력연료 주식회사 | Temperature retaining device for pressure vessel |
CN114778648B (en) * | 2022-04-24 | 2023-10-31 | 深圳科瑞德健康科技有限公司 | System and method for testing oxidation-reduction potential value of aqueous solution |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0510914A (en) * | 1991-06-25 | 1993-01-19 | Fuji Electric Co Ltd | Constant temperature chamber for biosensor |
JP2004271441A (en) * | 2003-03-11 | 2004-09-30 | Toshiba Corp | Biosensor type detector for abnormality of water quality |
JP2004279105A (en) * | 2003-03-13 | 2004-10-07 | Toshiba Corp | Biosensor type abnormal water quality detector |
JP2006098327A (en) * | 2004-09-30 | 2006-04-13 | Fuji Electric Systems Co Ltd | Method for detecting hazardous substance in environmental water using biosensor |
JP2006242749A (en) * | 2005-03-03 | 2006-09-14 | Toshiba Corp | Pretreatment device for measuring quality of water |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1490252A (en) * | 2002-10-16 | 2004-04-21 | 天津市环境保护科学研究所 | Industrial waste liquid treatment by nano filtering membrane and material recovery art design |
JP4161111B2 (en) * | 2003-09-16 | 2008-10-08 | メタウォーター株式会社 | How to monitor hazardous substances in environmental water |
-
2009
- 2009-02-25 JP JP2009042619A patent/JP4693912B2/en active Active
-
2010
- 2010-01-11 CN CN 201010003233 patent/CN101812402B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0510914A (en) * | 1991-06-25 | 1993-01-19 | Fuji Electric Co Ltd | Constant temperature chamber for biosensor |
JP2004271441A (en) * | 2003-03-11 | 2004-09-30 | Toshiba Corp | Biosensor type detector for abnormality of water quality |
JP2004279105A (en) * | 2003-03-13 | 2004-10-07 | Toshiba Corp | Biosensor type abnormal water quality detector |
JP2006098327A (en) * | 2004-09-30 | 2006-04-13 | Fuji Electric Systems Co Ltd | Method for detecting hazardous substance in environmental water using biosensor |
JP2006242749A (en) * | 2005-03-03 | 2006-09-14 | Toshiba Corp | Pretreatment device for measuring quality of water |
Also Published As
Publication number | Publication date |
---|---|
JP2010197225A (en) | 2010-09-09 |
CN101812402A (en) | 2010-08-25 |
CN101812402B (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4538060B2 (en) | Abnormal water quality detection device | |
JP4693912B2 (en) | Abnormal water quality detection device | |
US5268092A (en) | Two water control system using oxidation reduction potential sensing | |
US5342510A (en) | Water control system using oxidation reduction potential sensing | |
US5332494A (en) | Water control system using oxidation reduction potential sensing | |
US7594430B2 (en) | Methods for monitoring fouling of aqueous systems including enhanced heat exchanger tubes | |
ES2741651T3 (en) | Method and device to monitor and control the status of a process stream | |
JP5129463B2 (en) | Water quality abnormality detection method | |
JP4988005B2 (en) | Abnormal water quality detection apparatus and abnormal water quality detection method | |
JP2008196861A (en) | Abnormal water quality detector and method therefor for predicting response sensitivity to toxic substance | |
JP3721087B2 (en) | Biosensor type abnormal water quality detection device | |
JP2008286534A (en) | Biosensor type abnormal water quality detector | |
EP1170585B1 (en) | Water-based water treatment method | |
CN1126232C (en) | Inner-cooling water ammonization fuzzy regulation and control method and its monitoring and control system | |
JP4982106B2 (en) | Water quality inspection system | |
JP2004279105A (en) | Biosensor type abnormal water quality detector | |
JP2010071749A (en) | Water-quality monitor | |
JP2010204043A (en) | Water quality monitoring device | |
JP2005156204A (en) | Monitoring method for toxic substance | |
JP4227044B2 (en) | Water quality detector | |
JP2001228110A (en) | Biosensor-applied water quality meter | |
JPH1137969A (en) | Abnormal water quality detector | |
JP2008232711A (en) | Quality inspection system of water | |
JP2005249413A (en) | Water quality detector | |
CN215559189U (en) | Compensation monitoring device and reverse osmosis system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140304 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4693912 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |