JP4025978B2 - Ozone water supply device - Google Patents

Ozone water supply device Download PDF

Info

Publication number
JP4025978B2
JP4025978B2 JP2002063373A JP2002063373A JP4025978B2 JP 4025978 B2 JP4025978 B2 JP 4025978B2 JP 2002063373 A JP2002063373 A JP 2002063373A JP 2002063373 A JP2002063373 A JP 2002063373A JP 4025978 B2 JP4025978 B2 JP 4025978B2
Authority
JP
Japan
Prior art keywords
ozone
ozone water
concentration
water supply
ozone gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002063373A
Other languages
Japanese (ja)
Other versions
JP2003260341A (en
Inventor
淳二 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2002063373A priority Critical patent/JP4025978B2/en
Priority to KR10-2004-7013997A priority patent/KR20040101272A/en
Priority to PCT/JP2003/002615 priority patent/WO2003076057A1/en
Priority to TW092104843A priority patent/TWI225038B/en
Publication of JP2003260341A publication Critical patent/JP2003260341A/en
Application granted granted Critical
Publication of JP4025978B2 publication Critical patent/JP4025978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2132Concentration, pH, pOH, p(ION) or oxygen-demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2211Amount of delivered fluid during a period
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • B01F35/833Flow control by valves, e.g. opening intermittently
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/784Diffusers or nozzles for ozonation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • C02F2209/235O3 in the gas phase

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品等の製造工程における洗浄やレジスト剥離などに使用されるオゾン水を供給するオゾン水供給装置に関し、特に、オゾン水を間歇的に供給することができるオゾン水供給装置に関する。
【0002】
【従来の技術】
オゾン水は、電子部品等のウェット洗浄やフォト工程でのレジスト剥離などに従来から使用されており、オゾン水製造装置において超純水にオゾンガスを溶解させることにより製造される。従来のオゾン水供給装置として、例えば特開平7−185572号公報に開示されたものが知られており、この構成を図3に示す。
【0003】
同図に示すように、このオゾン水供給装置は、エゼクタ50にオゾンガス供給管52及び給水管54が接続されており、給水管54からエゼクタ50への水流により、オゾンガス発生器56により発生したオゾンガスがオゾンガス供給管52を介してエゼクタ50内に吸引されて超純水と混合され、オゾン水が生成される。このオゾン水は、気液分離装置58に供給されて未溶解のオゾンガスが分離された後、オゾン水供給管60を介してユースポイントに供給される。
【0004】
気液分離装置58はオゾン水のオゾン濃度を測定する濃度計62が設けられ、オゾン水供給管60にはオゾン水の流量を測定する流量計64が設けられており、制御装置66は、濃度計62及び流量計64の検出結果に基づいて、電圧調整器68によりオゾンガス発生器56の電圧を調整する。
【0005】
【発明が解決しようとする課題】
ところが、上述したオゾン水供給装置は、オゾンガス発生器56の電圧を変化させても、エゼクタ50で吸引されるオゾンガスの量がすぐには変化しないため、オゾン水濃度の追従性が悪いという問題があった。したがって、オゾン水を間歇的に供給しなければならない場合には、供給開始直後のオゾン水が所望濃度に安定するまで長時間待たなければならず(上記公報によれば5〜6分)、その間に廃棄されるオゾン水が無駄になるだけでなく、工程時間のロスが生じるという問題を生じていた。
【0006】
また、オゾン水を複数のユースポイントで使用する場合、オゾンガス供給管52を分岐させて各ユースポイント近傍でオゾン水を製造すると、オゾンガス発生器56の電圧変化が全てのユースポイントにおけるオゾンガス流量に影響を及ぼすため、各ユースポイントでオゾン水濃度を個別に制御することが困難であるという問題があった。一方、オゾン水供給管60を分岐させて各ユースポイントまで導くように構成すると、オゾン水供給管60による移送距離が必然的に長くなるため(例えば、20〜100m)、溶解しているオゾンが移送中に自己分解してオゾン濃度が低下するおそれがあるという問題があった。このため、従来は各ユースポイントの近傍にオゾンガス発生装置を設けなければならず、設備コストが高くなり、メンテナンスの面でも問題があった。
【0007】
本発明は、このような問題を解決すべくなされたものであって、所望濃度のオゾン水を経済的に効率良く間歇供給することができるオゾン水供給装置の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明の前記目的は、純水導入管及びオゾンガス導入管が接続され、前記純水導入管を介して導入される純水の水流により、前記オゾンガス導入管を介してオゾンガスを吸引混合するエゼクタと、前記純水導入管を介して前記エゼクタに導入される純水を製造する純水製造装置と、前記エゼクタにより生成されたオゾン水をユースポイントに供給するオゾン水供給管とを備え、前記オゾンガス導入管には流量調整機構が設けられ、前記オゾン水供給管にはオゾン水濃度を検出する濃度検出器が設けられており、前記濃度検出器の検出に基づいて前記流量調整機構の開度調整を行う制御手段を備え、前記濃度検出器は、前記オゾン水供給管を通過するオゾン水の濃度を検出するように配置されており、前記制御手段は、オゾン水の停止信号及び要求信号の入力に基づいて、オゾン水を間歇供給することを特徴とするオゾン水供給装置により達成される。
【0009】
前記濃度検出器は、インライン式であることが好ましく、前記制御手段は、前記濃度検出器の検出濃度が所定濃度よりも低い場合に前記流量調整機構の開度を大きくする一方、前記濃度検出器の検出濃度が所定濃度よりも高い場合に前記流量調整機構の開度を小さくすることが好ましい。
【0010】
また、前記オゾンガス導入管は、一方端がオゾンガス発生装置に接続され、且つ、他方端が複数の分配管を介して複数の前記エゼクタに接続された構成にすることが可能である。この場合、前記濃度検出器は、前記各エゼクタに接続された前記オゾン水供給管にそれぞれ設けられることが好ましく、前記流量調整機構は、前記各分配管に設けられていることが好ましい。そして、前記制御手段は、前記濃度検出器の検出に基づいて、対応する前記流量調整機構の開度調整を行うことが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実態形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係るオゾン水供給装置の概略構成を示すブロック図である。同図に示すように、オゾン水供給装置1は、エゼクタ2及び気液分離装置3を備えている。
【0012】
エゼクタ2は、純水導入管12及びオゾンガス導入管13が接続されており、純水導入管12から導入された純水がノズル(図示せず)から噴射されると、この水流によりオゾンガス導入管13からオゾンガスが吸引導入されて、内部で混合されるように構成されている。導入する純水及びオゾンガスは、それぞれ公知の純水製造装置及びオゾンガス発生装置により製造することができる。純水製造装置は、例えば、逆浸透純水製造装置を使用することができ、純度の高い超純水を製造できるように、イオン交換樹脂等のカートリッジを備えることが好ましい。また、オゾンガス発生装置としては、純水を電気分解して高濃度のオゾンガスを発生させる電解法オゾン発生装置を例示することができ、一次側の供給圧力を一定にする圧力調整弁、及び、余剰のオゾンガスを処理する排気オゾン分解器を備えることが好ましい。
【0013】
エゼクタ2の排出側は混合管4を介して気液分離装置3に接続されており、エゼクタ2により混合された純水及びオゾンガスは、混合管4を介して気液分離装置3に導入される。
【0014】
気液分離装置3には、オゾンガス排出管14及びオゾン水供給管5が接続されており、オゾンガス排出管14は、オゾンガス分解触媒が充填されたオゾンガス分解器15に接続されている。混合管4から気液分離装置3に導入された純水に溶解していない余剰のオゾンガスは、オゾンガス排出管14を介してオゾンガス分解器15に移送されて酸素に分解され、オゾン水のみがオゾン水供給管5を介してユースポイントに供給される。尚、気液分離装置についても公知のものを使用することができ、例えば、遠心力を利用してオゾン水とオゾンガスとを分離するサイクロン式や、気液二相流をバッフル板に衝突させるバッフル式、或いは、金網を用いて気液分離するデミスタ式などを挙げることができる。
【0015】
純水導入管12、オゾン水供給管5、及びオゾンガス排出管14には、それぞれ純水供給弁21、オゾン水供給弁22、及びオゾンガス排出弁23が介設されており、これらの開閉は制御装置30によって制御される。
【0016】
また、オゾン水供給管5には、溶存オゾンモニタ24が介設されており、オゾンガス導入管13は、流量調整機構25を備えている。溶存オゾンモニタ24は、通過するオゾン水のオゾン濃度を検出する濃度検出器であり、検出結果を制御装置30に出力する。溶存オゾンモニタ24としては、応答特性が良好なインライン式を使用するのが好ましいが、サンプリング方式であっても応答時間を補正することにより使用可能である。また、流量調整機構25は、例えば、オゾンガス導入管13の開度を連続的に変化させることができる可変オリフィス弁などからなり、制御装置30によって開度調整される。
【0017】
次に、以上の構成を備えたオゾン水供給装置の作動について説明する。オゾン水供給時においては、純水供給弁21、オゾン水供給弁22、及びオゾンガス排出弁23をいずれも開状態にすることで、オゾンガス及び純水がエゼクタ2に導入される。エゼクタ2に導入される純水は、高度に精製された超純水であることが好ましい。また、オゾンガス導入管13にオゾンガスを供給するオゾンガス発生装置(図示せず)の供給圧力は、0.1〜0.3MPaGの範囲にあることが好ましい。
【0018】
エゼクタ2に導入されたオゾンガス及び純水は、エゼクタ2及び混合管4を通過する過程で十分に混合されてオゾン水となり、気液分離装置3において余剰のオゾンガスが除去された後、オゾン水供給管5を介してオゾン水が供給される。供給されるオゾン水の濃度は、溶存オゾンモニタ24により常時検出され、制御装置30に入力される。
【0019】
制御装置30は、オゾン水濃度が所望濃度よりも高くなると、流量調整機構25の開度を小さくしてエゼクタ2に導入されるオゾンガスの流量を少なくする一方、オゾン水濃度が所望濃度よりも低くなると、流量調整機構25の開度を大きくしてエゼクタ2に導入されるオゾンガスの流量を多くする。この結果、オゾン水の供給量などが変動しても、オゾン水濃度をほぼ所望の値に保つことができる。
【0020】
オゾン水の間歇供給などにおいて、オゾン水の停止信号が制御装置30に入力されると、制御装置30は、純水供給弁21及びオゾンガス排出弁23を閉状態にしてオゾン水の供給を停止する。エゼクタ2へのオゾンガスの導入は水流に伴う吸引力により行われるので、純水供給弁21を閉じてエゼクタ2に導入される純水の水流がなくなると、エゼクタ2へのオゾンガスの導入も停止される。更に、オゾンガス排出弁23を閉じることで、気液分離装置3に残留するオゾンガスの外部へのリークが防止される。この結果、純水及びオゾンガスを無駄に廃棄することなくオゾン水の供給を停止することができる。尚、オゾン水の供給停止中にオゾンガス発生装置により発生するオゾンガスの内で余剰のオゾンガスが生じた場合には、例えば、当該オゾンガス発生装置が備える前記排気オゾン分解器(図示せず)で分解することができる。
【0021】
所定期間の供給停止後、オゾン水の要求信号が制御装置30に入力されると、制御装置30は、純水供給弁21及びオゾンガス排出弁23を開状態にして、エゼクタ2への純水の供給を再開する。これにより、エゼクタ2内に純水の水流が発生し、これと共にオゾンガスの吸引も開始される。オゾン水供給管5から供給されるオゾン水の濃度は、供給再開直後はやや不安定となるが、制御装置30が溶存オゾンモニタ24の検出に基づき流量調整機構25の開度を調整することで、所望の値を維持することができる。したがって、オゾン水の供給開始直後から所望濃度のオゾン水を供給することができ、オゾン水を無駄に廃棄する必要がなくなる。制御装置30による純水供給弁21及びオゾンガス排出弁23の開閉、並びに流量調整機構25の開度調整は、オゾン水を間歇供給している間、繰り返し行われる。
【0022】
オゾン水を複数のユースポイントで使用する場合には、図2に示すように、1台のオゾンガス発生装置40に接続したオゾンガス導入管13を分岐させて、オゾンガスを分配管13a,13b,13c,13dにより各ユースポイント近傍まで導くように構成する。分配管13a〜13dには、それぞれ流量調整機構25を設ける。また、エゼクタ2、気液分離装置3、オゾン水供給管5、純水導入管12、制御装置30などについては各ユースポイント毎に設け、制御装置30は、溶存オゾンモニタ24の検出に基づき、ユースポイントに対応する分配管13a〜13dの流量調整機構25の開度を調節する。
【0023】
このような構成により、オゾンガスの発生源が1カ所であっても、複数のユースポイントのそれぞれにおいてオゾン水の濃度を個別に制御することが可能になるので、設備コストの低減が図られると共に、メンテナンスも容易になる。また、オゾンガスの状態で各ユースポイントまで移送した後にオゾン水を製造することができるので、オゾン水の状態で長距離移送する必要がなく、移送中のオゾンが自然分解してオゾン水の濃度が低下するおそれを防止することができる。特に、含有有機物を短波長(185nm)の紫外線により分解した非常に純度の高い超純水を使用する場合には、このような構成のオゾン水供給装置を利用する効果が大きくなる。
【0024】
【実施例】
以下に実施例を挙げ、本発明を更に詳細に説明する。
【0025】
(実施例)
図2に示す構成において、オゾンガス発生装置は、純水を電気分解して高濃度のオゾンガスを発生させる電解法オゾン発生装置を使用し、オゾンガスの最大発生量が48g/hのものを使用した。そして、オゾンガスの圧力が0.1MPaGに常時維持されるように制御し、発生するオゾンガスの濃度を230g/m3として、オゾンガス導入管13から分岐した分配管13a〜13dにより、各オゾン水供給装置1に均等に分配されるように構成した。オゾンガス導入管13及び分配管13a〜13dには、内径4mm、外径6mmのフッ素樹脂チューブを使用し、オゾンガス発生装置40から各ユースポイントまでのオゾンガス流路は、それぞれ40m、60m、70m、80mとした。また、各オゾン水供給装置1において、純水導入管12を介してオゾン水製造装置2に導入する純水の流量は、オゾン水供給管4から供給されるオゾン水が定常状態において流量2.5L/分、濃度20ppmとなるように設定した。また、気液分離装置3は、サイクロン式のものを使用し、流量調整機構25には可変式オリフィス弁を使用した。溶存オゾンモニタ24には、インライン式の溶存オゾンモニタを使用した。
【0026】
この条件の下で、純水供給弁21、オゾン水供給弁22、及びオゾンガス排出弁23を開状態にして、オゾン水の供給を開始した。そして、オゾンガス発生装置40から最も遠いユースポイントにおいて、オゾン水供給管5から供給されるオゾン水濃度を測定したところ、以下に示す表1のようになった。
【0027】
【表1】

Figure 0004025978
【0028】
表1から明らかなように、オゾン水製造装置2から排出されたオゾン水の濃度は、オゾン水供給開始時においては0ppmであるが、時間の経過と共に急激に上昇し、10秒後には19ppmとほぼ所望値(20ppm)になった。オゾン水濃度が所望値に近づくにつれて、制御装置30は流量調整機構25の開度を徐々に小さくし、これによってオゾン水濃度がその後もほぼ所望値に維持された。尚、この結果は、他のユースポイントにおいても同様であった。
【0029】
【発明の効果】
以上の説明から明らかなように、本発明のオゾン水供給装置によれば、オゾン水の供給開始直後から所望濃度のオゾン水を供給することができるので、オゾン水を間歇供給する際に、供給開始直後のオゾン水を廃棄する無駄を防止することができ、更に、オゾン水の濃度が安定化するまでの待ち時間を解消することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るオゾン水供給装置の概略構成を示すブロック図である。
【図2】 図1に示すオゾン水供給装置の適用例を示すブロック図である。
【図3】 従来のオゾン水供給装置の概略構成を示すブロック図である。
【符号の説明】
1 オゾン水供給装置
2 エゼクタ
5 オゾン水供給管
12 純水導入管
13 オゾンガス導入管
24 溶存オゾンモニタ(濃度検出器)
25 流量調整機構
30 制御装置
40 オゾンガス発生装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ozone water supply device that supplies ozone water used for cleaning, resist stripping, and the like in a manufacturing process of electronic components and the like, and more particularly, to an ozone water supply device that can intermittently supply ozone water.
[0002]
[Prior art]
Ozone water has been conventionally used for wet cleaning of electronic parts and the like and resist removal in a photo process, and is produced by dissolving ozone gas in ultrapure water in an ozone water production apparatus. As a conventional ozone water supply device, for example, one disclosed in Japanese Patent Laid-Open No. 7-185572 is known, and this configuration is shown in FIG.
[0003]
As shown in the figure, in this ozone water supply apparatus, an ozone gas supply pipe 52 and a water supply pipe 54 are connected to an ejector 50, and ozone gas generated by an ozone gas generator 56 due to a water flow from the water supply pipe 54 to the ejector 50. Is sucked into the ejector 50 through the ozone gas supply pipe 52 and mixed with ultrapure water to generate ozone water. The ozone water is supplied to the gas-liquid separator 58 and undissolved ozone gas is separated, and then supplied to the use point through the ozone water supply pipe 60.
[0004]
The gas-liquid separator 58 is provided with a concentration meter 62 for measuring the ozone concentration of ozone water, the ozone water supply pipe 60 is provided with a flow meter 64 for measuring the flow rate of ozone water, and the control device 66 is provided with a concentration meter. Based on the detection results of the meter 62 and the flow meter 64, the voltage of the ozone gas generator 56 is adjusted by the voltage regulator 68.
[0005]
[Problems to be solved by the invention]
However, the ozone water supply device described above has a problem that the followability of the ozone water concentration is poor because the amount of ozone gas sucked by the ejector 50 does not change immediately even if the voltage of the ozone gas generator 56 is changed. there were. Therefore, when ozone water must be supplied intermittently, it is necessary to wait for a long time until the ozone water immediately after the start of supply stabilizes at a desired concentration (5-6 minutes according to the above publication), In addition to wasted ozone water, there was a problem that process time was lost.
[0006]
In addition, when ozone water is used at multiple use points, if ozone water is produced in the vicinity of each use point by branching the ozone gas supply pipe 52, the voltage change of the ozone gas generator 56 affects the ozone gas flow rate at all use points. Therefore, there is a problem that it is difficult to individually control the ozone water concentration at each use point. On the other hand, if the ozone water supply pipe 60 is branched and guided to each use point, the transfer distance by the ozone water supply pipe 60 is inevitably increased (for example, 20 to 100 m), so that dissolved ozone is present. There was a problem that the ozone concentration may decrease due to self-decomposition during transfer. For this reason, conventionally, an ozone gas generator has to be provided in the vicinity of each use point, resulting in high equipment costs and problems in terms of maintenance.
[0007]
The present invention has been made to solve such problems, and an object of the present invention is to provide an ozone water supply device that can efficiently and efficiently supply ozone water of a desired concentration economically.
[0008]
[Means for Solving the Problems]
An object of the present invention is to provide an ejector in which a pure water introduction pipe and an ozone gas introduction pipe are connected, and ozone gas is sucked and mixed through the ozone gas introduction pipe by a flow of pure water introduced through the pure water introduction pipe. A pure water production apparatus for producing pure water introduced into the ejector via the pure water introduction pipe, and an ozone water supply pipe for supplying ozone water generated by the ejector to a use point. The introduction pipe is provided with a flow rate adjustment mechanism, and the ozone water supply pipe is provided with a concentration detector for detecting the concentration of ozone water, and the degree of opening of the flow rate adjustment mechanism is adjusted based on the detection of the concentration detector. a control means for performing, the concentration detector is positioned to detect the concentration of ozone water passing through the ozone water supply pipe, the control means, the ozone water stop signal and Based on the input of the demand signal, it is accomplished by the ozone water supply device, characterized in that the ozone water intermittently supplied.
[0009]
The concentration detector is preferably an in-line type, and the control means increases the opening of the flow rate adjusting mechanism when the detected concentration of the concentration detector is lower than a predetermined concentration, while the concentration detector When the detected concentration is higher than a predetermined concentration, it is preferable to reduce the opening degree of the flow rate adjusting mechanism.
[0010]
The ozone gas introduction pipe may have a configuration in which one end is connected to the ozone gas generator and the other end is connected to the plurality of ejectors via a plurality of distribution pipes. In this case, the concentration detector is preferably provided in each of the ozone water supply pipes connected to each ejector, and the flow rate adjusting mechanism is preferably provided in each distribution pipe. And it is preferable that the said control means adjusts the opening degree of the said flow volume adjustment mechanism based on the detection of the said density | concentration detector.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, actual forms of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a schematic configuration of an ozone water supply apparatus according to an embodiment of the present invention. As shown in the figure, the ozone water supply device 1 includes an ejector 2 and a gas-liquid separation device 3.
[0012]
The ejector 2 is connected to a pure water introduction pipe 12 and an ozone gas introduction pipe 13, and when pure water introduced from the pure water introduction pipe 12 is injected from a nozzle (not shown), an ozone gas introduction pipe is generated by this water flow. The ozone gas is sucked and introduced from 13 and mixed inside. The pure water and ozone gas to be introduced can be produced by a known pure water production apparatus and ozone gas generation apparatus, respectively. As the pure water production apparatus, for example, a reverse osmosis pure water production apparatus can be used, and it is preferable to include a cartridge such as an ion exchange resin so that ultrapure water with high purity can be produced. The ozone gas generator can be exemplified by an electrolytic ozone generator that electrolyzes pure water to generate high-concentration ozone gas, a pressure regulating valve that keeps the supply pressure on the primary side constant, and surplus It is preferable to provide an exhaust ozonolysis device for treating the ozone gas.
[0013]
The discharge side of the ejector 2 is connected to the gas-liquid separation device 3 through the mixing tube 4, and the pure water and ozone gas mixed by the ejector 2 are introduced into the gas-liquid separation device 3 through the mixing tube 4. .
[0014]
An ozone gas discharge pipe 14 and an ozone water supply pipe 5 are connected to the gas-liquid separation device 3, and the ozone gas discharge pipe 14 is connected to an ozone gas decomposer 15 filled with an ozone gas decomposition catalyst. Excess ozone gas not dissolved in the pure water introduced from the mixing tube 4 into the gas-liquid separator 3 is transferred to the ozone gas decomposer 15 through the ozone gas discharge tube 14 and decomposed into oxygen, and only ozone water is ozone. It is supplied to the use point through the water supply pipe 5. In addition, a well-known thing can be used also about a gas-liquid separator, for example, the cyclone type which isolate | separates ozone water and ozone gas using a centrifugal force, or the baffle which makes a gas-liquid two-phase flow collide with a baffle plate And a demister type that performs gas-liquid separation using a wire mesh.
[0015]
The pure water introduction pipe 12, the ozone water supply pipe 5, and the ozone gas discharge pipe 14 are respectively provided with a pure water supply valve 21, an ozone water supply valve 22, and an ozone gas discharge valve 23, which are controlled for opening and closing. Controlled by device 30.
[0016]
The ozone water supply pipe 5 is provided with a dissolved ozone monitor 24, and the ozone gas introduction pipe 13 is provided with a flow rate adjusting mechanism 25. The dissolved ozone monitor 24 is a concentration detector that detects the ozone concentration of the passing ozone water, and outputs the detection result to the control device 30. As the dissolved ozone monitor 24, it is preferable to use an in-line type having good response characteristics, but even a sampling method can be used by correcting the response time. Further, the flow rate adjusting mechanism 25 includes, for example, a variable orifice valve that can continuously change the opening degree of the ozone gas introduction pipe 13, and the opening degree is adjusted by the control device 30.
[0017]
Next, the operation of the ozone water supply apparatus having the above configuration will be described. At the time of supplying ozone water, ozone gas and pure water are introduced into the ejector 2 by opening all of the pure water supply valve 21, the ozone water supply valve 22, and the ozone gas discharge valve 23. The pure water introduced into the ejector 2 is preferably highly purified ultrapure water. The supply pressure of an ozone gas generator (not shown) that supplies ozone gas to the ozone gas introduction pipe 13 is preferably in the range of 0.1 to 0.3 MPaG.
[0018]
The ozone gas and pure water introduced into the ejector 2 are sufficiently mixed in the process of passing through the ejector 2 and the mixing tube 4 to become ozone water. After the excess ozone gas is removed in the gas-liquid separator 3, the ozone water supply is performed. Ozone water is supplied through the pipe 5. The concentration of the supplied ozone water is always detected by the dissolved ozone monitor 24 and input to the control device 30.
[0019]
When the ozone water concentration becomes higher than the desired concentration, the control device 30 reduces the flow rate of the ozone gas introduced into the ejector 2 by reducing the opening degree of the flow rate adjusting mechanism 25, while the ozone water concentration is lower than the desired concentration. In this case, the flow rate of the ozone gas introduced into the ejector 2 is increased by increasing the opening degree of the flow rate adjusting mechanism 25. As a result, even if the supply amount of ozone water fluctuates, the ozone water concentration can be maintained at a substantially desired value.
[0020]
When an ozone water stop signal is input to the control device 30 during intermittent supply of ozone water, the control device 30 closes the pure water supply valve 21 and the ozone gas discharge valve 23 to stop the supply of ozone water. . Since the introduction of the ozone gas into the ejector 2 is performed by the suction force accompanying the water flow, the introduction of the ozone gas into the ejector 2 is stopped when the pure water supply valve 21 is closed and the water flow of pure water introduced into the ejector 2 disappears. The Furthermore, by closing the ozone gas discharge valve 23, leakage of ozone gas remaining in the gas-liquid separator 3 to the outside is prevented. As a result, the supply of ozone water can be stopped without wasting waste of pure water and ozone gas. In addition, when surplus ozone gas is generated in the ozone gas generated by the ozone gas generator while the supply of ozone water is stopped, it is decomposed by, for example, the exhaust ozone decomposer (not shown) provided in the ozone gas generator. be able to.
[0021]
When the ozone water request signal is input to the control device 30 after the supply is stopped for a predetermined period, the control device 30 opens the pure water supply valve 21 and the ozone gas discharge valve 23 to open the pure water to the ejector 2. Restart supply. As a result, a flow of pure water is generated in the ejector 2, and at the same time, suction of ozone gas is started. The concentration of ozone water supplied from the ozone water supply pipe 5 becomes slightly unstable immediately after resumption of supply, but the control device 30 adjusts the opening degree of the flow rate adjustment mechanism 25 based on the detection of the dissolved ozone monitor 24. The desired value can be maintained. Therefore, ozone water having a desired concentration can be supplied immediately after the start of supply of ozone water, and there is no need to waste ozone water wastefully. The opening and closing of the pure water supply valve 21 and the ozone gas discharge valve 23 and the opening adjustment of the flow rate adjustment mechanism 25 by the control device 30 are repeatedly performed while ozone water is supplied intermittently.
[0022]
When ozone water is used at a plurality of use points, as shown in FIG. 2, the ozone gas introduction pipe 13 connected to one ozone gas generator 40 is branched to separate the ozone gas into the distribution pipes 13a, 13b, 13c, It is configured to guide to the vicinity of each use point by 13d. The distribution pipes 13a to 13d are each provided with a flow rate adjusting mechanism 25. In addition, the ejector 2, the gas-liquid separator 3, the ozone water supply pipe 5, the pure water introduction pipe 12, the control device 30, etc. are provided for each use point, and the control device 30 is based on the detection of the dissolved ozone monitor 24 The opening degree of the flow rate adjusting mechanism 25 of the distribution pipes 13a to 13d corresponding to the use point is adjusted.
[0023]
With such a configuration, even if there is only one ozone gas generation source, it is possible to individually control the concentration of ozone water at each of a plurality of use points, so that the equipment cost can be reduced, Maintenance is also easy. In addition, since ozone water can be manufactured after being transferred to each use point in the state of ozone gas, it is not necessary to transfer ozone water for a long distance, and the ozone being transferred is naturally decomposed and the concentration of ozone water is reduced. The risk of lowering can be prevented. In particular, in the case of using ultrapure water having a very high purity obtained by decomposing a contained organic substance with ultraviolet rays having a short wavelength (185 nm), the effect of using the ozone water supply device having such a configuration is increased.
[0024]
【Example】
The following examples further illustrate the present invention.
[0025]
(Example)
In the configuration shown in FIG. 2, the ozone gas generator used is an electrolytic ozone generator that electrolyzes pure water to generate high-concentration ozone gas, and has a maximum ozone gas generation amount of 48 g / h. Each ozone water supply device is controlled by the distribution pipes 13a to 13d branched from the ozone gas introduction pipe 13 so that the pressure of the ozone gas is constantly maintained at 0.1 MPaG and the concentration of the generated ozone gas is 230 g / m 3. 1 was distributed evenly. For the ozone gas introduction pipe 13 and the distribution pipes 13a to 13d, fluororesin tubes having an inner diameter of 4 mm and an outer diameter of 6 mm are used. The ozone gas flow paths from the ozone gas generator 40 to each use point are 40 m, 60 m, 70 m, and 80 m, respectively. It was. Further, in each ozone water supply device 1, the flow rate of pure water introduced into the ozone water production device 2 via the pure water introduction tube 12 is the same as that of ozone water supplied from the ozone water supply tube 4 in the steady state. It was set to 5 L / min and a concentration of 20 ppm. The gas-liquid separator 3 is a cyclone type, and the flow rate adjusting mechanism 25 is a variable orifice valve. As the dissolved ozone monitor 24, an in-line type dissolved ozone monitor was used.
[0026]
Under this condition, the pure water supply valve 21, the ozone water supply valve 22, and the ozone gas discharge valve 23 were opened, and the supply of ozone water was started. And when the ozone water density | concentration supplied from the ozone water supply pipe | tube 5 was measured in the use point farthest from the ozone gas generator 40, it became like Table 1 shown below.
[0027]
[Table 1]
Figure 0004025978
[0028]
As is clear from Table 1, the concentration of ozone water discharged from the ozone water production apparatus 2 is 0 ppm at the start of ozone water supply, but increases rapidly with the passage of time, and is 19 ppm after 10 seconds. The desired value (20 ppm) was obtained. As the ozone water concentration approaches the desired value, the control device 30 gradually decreases the opening degree of the flow rate adjusting mechanism 25, whereby the ozone water concentration is maintained substantially at the desired value thereafter. This result was the same for other use points.
[0029]
【The invention's effect】
As is clear from the above description, according to the ozone water supply device of the present invention, ozone water having a desired concentration can be supplied immediately after the start of ozone water supply. It is possible to prevent waste of discarding ozone water immediately after the start, and to eliminate the waiting time until the concentration of ozone water is stabilized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an ozone water supply apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram showing an application example of the ozone water supply device shown in FIG.
FIG. 3 is a block diagram showing a schematic configuration of a conventional ozone water supply device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ozone water supply apparatus 2 Ejector 5 Ozone water supply pipe 12 Pure water introduction pipe 13 Ozone gas introduction pipe 24 Dissolved ozone monitor (concentration detector)
25 Flow control mechanism 30 Control device 40 Ozone gas generator

Claims (3)

純水導入管及びオゾンガス導入管が接続され、前記純水導入管を介して導入される純水の水流により、前記オゾンガス導入管を介してオゾンガスを吸引混合するエゼクタと、
前記純水導入管を介して前記エゼクタに導入される純水を製造する純水製造装置と、
前記エゼクタにより生成されたオゾン水をユースポイントに供給するオゾン水供給管とを備え、
前記オゾンガス導入管には流量調整機構が設けられ、前記オゾン水供給管にはオゾン水濃度を検出する濃度検出器が設けられており、前記濃度検出器の検出に基づいて前記流量調整機構の開度調整を行う制御手段を備え、
前記濃度検出器は、前記オゾン水供給管を通過するオゾン水の濃度を検出するように配置されており、
前記制御手段は、オゾン水の停止信号及び要求信号の入力に基づいて、オゾン水を間歇供給するオゾン水供給装置。
An ejector that is connected to a pure water introduction pipe and an ozone gas introduction pipe, and sucks and mixes ozone gas through the ozone gas introduction pipe by a flow of pure water introduced through the pure water introduction pipe;
A pure water production apparatus for producing pure water to be introduced into the ejector via the pure water introduction pipe;
An ozone water supply pipe for supplying ozone water generated by the ejector to a use point;
The ozone gas introduction pipe is provided with a flow rate adjusting mechanism, and the ozone water supply pipe is provided with a concentration detector for detecting the concentration of ozone water, and the flow rate adjusting mechanism is opened based on the detection of the concentration detector. Control means for adjusting the degree,
The concentration detector is arranged to detect the concentration of ozone water passing through the ozone water supply pipe ,
The said control means is an ozone water supply apparatus which supplies ozone water intermittently based on the input of the stop signal and request signal of ozone water.
前記濃度検出器は、インライン式であり、
前記制御手段は、前記濃度検出器の検出濃度が所定濃度よりも低い場合に前記流量調整機構の開度を大きくする一方、前記濃度検出器の検出濃度が所定濃度よりも高い場合に前記流量調整機構の開度を小さくすることを特徴とする請求項1に記載のオゾン水供給装置。
The concentration detector is an in-line type,
The control means increases the opening of the flow rate adjusting mechanism when the detected concentration of the concentration detector is lower than a predetermined concentration, while adjusting the flow rate when the detected concentration of the concentration detector is higher than the predetermined concentration. The ozone water supply device according to claim 1, wherein the opening degree of the mechanism is reduced.
前記オゾンガス導入管は、一方端がオゾンガス発生装置に接続され、他方端が複数の分配管を介して複数の前記エゼクタに接続されており、
前記濃度検出器は、前記各エゼクタに接続された前記オゾン水供給管にそれぞれ設けられ、前記流量調整機構は、前記各分配管に設けられており、
前記制御手段は、前記濃度検出器の検出に基づいて、対応する前記流量調整機構の開度調整を行うことを特徴とする請求項1に記載のオゾン水供給装置。
The ozone gas introduction pipe has one end connected to the ozone gas generator and the other end connected to the plurality of ejectors via a plurality of distribution pipes,
The concentration detector is provided in each ozone water supply pipe connected to each ejector, and the flow rate adjusting mechanism is provided in each distribution pipe,
2. The ozone water supply apparatus according to claim 1, wherein the control unit adjusts the opening degree of the corresponding flow rate adjusting mechanism based on detection by the concentration detector.
JP2002063373A 2002-03-08 2002-03-08 Ozone water supply device Expired - Fee Related JP4025978B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002063373A JP4025978B2 (en) 2002-03-08 2002-03-08 Ozone water supply device
KR10-2004-7013997A KR20040101272A (en) 2002-03-08 2003-03-06 Ozone water supplying apparatus
PCT/JP2003/002615 WO2003076057A1 (en) 2002-03-08 2003-03-06 Ozone water supplying apparatus
TW092104843A TWI225038B (en) 2002-03-08 2003-03-06 Ozone water supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063373A JP4025978B2 (en) 2002-03-08 2002-03-08 Ozone water supply device

Publications (2)

Publication Number Publication Date
JP2003260341A JP2003260341A (en) 2003-09-16
JP4025978B2 true JP4025978B2 (en) 2007-12-26

Family

ID=27800189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063373A Expired - Fee Related JP4025978B2 (en) 2002-03-08 2002-03-08 Ozone water supply device

Country Status (4)

Country Link
JP (1) JP4025978B2 (en)
KR (1) KR20040101272A (en)
TW (1) TWI225038B (en)
WO (1) WO2003076057A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673076B1 (en) * 2005-06-10 2007-01-24 청호나이스 주식회사 Apparatus for manufacturing Ozone sterilized water capable of regulating concentration of ozone
CN2830388Y (en) * 2005-07-21 2006-10-25 徐名勇 Spraying atomized and gas storage ozonidate generator
JP4746515B2 (en) * 2006-10-31 2011-08-10 株式会社Ihiシバウラ Ozone water generator
JP4557262B2 (en) * 2006-11-07 2010-10-06 佐藤工業株式会社 Gas dissolved water production equipment
JP5682904B2 (en) * 2009-08-12 2015-03-11 国立大学法人九州工業大学 High concentration dissolved water generating apparatus and high concentration dissolved water generating system
KR100981285B1 (en) * 2010-06-18 2010-09-10 한국기계연구원 Production method to useing ozone functional water production system and ozone functional water production system equal concentration for siliconwafer
KR101222491B1 (en) * 2011-08-01 2013-01-16 한국기계연구원 Production apparatus and method of equal concentration functional water for batch type and in-line type of siliconwafer
JP2013086011A (en) * 2011-10-17 2013-05-13 Asahi Organic Chemicals Industry Co Ltd Method for producing ozonated water and apparatus for producing ozonated water
JP2013094696A (en) * 2011-10-28 2013-05-20 Sharp Corp Solution producing apparatus and ozone water producing apparatus, and sanitary equipment cleaning apparatus equipped with the same
JP2016064386A (en) * 2014-09-18 2016-04-28 株式会社荏原製作所 Gas dissolved water production device and method
JP6826437B2 (en) 2016-01-15 2021-02-03 株式会社荏原製作所 Supply liquid manufacturing equipment and supply liquid manufacturing method
JP6491279B2 (en) * 2017-07-26 2019-03-27 オルガノ株式会社 Water sampling dispenser and correction method thereof
CN112067568B (en) * 2020-09-24 2023-06-16 常州瑞择微电子科技有限公司 High-concentration ozone water detection device and method
KR102564803B1 (en) * 2021-05-20 2023-08-07 홍승훈 System for dissolving gas
EP4272858A3 (en) * 2022-04-15 2024-04-17 Micheletti Engineering & Consulting Sagl Machine and system for spraying ozonated water under high pressure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134023A (en) * 1992-10-23 1994-05-17 Ishikawajima Harima Heavy Ind Co Ltd Ozone concentration control device for ozonized water
JPH0859207A (en) * 1994-08-19 1996-03-05 Tokico Ltd Device for forming ozone water
JPH10337580A (en) * 1997-06-04 1998-12-22 Tokico Ltd Ozone water generating device
JP4228164B2 (en) * 1999-07-21 2009-02-25 株式会社ササクラ Ozone water supply device with equalized branch system ozone flow rate
JP2002126480A (en) * 2000-10-20 2002-05-08 Yaskawa Electric Corp Ozonized water treatment equipment
JP2002316027A (en) * 2001-04-19 2002-10-29 Ebara Corp Device and method for manufacturing gas-dissolved water, device and method for ultrasonic cleaning

Also Published As

Publication number Publication date
KR20040101272A (en) 2004-12-02
TWI225038B (en) 2004-12-11
TW200304429A (en) 2003-10-01
WO2003076057A1 (en) 2003-09-18
JP2003260341A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP4025978B2 (en) Ozone water supply device
JP5548106B2 (en) Method and apparatus for mixing fluid under pressure for semiconductor process tools
KR102571000B1 (en) Feed liquid preparation method
EP1512457A1 (en) Continuous dissolving device, continuous dissolving method, and gas-dissolved water supply
CN109954414B (en) Gas solution production device and gas solution production method
KR102639443B1 (en) Gas dissolution liquid supply device and gas dissolution liquid supply method
US20200353431A1 (en) Functional water producing apparatus and functional water producing method
JP2004188246A (en) System for manufacturing ozonized water
JP4843339B2 (en) Ozone water supply device
EP3978109A1 (en) Gas solution supply device
TWI742266B (en) Washing water supply device
JP4221551B2 (en) Ozone water supply device
JP5779382B2 (en) Ozone water supply method and ozone water supply device
KR20210100543A (en) Device for manufacturing gas-dissolved solution
JPH11138182A (en) Ozonized ultrapure water feeder
JP4107522B2 (en) Ozone supply device
CN117643807A (en) Gas-dissolved-liquid supply device and method performed using same
JP2022059560A (en) Gas dissolution liquid supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees