JP4228164B2 - Ozone water supply device with equalized branch system ozone flow rate - Google Patents

Ozone water supply device with equalized branch system ozone flow rate Download PDF

Info

Publication number
JP4228164B2
JP4228164B2 JP20631799A JP20631799A JP4228164B2 JP 4228164 B2 JP4228164 B2 JP 4228164B2 JP 20631799 A JP20631799 A JP 20631799A JP 20631799 A JP20631799 A JP 20631799A JP 4228164 B2 JP4228164 B2 JP 4228164B2
Authority
JP
Japan
Prior art keywords
ozone
flow rate
resistance
pressure
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20631799A
Other languages
Japanese (ja)
Other versions
JP2001031405A (en
Inventor
淳二 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP20631799A priority Critical patent/JP4228164B2/en
Publication of JP2001031405A publication Critical patent/JP2001031405A/en
Application granted granted Critical
Publication of JP4228164B2 publication Critical patent/JP4228164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術の分野】
本発明は、単一のオゾン供給系と該オゾン供給系のオゾンが分流される複数の分岐系と該複数の分岐系のそれぞれに接続された複数のオゾン溶解装置であって該オゾン溶解装置に供給される純水に前記分流されたオゾンの一部分が溶解される複数のオゾン溶解装置と前記一部分の残部を成すオゾンが排出される複数のオゾン排出系とを備えたオゾン水供給装置に関し、特にオゾンの均等分流技術に関する。
【0002】
【従来の技術】
オゾン水供給装置としては、従来、図3に示す如く、単一のオゾン供給系1から供給されるオゾンを例えば2台のオゾン溶解モジュール4、5に分配して供給し、その中を流れる純水にオゾンを溶解させると共に、オゾン排出系6、7から不溶解オゾンを排出するようにした装置が知られている。そして、例えば半導体の洗浄では、圧力1〜2kgf/cm2g程度のオゾン水が必要になるため、オゾン水製造用の純水をその程度の圧力で供給すると共に、この純水にオゾンを溶解させるために、オゾン排出系に背圧弁12を設け、オゾン溶解モジュール4、5のオゾン側の圧力を0.5〜1kgf/cm2g程度になるようにしていた。
【0003】
このようなオゾン水供給装置におけるオゾン溶解モジュールでは、オゾンの流れ抵抗は十分小さいものの、その流れ抵抗がアンバランスになると、オゾン供給系から供給されるオゾン量が、それぞれのオゾン溶解モジュール間で不均一に分配されることになった。その結果、純水に対するオゾンの溶解効率が低下し、同じ量のオゾンが供給されても、生成するオゾン水の濃度が低くなったり、濃度維持のために純水供給量を減少させると、オゾン水の供給能力が低下するという問題があった。
【0004】
なお、オゾン溶解モジュール4、5におけるオゾンの通過抵抗の変動は、それぞれの使用条件が不可避的に異なることによってもたらされるが、その大きな原因の1つは、オゾン溶解モジュールを構成するファイバーのオゾン側空間への水滴の生成・付着であると考えられる。即ち、純水側の圧力を上げるために、オゾンの圧力もある程度上げてバランスを保つようにしているものの、ファイバー内を流れる純水の圧力がオゾンより高いことが多いため、純水のごく微量がファイバー外のオゾン側に透過し、これが水滴となってファイバー外周の各部に付着し、ファイバー間やオゾン排出系を部分的に閉塞させ、オゾンの流れ抵抗になることがある。そして、このような閉塞状態が不規則に生ずるため、並設されたオゾン溶解モジュール毎に、異なったオゾン通過抵抗となって現れる。
【0005】
【発明が解決しようとする課題】
本発明は従来技術に於ける上記問題を解決し、オゾン水供給系のオゾンを複数のオゾン溶解装置に分流したときのオゾン流量を均等化し、オゾン溶解効率を良好に維持し、オゾン水供給能力の高いオゾン水供給装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために、単一のオゾン供給系と該オゾン供給系のオゾンが分流される複数の分岐系と該複数の分岐系のそれぞれに接続された複数のオゾン溶解装置であって該オゾン溶解装置に供給される純水に前記分流されたオゾンの一部分が溶解される複数のオゾン溶解装置と前記一部分の残部を成すオゾンが排出される複数のオゾン排出系とを備えたオゾン水供給装置において、
前記オゾン溶解装置を流れる前記分流されたオゾンの通過抵抗より大きい抵抗を発生させる抵抗発生手段としてオリフィス又は弁を前記複数のオゾン排出系のそれぞれに設けたことを特徴とする。
【0007】
【発明の実施の形態】
図1は本発明を適用したオゾン水供給装置の全体構成の一例を示す。
本装置は、単一のオゾン供給系である共通系1、この系のオゾンが分流される複数の分岐系として本例では2系統設けられている分岐系2、3、これらのそれぞれが接続された複数のオゾン溶解装置としてのオゾン溶解モジュール4、5、複数のオゾン排出系として本例では上記と同じ2系統の排出系6、7、抵抗発生手段としてのオリフィス8、9、等によって構成されている。オゾン溶解モジュール4、5では、純水供給系10から供給される純水に分流されたオゾンの一部分が溶解される。オゾン排出系6、7には、前記一部分の残部を成す未溶解オゾンが排出される。符号11は排出系を合流させたヘッダー管、12は背圧弁、13は排オゾン分解器、14はオゾン水供給系である。
【0008】
オゾン溶解モジュール4、5は、それぞれ、純水が導入される胴体41、51、その両端の水室42、52、図では少数を示しているが実際には多本数配設されているPTFEの多孔質中空状ファイバーから成る細管43、53、オゾン入口44、54、排オゾン出口45、55、純水入口46、56、オゾン水出口47、57、等によって構成されている。
【0009】
オリフィス8は、オゾン溶解モジュール4、5を流れるオゾンの抵抗をR1 とすると、これより十分大きい抵抗として例えば50R1 程度以上の抵抗を発生させるように定められる。背圧弁12は、オゾンがオゾン溶解モジュール4、5内で純水中に溶解しやすいようにオゾンの圧力を高めるためのものであり、例えばオゾン溶解モジュール4、5へのオゾン入口圧力が1kgf/cm2gになるように、上記合計抵抗50R1 を考慮した(1−50R1 )の値に設定される。即ち、背圧弁12の上流側の圧力が(1−50R1 )になるように設定される。排オゾン分解器13は、二酸化マンガン等のオゾン分解用触媒を内蔵していて、未溶解オゾンを分解処理する。
【0010】
以上のようなオゾン水供給装置は次のように使用される。
共通系1には、電解式オゾン発生装置から発生した15%程度の高濃度オゾン及び残部を成す酸素から成る混合ガスが一定量供給され、並設された2台のオゾン溶解モジュール4、5に分流される。この混合ガスは以後の流れにおいてもほぼ同程度の比率でオゾンを含有するが、本発明はオゾンに関するので、以下では混合ガス中のオゾンについて説明する。それぞれのオゾン溶解モジュール4、5では、一部分のオゾンとして流入したオゾンのうちの約75%が細管43及び53内を流れる純水中に溶解し、残りの約25%の未溶解オゾンが排オゾン出口45及び55から排出され、オリフィス8、9、ヘッダー管11及び背圧弁12を経由して排オゾン分解器13に入り、酸素に分解される。
【0011】
図2は、オゾン流量とオゾン通過抵抗及び各部の圧力の関係を例示した図である。横軸Xは分岐系のオゾン流量を示し、オゾン発生装置が定格条件で運転されたときの共通系1のオゾン流量を100%とし、正常運転時における分岐系2、3のオゾン流量をそれぞれ50%としている。なお、オゾン流量はオゾン溶解モジュールを通過するに従って減少するが、オゾン溶解モジュールやオリフィスの抵抗としては、通過前の流量をベースとして示している。
【0012】
図中の横軸X、X1 及びそれらの上の各曲線A〜Eについては以下のとおりである:
X軸;オゾンの流量を示すと共に、背圧弁12の設定圧力、従ってその上流側の位置P1 (図1)の圧力を示し、この例では、曲線A〜Cに対しては0.5kgf/cm2g、曲線D及びEに対しては0.8kgf/cm2g としている。
1 線;X軸から圧力0.8kgf/cm2gの線であると共に、それ以上の部分の圧力スケールを10倍にして表示するための基準線である。
【0013】
A(実線);オリフィス8、9の上流側の位置P2a及びP2bの圧力を示し、共通系の100%流量に対する分岐系2、3の等分流量である50%流量では、0.8kgf/cm2gである。従って、この流量におけるオリフィスの抵抗としては、X軸のベース圧力を引いて0.3kgf/cm2 である。なお、上記の如くX1 線より上では圧力スケールを10倍にしている。従って、X1 線が変曲点になっている。次のB、C線についても同じである。圧力スケールを10倍にしたのは、線A、B、Cの差を明瞭に表すためである。
【0014】
B(鎖線);オゾン溶解モジュール4が上記50%流量時に例えば0.005kgf/cm2 (5mmAq)の正常な抵抗値を持つとしたときのオゾン溶解モジュール4の上流側位置P3aの圧力を示す。従って、この点B1 の圧力は、50%流量では0.805kgf/cm2gである。
【0015】
C(一点鎖線);オゾン溶解モジュール5が上記50%流量時に例えば0.01kgf/cm2 という通常時の2倍に大きくなった抵抗値を持つとしたときのオゾン溶解モジュール5の上流側位置P3bの圧力を示す。従って、この点C1 の圧力は、50%流量では0.810kgf/cm2gである。
【0016】
D(二点鎖線);参考として、オリフィスを備えていない従来のオゾン水供給装置において、オゾン溶解モジュール4が正常な抵抗0.005kgf/cm2 を持つときの点P3aの圧力を示す。なお、この条件では、Xの基準圧力即ち背圧弁12の圧力が図において( )で示すように0.8kgf/cm2g程度に設定される。従って、50%流量時には、この点D1 の圧力は0.805kgf/cm2gになっている。なお、この線D及び次のEは、X1 線上の線A〜Cと同様にX軸から上で10倍の圧力スケールで示されている。
【0017】
E(二点鎖線);上記条件でオゾン溶解モジュール5が大きい抵抗0.01kgf/cm2 を持つときの点P3bの圧力を示す。この場合にも背圧弁12は0.8kgf/cm2g程度に高く設定されている。従って、50%流量時には、この点E1 の圧力は0.81kgf/cm2gになる。
【0018】
オゾン系の上記圧力特性において、オゾン溶解モジュール4、5の抵抗が相互に異なっていても、上流側位置P3aとP3bとは同じ共通系1から分岐した分岐系2、3の位置になるので、これらの圧力は同じになる。その結果、オゾン溶解モジュール4側の線Bでは、最初の50%の流量が増加し、点B1 が圧力上昇した点B2 位置になり、一方、オゾン溶解モジュール5側の線Cでは、最初の50%流量が減少し、点C1 が圧力の減少した点C2 になる。そして、計算によれば、これらの点B2 、C2 の圧力は共に圧力0.807kgf/cm2g程度になり、それぞれの流量は49.5%及び50.5%程度になる。この結果によれば、本発明の適用により、オゾン溶解モジュール4、5に2倍の抵抗差が生じても、各分岐系では±0.5%程度という僅かな流量差が生ずるのみである。
【0019】
これに対してオリフィスを設けないときの線D、Eでは、上記の場合と同様に、D1 の点がD2 になってE1 の点がE2 になり、これらの間では、計算上同一圧力約0.807kgf/cm2gでそれぞれの流量が58.6%及び41.4%になり、それぞれ分岐系2、3の間では、±8.6%という大きな流量差が生ずる。
【0020】
以上の如く、本発明を適用すれば、オゾン溶解モジュール4、5のオゾンの流れ抵抗に大きなアンバランスが生じても、オゾン流量の差を十分小さくすることができる。即ち、本発明では、背圧弁で圧力を上げて使用するオゾン供給系の特性を巧みに利用し、背圧弁で無駄に昇圧する圧力を小さくし、これによって得られた圧力をそれぞれの分岐系に設けたオリフィスの抵抗として利用することにより、分岐系間のオゾン溶解モジュールの抵抗差に基づく流量差を大幅に均一化することができる。
【0021】
一方、オゾン溶解モジュールにおけるオゾンの溶解効率は、オゾンの定格流量時の効率を100%とすると、流量が少なくなっても余り大きくならず、流量が多くなるとそれに対応して低下する傾向になる。その結果、本発明を適用したときの上記オゾン流量50%±0.5%では、共に50%のときに較べて合計オゾン溶解量が99.5%程度以上になるが、本発明を適用しないときのオゾン流量50%±8.7%では、合計オゾン溶解量が95%程度まで低下する。従って、本発明の適用により、それぞれの分岐系でオゾン溶解モジュールの抵抗が相当大きくアンバランスになっても、オゾン溶解量を維持し、オゾン水の濃度を常に満足できる範囲内の値に維持することができる。
【0022】
なお以上では、抵抗発生手段がオリフィスである例について説明したが、抵抗発生手段としては、十分な抵抗を持たせられる各種弁等を使用することができる。
【0023】
【発明の効果】
以上の如く本発明によれば、単一のオゾン供給系と複数の分岐系と複数のオゾン溶解装置と複数のオゾン排出系とを備えたオゾン水供給装置において、オゾン溶解装置を流れるオゾンの抵抗より十分大きい抵抗を発生させる抵抗発生手段を複数のオゾン排出系のそれぞれに設けたので、複数のオゾン溶解装置のそれぞれの避け難い運転条件の相違等により、それらの間でオゾンの通過抵抗に大きな差が生じても、排出系においてこれらの抵抗より更に十分大きい抵抗が追加されることになる。その結果、オゾン溶解装置の抵抗と抵抗発生手段の抵抗との合計抵抗としては、それぞれの分岐系間における差の比率が大幅に低下する。
【0024】
一方、それぞれの分岐系の合流部であり始点である単一のオゾン供給系の圧力は同じであるから、実際には、各分岐系の抵抗差が同じになるように各分岐系に分配されるオゾン流量が変化することになる。そしてこの場合、このような抵抗は通常オゾン流量の二乗に比例するから、各分岐系ごとの合計抵抗を同じにするべく、抵抗差の比率の1/2乗に対応する流量差が発生することになる。そして、本発明により、前記の如く抵抗差の比率が小さくなるようにしているので、流量差の比率は更に小さい値になる。その結果、単一の供給系から分岐系へ流れるオゾン量が十分均等化されることになる。
【0025】
例えば、分岐系が2系統で単一の供給系を流れるオゾン流量Qの半分のQ/2がそれぞれの分岐系に流れ、そのときの2分岐系のオゾン溶解モジュールの抵抗がそれぞれrと2rであるとし、抵抗発生手段で発生させる抵抗Rが50rであるとすれば、それぞれの分岐系の合計抵抗は51rと52rになり、それぞれの分岐系のオゾン流量が変わることによって両分岐系の合計抵抗が同じ値で51.5rになるとすれば、それぞれの抵抗値の変動は約±1%になり、50%流量に対してはその半分の±0.5%になり、従って流量変動はそのルートで±0.7%になり、r側の流量が50.7%で2r側の流量が49.3%になる。
【0026】
このように、オゾン量が少ない流量差に均等化されると、純水に対するオゾンの溶解量も均等化され、オゾン水濃度を目的とする高濃度に維持することができる。そして、供給能力の高いオゾン水供給装置を実現することができる。
【図面の簡単な説明】
【図1】本発明を適用したオゾン水供給装置の全体構成の1例を示す説明図である。
【図2】上記装置におけるオゾン圧力と流量との関係を示す曲線図である。
【図3】従来のオゾン水供給装置の全体構成の1例を示す説明図である。
【符号の説明】
1 共通系(単一のオゾン供給系)
2、3 分岐系
4、5 オゾン溶解モジュール(複数のオゾン溶解装置)
6、7 オゾン排出系
8、9 オリフィス(抵抗発生手段)
[0001]
[Field of the Invention]
The present invention relates to a single ozone supply system, a plurality of branch systems into which ozone of the ozone supply system is diverted, and a plurality of ozone dissolvers connected to each of the plurality of branch systems. In particular, the present invention relates to an ozone water supply apparatus comprising a plurality of ozone dissolving apparatuses in which a part of the divided ozone is dissolved in supplied pure water and a plurality of ozone discharge systems in which ozone forming the remainder of the part is discharged. It is related to the ozone equal diversion technology.
[0002]
[Prior art]
As an ozone water supply device, as shown in FIG. 3, conventionally, ozone supplied from a single ozone supply system 1 is distributed and supplied to, for example, two ozone dissolution modules 4 and 5, and pure water flowing through the ozone supply module 1 is distributed. An apparatus is known in which ozone is dissolved in water and insoluble ozone is discharged from ozone discharge systems 6 and 7. For example, in cleaning semiconductors, ozone water with a pressure of about 1 to 2 kgf / cm 2 g is required. Therefore, pure water for producing ozone water is supplied at that pressure, and ozone is dissolved in this pure water. In order to achieve this, a back pressure valve 12 is provided in the ozone discharge system so that the pressure on the ozone side of the ozone dissolution modules 4 and 5 is about 0.5 to 1 kgf / cm 2 g.
[0003]
In the ozone dissolution module in such an ozone water supply device, although the flow resistance of ozone is sufficiently small, if the flow resistance becomes unbalanced, the amount of ozone supplied from the ozone supply system is not balanced between the ozone dissolution modules. It was distributed evenly. As a result, the ozone dissolution efficiency in pure water decreases, and even if the same amount of ozone is supplied, if the concentration of the generated ozone water decreases or the supply amount of pure water decreases to maintain the concentration, There was a problem that the water supply capacity declined.
[0004]
In addition, although the fluctuation | variation of the ozone passage resistance in the ozone dissolution modules 4 and 5 is brought about by inevitably differing each use conditions, one of the big causes is the ozone side of the fiber which comprises an ozone dissolution module. It is thought that water droplets are generated and attached to the space. In other words, in order to increase the pressure on the pure water side, the pressure of ozone is raised to some extent to maintain the balance, but the pressure of pure water flowing in the fiber is often higher than ozone, so there is a very small amount of pure water. May permeate to the ozone side outside the fiber and become water droplets and adhere to each part of the outer periphery of the fiber, partially blocking between the fibers and the ozone discharge system, and may become ozone flow resistance. And since such a clogging state arises irregularly, it appears as a different ozone passage resistance for every ozone dissolution module arranged in parallel.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems in the prior art, equalizes the ozone flow rate when ozone in the ozone water supply system is divided into a plurality of ozone dissolving devices, maintains good ozone dissolving efficiency, and provides ozone water supply capability. It is an object of the present invention to provide an ozone water supply apparatus having a high level.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a single ozone supply system, a plurality of branch systems into which ozone of the ozone supply system is diverted, and a plurality of ozone dissolving apparatuses connected to each of the plurality of branch systems. A plurality of ozone dissolving devices in which a part of the divided ozone is dissolved in pure water supplied to the ozone dissolving device, and a plurality of ozone discharge systems in which ozone forming the remainder of the part is discharged. In the ozone water supply device,
Characterized by providing each orifice or valve of said plurality of ozone discharge system as a resistance generating means for generating a flow resistance greater than the resistance of the diverted ozone flowing through the ozone dissolution apparatus.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of the overall configuration of an ozone water supply apparatus to which the present invention is applied.
In this apparatus, a common system 1 which is a single ozone supply system, and a plurality of branch systems 2 and 3 provided in this example as a plurality of branch systems into which ozone of this system is shunted are connected to each other. In this example, the ozone dissolution modules 4 and 5 as a plurality of ozone dissolving devices, the two discharge systems 6 and 7 as described above, the orifices 8 and 9 as resistance generating means, etc. ing. In the ozone dissolution modules 4 and 5, a part of the ozone divided into the pure water supplied from the pure water supply system 10 is dissolved. Undissolved ozone constituting the remainder of the part is discharged to the ozone discharge systems 6 and 7. Reference numeral 11 is a header pipe that joins the discharge system, 12 is a back pressure valve, 13 is an exhaust ozone decomposer, and 14 is an ozone water supply system.
[0008]
The ozone melting modules 4 and 5 are respectively the fuselages 41 and 51 into which pure water is introduced, the water chambers 42 and 52 at both ends thereof, and a small number in the figure, but in fact, a large number of PTFEs are arranged. It is constituted by thin tubes 43 and 53 made of porous hollow fibers, ozone inlets 44 and 54, exhaust ozone outlets 45 and 55, pure water inlets 46 and 56, ozone water outlets 47 and 57, and the like.
[0009]
The orifice 8 is determined so as to generate a resistance of, for example, about 50 R 1 or more as a sufficiently larger resistance, where R 1 is the resistance of ozone flowing through the ozone melting modules 4 and 5. The back pressure valve 12 is for increasing the pressure of ozone so that ozone is easily dissolved in the pure water in the ozone dissolution modules 4 and 5. For example, the ozone inlet pressure to the ozone dissolution modules 4 and 5 is 1 kgf / The value is set to (1-50R 1 ) in consideration of the total resistance 50R 1 so as to be cm 2 g. That is, the pressure on the upstream side of the back pressure valve 12 is set to be (1-50R 1 ). The exhaust ozone decomposer 13 incorporates an ozone decomposition catalyst such as manganese dioxide and decomposes undissolved ozone.
[0010]
The ozone water supply apparatus as described above is used as follows.
The common system 1 is supplied with a fixed amount of a mixed gas composed of about 15% high-concentration ozone generated from the electrolytic ozone generator and the remaining oxygen, and is supplied to two ozone melting modules 4 and 5 arranged in parallel. Divided. Although this mixed gas contains ozone at a substantially similar ratio in the subsequent flow, the present invention relates to ozone, and therefore the ozone in the mixed gas will be described below. In each of the ozone dissolution modules 4 and 5, about 75% of the ozone flowing in as a part of ozone is dissolved in pure water flowing in the narrow tubes 43 and 53, and the remaining about 25% of undissolved ozone is exhausted ozone. The gas is discharged from the outlets 45 and 55, enters the exhaust ozone decomposer 13 via the orifices 8 and 9, the header pipe 11 and the back pressure valve 12, and is decomposed into oxygen.
[0011]
FIG. 2 is a diagram illustrating the relationship between the ozone flow rate, the ozone passage resistance, and the pressure of each part. The horizontal axis X represents the ozone flow rate of the branch system, the ozone flow rate of the common system 1 when the ozone generator is operated under rated conditions is 100%, and the ozone flow rates of the branch systems 2 and 3 during normal operation are 50% respectively. %. Although the ozone flow rate decreases as it passes through the ozone dissolution module, the resistance of the ozone dissolution module and the orifice is shown based on the flow rate before passing.
[0012]
The horizontal axes X and X 1 in the figure and the curves A to E above them are as follows:
X axis; showing the flow rate of ozone and the set pressure of the back pressure valve 12, and therefore the pressure at the upstream position P 1 (FIG. 1). In this example, for the curves A to C, 0.5 kgf / For kg 2 g and curves D and E, it is 0.8 kgf / cm 2 g.
X 1 line; a line with a pressure of 0.8 kgf / cm 2 g from the X-axis, and a reference line for displaying the pressure scale of the portion beyond it by 10 times.
[0013]
A (solid line); indicates the pressure at the positions P2a and P2b upstream of the orifices 8 and 9, and 0.8 kgf / cm at 50% flow rate, which is the equal flow rate of the branch systems 2 and 3 with respect to 100% flow rate of the common system 2 g. Accordingly, the resistance of the orifice at this flow rate is 0.3 kgf / cm 2 when the base pressure of the X axis is subtracted. Note that the pressure scale 10 times above the X 1 line as described above. Therefore, the X 1 line is an inflection point. The same applies to the following B and C lines. The reason why the pressure scale is 10 times is to clearly show the difference between the lines A, B, and C.
[0014]
B (chain line): Indicates the pressure at the upstream position P3a of the ozone dissolution module 4 when the ozone dissolution module 4 has a normal resistance value of, for example, 0.005 kgf / cm 2 (5 mmAq) at the 50% flow rate. Therefore, the pressure at this point B 1 is 0.805 kgf / cm 2 g at a 50% flow rate.
[0015]
C (one-dot chain line); upstream position P3b of the ozone dissolution module 5 when the ozone dissolution module 5 has a resistance value that is twice as large as that of the normal time of 0.01 kgf / cm 2 at the 50% flow rate, for example. Indicates the pressure. Therefore, the pressure at this point C 1 is 0.810 kgf / cm 2 g at 50% flow rate.
[0016]
D (two-dot chain line): As a reference, in a conventional ozone water supply apparatus not provided with an orifice, the pressure at the point P3a when the ozone dissolution module 4 has a normal resistance of 0.005 kgf / cm 2 is shown. Under this condition, the reference pressure of X, that is, the pressure of the back pressure valve 12, is set to about 0.8 kgf / cm 2 g as indicated by () in the figure. Accordingly, at the 50% flow rate, the pressure at this point D 1 is 0.805 kgf / cm 2 g. Incidentally, the line D and the following E is indicated by 10-fold pressure scale on the X-axis as with the line A~C of X 1 line.
[0017]
E (two-dot chain line); the pressure at the point P3b when the ozone dissolution module 5 has a large resistance of 0.01 kgf / cm 2 under the above conditions. Also in this case, the back pressure valve 12 is set as high as about 0.8 kgf / cm 2 g. Therefore, at 50% flow rate, the pressure at this point E 1 is 0.81 kgf / cm 2 g.
[0018]
In the above pressure characteristics of the ozone system, even if the resistances of the ozone melting modules 4 and 5 are different from each other, the upstream positions P3a and P3b are the positions of the branch systems 2 and 3 branched from the same common system 1. These pressures will be the same. As a result, in the line B on the ozone dissolution module 4 side, the flow rate of the first 50% increases, and the point B 1 becomes the point B 2 position where the pressure has increased, while on the line C on the ozone dissolution module 5 side, The point C 1 becomes the point C 2 where the pressure is reduced. According to the calculation, the pressures at these points B 2 and C 2 are both about 0.807 kgf / cm 2 g, and the respective flow rates are about 49.5% and 50.5%. According to this result, even if a double resistance difference occurs in the ozone dissolution modules 4 and 5 due to the application of the present invention, only a slight flow rate difference of about ± 0.5% occurs in each branch system.
[0019]
On the other hand, in the lines D and E when the orifice is not provided, the point of D 1 becomes D 2 and the point of E 1 becomes E 2 in the same manner as in the above case. At the same pressure of about 0.807 kgf / cm 2 g, the respective flow rates become 58.6% and 41.4%, and a large flow rate difference of ± 8.6% occurs between the branch systems 2 and 3, respectively.
[0020]
As described above, if the present invention is applied, the difference in ozone flow rate can be sufficiently reduced even if a large imbalance occurs in the ozone flow resistance of the ozone melting modules 4 and 5. That is, in the present invention, the characteristics of the ozone supply system that is used by increasing the pressure with the back pressure valve are skillfully utilized, the pressure that is increased unnecessarily by the back pressure valve is reduced, and the resulting pressure is applied to each branch system. By using it as the resistance of the provided orifice, the flow rate difference based on the resistance difference of the ozone dissolution module between the branch systems can be made substantially uniform.
[0021]
On the other hand, the ozone dissolution efficiency in the ozone dissolution module does not increase much even if the flow rate decreases, assuming that the efficiency at the rated flow rate of ozone is 100%, and tends to decrease correspondingly when the flow rate increases. As a result, when the ozone flow rate is 50% ± 0.5% when the present invention is applied, the total ozone dissolution amount is about 99.5% or more compared to the case where both are 50%, but the present invention is not applied. When the ozone flow rate is 50% ± 8.7%, the total ozone dissolution amount decreases to about 95%. Therefore, by applying the present invention, even if the resistance of the ozone dissolution module becomes considerably large and unbalanced in each branch system, the amount of ozone dissolution is maintained, and the concentration of ozone water is always maintained within a satisfactory value. be able to.
[0022]
In the above, an example in which the resistance generating means is an orifice has been described. However, as the resistance generating means, various valves or the like that can provide sufficient resistance can be used.
[0023]
【The invention's effect】
As described above, according to the present invention, in the ozone water supply apparatus including a single ozone supply system, a plurality of branch systems, a plurality of ozone dissolution apparatuses, and a plurality of ozone discharge systems, the resistance of ozone flowing through the ozone dissolution apparatus. Since resistance generating means for generating a sufficiently large resistance is provided in each of the plurality of ozone discharge systems, the ozone passage resistance between them is large due to differences in operating conditions that are unavoidable among the plurality of ozone dissolving apparatuses. Even if a difference occurs, a resistance much larger than these resistances is added in the exhaust system. As a result, as the total resistance of the resistance of the ozone dissolving apparatus and the resistance of the resistance generating means, the ratio of the difference between the respective branch systems is greatly reduced.
[0024]
On the other hand, since the pressure of the single ozone supply system, which is the confluence of each branch system and the starting point, is the same, in fact, it is distributed to each branch system so that the resistance difference of each branch system is the same. The ozone flow rate will change. In this case, since such resistance is generally proportional to the square of the ozone flow rate, a flow rate difference corresponding to the 1/2 power of the resistance difference ratio is generated in order to make the total resistance of each branch system the same. become. According to the present invention, since the ratio of the resistance difference is reduced as described above, the ratio of the flow rate difference is further reduced. As a result, the amount of ozone flowing from the single supply system to the branch system is sufficiently equalized.
[0025]
For example, Q / 2, which is half the ozone flow rate Q flowing through a single supply system with two branch systems, flows to each branch system, and the resistance of the ozone dissolution module of the two branch system at that time is r and 2r, respectively. Assuming that the resistance R generated by the resistance generating means is 50r, the total resistance of each branch system is 51r and 52r, and the total resistance of both branch systems is changed by changing the ozone flow rate of each branch system. If the current value is 51.5r with the same value, the variation of each resistance value will be about ± 1%, and for 50% flow rate, it will be half of that ± 0.5%. The flow rate on the r side is 50.7% and the flow rate on the 2r side is 49.3%.
[0026]
Thus, when the ozone amount is equalized to a small flow rate difference, the amount of ozone dissolved in the pure water is also equalized, and the ozone water concentration can be maintained at a desired high concentration. And an ozone water supply apparatus with high supply capability is realizable.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of the overall configuration of an ozone water supply apparatus to which the present invention is applied.
FIG. 2 is a curve diagram showing the relationship between ozone pressure and flow rate in the apparatus.
FIG. 3 is an explanatory diagram showing an example of the overall configuration of a conventional ozone water supply apparatus.
[Explanation of symbols]
1 Common system (single ozone supply system)
2, 3 Branch system 4, 5 Ozone dissolution module (multiple ozone dissolution devices)
6, 7 Ozone discharge system 8, 9 Orifice (resistance generating means)

Claims (1)

単一のオゾン供給系と該オゾン供給系のオゾンが分流される複数の分岐系と該複数の分岐系のそれぞれに接続された複数のオゾン溶解装置であって該オゾン溶解装置に供給される純水に前記分流されたオゾンの一部分が溶解される複数のオゾン溶解装置と前記一部分の残部を成すオゾンが排出される複数のオゾン排出系とを備えたオゾン水供給装置において、
前記オゾン溶解装置を流れる前記分流されたオゾンの通過抵抗より大きい抵抗を発生させる抵抗発生手段としてオリフィス又は弁を前記複数のオゾン排出系のそれぞれに設けたことを特徴とするオゾン水供給装置。
A single ozone supply system, a plurality of branch systems into which ozone of the ozone supply system is diverted, and a plurality of ozone dissolvers connected to each of the plurality of branch systems, each of which is supplied to the ozone dissolver In an ozone water supply device comprising a plurality of ozone dissolving devices in which a part of the diverted ozone is dissolved in water and a plurality of ozone discharging systems in which ozone forming the remainder of the portion is discharged,
Ozone water supplying apparatus characterized in that provided in each of the orifices or valves of the plurality of ozone discharge system as a resistance generating means for generating a flow resistance greater than the resistance of the diverted ozone flowing through the ozone dissolution apparatus.
JP20631799A 1999-07-21 1999-07-21 Ozone water supply device with equalized branch system ozone flow rate Expired - Lifetime JP4228164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20631799A JP4228164B2 (en) 1999-07-21 1999-07-21 Ozone water supply device with equalized branch system ozone flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20631799A JP4228164B2 (en) 1999-07-21 1999-07-21 Ozone water supply device with equalized branch system ozone flow rate

Publications (2)

Publication Number Publication Date
JP2001031405A JP2001031405A (en) 2001-02-06
JP4228164B2 true JP4228164B2 (en) 2009-02-25

Family

ID=16521307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20631799A Expired - Lifetime JP4228164B2 (en) 1999-07-21 1999-07-21 Ozone water supply device with equalized branch system ozone flow rate

Country Status (1)

Country Link
JP (1) JP4228164B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025978B2 (en) * 2002-03-08 2007-12-26 株式会社ササクラ Ozone water supply device
JP6243778B2 (en) * 2014-03-28 2017-12-06 三相電機株式会社 Microbubble generator

Also Published As

Publication number Publication date
JP2001031405A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
KR100554777B1 (en) Pressure swing adsorption apparatus and method
US6402818B1 (en) Degassing a liquid with a membrane contactor
CA1321361C (en) Membrane unit turn-down control system
CA2270672A1 (en) Gas turbine fuel system comprising fuel oil distribution control system, fuel oil purge system, purging air supply system, and fuel nozzle wash system
JP4228164B2 (en) Ozone water supply device with equalized branch system ozone flow rate
JP3486207B2 (en) ATM communication system
US11040315B2 (en) Gas-dissolved liquid producing apparatus
US6884359B2 (en) Apparatus and method for controlling resistivity of ultra pure water
JPH08256163A (en) Self-routing crossbar switch suitable for use as switching structure of atm switch
JPS61153104A (en) Hollow yarn membrane cartridge for external pressure type filtration and method for washing hollow yarn membrane using sand cartridge
JP4718037B2 (en) Purging gas distributor
JPS6310529A (en) Cleaning equipment
JP2000070887A (en) Supply of pure water containing carbon dioxide gas dissolved therein, unit for supplying pure water containing carbon dioxide gas dissolved therein, and substrate processing apparatus equipped with the same
JPH09155170A (en) Gas absorbing apparatus
JP2004000878A (en) Fluid mixing apparatus
JP2002126481A (en) Ozonized water manufacturing apparatus
JP4245714B2 (en) Exhaust switching device
JP3623152B2 (en) Pressure swing adsorption device
CN218295342U (en) Electric propulsion anode gas distributor
JPH0994449A (en) Gas liquid contact reactor
JPS588283B2 (en) Mixed gas separation equipment
JPH02226669A (en) Fuel cell device
JPH0615270A (en) Water producing apparatus by reverse osmosis
JP2006021149A (en) Method and apparatus for supplying gas
JPH02131112A (en) Gas concentration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081014

TRDD Decision of grant or rejection written
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Ref document number: 4228164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term