JP2004336968A - ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法 - Google Patents

ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法 Download PDF

Info

Publication number
JP2004336968A
JP2004336968A JP2003133270A JP2003133270A JP2004336968A JP 2004336968 A JP2004336968 A JP 2004336968A JP 2003133270 A JP2003133270 A JP 2003133270A JP 2003133270 A JP2003133270 A JP 2003133270A JP 2004336968 A JP2004336968 A JP 2004336968A
Authority
JP
Japan
Prior art keywords
rotor
bearingless motor
permanent magnet
motor according
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003133270A
Other languages
English (en)
Other versions
JP3854998B2 (ja
Inventor
Shinshiyo Takemoto
真紹 竹本
Tadashi Fukao
正 深尾
Akira Chiba
明 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2003133270A priority Critical patent/JP3854998B2/ja
Publication of JP2004336968A publication Critical patent/JP2004336968A/ja
Application granted granted Critical
Publication of JP3854998B2 publication Critical patent/JP3854998B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】回転子と固定子との間に所定のギャップ長を有するベアリングレスモータにおいて、磁気的な線形性を維持しつつも回転子を磁気支持する支持力を効率よく発生できるベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法を実現する。
【解決手段】回転子1と固定子2とがギャップを介して対面するベアリングレスモータは、周縁に突極31、32、33および34が周設される回転子1の突極間に、磁極の極性の向きがこの回転子の半径方向に向かって互いに逆向きになるように、かつ、回転方向に沿って隣接するように設置される永久磁石3の組を備える。また、ベアリングレスモータの回転子位置制御回路は、固定子2に設けられた界磁巻線に流すべき正の界磁電流を制御する電流制御回路を備えてなる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、回転子を回転駆動する電動機機能と、回転子の半径方向の位置を制御する磁気軸受機能とを有するベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法に関し、特に永久磁石型ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法に関する。
【0002】
【従来の技術】
電動機の高速化、高出力化、メンテナンスフリー化といった要求に応えるために、1つの固定子に電動機巻線および支持巻線(すなわち位置制御巻線)の2種類の巻線を備えることで、回転子を回転駆動する電動機機能と、回転子の半径方向の位置を制御する磁気軸受機能とを磁気的に一体化したベアリングレスモータが研究開発されている。ベアリングレスモータでは、回転子を回転駆動する磁界を、磁気軸受の励磁磁界として利用するので、モータの小型化が容易である。
【0003】
一般にベアリングレスモータは、内側に回転子が、外側には固定子が、対面して設けられており、回転子と固定子との間には、非接触を保つためのギャップが設けられている。
【0004】
永久磁石型ベアリングレスモータでは、その回転子の構造から、回転子の円周に永久磁石を貼り付けた表面貼付型(SPM型:Surface Permanent Magnet Type)、SPM型の極間に突極を形成したInset型、永久磁石を回転子表面に浅く埋め込んだ埋込永久磁石型(SBPM型:Shallowly−Buried Permanent Magnet Type)、永久磁石を回転子表面から深く埋め込んだ埋込永久磁石型(DBPM型:Deeply−Buried Permanent Magnet Type、あるいは単にIPM型:Interior Permanent Magnet Typeとも称する)などに分類される(例えば、非特許文献1参照)。
【0005】
ここで、従来例として、n極電動機構造およびn−2極支持構造を有する埋込永久磁石型ベアリングレスモータ(以下、「IPM型ベアリングレスモータ」と称する)のうち、4極電動機構造および2極支持構造を有するIPM型ベアリングレスモータの動作原理について説明する(例えば、非特許文献2参照)。
【0006】
図12は、従来例によるIPM型ベアリングレスモータの支持力の発生原理を説明する図であり、図13は、従来例によるIPM型ベアリングレスモータのトルク磁束の発生原理を説明する図である。
【0007】
図12および13に示した固定子の各巻線は、それぞれの実際の巻線に3相2相変換を行い、そして固定子座標上から回転子座標上にdq座標変換を施したものである。4極の電動機巻線のd軸(界磁)巻線をN4d、q軸(トルク)巻線をN4q、それぞれに対応する軸を4d軸および4q軸とする。また、2極の支持巻線のd軸巻線をN2d、q軸巻線をN2q、それぞれに対応する軸を2d軸および2q軸とする。ここで、支持巻線の2d軸および2q軸の配置については、2d軸が電動機巻線の4d軸に重なるように規定する。また、座標軸i、jは回転子上の直交座標であり、i軸は支持巻線の2d軸に、j軸は2q軸に重なるように配置される。また、回転子を参照符号1、固定子を参照符号2で示す。永久磁石3付近には空隙21が設けられる。
【0008】
まず、図12を参照して、トルク無負荷時におけるi軸正の方向の支持力の発生原理について説明する。
【0009】
支持巻線N2dに電流i2dを図に示す向きに流すと、破線で示される2極の支持磁束Ψ2dが発生する。この支持磁束Ψ2dと4極の永久磁石が発生する界磁磁束Ψ4mによりi軸正側では互いに磁束は強め合い、i軸負側では弱め合う。このように磁束の強弱(磁束の不平衡)が生じることで、磁束が強め合うi軸正の方向に、回転子1のシャフト(図示せず)を磁気支持するのに必要な支持力Fが発生する。このように、支持巻線N2dに流す電流i2dを適切に制御することで回転子1の半径方向の位置を制御する。
【0010】
次に、図13を参照して、トルク磁束の発生原理について説明する。
【0011】
トルク巻線N4qにトルク電流i4qを図に示す向きに流すと、実線で示される4極のトルク磁束Ψ4qが発生する。このように、トルク巻線N4qに流すトルク電流i4qを適切に制御することで、回転子1を回転駆動するためのトルクを制御する。
【0012】
【非特許文献1】
武田、外3名、「埋込磁石同期モータの設計と制御」、第1版、株式
会社オーム社、2001年10月、p.4−5
【非特許文献2】
応用面から見たリラクタンストルク応用電動機の開発動向調査専門委員会、「応用面から見たリラクタンストルク応用電動機の開発動向」、電気学会技術報告、社団法人電気学会、2001年5月、第833
号、p.3
【0013】
【発明が解決しようとする課題】
上述の4極電動機構造および2極支持構造を有するIPM型ベアリングレスモータを含むn極電動機構造およびn−2極支持構造を有するIPM型ベアリングレスモータでは、図12に示すように、支持磁束は、真空と同じ透磁率を有する磁気抵抗の大きな永久磁石3を貫く。このため、支持巻線の起磁力に対して有効に支持磁束を発生することができず、支持力も有効に出力することができない。すなわち、支持磁束の磁路上に永久磁石が存在することが原因で、支持磁束を有効に発生することができないという問題がある。
【0014】
永久磁石の厚みを増加させることで界磁磁束を強くすることは可能である。しかし、永久磁石の厚みの増加に伴い磁石の磁気抵抗が大きくなるので、支持磁束が界磁磁束の増加以上に減少し、結果として支持力は逆に小さくなる。この結果、従来のn極電動機構造およびn−2極支持構造を有するIPM型ベアリングレスモータでは、厚さの薄い永久磁石しか使用できないため、永久磁石の不可逆減磁が生じやすい。そして、支持力だけでなく出力できるトルクも小さくなってしまう。
【0015】
特に、ベアリングレスモータの非接触、無潤滑、メンテナンスフリー、小型化といった特長を最大限に利用するキャンドポンプや人工心臓といった用途では、ベアリングレスモータは、回転中に流体がギャップへ流れ込むことができるように幅広いギャップ長を有するので、もともと支持磁束が発生しづらく、支持力も出力しづらい。したがって、このような用途では、上記問題を解決することが特に重要である。
【0016】
一方、トルク磁束に関しては、図13に示すように、電動機トルク巻線N4qにトルク電流i4qが流れることによって発生するトルク磁束Ψ4qも永久磁石3を貫かないので、支持磁束だけでなくトルク磁束も非常に発生しやすい。すなわち、幅広いギャップ長を有するIPM型ベアリングレスモータでは特に問題はないが、研削スピンドルやターボ分子ポンプでの用途のように一般的なギャップ長を有するようなIPM型ベアリングレスモータでは大きなトルク磁束が発生することになり、この大きなトルク磁束によってもたらされる磁気飽和の影響によって支持磁束が減少してしまう。このような支持磁束の減少は支持力の減少につながる。このように、ベアリングレスモータにおける磁気飽和の発生は、回転子の位置制御を困難なものにするという問題をもたらす。このように、トルク磁束に起因する磁気飽和は、支持磁束の線形性の維持を困難にするという問題がある。
【0017】
従って本発明の目的は、上記問題に鑑み、回転子と固定子との間に所定のギャップ長を有するベアリングレスモータにおいて、磁気的な線形性を維持するとともに回転子を磁気支持する支持力を効率よく発生できるベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を実現するために、本発明においては、各磁束の磁路に関して次の3つの条件に従うように永久磁石を回転子上に配置する。
【0019】
まず第1の条件として、支持磁束を有効に発生させるために、支持磁束の磁路上には永久磁石を配置しない。
【0020】
次に第2の条件として、トルク磁束に起因する磁気飽和を発生させないために、トルク磁束の磁路上に厚い永久磁石を配置し、トルク磁束を遮断する。
【0021】
そして第3の条件として、支持磁束の磁路上の線形性を常に確保するために、トルク磁束および支持磁束の各磁路を分離する。
【0022】
一般に永久磁石型モータでは、永久磁石がトルクの発生に一番貢献するので、例えば図12および13に示した従来のIPM型ベアリングレスモータの場合もそうであったように、回転子の周縁のほぼ全体にわたって永久磁石を配置していた。しかし、本発明によるベアリングレスモータでは、永久磁石を、磁極を特定の向きにして特定の位置に配置することで、上記3つの条件を満足するベアリングレスモータを実現する。
【0023】
すなわち、本発明においては、回転子と固定子とがギャップを介して対面するベアリングレスモータは、周縁に突極が周設される回転子の突極間に、磁極の極性の向きがこの回転子の半径方向に向かって互いに逆向きになるように、かつ、回転方向に沿って隣接するように設置される永久磁石の組を備える。
【0024】
また、本発明によるベアリングレスモータの回転子位置制御回路は、固定子に設けられた界磁巻線に流すべき正の界磁電流を制御する電流制御回路を備えてなる。これにより、界磁巻線に正の界磁電流を流すことによって生じるバイアス磁束を、固定子に設けられた支持巻線に電流が流れることによって生じる平衡の支持磁束に重畳させることで磁束の不平衡を発生させ、回転子を磁気支持するための支持力を生成する。
【0025】
本発明によれば、回転子と固定子との間に所定のギャップ長を有するベアリングレスモータにおいて、磁気的な線形性を維持するとともに回転子を磁気支持する支持力を効率よく発生することができる。
【0026】
【発明の実施の形態】
本発明の実施例として、4極電動機構造および2極支持構造を有するベアリングレスモータについて説明する。なお、本発明によるベアリングレスモータは、n極電動機構造およびn±2極支持構造を有するものとして実現することができる。
【0027】
図1は、本発明の実施例によるベアリングレスモータの回転子構造を示す、回転子の回転軸に直交する断面図である。
【0028】
図1に示すように、本実施例による4極電動機構造および2極支持構造を有するベアリングレスモータにおける回転子1は、周縁に4個の突極31、32、33および34が周設される。参照符号11は回転子1のシャフトを示す。
【0029】
各突極間には、それぞれ2個ずつ永久磁石3が配置される。各突極間におけるこれら2個の永久磁石3は、磁極の極性の向きがこの回転子1の半径方向に向かって互いに逆向きになるように、かつ、回転方向に沿って隣接するように設置される。本実施例では、回転子1の回転軸に直交する永久磁石断面は、回転子の外周に沿う弧を有する扇形状である。
【0030】
本実施例では、回転子1の円周方向に永久磁石3がずれてしまうことを防ぐため、隣接する永久磁石間はケイ素鋼板などの磁性体で構成され、各永久磁石が固定される。また、回転子1が回転することにより生じる遠心力により各永久磁石3が半径方向外向きに飛散することを防ぐため、回転子1の各突極間に永久磁石3を固定するための磁性体からなる固定部材5を、回転子1の外周に設ける。なお、代替例として、回転子1に穴構造を設けて、その穴構造に永久磁石を挿嵌して固定する構造にすれば、上述の隣接する永久磁石3間の円周方向の固定、および、半径方向の固定を同時に実現することも可能である。
【0031】
図2は、本発明の実施例によるベアリングレスモータの回転子構造および巻線配置を説明する、回転子の回転軸に直交する断面図である。
【0032】
図2に示す固定子の各巻線は、3相ベアリングレスモータにおいて、それぞれの実際の巻線に3相2相変換を行い、そして固定子座標上から回転子座標上にdq座標変換を施したものである。なお、実際の固定子巻線構造では、例えば24スロットなど36スロットなどを有する固定子の各スロットに各巻線が格納されたものであるが、本明細書では、理解を容易にするために、図2のようなdq座標平面上で説明する。4極の電動機巻線のd軸(界磁)巻線をN4d、q軸(トルク)巻線をN4q、それぞれに対応する軸を4d軸および4q軸とする。また、2極の支持巻線のd軸巻線をN2d、q軸巻線をN2q、それぞれに対応する軸を2d軸および2q軸とする。ここで、支持巻線の2d軸および2q軸を、2d軸が電動機巻線の4d軸に重なるように設定する。また、座標軸i、jは回転子上の直交座標であり、i軸は支持巻線の2d軸に、j軸は2q軸に重なるように配置される。また、回転子を参照符号1、固定子を参照符号2、4極の突極を参照符号31、32、33および34で示す。これらは、図4についても同様である。
【0033】
図2に示すように、突極間に存在する4つの凹部には、それぞれ2つずつ永久磁石3が配置される。突極間に存在する各凹部におけるこれら2個の永久磁石3は、磁極の極性の向きがこの回転子1の半径方向に向かって互いに逆向きになるように、かつ、回転方向に沿って隣接するように設置される。このように永久磁石3を配置することで、永久磁石3が発生する磁束Ψ4mは、図2の点線のように、隣接する2つの永久磁石3を通るように磁路を形成する。ベアリングレスモータ全体としては4極の磁場を形成する。本発明によるベアリングレスモータでは、n極電動機構造およびn±2極支持構造を有する場合、n極の磁場が形成される。
【0034】
図3は、本発明の実施例によるベアリングレスモータにおいて永久磁石が発生する磁界の二次元有限要素磁場解析によるシミュレーション結果を例示する図である。
【0035】
この図3では、回転子1の回転軸に直交する断面図に、永久磁石3による磁束Ψ4mの磁束分布が示されており、固定子巻線電流をゼロとしたときの永久磁石3による磁路が点線で示されている。なお、図中、スロットは参照符号Sで示されており、このスロットに各巻線が格納される。
【0036】
図3から、永久磁石から回転子の突極31および32を通って漏れる漏れ磁束は非常に少なく、また磁束Ψ4mは、図2を参照して説明したように、隣接する2つの永久磁石3だけを通るように閉磁路を形成することが確認できる。
【0037】
このように、本実施例のベアリングレスモータは、一般的な永久磁石モータとは異なり、界磁巻線のd軸インダクタンスL4d>トルク巻線のq軸インダクタンスL4qという正の突極性を有し、永久磁石モータとして考えた場合の4d軸および4q軸と、シンクロナスリラクタンスモータとして考えた場合の4d軸および4q軸とが一致する。
【0038】
そして、4q軸(トルク)巻線N4qに流れる電流i4qによって発生するトルク磁束Ψ4q(図2中、点線部分参照)による磁気飽和を生じさせないために、トルク磁束の磁路上に厚い永久磁石3を配置し、トルク磁束を遮断もしくは低減する構造となっていることも確認できる。
【0039】
次に、本発明の実施例によるベアリングレスモータの支持力の発生原理について説明する。
【0040】
図4は、本発明の実施例によるベアリングレスモータの支持力の発生原理を説明する、回転子の回転軸に直交する断面図である。
【0041】
図12および13を参照して既に説明したように、一般の永久磁石型ベアリングレスモータでは、永久磁石3によって発生する磁束Ψ4mをバイアス磁束とし、支持磁束Ψ2dに重ね合わせることで、能動的に磁束の不均衡を生じさせて支持力Fを発生させていた。
【0042】
しかし本実施例では、図2および3を参照して既に説明したように、永久磁石3によって発生する磁束Ψ4mは、回転子1の突極31、32、33および34を通らないので、従来のようにバイアス磁束として磁束Ψ4mを利用することはできない。
【0043】
そこで本実施例では、界磁巻線N4dに正の界磁電流i4dを流すことによって発生する磁束Ψ4dを、従来例における永久磁石によって発生する磁束Ψ4mに代えて、バイアス磁束として利用する。
【0044】
図4に示すように、支持巻線N2dに電流i2dを流すと、支持磁束Ψ2dが回転子1の突極31および33を通る2極の磁路形状で発生する。図4からわかるように、本実施例によるベアリングレスモータでは、支持磁束Ψ2dの磁路上に永久磁石3が存在しないため、支持巻線N2dの起磁力に対して支持磁束Ψ2dを有効に発生することができる。
【0045】
例えば、図4に示す向き(これを「正の向き」とする)に支持巻線N2dに電流i2dを流す場合、界磁巻線N4dに正の界磁電流i4dを流すと、突極31のギャップ付近では磁束Ψ4dと磁束Ψ2dとが同じ向きで強め合うのに対し、突極33のギャップ付近では磁束Ψ4dと磁束Ψ2dとが逆向きなので弱め合う。したがって、回転子1にはi軸正方向に支持力Fが作用することになる。
【0046】
一方、支持巻線N2dに負の向きに電流i2dを流す場合、界磁巻線N4dに正の界磁電流i4dを流すと、突極31のギャップ付近では磁束Ψ4dと磁束Ψ2dとが逆向きで弱め合うのに対し、突極33のギャップ付近では磁束Ψ4dと磁束Ψ2dとが同じ向きなので強め合う。したがって、回転子1にはi軸負方向に支持力Fが作用することになる。
【0047】
同様に、j軸正方向もしくは負方向に支持力Fを発生させるためには、支持巻線N2q(図4では図示せず)に、電流i2qを正負いずれかの方向に流せばよい。
【0048】
本実施例によるベアリングレスモータの回転子位置制御回路では、界磁巻線N4dに正の界磁電流i4dを流すとともに、支持巻線N2dおよびN2qに流す電流i2dおよびi2qの大きさおよび向きを適切に制御することで、回転子1を磁気支持する支持力Fを所望の向きに発生させ、回転子1の半径方向の位置を制御する。
【0049】
ここで、本発明の実施例によるベアリングレスモータの特性について説明する。
【0050】
図5は、本発明の実施例によるベアリングレスモータにおける界磁電流とトルクおよび支持力との関係を示す図であり、(a)は、界磁電流とトルクとの関係を示し、(b)は、界磁電流と支持力との関係を示す。
【0051】
この図は、本発明の実施例によるベアリングレスモータと、図12の従来の一般的な逆突極性を有する永久磁石モータと、のトルク特性および支持力特性に関する二次元有限要素磁場解析のシミュレーション結果を示している。シミュレーションでは、電動機電流を一定とし、界磁電流i4dを変化させたときのトルクTおよび支持力Fの変化を計算した。ここで、電動機電流の大きさは、界磁電流i4dとトルク電流i4qとをベクトル合成することによって得られる。すなわち、電動機電流は、界磁電流i4dの2乗とトルク電流i4qの2乗との和の平方根となる。また、支持力特性の解析では、支持電流i2qおよびトルク電流i4qをともに0アンペアとし、支持電流i2dを一定の定格値とした。
【0052】
従来の逆突極性を有するIPM型ベアリングレスモータは、負の界磁電流i4dを流す弱め界磁制御を行うと、図5(a)に示すように正のリラクタンストルクを発生し、トルク特性は向上する。しかし、負の界磁電流i4dは負の界磁磁束を発生するため、図5(b)に示すように支持力Fは減少し、支持力特性は悪化する。すなわち、逆突極性を有するIPM型ベアリングレスモータには、界磁電流i4dに対してトルクと支持力との間にトレードオフの関係がある。
【0053】
これに対し、本発明の実施例によるベアリングレスモータは、図4を参照して既に説明したように、支持力Fiを発生するためには正の界磁電流i4dを必要とする。回転子が、界磁巻線のd軸インダクタンスL4d>トルク巻線のq軸インダクタンスL4qという正の突極性を有することから、図5(a)に示すように正のリラクタンストルクを発生し、トルク特性が向上する。また同時に図5(b)に示すように支持力Fは増加する。すなわち、本発明の実施例によるベアリングレスモータには、界磁電流i4dに対してトルクと支持力との間にトレードオフの関係にないことがわかる。
【0054】
このように、本発明の実施例によるベアリングレスモータは、従来のIPM型ベアリングレスモータと異なり、正の電動機界磁電流を、トルク特性の向上および支持力特性の向上に有効に利用できる構造であるといえる。この構造により、従来のIPM型ベアリングレスモータでは困難であった積極的な界磁電流制御を行うことが可能となり、電動機効率が向上する。
【0055】
図6は、本発明の実施例によるベアリングレスモータにおける界磁電流と磁束密度との関係を示す図である。
【0056】
図6では、図3に示した点a、b、c、dおよびeの5点における磁束密度B、B、B、BおよびBのトルク電流i4qに対する変化を、二次元有限要素磁場解析のシミュレーション結果を示している。なお、磁束密度BとBとの平均値をBbcとする。シミュレーションでは、界磁電流i4dを一定とし、電流i2d、i2qを0アンペア一定とした。
【0057】
図3のトルク磁束Ψ4qの磁路上にある点dの磁束密度Bは、トルク電流i4qの増加と共に増加しているが、永久磁石3の磁束Ψ4mによってもともと磁気飽和が発生している上に、永久磁石3によってトルク磁束Ψ4qは遮断されているため、その増加は緩やかである。
【0058】
一方、支持磁束Ψ2dの磁路上にある点bの磁束密度Bはトルク電流i4qの増加と共に増加しているが、点cの磁束密度Bは逆に減少しているので、2点bおよびcの磁束密度の平均値であるBbcは、トルク電流i4qの増加に対して線形領域内で一定値を維持している。このことから、支持磁束の磁路上で最も磁気飽和が発生しやすい回転子突極や固定子歯部の線形性が、トルク電流i4qに対して確保できていることがわかる。磁束密度が一定値ということは、トルク磁束Ψ4qを変化させても界磁電流i4dによる界磁磁束Ψ4dが一定値であることを意味するので、界磁磁束Ψ4dとトルク磁束Ψ4qとが重なり合う固定子ヨーク部など界磁磁束Ψ4dの磁路全体で線形性が確保できていることがわかる。したがって、図4に示すように、支持磁束Ψ2dと界磁磁束Ψ4dは同じ磁路を共有することから、支持磁束の磁路全体でもトルク電流i4qに対して線形性が確保できている。すなわち、トルク磁束Ψ4qおよび支持磁束Ψ2dの各磁路が分離できている。
【0059】
以上説明したように、本発明の実施例によれば、回転子と固定子とがギャップを介して対面するベアリングレスモータにおいて、支持磁束を有効に発生し、トルク磁束に起因する磁気飽和は発生せず、さらには支持磁束の磁路上の線形性が常に確保される。したがって、回転子を磁気支持する支持力を効率よく発生することができる。
【0060】
また、本発明の実施例によるベアリングレスモータは、従来のIPM型ベアリングレスモータと異なり、正の電動機界磁電流を、トルク特性の向上および支持力特性の向上に有効に利用できる構造であるので、従来のIPM型ベアリングレスモータでは困難であった積極的な界磁電流制御を行うことが可能となり、電動機効率が向上する。
【0061】
なお、上述の本発明の実施例では、回転子の回転軸に直交する永久磁石断面が、回転子の外周に沿う弧を有する扇形状であったが、その他の形状であってもよく、例えば方形状、多角形状、円形状、楕円形状などでもよい。ここではその一例を示す。
【0062】
図7は、本発明の実施例によるベアリングレスモータの、回転子の回転軸に直交する永久磁石断面の形状の変形例を例示する断面図である。
【0063】
本変形例では、回転子1の回転軸に直交する永久磁石断面を長方形とする。市販されている永久磁石の断面の形状は、長方形などの方形状のものが多い。方形状は、既に説明した扇形状の永久磁石に比べれば漏れ磁束の点で若干特性が劣るものの実用上それほど影響はないので、ベアリングレスモータの用途などを考慮して断面が方形状の永久磁石3を適宜利用すれば、製造コストをさらに抑えることも可能である。方形状の例としては、図7に示した長方形の他に、例えば正方形、台形などがある。
【0064】
上述の本発明の実施例では、隣接する永久磁石間は、ケイ素鋼板などの磁性体で構成されるが、これ以外の構造を有してもよい。ここではその一例を示す。
【0065】
図8は、本発明の実施例によるベアリングレスモータにおける、隣接する永久磁石間における構造の変形例を示す、回転子の回転軸に直交する断面図である。
【0066】
本変形例では、隣接して設置された永久磁石3の間に、空隙21を備える。図7では、永久磁石断面の形状を長方形としているが、図8(a)もしくは(b)に示すように、これら隣接する永久磁石3の間に空隙21を設ける。永久磁石断面がどのような形状であっても、空隙を設けることは可能である。空隙21を設けることで、トルク磁束の遮断効果および漏れ磁束の低減効果が向上する。なお、図8(a)および(b)に示した空隙の形状は一例であって、その他の形状であってもよい。
【0067】
また、上述の本発明の実施例では、隣接する永久磁石間はケイ素鋼板などの磁性体で構成されるとともに、回転子1の各突極間に永久磁石3を固定するための固定部材を、回転子の外周に設けた構造を有しているが、これ以外の構造を有してもよい。ここではその一例を示す。
【0068】
図9は、本発明の実施例によるベアリングレスモータにおける、永久磁石を回転子に固定する構造の変形例を示す、回転子の回転軸に直交する断面図である。
【0069】
図9(a)では、隣接する永久磁石間を非磁性体22で構成するとともに、固定子の各突極間に永久磁石3を固定するために回転子1の外周に設けられる固定部材についても非磁性体22で構成する。
【0070】
図9(b)では、隣接する永久磁石間は空隙を設けるとともに、回転子1の各突極間に永久磁石3を固定するために回転子1の外周に設けられる固定部材については非磁性体22で構成する。ここでは、非磁性体からなる固定部材は、永久磁石の弧に接する部分のみ設けられる。
【0071】
図9(c)では、上述の図9(b)の場合と同様に、隣接する永久磁石間は空隙を設けるとともに、回転子1の各突極間に永久磁石を固定するために回転子1の外周に設けられる固定部材については非磁性体22で構成する。ただし、非磁性体からなる固定部材は、回転子1の外周全周にわたって設けられる。
【0072】
図10は、本発明の実施例によるベアリングレスモータの回転子に配置される永久磁石の変形例を示す、回転子の回転軸に直交する断面図である。
【0073】
永久磁石の形状のさらなる変形として、永久磁石3それぞれが、磁極の極性の向きが半径方向に向かって同じ向きになるように外周に沿って隣接して設置された永久磁石片4の集合からなる。すなわち、上述の図1に示された永久磁石を半径方向に沿って分割したような構造である。
【0074】
例えば、市販の永久磁石を利用して本発明によるベアリングレスモータを実現しようとするときに、実現すべきベアリングレスモータが市販の永久磁石よりも大き過ぎるような場合は、これら永久磁石を永久磁石片4として、磁極の極性の向きが半径方向に向かって同じ向きになるように外周に沿って隣接して設置することで、上述の図1に示された単体の永久磁石の場合と同様の効果を得ることができる。
【0075】
なお、上述の図7〜9を参照して説明した各変形例を図10の変形例に適宜組み合わせて実現してもよい。
【0076】
以上、本発明の実施例として、4極電動機構造および2極支持構造を有するベアリングレスモータについて説明したが、本発明によるベアリングレスモータは、n極電動機構造およびn±2極支持構造を有するものとして実現することができる。ここでは一例として、6極電動機構造および4極支持構造を有するベアリングレスモータの回転子および固定子の構造について簡単に説明する。
【0077】
図11は、本発明を6極電動機構造および4極支持構造を有するベアリングレスモータに適用した場合の回転子構造および巻線配置を説明する、回転子の回転軸に直交する断面図である。
【0078】
図11に示す固定子の各巻線は、上述の実施例と同様に、3相ベアリングレスモータにおいて、それぞれの巻線に3相2相変換を行い、そして固定子座標上から回転子座標上にdq座標変換を施したものである。
【0079】
本発明を6極電動機構造および4極支持構造を有するベアリングレスモータに適用した場合、回転子1は、周縁に6個の突極31、32、33、34、35および36を有する。
【0080】
各突極間には、それぞれ2つずつ永久磁石3が配置される。各突極間におけるこれら2個の永久磁石3は、磁極の極性の向きがこの回転子1の半径方向に向かって互いに逆向きになるように、かつ、回転方向に沿って隣接するように設置される。本実施例では、回転子の回転軸に直交する永久磁石断面は、回転子1の外周に沿う弧を有する扇形状である。ベアリングレスモータ全体としては6極の磁場が形成される。
【0081】
6極の電動機巻線のd軸(界磁)巻線をN6d、q軸(トルク)巻線をN6q、それぞれに対応する軸を6d軸および6q軸とする。また、4極の支持巻線のd軸巻線をN4d、q軸巻線をN4q、それぞれに対応する軸を4d軸および4q軸とする。ここで、支持巻線の4d軸および4q軸を、4d軸が電動機巻線の6d軸に重なるように設定する。また、座標軸i、jは回転子上の直交座標であり、i軸は支持巻線の4d軸に重なるように配置される。
【0082】
なお、上述の図7〜10を参照して説明した各変形例を、図11に示した6極電動機構造および4極支持構造を有するベアリングレスモータに適宜組み合わせて実現してもよい。
【0083】
【発明の効果】
以上説明したように、本発明によれば、回転子と固定子とがギャップを介して対面するベアリングレスモータにおいて、支持磁束を有効に発生し、トルク磁束に起因する磁気飽和は発生せず、さらには支持磁束の磁路上の線形性が常に確保される。したがって、回転子を磁気支持する支持力を効率よく発生することができる。
【0084】
また、本発明によるベアリングレスモータは、従来のIPM型ベアリングレスモータと異なり、正の突極性を有する。したがって、正の電動機界磁電流を、トルク特性の向上および支持力特性の向上に有効に利用できる構造であるので、従来のIPM型ベアリングレスモータでは困難であった積極的な界磁電流制御を行うことが可能となり、電動機効率が向上する。
【0085】
本発明によるベアリングレスモータの具体的な適用例としては、遠心分離機、スピンドルドライブ、光ディスク、磁気ディスク、ハードディスクドライブ、フライホイール、ターボ分子ポンプ、コンプレッサ、ブロワ、ファン、ポンプ、キャンドポンプ、浄水用遠心ポンプ、埋込形人工心臓、危険ガス移送機、粉化機、半導体製造装置、回転ステージ、揺動ステージ、多段発電機、および、人工衛星などの真空中で使用するモータドライブなどがある。
【図面の簡単な説明】
【図1】本発明の実施例によるベアリングレスモータの回転子構造を示す、回転子の回転軸に直交する断面図である。
【図2】本発明の実施例によるベアリングレスモータの回転子構造および巻線配置を説明する、回転子の回転軸に直交する断面図である。
【図3】本発明の実施例によるベアリングレスモータにおいて永久磁石が発生する磁界の二次元有限要素磁場解析によるシミュレーション結果を例示する図である。
【図4】本発明の実施例によるベアリングレスモータの支持力の発生原理を説明する、回転子の回転軸に直交する断面図である。
【図5】本発明の実施例によるベアリングレスモータにおける界磁電流とトルクおよび支持力との関係を示す図であり、(a)は、界磁電流とトルクとの関係を示し、(b)は、界磁電流と支持力との関係を示す。
【図6】本発明の実施例によるベアリングレスモータにおける界磁電流と磁束密度との関係を示す図である。
【図7】本発明の実施例によるベアリングレスモータの、回転子の回転軸に直交する永久磁石断面の形状の変形例を例示する断面図である。
【図8】本発明の実施例によるベアリングレスモータにおける、隣接する永久磁石間における構造の変形例を示す、回転子の回転軸に直交する断面図である。
【図9】本発明の実施例によるベアリングレスモータにおける、永久磁石を回転子に固定する構造の変形例を示す、回転子の回転軸に直交する断面図である。
【図10】本発明の実施例によるベアリングレスモータの固定子に配置される永久磁石の変形例を示す、回転子の回転軸に直交する断面図である。
【図11】本発明を6極電動機構造および4極支持構造を有するベアリングレスモータに適用した場合の回転子構造および巻線配置を説明する、回転子の回転軸に直交する断面図である。
【図12】従来例によるIPM型ベアリングレスモータの支持力の発生原理を説明する図である。
【図13】従来例によるIPM型ベアリングレスモータのトルク磁束の発生原理を説明する図である。
【符号の説明】
1…回転子
2…固定子
3…永久磁石
4…永久磁石片
11…回転子シャフト
21…空隙
22…非磁性体
31、32、33、34、35、36…突極

Claims (16)

  1. 回転子と固定子とがギャップを介して対面するベアリングレスモータであって、
    周縁に突極が周設される前記回転子の前記突極間に、磁極の極性の向きが該回転子の半径方向に向かって互いに逆向きになるように、かつ、回転方向に沿って隣接するように設置される永久磁石の組を備えることを特徴とするベアリングレスモータ。
  2. 前記隣接して設置された前記永久磁石の間に、少なくとも空隙を備える請求項1に記載のベアリングレスモータ。
  3. 前記隣接して設置された前記永久磁石の間に、少なくとも非磁性体部材を備える請求項1に記載のベアリングレスモータ。
  4. 前記回転子の外周縁に、前記隣接して設置された永久磁石を前記突極間に固定する固定部材を備える請求項1に記載のベアリングレスモータ。
  5. 前記固定部材は、非磁性体からなる請求項4に記載のベアリングレスモータ。
  6. 前記永久磁石は、前記回転子の回転軸に直交する永久磁石断面が、方形状である請求項1に記載のベアリングレスモータ。
  7. 前記永久磁石は、前記回転子の回転軸に直交する永久磁石断面が、前記回転子の外周に沿う弧を有する扇形状である請求項1に記載のベアリングレスモータ。
  8. 各前記永久磁石は、磁極の極性の向きが前記半径方向に向かって同じ向きになるように外周に沿って隣接して設置された永久磁石片の集合からなる請求項1に記載のベアリングレスモータ。
  9. 隣接して設置された前記永久磁石片の間に、少なくとも空隙を備える請求項8に記載のベアリングレスモータ。
  10. 隣接して設置された前記永久磁石片の間に、少なくとも非磁性体部材を備える請求項8に記載のベアリングレスモータ。
  11. 前記永久磁石片は、前記回転子の回転軸に直交する永久磁石断面が、方形状である請求項8に記載のベアリングレスモータ。
  12. 前記永久磁石片は、前記回転子の回転軸に直交する永久磁石断面が、前記回転子の外周に沿う弧を有する扇形状である請求項8に記載のベアリングレスモータ。
  13. 請求項1に記載のベアリングレスモータの回転子位置制御回路であって、前記固定子に設けられた界磁巻線に流すべき正の界磁電流を制御する電流制御回路を備えてなることを特徴とするベアリングレスモータの回転子位置制御回路。
  14. 前記界磁巻線に前記正の界磁電流を流すことによって生じるバイアス磁束を、前記固定子に設けられた支持巻線に電流が流れることによって生じる平衡の支持磁束に重畳させることで磁束の不平衡を発生させ、前記回転子を磁気支持するための支持力を生成する請求項13に記載のベアリングレスモータの回転子位置制御回路。
  15. 回転子と固定子とがギャップを介して対面するベアリングレスモータの回転子位置制御方法であって、
    前記ベアリングレスモータは、周縁に突極が周設される前記回転子の前記突極間に、磁極の極性の向きが該回転子の半径方向に向かって互いに逆向きになるように、かつ、回転方向に沿って隣接するように設置される永久磁石の組を備え、前記固定子に設けられた界磁巻線に流すべき正の界磁電流を制御することを特徴とするベアリングレスモータの回転子位置制御方法。
  16. 前記界磁巻線に前記正の界磁電流を流すことによって生じるバイアス磁束を、前記固定子に設けられた支持巻線に電流が流れることによって生じる平衡の支持磁束に重畳させることで磁束の不平衡を発生させ、前記回転子を磁気支持するための支持力を生成する請求項15に記載のベアリングレスモータの回転子位置制御方法。
JP2003133270A 2003-05-12 2003-05-12 ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法 Expired - Lifetime JP3854998B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133270A JP3854998B2 (ja) 2003-05-12 2003-05-12 ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133270A JP3854998B2 (ja) 2003-05-12 2003-05-12 ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法

Publications (2)

Publication Number Publication Date
JP2004336968A true JP2004336968A (ja) 2004-11-25
JP3854998B2 JP3854998B2 (ja) 2006-12-06

Family

ID=33507872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133270A Expired - Lifetime JP3854998B2 (ja) 2003-05-12 2003-05-12 ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法

Country Status (1)

Country Link
JP (1) JP3854998B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174885A (ja) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd 同期電動機の回転子
JP2007189860A (ja) * 2006-01-16 2007-07-26 Nissan Motor Co Ltd 回転電機
WO2008035487A1 (fr) * 2006-09-19 2008-03-27 Nissan Motor Co., Ltd. Rotor de moteur
JP2008125203A (ja) * 2006-11-10 2008-05-29 Meidensha Corp ベアリングレスモータに適用した順突極モータ
JP2016163495A (ja) * 2015-03-04 2016-09-05 国立大学法人東京工業大学 電動機および電動機システム
CN109560630A (zh) * 2017-09-27 2019-04-02 杭州三花研究院有限公司 转子组件以及电机和电动泵
WO2019216080A1 (ja) 2018-05-08 2019-11-14 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
JP2019198209A (ja) * 2018-05-08 2019-11-14 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
JP2021002920A (ja) * 2019-06-20 2021-01-07 株式会社デンソー 回転電機
CN113795675A (zh) * 2019-05-24 2021-12-14 株式会社岛津制作所 真空泵及磁轴承一体型马达

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174885A (ja) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd 同期電動機の回転子
JP2007189860A (ja) * 2006-01-16 2007-07-26 Nissan Motor Co Ltd 回転電機
WO2008035487A1 (fr) * 2006-09-19 2008-03-27 Nissan Motor Co., Ltd. Rotor de moteur
JP2008125203A (ja) * 2006-11-10 2008-05-29 Meidensha Corp ベアリングレスモータに適用した順突極モータ
JP2016163495A (ja) * 2015-03-04 2016-09-05 国立大学法人東京工業大学 電動機および電動機システム
CN109560630A (zh) * 2017-09-27 2019-04-02 杭州三花研究院有限公司 转子组件以及电机和电动泵
WO2019216080A1 (ja) 2018-05-08 2019-11-14 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
JP2019198209A (ja) * 2018-05-08 2019-11-14 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
US11005349B2 (en) 2018-05-08 2021-05-11 Daikin Industries, Ltd. Electric motor system, and turbo compressor provided with same
CN113795675A (zh) * 2019-05-24 2021-12-14 株式会社岛津制作所 真空泵及磁轴承一体型马达
CN113795675B (zh) * 2019-05-24 2024-01-09 株式会社岛津制作所 真空泵及磁轴承一体型马达
JP2021002920A (ja) * 2019-06-20 2021-01-07 株式会社デンソー 回転電機
JP7371361B2 (ja) 2019-06-20 2023-10-31 株式会社デンソー 回転電機

Also Published As

Publication number Publication date
JP3854998B2 (ja) 2006-12-06

Similar Documents

Publication Publication Date Title
JP5288698B2 (ja) 永久磁石式リラクタンス型回転電機
RU2689311C1 (ru) Вращающаяся электрическая машина
US9071118B2 (en) Axial motor
JP3766358B2 (ja) 永久磁石内蔵型モータロータ
JP5045067B2 (ja) ベアリングレスモータに適用した順突極モータ
JP2000050542A (ja) リラクタンスモータ
JP2009273214A (ja) ベアリングレスモータ及び該ベアリングレスモータを搭載した人工心臓、血液ポンプ、人工心肺、ポンプ、ファン、ブロワ、コンプレッサ、アクチュエータ、リアクションホイール、フライホイール、揺動ステージ
JP2010098891A (ja) モータ
JP2009050148A (ja) 広範囲定出力永久磁石式モータ
JP3854998B2 (ja) ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法
JP2008289209A (ja) ブラシレスdcモータ
JP4580683B2 (ja) 永久磁石式リラクタンス型回転電機
JP2001197694A (ja) 同期機用回転子及び同期電動機及び同期発電機
JP2002354728A (ja) リラクタンスモータ
JP6390647B2 (ja) 永久磁石式回転電機
JP6760014B2 (ja) 回転電機
JP6729037B2 (ja) 可変磁束型回転電機及び永久磁石の製造方法
JP3739347B2 (ja) ベアリングレスモータ
JP2003088019A (ja) 永久磁石電動機
JPH10309051A (ja) 永久磁石式回転電機
JP2009065803A (ja) 磁石同期機
JP5747385B2 (ja) Ipm型ベアリングレスモータ
JP4491211B2 (ja) 永久磁石式回転電機
JP2013230080A (ja) 埋込磁石同期回転電機
US20090295248A1 (en) Electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6