JP2004336191A - 半導体集積回路 - Google Patents
半導体集積回路 Download PDFInfo
- Publication number
- JP2004336191A JP2004336191A JP2003126347A JP2003126347A JP2004336191A JP 2004336191 A JP2004336191 A JP 2004336191A JP 2003126347 A JP2003126347 A JP 2003126347A JP 2003126347 A JP2003126347 A JP 2003126347A JP 2004336191 A JP2004336191 A JP 2004336191A
- Authority
- JP
- Japan
- Prior art keywords
- clock
- power supply
- circuit
- supply line
- semiconductor integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Logic Circuits (AREA)
Abstract
【課題】クロックに同期して動作を行う内部回路を備える半導体集積回路に関し、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、電磁波輻射を抑制し、電磁波輻射の影響を与えにくい電子機器を構成できるようにする。
【解決手段】電源線9、10間に可変容量素子18を接続すると共に、周期固定のクロックCKに同期して可変容量素子18の容量値を変化させるように可変容量素子18を制御する制御回路19を設ける。
【選択図】 図1
【解決手段】電源線9、10間に可変容量素子18を接続すると共に、周期固定のクロックCKに同期して可変容量素子18の容量値を変化させるように可変容量素子18を制御する制御回路19を設ける。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、クロックに同期して動作を行う内部回路を備える半導体集積回路に関する。
【0002】
【従来の技術】
図13は従来の電子機器の一例の一部分を示す回路図である。図13中、1はボード、2はボード1に実装された電源ユニット、3、4はボード1が有する電源線、5はボード1に実装された半導体パッケージ、6、7は半導体パッケージ5が有する電源線、6L、7Lはそれぞれ電源線6、7が有するインダクタンス成分である。
【0003】
8は半導体パッケージ5に内蔵された半導体チップ、9、10は半導体チップ8が有する電源線、11は電源線9、10間に接続された固定容量素子、12はクロックの立ち上がりタイミングに同期して動作する内部回路であり、内部回路12には電源線9、10を介して電源電圧が供給される。13は内部回路12に与えるクロックCKを生成するクロック生成回路である。
【0004】
図14は図13に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は電源線9に流れる電流Ivd_chipの時間軸上の波形(三角波に近似している)、(C)は電源線3に流れる電流Ivd_boardの時間軸上の波形(三角波に近似している)、(D)は電流Ivd_boardの周波数軸上の波形を示している。
【0005】
ここで、内部回路12は、クロックCKの立ち上がりタイミングに同期して動作するので、電源線9、3に流れる電流Ivd_chip、Ivd_boardは、クロックCKの立ち上がりの直後にピークを持ち、クロックCKと同一周期の波形になる。このため、電源線3がアンテナとなってクロックCKの周波数及びその高調波成分を周波数成分とする電磁波が輻射される。
【0006】
この不要輻射電磁波は、システム上の装置に電磁波障害(EMI)を引き起こすおそれがある。そこで従来、電磁波輻射抑制方法として、クロックCKに変調をかけてスペクトラム拡散させてなるスペクトラム拡散クロックを使用することにより、ボード1上の電源線3を流れる電流Ivd_boardの周波数成分を拡散させる方法が提案されている(例えば、特許文献1〜4参照)。
【0007】
図15はスペクトラム拡散クロックを使用する電子機器の一例の一部分を示す回路図である。図15に示す電子機器は、図13に示す半導体チップ8の代わりに、スペクトラム拡散クロック生成回路14を搭載した半導体チップ15を使用し、その他については、図13に示す従来の電子機器と同様に構成したものである。
【0008】
図16は図15に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はスペクトラム拡散クロック生成回路14から出力されるスペクトラム拡散クロックS_CKの時間軸上の電圧波形、(B)は電源線9に流れる電流Ivd_chipの時間軸上の波形、(C)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(D)は電流Ivd_boardの周波数軸上の波形を示している。
【0009】
図15に示す電子機器では、内部回路12は、スペクトラム拡散クロックS_CKの立ち上がりタイミングに同期して動作することになるので、電源線9、3に流れる電流Ivd_chip、Ivd_boardは、スペクトラム拡散クロックS_CKの立ち上がりの直後にピークを持ち、スペクトラム拡散クロックS_CKに同期した波形となる。
【0010】
ここで、電源線3に流れる電流Ivd_boardを周波数軸上にプロットすると、図16Dに示すように、ある程度広がりを持ち、ピークも低く抑えられたプロファイルとなる。これに対して、図13に示す電子機器の場合は、破線16で示すようにクロックCKの周波数近傍に急峻なピークを持つことになる。したがって、図15に示す電子機器では、ボード1からの電磁波輻射が抑えられる。
【0011】
その他の電磁波輻射抑制方法として、例えば、半導体チップの外部電源端子と外部接地端子との間に容量の大きな固定容量素子を接続する方法が提案されている(例えば、特許文献5参照)。
【0012】
【特許文献1】特開平9−289527号公報
【特許文献2】特開平9−98152号公報
【特許文献3】特開平11−15550号公報
【特許文献4】特開2001−14056号公報
【特許文献5】特開平5−267557号公報
【0013】
【発明が解決しようとする課題】
図15に示す電子機器では、スペクトラム拡散クロックS_CKは、例えば、10KHz程度の周波数で変調されるが、周期が最も短くなったときでも、内部回路12が正常に動作しなければならない。このためには、スペクトラム拡散クロックS_CKの最大周波数は、内部回路12の最高動作周波数以下としなければならない。この結果、スペクトラム拡散クロックS_CKの長時間での平均周波数は、内部回路12の最高動作周波数よりも必ず低くなる。これは、内部回路12の処理速度の低下を招いてしまう。
【0014】
また、異なる変調回路から出力されるスペクトラム拡散クロックで動作する内部回路間でのデータ転送には、変調回路間で同期を取る仕組みを設けるか(特許文献2参照)、一旦、非同期回路部分を経由するようにしなければならない(特許文献4参照)。スペクトラム拡散クロックで動作する内部回路と周期固定のクロックで動作する内部回路との間のデータ転送を行う場合でも、非同期回路部分が必要となる。したがって、動作の高速化及び回路の簡易化を図るためには、周期固定のクロックを使用することが好適と言える。
【0015】
また、半導体チップの外部電源端子と外部接地端子との間に容量の大きな固定容量素子を接続することによって電磁波輻射を抑制する方法(特許文献5参照)は、半導体パッケージが大きくなると共に、製造工程の追加や変更が必要になるという問題点を有している。
【0016】
本発明は、かかる点に鑑み、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、電磁波輻射を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができるようにした半導体集積回路を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明中、第1の発明は、クロックに同期して動作する内部回路を有する半導体集積回路であって、内部回路を駆動するための第1、第2の電源線間に接続された可変容量素子と、可変容量素子の容量値がクロックに同期して変化するように可変容量素子を制御する制御回路を有する、というものである。
【0018】
第1の発明によれば、可変容量素子の容量値をクロックに同期して変化させることができるので、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、第1、第2の電源線と外部電源線で構成される電源路の伝達関数をクロックに同期させて変化させることができ、外部電源線に流れる電流のクロック周波数付近の成分を小さくすることができる。この結果、外部電源線をアンテナとして輻射される不要電磁波を抑制することができる。
【0019】
本発明中、第2の発明は、クロックに同期して動作する内部回路を有する半導体集積回路であって、内部回路を駆動するための第1、第2の電源線間に直列接続された可変抵抗素子及び固定容量素子と、可変抵抗素子の抵抗値がクロックに同期して変化するように可変抵抗素子を制御する制御回路を有する、というものである。
【0020】
第2の発明によれば、可変抵抗素子の抵抗値をクロックに同期して変化させることができるので、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、第1、第2の電源線と外部電源線で構成される電源路の伝達関数をクロックに同期させて変化させることができ、外部電源線に流れる電流のクロック周波数付近の成分を小さくすることができる。この結果、外部電源線をアンテナとして輻射される不要電磁波を抑制することができる。
【0021】
【発明の実施の形態】
以下、図1〜図12を参照して、本発明の第1実施形態及び第2実施形態について説明する。なお、図1、図2、図4、図7及び図10〜図12において、図13に対応する部分には同一符号を付し、その重複説明は省略する。
【0022】
(本発明の第1実施形態・・図1〜図10)
図1は本発明の第1実施形態を使用した電子機器の一例の一部分を示す回路図である。図1に示す電子機器は、図13に示す半導体チップ8の代わりに、本発明の第1実施形態を搭載した半導体チップ17を使用し、その他については、図13に示す電子機器と同様に構成したものである。
【0023】
本発明の第1実施形態は、図13に示す固定容量素子11の代わりに、可変容量素子18を設けると共に、クロックCKに同期して可変容量素子18の容量値を変化させるように可変容量素子18を制御する制御回路19を設け、その他については、図13に示す半導体チップ8が搭載する半導体集積回路と同様に構成したものである。
【0024】
図2は本発明の第1実施形態の第1具体例を示す回路図である。図2中、20は可変容量素子18をなすnMOSトランジスタであり、ゲートを電源線9に接続し、ドレイン及びソースを電源線10に接続している。21は制御回路19をなす1/2分周回路であり、クロック生成回路13から出力されるクロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ20のバックゲートに与えるものである。
【0025】
図3は本発明の第1実施形態の第1具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は電源線9に流れる電流Ivd_chipの時間軸上の波形、(C)はnMOSトランジスタ20のゲート容量値Cの時間変化、(D)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(E)は電流Ivd_boardの周波数軸上の波形を示している。
【0026】
ここで、内部回路12は、クロックCKの立ち上がりタイミングに同期して動作するので、電源線3に流れる電流Ivd_chipは、クロックCKの立ち上がりの直後にピークを持ち、クロックCKと同一周期の波形になる。
【0027】
また、1/2分周回路21は、クロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ20のバックゲートに供給するので、nMOSトランジスタ20のゲート容量は、クロックCKの1周期ごとに容量値Cが大小に変化することになる。
【0028】
なお、nMOSトランジスタ20のゲート容量値Cは、nMOSトランジスタ20にチャネルが形成されている時の方がチャネルが形成されていない時よりも大きい。本例の場合、nMOSトランジスタ20のゲート容量値Cは、制御信号VcntがHレベルの時にnMOSトランジスタ20にチャネルが形成されて大きくなり、制御信号VcntがLレベルの時にnMOSトランジスタ20にチャネルが形成されずに小さくなる。
【0029】
また、電源線3、6、9で構成される電源路の伝達関数は、電源線6が有するインダクタンス成分6LとnMOSトランジスタ20のゲート容量値Cで決定されることになるが、nMOSトランジスタ20のゲート容量値は、クロックCKの立ち上がりタイミングに同期して大小に変化するので、電源線3に流れる電流Ivd_boardの波形は、図3Dに示すように、電源線9に流れる電流Ivd_chipよりも少し遅れた周期波形になる。
【0030】
電源線3に流れる電流Ivd_boardの電源線9に流れる電流Ivd_chipに対する遅れ量はnMOSトランジスタ20のゲート容量値Cに依存した量となるため、クロックCKの周期ごとに電源線3に流れる電流Ivd_boardのピーク位置が異なることになる。
【0031】
ここで、nMOSトランジスタ20のゲート容量値Cが小さい時に電源線3に流れる電流Ivd_boardの周期TInと、nMOSトランジスタ20のゲート容量値Cが大きい時に電源線3に流れる電流Ivd_boardの周期TIn+1を比較すると、TIn>TIn+1となる。同様に、TIn=TIn+2=TIn+4=…>TIn+1=TIn+3=…となる。
【0032】
したがって、電源線3に流れる電流Ivd_boardの周波数軸上の波形は、図3Eに示すように2つのピークを持つようになり、ピーク値も破線16で示す図13に示す電子機器の場合よりも低くなる。なお、本発明の第1実施形態の第1具体例では、可変容量素子18としてnMOSトランジスタ20を使用しているが、pMOSトランジスタを使用することもできる。
【0033】
図4は本発明の第1実施形態の第2具体例を示す回路図である。図4中、22−1、22−2、22−3は可変容量素子17を構成するnMOSトランジスタであり、これらnMOSトランジスタ22−1、22−2、22−3は、ともにゲートを電源線9に接続し、ドレイン及びソースを電源線10に接続している。
【0034】
23は制御回路19をなすシフタであり、クロック生成回路13から出力されるクロックCKをシフトして制御信号Vcnt_1、Vcnt_2、Vcnt_3を生成し、これら制御信号Vcnt_1、Vcnt_2、Vcnt_3をそれぞれnMOSトランジスタ22−1、22−2、22−3のバックゲートに与えるように構成されている。
【0035】
図5はシフタ23の構成を示す回路図である。図5中、24、25、26は縦列接続されたDフリップフロップ、27はインバータであり、インバータ27はDフリップフロップ26の正相出力端子QとDフリップフロップ24の入力端子Dとの間に接続されている。なお、Dフリップフロップ24〜26のクロック入力端子CKにはクロックCKが与えられ、クリア端子CLにはリセット信号RESETが与えられる。
【0036】
図6は本発明の第1実施形態の第2具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は制御信号Vcnt_1、Vcnt_2、Vcnt_3の時間軸上の電圧波形、(C)はnMOSトランジスタ22−1、22−2、22−3の合成容量値C1+C2+C3、(D)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(E)は電流Ivd_boardの周波数軸上の波形を示している。
【0037】
本発明の第1実施形態の第2具体例を使用した場合において、クロックCKの1サイクル目でシフタ23のリセットを解除すると、制御信号Vcnt_1は2サイクル目からHレベルが3サイクル続いた後にLレベルになる。制御信号Vcnt_2は3サイクル目からHレベルが3サイクル続いた後にLレベルになる。制御信号Vcnt_3は4サイクル目からHレベルが3サイクル続いた後にLレベルになる。
【0038】
ここで、nMOSトランジスタ22−1、22−2、22−3のゲート容量値を、それぞれ、チャネル形成時はC1on、C2on、C3on、チャネル未形成時はC1off、C2off、C3offとした場合に、例えば、(C1on−C1off):(C2on−C2off):(C3on−C3off)=1:2:4となるように設定する。
【0039】
そして、C1off+C2off+C3offをCo、C1on−C1offをΔCとすると、nMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3は、1サイクル目から6サイクル目にかけて、Co、Co+ΔC、Co+3ΔC、Co+7ΔC、Co+6ΔC、Co+4ΔCと変化し、7サイクル目以降は同様に変化することになる。
【0040】
ここで、電源線3に流れる電流Ivd_boardのピークの周期は、次サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3と現サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3との差に相関する値になるので、1サイクル目から順にΔC、2ΔC、4ΔC、−ΔC、−2ΔC、−4ΔCに相関する値となる。
【0041】
したがって、電源線3に流れる電流Ivd_boardの周期は固定されることなく、電流Ivd_boardの周波数軸上の波形は、図6Eに示すように、クロックCKの周波数を中心とした幅広い山状になり、ピーク値も破線16で示す図13に示す電子機器の場合よりも低くなる。なお、本発明の第1実施形態の第2具体例では、可変容量素子18としてnMOSトランジスタ22−1〜22−3を使用しているが、pMOSトランジスタを使用することもできる。
【0042】
図7は本発明の第1実施形態の第3具体例を示す回路図である。本発明の第1実施形態の第3具体例は、制御回路19として、図4に示す本発明の第1実施形態の第2具体例が備えるシフタ23の代わりに、カウンタ28を設け、その他については、図4に示す本発明の第1実施形態の第2具体例と同様に構成したものである。
【0043】
図8はカウンタ28の構成を示す回路図である。図8中、29、30はDフリップフロップ、31、32はインバータである。Dフリップフロップ29は、自己の正相出力端子Qをインバータ31を介して自己の入力端子Dに接続し、クロックCKをクロック端子CKに与えられ、クリア端子CLにリセット信号RESETを与えられるように構成されている。
【0044】
Dフリップフロップ30は、クロック入力端子CKをインバータ31の出力端子に接続し、自己の正相出力端子Qをインバータ32を介して自己の入力端子Dに接続し、クリア端子CLにリセット信号RESETを与えられ、正相出力端子Qに制御信号Vcnt_2を出力するように構成されている。
【0045】
33はOR回路であり、Dフリップフロップ29、30の正相出力信号をOR処理して制御信号Vcnt_1を出力するものである。34はAND回路であり、Dフリップフロップ29、30の正相出力信号をAND処理して制御信号Vcnt_3を出力するものである。
【0046】
図9は本発明の第1実施形態の第3具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は制御信号Vcnt_1、Vcnt_2、Vcnt_3の時間軸上の電圧波形、(C)はnMOSトランジスタ22−1、22−2、22−3の合成容量値C1+C2+C3、(D)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(E)は電流Ivd_boardの周波数軸上の波形を示している。
【0047】
本発明の第1実施形態の第3具体例を使用した場合において、クロックCKの1サイクル目でカウンタ28のリセットを解除すると、制御信号Vcnt_1は2サイクル目からHレベルが3サイクル続いた後にLレベルになる。制御信号Vcnt_2は3サイクル目からHレベルが2サイクル続いた後にLレベルになる。制御信号Vcnt_3は4サイクル目からHレベルが1サイクル続いた後にLレベルになる。5サイクル目からは、この繰り返しである。
【0048】
ここで、nMOSトランジスタ22−1、22−2、22−3のゲート容量値を第2具体例の場合と同様に設定すると、nMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3は、1サイクル目から4サイクル目にかけて、Co、Co+ΔC、Co+3ΔC、Co+7ΔCと変化し、5サイクル目以降は同様に変化する。
【0049】
ここで、電源線3に流れる電流Ivd_boardのピークの周期は、次サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3と現サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3との差に相関する値になるので、1サイクル目から順にΔC、2ΔC、4ΔC、−7ΔCに相関する値となる。
【0050】
したがって、電源線3に流れる電流Ivd_boardの周期は固定されることなく、電流Ivd_boardの周波数軸上の波形は、図8Eに示すように、クロックCKの周波数を中心とした幅広い山状になり、ピーク値も破線16で示す図13に示す電子機器の場合よりも低くなる。なお、本発明の第1実施形態の第3具体例では、可変容量素子18としてnMOSトランジスタ22−1〜22−3を使用しているが、pMOSトランジスタを使用することもできる。
【0051】
図10は本発明の第1実施形態の第4具体例を示す回路図である。図10中、35は可変容量素子18をなすnMOSトランジスタであり、ゲートを電源線9に接続し、ドレイン及びソースを電源線10に接続している。
【0052】
36は制御回路19をなすアナログ電圧発生回路であり、37は図4(図5)に示すシフタ23と同一構成のシフタ、38はシフタ37から出力される制御信号Vcnt_1〜Vcnt_3を3ビットのデジタル信号としてアナログ信号に変換するデジタル/アナログ変換回路である。デタタル/アナログ変換回路38から出力されるアナログ信号は制御信号VcntとしてnMOSトランジスタ35のバックゲートに与えられる。
【0053】
デジタル/アナログ変換回路38において、39〜42は電源線9、10間に直列接続された抵抗、43〜45はnMOSトランジスタである。これらnMOトランジスタ43〜45は、それぞれ抵抗40〜42に並列接続され、制御信号Vcnt_1〜Vcnt_3によりON、OFFが制御されるようにされている。
【0054】
このように構成された本発明の第1実施形態の第4具体例によれば、nMOSトランジスタ35のゲート容量値変化を離散度の小さいものとすることができるので、電源線3に流れる電流Ivd_boardの周波数軸上の波形をクロックCKの周波数を中心とした幅広い山状にし、ピーク値も図13に示す電子機器の場合よりも低くすることができる。なお、本発明の第1実施形態の第4具体例では、可変容量素子18としてnMOSトランジスタ35を使用しているが、pMOSトランジスタを使用することもできる。
【0055】
以上のように、本発明の第1実施形態によれば、動作の高速化及び回路の簡易化を図るために周期固定のクロックCKを使用する場合であっても、電源線3、6、9で構成される電源路の伝達関数をクロックCKに同期させて変化させることができるので、電源線3に流れる電流Ivd_boardのクロック周波数付近の成分を小さくすることができる。したがって、電源線3をアンテナとして輻射される不要電磁波を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができる。
【0056】
(本発明の第2実施形態・・図11、図12)
図11は本発明の第2実施形態を使用した電子機器の一例の一部分を示す回路図である。図11に示す電子機器は、図13に示す半導体チップ8の代わりに、本発明の第2実施形態を搭載した半導体チップ46を使用し、その他については、図13に示す電子機器と同様に構成したものである。
【0057】
本発明の第2実施形態は、電源線9、10間に可変抵抗素子47と固定容量素子48を直列に接続すると共に、クロックCKに同期して可変抵抗素子47の抵抗値を変化させるように可変抵抗素子47を制御する制御回路49を設け、その他については、図13に示す半導体チップ8が搭載する半導体集積回路と同様に構成したものである。
【0058】
図12は本発明の第2実施形態の具体例を示す回路図である。図12中、50は可変抵抗素子47をなすnMOSトランジスタ、51は固定容量素子48をなすnMOSトランジスタ、52は制御回路49をなす1/2分周回路である。1/2分周回路52は、クロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ50のゲートに供給するように構成されている。
【0059】
nMOSトランジスタ50は、ドレインを電源線9に接続し、ソースをnMOSトランジスタ51のゲートに接続し、バックゲートを電源線10に接続している。nMOSトランジスタ51は、ドレイン、ソース及びバックゲートを電源線10に接続している。
【0060】
本発明の第2実施形態によれば、1/2分周回路52は、クロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ50のゲートに供給するように構成されているので、nMOSトランジスタ50のゲートには、クロックCKの各周期ごとにHレベル電圧とLレベル電圧とが繰り返し供給され、nMOSトランジスタ50のドレイン・ソース間は、低抵抗状態と高抵抗状態を繰り返すことになる。この結果、電源線3、6、9で構成される電源路の伝達関数をクロックCKに同期させて変化させることができる。
【0061】
したがって、動作の高速化及び回路の簡易化を図るために周期固定のクロックCKを使用する場合であっても、電源線3に流れる電流Ivd_boardのクロック周波数付近の成分を小さくすることができるので、電源線3をアンテナとして輻射される不要電磁波を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができる。なお、制御回路49として、図10に示すアナログ電圧発生回路36を使用することができ、このようにする場合には、可変抵抗素子47のより細かい制御が可能となる。
【0062】
ここで、本発明を整理すると、本発明には、以下に記述する半導体集積回路が含まれる。
【0063】
(付記1)クロックに同期して動作する内部回路を有する半導体集積回路であって、前記内部回路を駆動するための第1、第2の電源線間に接続された可変容量素子と、前記可変容量素子の容量値が前記クロックに同期して変化するように前記可変容量素子を制御する制御回路を有することを特徴とする半導体集積回路。
【0064】
(付記2)前記可変容量素子は、ゲートを前記第1の電源線に接続し、ドレイン及びソースを前記第2の電源線に接続したトランジスタで構成され、前記制御回路は、前記クロックに同期して電圧値が変化する信号を制御信号として前記トランジスタのバックゲートに与えるものであることを特徴とする付記1記載の半導体集積回路。
【0065】
(付記3)前記制御回路は、前記クロックを1/2に分周した信号を制御信号として出力する分周回路からなることを特徴とする付記2記載の半導体集積回路。
【0066】
(付記4)前記制御回路は、前記可変容量素子の容量値変化が同一とならないように電圧値が3値以上に変化する信号を制御信号として出力するものであることを特徴とする付記2記載の半導体集積回路。
【0067】
(付記5)前記可変容量素子は、ゲートを前記第1の電源線に接続し、ドレイン及びソースを前記第2の電源線に接続し、ゲート容量値を異にする複数のトランジスタで構成され、前記制御回路は、前記複数のトランジスタのバックゲートのそれぞれにクロックサイクル毎にいずれかの電圧値が変化するような制御信号を与えることを特徴とする付記1記載の半導体集積回路。
【0068】
(付記6)前記制御回路は、前記クロックを入力信号とするシフタで構成されていることを特徴とする付記5記載の半導体集積回路。
【0069】
(付記7)前記制御回路は、前記クロックをカウントするカウンタで構成されていることを特徴とする付記5記載の半導体集積回路。
【0070】
(付記8)クロックに同期して動作する内部回路を有する半導体集積回路であって、前記内部回路を駆動するための第1、第2の電源線間に直列接続された可変抵抗素子及び固定容量素子と、前記可変抵抗素子の抵抗値が前記クロックに同期して変化するように前記可変抵抗素子を制御する制御回路を有することを特徴とする半導体集積回路。
【0071】
(付記9)可変抵抗素子として、ゲートに前記制御回路からの制御信号が与えられるトランジスタを用い、前記制御回路は、前記クロックに同期して電圧値が変化する信号を制御信号として出力するものであることを特徴とする付記8記載の半導体集積回路。
【0072】
(付記10)前記制御回路は、前記クロックを1/2に分周した信号を制御信号として出力する分周回路からなることを特徴とする付記9記載の半導体集積回路。
【0073】
(付記11)前記制御回路は、電圧値が3値以上に変化する信号を制御信号として出力するものであることを特徴とする付記9記載の半導体集積回路。
【0074】
【発明の効果】
以上のように、本発明によれば、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、第1、第2の電源線と外部電源線で構成される電源路の伝達関数をクロックに同期させて変化させることができ、外部電源線に流れる電流のクロック周波数付近の成分を小さくすることができるので、外部電源線をアンテナとして輻射される不要電磁波を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を使用した電子機器の一例の一部分を示す回路図である。
【図2】本発明の第1実施形態の第1具体例を示す回路図である。
【図3】本発明の第1実施形態の第1具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図である。
【図4】本発明の第1実施形態の第2具体例を示す回路図である。
【図5】本発明の第1実施形態の第2具体例が備えるシフタの構成を示す回路図である。
【図6】本発明の第1実施形態の第2具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図である。
【図7】本発明の第1実施形態の第3具体例を示す回路図である。
【図8】本発明の第1実施形態の第3具体例が備えるカウンタの構成を示す回路図である。
【図9】本発明の第1実施形態の第3具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図である。
【図10】本発明の第1実施形態の第4具体例を示す回路図である。
【図11】本発明の第2実施形態を使用した電子機器の一例の一部分を示す回路図である。
【図12】本発明の第2実施形態の具体例を示す回路図である。
【図13】従来の電子機器の一例の一部分を示す回路図である。
【図14】図13に示す電子機器から輻射される不要電磁波を説明するための図である。
【図15】スペクトラム拡散クロックを使用する電子機器の一例の一部分を示す回路図である。
【図16】図15に示す電子機器から輻射される不要電磁波を説明するための図である。
【符号の説明】
1…ボード
2…電源ユニット
3、4…電源線
5…半導体パッケージ
6、7…電源線
6L、7L…インダクタンス成分
8…半導体チップ
9、10…電源線
11…固定容量素子
12…内部回路
13…クロック生成回路
14…スペクトラム拡散クロック生成回路
15…半導体チップ
17…半導体チップ
18…可変容量素子
19…制御回路
21…1/2分周回路
23…シフタ
28…カウンタ
36…アナログ電圧発生回路
37…シフタ
38…デジタル/アナログ変換回路
39〜42…抵抗
46…半導体チップ
47…可変抵抗素子
48…固定容量素子
49…制御回路
52…1/2分周回路
【発明の属する技術分野】
本発明は、クロックに同期して動作を行う内部回路を備える半導体集積回路に関する。
【0002】
【従来の技術】
図13は従来の電子機器の一例の一部分を示す回路図である。図13中、1はボード、2はボード1に実装された電源ユニット、3、4はボード1が有する電源線、5はボード1に実装された半導体パッケージ、6、7は半導体パッケージ5が有する電源線、6L、7Lはそれぞれ電源線6、7が有するインダクタンス成分である。
【0003】
8は半導体パッケージ5に内蔵された半導体チップ、9、10は半導体チップ8が有する電源線、11は電源線9、10間に接続された固定容量素子、12はクロックの立ち上がりタイミングに同期して動作する内部回路であり、内部回路12には電源線9、10を介して電源電圧が供給される。13は内部回路12に与えるクロックCKを生成するクロック生成回路である。
【0004】
図14は図13に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は電源線9に流れる電流Ivd_chipの時間軸上の波形(三角波に近似している)、(C)は電源線3に流れる電流Ivd_boardの時間軸上の波形(三角波に近似している)、(D)は電流Ivd_boardの周波数軸上の波形を示している。
【0005】
ここで、内部回路12は、クロックCKの立ち上がりタイミングに同期して動作するので、電源線9、3に流れる電流Ivd_chip、Ivd_boardは、クロックCKの立ち上がりの直後にピークを持ち、クロックCKと同一周期の波形になる。このため、電源線3がアンテナとなってクロックCKの周波数及びその高調波成分を周波数成分とする電磁波が輻射される。
【0006】
この不要輻射電磁波は、システム上の装置に電磁波障害(EMI)を引き起こすおそれがある。そこで従来、電磁波輻射抑制方法として、クロックCKに変調をかけてスペクトラム拡散させてなるスペクトラム拡散クロックを使用することにより、ボード1上の電源線3を流れる電流Ivd_boardの周波数成分を拡散させる方法が提案されている(例えば、特許文献1〜4参照)。
【0007】
図15はスペクトラム拡散クロックを使用する電子機器の一例の一部分を示す回路図である。図15に示す電子機器は、図13に示す半導体チップ8の代わりに、スペクトラム拡散クロック生成回路14を搭載した半導体チップ15を使用し、その他については、図13に示す従来の電子機器と同様に構成したものである。
【0008】
図16は図15に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はスペクトラム拡散クロック生成回路14から出力されるスペクトラム拡散クロックS_CKの時間軸上の電圧波形、(B)は電源線9に流れる電流Ivd_chipの時間軸上の波形、(C)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(D)は電流Ivd_boardの周波数軸上の波形を示している。
【0009】
図15に示す電子機器では、内部回路12は、スペクトラム拡散クロックS_CKの立ち上がりタイミングに同期して動作することになるので、電源線9、3に流れる電流Ivd_chip、Ivd_boardは、スペクトラム拡散クロックS_CKの立ち上がりの直後にピークを持ち、スペクトラム拡散クロックS_CKに同期した波形となる。
【0010】
ここで、電源線3に流れる電流Ivd_boardを周波数軸上にプロットすると、図16Dに示すように、ある程度広がりを持ち、ピークも低く抑えられたプロファイルとなる。これに対して、図13に示す電子機器の場合は、破線16で示すようにクロックCKの周波数近傍に急峻なピークを持つことになる。したがって、図15に示す電子機器では、ボード1からの電磁波輻射が抑えられる。
【0011】
その他の電磁波輻射抑制方法として、例えば、半導体チップの外部電源端子と外部接地端子との間に容量の大きな固定容量素子を接続する方法が提案されている(例えば、特許文献5参照)。
【0012】
【特許文献1】特開平9−289527号公報
【特許文献2】特開平9−98152号公報
【特許文献3】特開平11−15550号公報
【特許文献4】特開2001−14056号公報
【特許文献5】特開平5−267557号公報
【0013】
【発明が解決しようとする課題】
図15に示す電子機器では、スペクトラム拡散クロックS_CKは、例えば、10KHz程度の周波数で変調されるが、周期が最も短くなったときでも、内部回路12が正常に動作しなければならない。このためには、スペクトラム拡散クロックS_CKの最大周波数は、内部回路12の最高動作周波数以下としなければならない。この結果、スペクトラム拡散クロックS_CKの長時間での平均周波数は、内部回路12の最高動作周波数よりも必ず低くなる。これは、内部回路12の処理速度の低下を招いてしまう。
【0014】
また、異なる変調回路から出力されるスペクトラム拡散クロックで動作する内部回路間でのデータ転送には、変調回路間で同期を取る仕組みを設けるか(特許文献2参照)、一旦、非同期回路部分を経由するようにしなければならない(特許文献4参照)。スペクトラム拡散クロックで動作する内部回路と周期固定のクロックで動作する内部回路との間のデータ転送を行う場合でも、非同期回路部分が必要となる。したがって、動作の高速化及び回路の簡易化を図るためには、周期固定のクロックを使用することが好適と言える。
【0015】
また、半導体チップの外部電源端子と外部接地端子との間に容量の大きな固定容量素子を接続することによって電磁波輻射を抑制する方法(特許文献5参照)は、半導体パッケージが大きくなると共に、製造工程の追加や変更が必要になるという問題点を有している。
【0016】
本発明は、かかる点に鑑み、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、電磁波輻射を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができるようにした半導体集積回路を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明中、第1の発明は、クロックに同期して動作する内部回路を有する半導体集積回路であって、内部回路を駆動するための第1、第2の電源線間に接続された可変容量素子と、可変容量素子の容量値がクロックに同期して変化するように可変容量素子を制御する制御回路を有する、というものである。
【0018】
第1の発明によれば、可変容量素子の容量値をクロックに同期して変化させることができるので、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、第1、第2の電源線と外部電源線で構成される電源路の伝達関数をクロックに同期させて変化させることができ、外部電源線に流れる電流のクロック周波数付近の成分を小さくすることができる。この結果、外部電源線をアンテナとして輻射される不要電磁波を抑制することができる。
【0019】
本発明中、第2の発明は、クロックに同期して動作する内部回路を有する半導体集積回路であって、内部回路を駆動するための第1、第2の電源線間に直列接続された可変抵抗素子及び固定容量素子と、可変抵抗素子の抵抗値がクロックに同期して変化するように可変抵抗素子を制御する制御回路を有する、というものである。
【0020】
第2の発明によれば、可変抵抗素子の抵抗値をクロックに同期して変化させることができるので、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、第1、第2の電源線と外部電源線で構成される電源路の伝達関数をクロックに同期させて変化させることができ、外部電源線に流れる電流のクロック周波数付近の成分を小さくすることができる。この結果、外部電源線をアンテナとして輻射される不要電磁波を抑制することができる。
【0021】
【発明の実施の形態】
以下、図1〜図12を参照して、本発明の第1実施形態及び第2実施形態について説明する。なお、図1、図2、図4、図7及び図10〜図12において、図13に対応する部分には同一符号を付し、その重複説明は省略する。
【0022】
(本発明の第1実施形態・・図1〜図10)
図1は本発明の第1実施形態を使用した電子機器の一例の一部分を示す回路図である。図1に示す電子機器は、図13に示す半導体チップ8の代わりに、本発明の第1実施形態を搭載した半導体チップ17を使用し、その他については、図13に示す電子機器と同様に構成したものである。
【0023】
本発明の第1実施形態は、図13に示す固定容量素子11の代わりに、可変容量素子18を設けると共に、クロックCKに同期して可変容量素子18の容量値を変化させるように可変容量素子18を制御する制御回路19を設け、その他については、図13に示す半導体チップ8が搭載する半導体集積回路と同様に構成したものである。
【0024】
図2は本発明の第1実施形態の第1具体例を示す回路図である。図2中、20は可変容量素子18をなすnMOSトランジスタであり、ゲートを電源線9に接続し、ドレイン及びソースを電源線10に接続している。21は制御回路19をなす1/2分周回路であり、クロック生成回路13から出力されるクロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ20のバックゲートに与えるものである。
【0025】
図3は本発明の第1実施形態の第1具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は電源線9に流れる電流Ivd_chipの時間軸上の波形、(C)はnMOSトランジスタ20のゲート容量値Cの時間変化、(D)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(E)は電流Ivd_boardの周波数軸上の波形を示している。
【0026】
ここで、内部回路12は、クロックCKの立ち上がりタイミングに同期して動作するので、電源線3に流れる電流Ivd_chipは、クロックCKの立ち上がりの直後にピークを持ち、クロックCKと同一周期の波形になる。
【0027】
また、1/2分周回路21は、クロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ20のバックゲートに供給するので、nMOSトランジスタ20のゲート容量は、クロックCKの1周期ごとに容量値Cが大小に変化することになる。
【0028】
なお、nMOSトランジスタ20のゲート容量値Cは、nMOSトランジスタ20にチャネルが形成されている時の方がチャネルが形成されていない時よりも大きい。本例の場合、nMOSトランジスタ20のゲート容量値Cは、制御信号VcntがHレベルの時にnMOSトランジスタ20にチャネルが形成されて大きくなり、制御信号VcntがLレベルの時にnMOSトランジスタ20にチャネルが形成されずに小さくなる。
【0029】
また、電源線3、6、9で構成される電源路の伝達関数は、電源線6が有するインダクタンス成分6LとnMOSトランジスタ20のゲート容量値Cで決定されることになるが、nMOSトランジスタ20のゲート容量値は、クロックCKの立ち上がりタイミングに同期して大小に変化するので、電源線3に流れる電流Ivd_boardの波形は、図3Dに示すように、電源線9に流れる電流Ivd_chipよりも少し遅れた周期波形になる。
【0030】
電源線3に流れる電流Ivd_boardの電源線9に流れる電流Ivd_chipに対する遅れ量はnMOSトランジスタ20のゲート容量値Cに依存した量となるため、クロックCKの周期ごとに電源線3に流れる電流Ivd_boardのピーク位置が異なることになる。
【0031】
ここで、nMOSトランジスタ20のゲート容量値Cが小さい時に電源線3に流れる電流Ivd_boardの周期TInと、nMOSトランジスタ20のゲート容量値Cが大きい時に電源線3に流れる電流Ivd_boardの周期TIn+1を比較すると、TIn>TIn+1となる。同様に、TIn=TIn+2=TIn+4=…>TIn+1=TIn+3=…となる。
【0032】
したがって、電源線3に流れる電流Ivd_boardの周波数軸上の波形は、図3Eに示すように2つのピークを持つようになり、ピーク値も破線16で示す図13に示す電子機器の場合よりも低くなる。なお、本発明の第1実施形態の第1具体例では、可変容量素子18としてnMOSトランジスタ20を使用しているが、pMOSトランジスタを使用することもできる。
【0033】
図4は本発明の第1実施形態の第2具体例を示す回路図である。図4中、22−1、22−2、22−3は可変容量素子17を構成するnMOSトランジスタであり、これらnMOSトランジスタ22−1、22−2、22−3は、ともにゲートを電源線9に接続し、ドレイン及びソースを電源線10に接続している。
【0034】
23は制御回路19をなすシフタであり、クロック生成回路13から出力されるクロックCKをシフトして制御信号Vcnt_1、Vcnt_2、Vcnt_3を生成し、これら制御信号Vcnt_1、Vcnt_2、Vcnt_3をそれぞれnMOSトランジスタ22−1、22−2、22−3のバックゲートに与えるように構成されている。
【0035】
図5はシフタ23の構成を示す回路図である。図5中、24、25、26は縦列接続されたDフリップフロップ、27はインバータであり、インバータ27はDフリップフロップ26の正相出力端子QとDフリップフロップ24の入力端子Dとの間に接続されている。なお、Dフリップフロップ24〜26のクロック入力端子CKにはクロックCKが与えられ、クリア端子CLにはリセット信号RESETが与えられる。
【0036】
図6は本発明の第1実施形態の第2具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は制御信号Vcnt_1、Vcnt_2、Vcnt_3の時間軸上の電圧波形、(C)はnMOSトランジスタ22−1、22−2、22−3の合成容量値C1+C2+C3、(D)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(E)は電流Ivd_boardの周波数軸上の波形を示している。
【0037】
本発明の第1実施形態の第2具体例を使用した場合において、クロックCKの1サイクル目でシフタ23のリセットを解除すると、制御信号Vcnt_1は2サイクル目からHレベルが3サイクル続いた後にLレベルになる。制御信号Vcnt_2は3サイクル目からHレベルが3サイクル続いた後にLレベルになる。制御信号Vcnt_3は4サイクル目からHレベルが3サイクル続いた後にLレベルになる。
【0038】
ここで、nMOSトランジスタ22−1、22−2、22−3のゲート容量値を、それぞれ、チャネル形成時はC1on、C2on、C3on、チャネル未形成時はC1off、C2off、C3offとした場合に、例えば、(C1on−C1off):(C2on−C2off):(C3on−C3off)=1:2:4となるように設定する。
【0039】
そして、C1off+C2off+C3offをCo、C1on−C1offをΔCとすると、nMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3は、1サイクル目から6サイクル目にかけて、Co、Co+ΔC、Co+3ΔC、Co+7ΔC、Co+6ΔC、Co+4ΔCと変化し、7サイクル目以降は同様に変化することになる。
【0040】
ここで、電源線3に流れる電流Ivd_boardのピークの周期は、次サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3と現サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3との差に相関する値になるので、1サイクル目から順にΔC、2ΔC、4ΔC、−ΔC、−2ΔC、−4ΔCに相関する値となる。
【0041】
したがって、電源線3に流れる電流Ivd_boardの周期は固定されることなく、電流Ivd_boardの周波数軸上の波形は、図6Eに示すように、クロックCKの周波数を中心とした幅広い山状になり、ピーク値も破線16で示す図13に示す電子機器の場合よりも低くなる。なお、本発明の第1実施形態の第2具体例では、可変容量素子18としてnMOSトランジスタ22−1〜22−3を使用しているが、pMOSトランジスタを使用することもできる。
【0042】
図7は本発明の第1実施形態の第3具体例を示す回路図である。本発明の第1実施形態の第3具体例は、制御回路19として、図4に示す本発明の第1実施形態の第2具体例が備えるシフタ23の代わりに、カウンタ28を設け、その他については、図4に示す本発明の第1実施形態の第2具体例と同様に構成したものである。
【0043】
図8はカウンタ28の構成を示す回路図である。図8中、29、30はDフリップフロップ、31、32はインバータである。Dフリップフロップ29は、自己の正相出力端子Qをインバータ31を介して自己の入力端子Dに接続し、クロックCKをクロック端子CKに与えられ、クリア端子CLにリセット信号RESETを与えられるように構成されている。
【0044】
Dフリップフロップ30は、クロック入力端子CKをインバータ31の出力端子に接続し、自己の正相出力端子Qをインバータ32を介して自己の入力端子Dに接続し、クリア端子CLにリセット信号RESETを与えられ、正相出力端子Qに制御信号Vcnt_2を出力するように構成されている。
【0045】
33はOR回路であり、Dフリップフロップ29、30の正相出力信号をOR処理して制御信号Vcnt_1を出力するものである。34はAND回路であり、Dフリップフロップ29、30の正相出力信号をAND処理して制御信号Vcnt_3を出力するものである。
【0046】
図9は本発明の第1実施形態の第3具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図であり、(A)はクロックCKの時間軸上の電圧波形、(B)は制御信号Vcnt_1、Vcnt_2、Vcnt_3の時間軸上の電圧波形、(C)はnMOSトランジスタ22−1、22−2、22−3の合成容量値C1+C2+C3、(D)は電源線3に流れる電流Ivd_boardの時間軸上の波形、(E)は電流Ivd_boardの周波数軸上の波形を示している。
【0047】
本発明の第1実施形態の第3具体例を使用した場合において、クロックCKの1サイクル目でカウンタ28のリセットを解除すると、制御信号Vcnt_1は2サイクル目からHレベルが3サイクル続いた後にLレベルになる。制御信号Vcnt_2は3サイクル目からHレベルが2サイクル続いた後にLレベルになる。制御信号Vcnt_3は4サイクル目からHレベルが1サイクル続いた後にLレベルになる。5サイクル目からは、この繰り返しである。
【0048】
ここで、nMOSトランジスタ22−1、22−2、22−3のゲート容量値を第2具体例の場合と同様に設定すると、nMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3は、1サイクル目から4サイクル目にかけて、Co、Co+ΔC、Co+3ΔC、Co+7ΔCと変化し、5サイクル目以降は同様に変化する。
【0049】
ここで、電源線3に流れる電流Ivd_boardのピークの周期は、次サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3と現サイクルにおけるnMOSトランジスタ22−1、22−2、22−3の合成ゲート容量値C1+C2+C3との差に相関する値になるので、1サイクル目から順にΔC、2ΔC、4ΔC、−7ΔCに相関する値となる。
【0050】
したがって、電源線3に流れる電流Ivd_boardの周期は固定されることなく、電流Ivd_boardの周波数軸上の波形は、図8Eに示すように、クロックCKの周波数を中心とした幅広い山状になり、ピーク値も破線16で示す図13に示す電子機器の場合よりも低くなる。なお、本発明の第1実施形態の第3具体例では、可変容量素子18としてnMOSトランジスタ22−1〜22−3を使用しているが、pMOSトランジスタを使用することもできる。
【0051】
図10は本発明の第1実施形態の第4具体例を示す回路図である。図10中、35は可変容量素子18をなすnMOSトランジスタであり、ゲートを電源線9に接続し、ドレイン及びソースを電源線10に接続している。
【0052】
36は制御回路19をなすアナログ電圧発生回路であり、37は図4(図5)に示すシフタ23と同一構成のシフタ、38はシフタ37から出力される制御信号Vcnt_1〜Vcnt_3を3ビットのデジタル信号としてアナログ信号に変換するデジタル/アナログ変換回路である。デタタル/アナログ変換回路38から出力されるアナログ信号は制御信号VcntとしてnMOSトランジスタ35のバックゲートに与えられる。
【0053】
デジタル/アナログ変換回路38において、39〜42は電源線9、10間に直列接続された抵抗、43〜45はnMOSトランジスタである。これらnMOトランジスタ43〜45は、それぞれ抵抗40〜42に並列接続され、制御信号Vcnt_1〜Vcnt_3によりON、OFFが制御されるようにされている。
【0054】
このように構成された本発明の第1実施形態の第4具体例によれば、nMOSトランジスタ35のゲート容量値変化を離散度の小さいものとすることができるので、電源線3に流れる電流Ivd_boardの周波数軸上の波形をクロックCKの周波数を中心とした幅広い山状にし、ピーク値も図13に示す電子機器の場合よりも低くすることができる。なお、本発明の第1実施形態の第4具体例では、可変容量素子18としてnMOSトランジスタ35を使用しているが、pMOSトランジスタを使用することもできる。
【0055】
以上のように、本発明の第1実施形態によれば、動作の高速化及び回路の簡易化を図るために周期固定のクロックCKを使用する場合であっても、電源線3、6、9で構成される電源路の伝達関数をクロックCKに同期させて変化させることができるので、電源線3に流れる電流Ivd_boardのクロック周波数付近の成分を小さくすることができる。したがって、電源線3をアンテナとして輻射される不要電磁波を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができる。
【0056】
(本発明の第2実施形態・・図11、図12)
図11は本発明の第2実施形態を使用した電子機器の一例の一部分を示す回路図である。図11に示す電子機器は、図13に示す半導体チップ8の代わりに、本発明の第2実施形態を搭載した半導体チップ46を使用し、その他については、図13に示す電子機器と同様に構成したものである。
【0057】
本発明の第2実施形態は、電源線9、10間に可変抵抗素子47と固定容量素子48を直列に接続すると共に、クロックCKに同期して可変抵抗素子47の抵抗値を変化させるように可変抵抗素子47を制御する制御回路49を設け、その他については、図13に示す半導体チップ8が搭載する半導体集積回路と同様に構成したものである。
【0058】
図12は本発明の第2実施形態の具体例を示す回路図である。図12中、50は可変抵抗素子47をなすnMOSトランジスタ、51は固定容量素子48をなすnMOSトランジスタ、52は制御回路49をなす1/2分周回路である。1/2分周回路52は、クロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ50のゲートに供給するように構成されている。
【0059】
nMOSトランジスタ50は、ドレインを電源線9に接続し、ソースをnMOSトランジスタ51のゲートに接続し、バックゲートを電源線10に接続している。nMOSトランジスタ51は、ドレイン、ソース及びバックゲートを電源線10に接続している。
【0060】
本発明の第2実施形態によれば、1/2分周回路52は、クロックCKを1/2に分周してなる信号を制御信号VcntとしてnMOSトランジスタ50のゲートに供給するように構成されているので、nMOSトランジスタ50のゲートには、クロックCKの各周期ごとにHレベル電圧とLレベル電圧とが繰り返し供給され、nMOSトランジスタ50のドレイン・ソース間は、低抵抗状態と高抵抗状態を繰り返すことになる。この結果、電源線3、6、9で構成される電源路の伝達関数をクロックCKに同期させて変化させることができる。
【0061】
したがって、動作の高速化及び回路の簡易化を図るために周期固定のクロックCKを使用する場合であっても、電源線3に流れる電流Ivd_boardのクロック周波数付近の成分を小さくすることができるので、電源線3をアンテナとして輻射される不要電磁波を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができる。なお、制御回路49として、図10に示すアナログ電圧発生回路36を使用することができ、このようにする場合には、可変抵抗素子47のより細かい制御が可能となる。
【0062】
ここで、本発明を整理すると、本発明には、以下に記述する半導体集積回路が含まれる。
【0063】
(付記1)クロックに同期して動作する内部回路を有する半導体集積回路であって、前記内部回路を駆動するための第1、第2の電源線間に接続された可変容量素子と、前記可変容量素子の容量値が前記クロックに同期して変化するように前記可変容量素子を制御する制御回路を有することを特徴とする半導体集積回路。
【0064】
(付記2)前記可変容量素子は、ゲートを前記第1の電源線に接続し、ドレイン及びソースを前記第2の電源線に接続したトランジスタで構成され、前記制御回路は、前記クロックに同期して電圧値が変化する信号を制御信号として前記トランジスタのバックゲートに与えるものであることを特徴とする付記1記載の半導体集積回路。
【0065】
(付記3)前記制御回路は、前記クロックを1/2に分周した信号を制御信号として出力する分周回路からなることを特徴とする付記2記載の半導体集積回路。
【0066】
(付記4)前記制御回路は、前記可変容量素子の容量値変化が同一とならないように電圧値が3値以上に変化する信号を制御信号として出力するものであることを特徴とする付記2記載の半導体集積回路。
【0067】
(付記5)前記可変容量素子は、ゲートを前記第1の電源線に接続し、ドレイン及びソースを前記第2の電源線に接続し、ゲート容量値を異にする複数のトランジスタで構成され、前記制御回路は、前記複数のトランジスタのバックゲートのそれぞれにクロックサイクル毎にいずれかの電圧値が変化するような制御信号を与えることを特徴とする付記1記載の半導体集積回路。
【0068】
(付記6)前記制御回路は、前記クロックを入力信号とするシフタで構成されていることを特徴とする付記5記載の半導体集積回路。
【0069】
(付記7)前記制御回路は、前記クロックをカウントするカウンタで構成されていることを特徴とする付記5記載の半導体集積回路。
【0070】
(付記8)クロックに同期して動作する内部回路を有する半導体集積回路であって、前記内部回路を駆動するための第1、第2の電源線間に直列接続された可変抵抗素子及び固定容量素子と、前記可変抵抗素子の抵抗値が前記クロックに同期して変化するように前記可変抵抗素子を制御する制御回路を有することを特徴とする半導体集積回路。
【0071】
(付記9)可変抵抗素子として、ゲートに前記制御回路からの制御信号が与えられるトランジスタを用い、前記制御回路は、前記クロックに同期して電圧値が変化する信号を制御信号として出力するものであることを特徴とする付記8記載の半導体集積回路。
【0072】
(付記10)前記制御回路は、前記クロックを1/2に分周した信号を制御信号として出力する分周回路からなることを特徴とする付記9記載の半導体集積回路。
【0073】
(付記11)前記制御回路は、電圧値が3値以上に変化する信号を制御信号として出力するものであることを特徴とする付記9記載の半導体集積回路。
【0074】
【発明の効果】
以上のように、本発明によれば、動作の高速化及び回路の簡易化を図るために周期固定のクロックを使用する場合であっても、第1、第2の電源線と外部電源線で構成される電源路の伝達関数をクロックに同期させて変化させることができ、外部電源線に流れる電流のクロック周波数付近の成分を小さくすることができるので、外部電源線をアンテナとして輻射される不要電磁波を抑制し、電磁波輻射の影響を与えにくい電子機器を構成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を使用した電子機器の一例の一部分を示す回路図である。
【図2】本発明の第1実施形態の第1具体例を示す回路図である。
【図3】本発明の第1実施形態の第1具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図である。
【図4】本発明の第1実施形態の第2具体例を示す回路図である。
【図5】本発明の第1実施形態の第2具体例が備えるシフタの構成を示す回路図である。
【図6】本発明の第1実施形態の第2具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図である。
【図7】本発明の第1実施形態の第3具体例を示す回路図である。
【図8】本発明の第1実施形態の第3具体例が備えるカウンタの構成を示す回路図である。
【図9】本発明の第1実施形態の第3具体例を使用した場合に図1に示す電子機器から輻射される不要電磁波を説明するための図である。
【図10】本発明の第1実施形態の第4具体例を示す回路図である。
【図11】本発明の第2実施形態を使用した電子機器の一例の一部分を示す回路図である。
【図12】本発明の第2実施形態の具体例を示す回路図である。
【図13】従来の電子機器の一例の一部分を示す回路図である。
【図14】図13に示す電子機器から輻射される不要電磁波を説明するための図である。
【図15】スペクトラム拡散クロックを使用する電子機器の一例の一部分を示す回路図である。
【図16】図15に示す電子機器から輻射される不要電磁波を説明するための図である。
【符号の説明】
1…ボード
2…電源ユニット
3、4…電源線
5…半導体パッケージ
6、7…電源線
6L、7L…インダクタンス成分
8…半導体チップ
9、10…電源線
11…固定容量素子
12…内部回路
13…クロック生成回路
14…スペクトラム拡散クロック生成回路
15…半導体チップ
17…半導体チップ
18…可変容量素子
19…制御回路
21…1/2分周回路
23…シフタ
28…カウンタ
36…アナログ電圧発生回路
37…シフタ
38…デジタル/アナログ変換回路
39〜42…抵抗
46…半導体チップ
47…可変抵抗素子
48…固定容量素子
49…制御回路
52…1/2分周回路
Claims (5)
- クロックに同期して動作する内部回路を有する半導体集積回路であって、
前記内部回路を駆動するための第1、第2の電源線間に接続された可変容量素子と、前記可変容量素子の容量値が前記クロックに同期して変化するように前記可変容量素子を制御する制御回路を有することを特徴とする半導体集積回路。 - 前記可変容量素子は、ゲートを前記第1の電源線に接続し、ドレイン及びソースを前記第2の電源線に接続したトランジスタで構成され、
前記制御回路は、前記クロックに同期して電圧値が変化する信号を制御信号として前記トランジスタのバックゲートに与えるものであることを特徴とする請求項1記載の半導体集積回路。 - 前記制御回路は、前記クロックを1/2に分周した信号を制御信号として出力する分周回路からなることを特徴とする請求項2記載の半導体集積回路。
- 前記可変容量素子は、ゲートを前記第1の電源線に接続し、ドレイン及びソースを前記第2の電源線に接続し、ゲート容量値を異にする複数のトランジスタで構成され、
前記制御回路は、前記複数のトランジスタのバックゲートのそれぞれにクロックサイクル毎にいずれかの電圧値が変化するような制御信号を与えることを特徴とする請求項1記載の半導体集積回路。 - クロックに同期して動作する内部回路を有する半導体集積回路であって、
前記内部回路を駆動するための第1、第2の電源線間に直列接続された可変抵抗素子及び固定容量素子と、前記可変抵抗素子の抵抗値が前記クロックに同期して変化するように前記可変抵抗素子を制御する制御回路を有することを特徴とする半導体集積回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003126347A JP2004336191A (ja) | 2003-05-01 | 2003-05-01 | 半導体集積回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003126347A JP2004336191A (ja) | 2003-05-01 | 2003-05-01 | 半導体集積回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004336191A true JP2004336191A (ja) | 2004-11-25 |
Family
ID=33503313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003126347A Withdrawn JP2004336191A (ja) | 2003-05-01 | 2003-05-01 | 半導体集積回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004336191A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135850A (ja) * | 2006-11-27 | 2008-06-12 | Seiko Npc Corp | 電圧制御saw発振回路 |
JP2008306699A (ja) * | 2007-06-11 | 2008-12-18 | Hynix Semiconductor Inc | 周波数調整装置及びそれを含むdll回路 |
JP2009099718A (ja) * | 2007-10-16 | 2009-05-07 | Nec Electronics Corp | 半導体集積回路装置 |
JP2010139499A (ja) * | 2008-12-12 | 2010-06-24 | Internatl Business Mach Corp <Ibm> | 電磁干渉の測定および制御のための方法および電子システム |
JP2013514014A (ja) * | 2009-12-11 | 2013-04-22 | クゥアルコム・インコーポレイテッド | アクティブデバイスをバイアスするシステム及び方法 |
-
2003
- 2003-05-01 JP JP2003126347A patent/JP2004336191A/ja not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135850A (ja) * | 2006-11-27 | 2008-06-12 | Seiko Npc Corp | 電圧制御saw発振回路 |
JP2008306699A (ja) * | 2007-06-11 | 2008-12-18 | Hynix Semiconductor Inc | 周波数調整装置及びそれを含むdll回路 |
JP2013078129A (ja) * | 2007-06-11 | 2013-04-25 | Sk Hynix Inc | 周波数調整装置及びそれを含むdll回路 |
JP2009099718A (ja) * | 2007-10-16 | 2009-05-07 | Nec Electronics Corp | 半導体集積回路装置 |
JP2010139499A (ja) * | 2008-12-12 | 2010-06-24 | Internatl Business Mach Corp <Ibm> | 電磁干渉の測定および制御のための方法および電子システム |
US8502618B2 (en) | 2008-12-12 | 2013-08-06 | International Business Machines Corporation | Measurement and control of electromagnetic interference |
JP2013514014A (ja) * | 2009-12-11 | 2013-04-22 | クゥアルコム・インコーポレイテッド | アクティブデバイスをバイアスするシステム及び方法 |
US8855336B2 (en) | 2009-12-11 | 2014-10-07 | Qualcomm Incorporated | System and method for biasing active devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6687319B1 (en) | Spread spectrum clocking of digital signals | |
US7652517B2 (en) | Method and apparatus for generating synchronous clock signals from a common clock signal | |
JP5815608B2 (ja) | 調整可能な周波数を備える信号発生器 | |
JP2001339280A (ja) | タイミング差分割回路と信号制御方法及び装置 | |
US7750713B2 (en) | Spread spectrum clock generator | |
JP2007233968A (ja) | スペクトラム拡散クロック制御装置及びスペクトラム拡散クロック発生装置 | |
US8587338B1 (en) | Method and apparatus for clocking | |
US20030112045A1 (en) | Precision aligned multiple concurrent duty cycles from a programmable duty cycle generator | |
WO2022247681A1 (zh) | 延时调制电路、方法、芯片及服务器 | |
JP2004336191A (ja) | 半導体集積回路 | |
JP2021111670A (ja) | 半導体装置、半導体装置システム、および車載システム | |
US7411464B1 (en) | Systems and methods for mitigating phase jitter in a periodic signal | |
CN114421832B (zh) | 降低电磁干扰的电路 | |
JP6224438B2 (ja) | 半導体装置 | |
JP2005085273A (ja) | 帯域拡散クロック発生器 | |
US20030112083A1 (en) | Multiple duty cycle tap points for a precise and programmable duty cycle generator | |
US7427886B2 (en) | Clock generating method and circuit thereof | |
US6337588B1 (en) | Apparatus and method for doubling the frequency of a clock signal | |
JP3563842B2 (ja) | 内部クロック信号発生方式 | |
EP4037258A1 (en) | Can transmitter | |
JP4412788B2 (ja) | パラレル−シリアル変換回路 | |
JP6295547B2 (ja) | データ処理回路及びそれを用いた制御装置 | |
JP4343665B2 (ja) | 伝送線路 | |
CN106559061A (zh) | 占空比校正器 | |
KR101882852B1 (ko) | 클럭 신호 생성 회로와 그를 이용하는 반도체 메모리 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060704 |