JP2004335800A - 固体撮像素子の製造方法 - Google Patents

固体撮像素子の製造方法 Download PDF

Info

Publication number
JP2004335800A
JP2004335800A JP2003130722A JP2003130722A JP2004335800A JP 2004335800 A JP2004335800 A JP 2004335800A JP 2003130722 A JP2003130722 A JP 2003130722A JP 2003130722 A JP2003130722 A JP 2003130722A JP 2004335800 A JP2004335800 A JP 2004335800A
Authority
JP
Japan
Prior art keywords
electrode
film
silicon
etching
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130722A
Other languages
English (en)
Inventor
Takanori Sato
孝紀 佐藤
Sadaji Yasuumi
貞二 安海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Fujifilm Microdevices Co Ltd
Original Assignee
Fujifilm Microdevices Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Microdevices Co Ltd, Fuji Photo Film Co Ltd filed Critical Fujifilm Microdevices Co Ltd
Priority to JP2003130722A priority Critical patent/JP2004335800A/ja
Publication of JP2004335800A publication Critical patent/JP2004335800A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】単層構造の電荷転送電極を用いた電荷転送装置において、微細化、多画素化、大型化に際しても、工程の自由度を確保したままで歩留まり低下を生じることなく、表面の平坦化をはかり、フォトダイオード部の加工精度の向上をはかることにより、高感度で信頼性の高い固体撮像素子を提供する。
【解決手段】光電変換部の形成された半導体基板表面に、ゲート酸化膜2を介して設けられた第1の電極3と、前記ゲート酸化膜2、前記第1の電極3および電極間絶縁膜6の形成された前記半導体基板表面に設けられた第2の電極7とが電極間絶縁膜6を介して平面上に交互に配列された電荷転送電極を形成するようにしたことを特徴とする。
【選択図】図4

Description

【0001】
【発明の属する技術分野】
本発明は、固体撮像素子の製造方法にかかり、特に単層電極CCD(電荷結合素子)構造の固体撮像素子の形成に関する。
【0002】
【従来の技術】
エリアセンサ等に用いられるCCDを用いた固体撮像素子は、フォトダイオードなどの光電変換部と、この光電変換部からの信号電荷を転送するための電荷転送電極を備えた電荷転送部とを有する。電荷転送電極は、半導体基板に形成された電荷転送路上に複数個隣接して配置され、順次駆動される。
【0003】
近年、固体撮像素子においては、ギガピクセル以上まで撮像画素数の増加が進んでいるが、画素数の増加に伴い信号電荷の高速転送、すなわち電荷転送電極の高速パルスによる駆動が必要となるため、電荷転送電極の低抵抗化が求められている。また、ブローニーサイズとなるなど大型化も進められており、電荷転送時に高い転送効率を維持することが困難になっている。
【0004】
従来の単層構造の電荷転送電極を用いた固体撮像素子では、電荷転送電極として多結晶シリコン層を用い、第1層配線を形成した後に、この第1層配線のパターン表面を酸化し、第2層目の転送電極となる多結晶シリコン層を堆積し、全面エッチングを行うことにより電極の単層化を実施している(特許文献1参照)。
【0005】
また、電極間絶縁膜を先に形成した後に電極となる多結晶シリコン層などを堆積し、レジストエッチバックあるいはケミカルメカニカルポリッシング法(以下CMP法)を行うことにより電極の単層化を実施しているため、電極の平坦性を得ることができず、フォトダイオード部を加工する際の露光精度が低下するという問題があった。
【0006】
また従来の2層電極構造の電荷転送電極をもつ固体撮像素子(特許文献2参照)では、隣接する電極とオーバラップした構造となっているため、高さが高くなる。
【0007】
通常電荷転送電極を形成した後、エッチングによりフォトダイオード部の表面を露呈せしめられるが、このように、電荷転送電極の重なりにより、高さが高くなると、電荷転送電極とフォトダイオードなどの光電変換部との段差が大きくなるため、フォトダイオード上部の余分な多結晶シリコン膜等を完全に除去することが出来ず、残渣が発生することがある。またこのような残渣により開口が狭められてしまい、開口から光源を見込む角度を広くとることができず、感度を十分にとることができない。
【0008】
また、平坦性の悪化により、電荷転送電極より上層の平坦化膜、インナーレンズ、マイクロレンズ、カラーフィルタなどの各種の膜の膜厚の不均一や形状ばらつきの増大を招くことになり、シェーディング、感度ばらつき、迷光によるスミアの悪化などが発生する。
【0009】
このため、上述したような方法では、さらなる感度の向上に対応するのは困難であるという問題があった。
【0010】
【特許文献1】
特開平3−246971号公報
【特許文献2】
特開平10−107254号公報
【0011】
【発明が解決しようとする課題】
このように、従来の固体撮像素子では、単層電極構造の電荷転送電極の平坦化は困難であり、微細化、高集積化に伴い、歩留まりが低下するという問題があった。
【0012】
本発明は前記実情に鑑みてなされたもので、単層構造の電荷転送電極を用いた電荷転送装置において、微細化、多画素化、大型化に際しても、工程の自由度を確保したままで歩留まり低下を生じることなく、表面の平坦化をはかり、フォトダイオード部の加工精度の向上をはかることにより、高感度で信頼性の高い固体撮像素子を提供することを目的とする。
【0013】
【課題を解決するための手段】
そこで本発明では、光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部とを具備した固体撮像素子の製造方法において、前記電荷転送電極の形成工程が、ゲート酸化膜の形成された半導体基板表面に、第1の電極を構成する第1のシリコン系導電性膜を形成する工程と、前記第1のシリコン系導電性膜をパターニングし、第1の電極を形成する工程と、前記第1の電極の少なくとも側壁を覆うように電極間絶縁膜を形成する工程と、前記ゲート酸化膜、前記第1の電極および前記電極間絶縁膜の形成された前記半導体基板表面に第2の電極を構成する第2のシリコン系導電性膜を形成する工程と、少なくとも光電変換部形成領域の前記第2のシリコン系導電性膜をエッチング除去する工程と、前記エッチング除去する工程の後、前記第2のシリコン系導電性膜をパターニングし第2の電極を形成する工程とを含み、第1の電極と第2の電極とが電極間絶縁膜を介して平面上に交互に配列された電荷転送電極を形成するようにしたことを特徴とする。
【0014】
かかる構成によれば、第2の電極のパターニング工程に先立ち、光電変換部形成領域を露呈せしめるようにエッチングしているため、高精度のフォトリソグラフィ工程は不要であり、光電変換部(フォトダイオード部)にあわせたレジストパターンを形成すればよいため、エッチング残渣を生じないようにエッチングを行うことができる。そしてこの後、エッチバックなどの方法により第2の電極をパターニングすることにより高精度のパターン形成が可能となる。
さらにまた、前記平坦化する工程は、表面にレジストを塗布して平坦化した後、前記レジストと前記第2のシリコン系導電性膜のエッチング速度が等しくなるようなエッチング条件でエッチングする工程であることにより、良好に平坦化された表面を得ることができる。なお光電変換部を形成するためのpn接合の形成は、電荷転送部のイオン注入と別工程で行うようにし、電荷転送部の形成後に形成するのが望ましい。
また、前記平坦化する工程は、化学的機械研磨(CMP)工程であることにより、良好な平坦化面を得ることができる。
また、前記エッチバックする工程は、前記エッチバック工程に先立ち、前記第2のシリコン系導電性膜を被覆するようにレジストを形成する工程を含み、レジストエッチバックを行う工程であることを特徴とする。
これにより、レジストとシリコン系導電性膜とのエッチング速度がほぼ等しい条件を選択することにより、効率よく表面の平坦化をはかることが可能となる。
【0015】
さらに、前記マスク層パターンを、酸化シリコン膜とこの上に形成された窒化シリコン膜の2層膜で構成することにより、シリコン系導電性膜とのエッチング選択比を十分にとることができ、窒化シリコン膜をエッチングストッパとして効率よく平坦化をはかることが可能となる。
【0016】
また、前記電極間絶縁膜を形成する工程は、前記第1の電極パターンを表面酸化し、第1の電極パターンの側壁を酸化する工程を含むことにより、窒化シリコン膜が酸化防止膜として作用し、側壁にのみ選択的に効率よく酸化シリコン膜を形成することができる。
【0017】
さらに、前記電極間絶縁膜を形成する工程は、CVD法により、第1の電極パターンの側壁に絶縁膜を形成する工程を含むことにより、高精度に膜厚のコントロールされた電極間絶縁膜を形成することが可能となる。
【0018】
また、前記第2の電極となる領域の第2のシリコン系導電性膜をエッチングし、前記電極間絶縁膜の上端よりも十分に低くなるようにする工程を含むことにより、絶縁分離をより確実にすることができ、短絡不良を防止することが可能となる。
【0019】
また、前記第1の電極上のマスク層パターンをエッチング除去する工程と、前記第1および第2の電極上に金属膜を形成する工程とを含むことにより、電極の低抵抗化をはかることができ、高速駆動が可能となる。
【0020】
また、熱処理により前記第1および第2の電極と前記金属膜との界面に金属シリサイドを形成するシリサイド化工程と、シリサイド化されずに残った金属膜を選択的に除去する工程とを含み、シリコン系導電性膜と金属シリサイド層とからなる電荷転送電極を形成することにより、電極の更なる低抵抗化をはかることができる上、短絡不良もなく、信頼性の高い固体撮像素子電極を形成することが可能となる。
【0021】
また、シリコン系導電性膜は電極間絶縁膜の上縁よりも十分に低い位置までエッチングしておくことにより、シリサイド化に際してせり上がりが生じても短絡を生じることなく自己整合的にシリサイド膜の形成を行なうことが可能となる。またせりあがりとは、ここでは、シリコンが 金属膜中に拡散してシリサイドが形成される場合、シリコンが露出した領域が全てシリサイド化したあと、その周辺の金属中までシリコンが拡散しシリサイド化が進行し、いわゆる横方向成長がおこり、これが電極間絶縁膜に沿って伸長するものをいう。
【0022】
また、シリサイド化を用いることにより、金属層などの低抵抗層の形成に必要なフォトリソ工程やエッチング工程が不要となり、工程数削減による歩留まりの向上が可能となる。
【0023】
また、シリコン系導電性膜を形成する工程は、多結晶シリコン膜を成膜する工程と、前記多結晶シリコン膜に、不純物を添加する工程とを含むことを特徴とする。
【0024】
また、シリコン系導電性膜を形成する工程は、不純物を添加しながらアモルファスシリコン膜を成膜する工程を含むことを特徴とする。
これにより、不純物の注入工程が不要となり、製造が容易で信頼性の高い膜を形成することが可能となる。
【0025】
また、この金属シリサイド膜としては、チタンシリサイドを用いるようにすれば、より低抵抗化をはかることが可能となる。
【0026】
さらに望ましくは、金属シリサイド膜として、コバルトシリサイドを用いるようにすれば、後続工程における熱による凝集もなく、より低抵抗のシリサイド膜を形成することが可能となる。
【0027】
また、金属シリサイド膜としては、ニッケル、パラジウム、プラチナ、タンタルのシリサイドとしてもよい。
【0028】
加えて、金属シリサイド層の上部にチタン、コバルト、ニッケル、パラジウム、プラチナ、タンタルあるいはこれらの窒化物、合金、化合物、複合物を付加するようにし、下層の凝集による高抵抗化を防止することも可能である。
【0029】
さらにまた、異方性エッチングなどによる平坦化のためのエッチング工程に先立ち、少なくとも周辺回路領域を含む前記光電変換部をレジストパターンで被覆するようにすれば、このレジストをそのまま残して金属膜を形成することにより、シリサイドを形成しない領域はレジストで被覆保護されて金属膜も形成されないようにすることができる。
【0030】
またこの金属膜を選択的に除去する工程の後、熱処理により前記金属シリサイド膜を低抵抗化するアニール工程を含むようにしてもよい。
【0031】
なおこのシリサイド化工程は、窒素雰囲気中で690から800℃に加熱するのがよい。
【0032】
また、シリサイド化されずに残った金属膜を除去した後、800℃以上に加熱すれば、シリサイド膜の低抵抗をはかることが可能となる。
このように、690から800℃程度の低温下でシリサイド化し、800℃以上で加熱することにより、低抵抗で短絡不良のおそれのない電荷転送電極を形成することができる。
【0033】
【発明の実施の形態】
以下本発明の実施の形態について図面を参照しつ説明する。
(第1の実施の形態)
図1乃至図3に、本発明の第1の実施の形態の固体撮像素子の製造方法を示す。
【0034】
この固体撮像素子は、図1および2にその電極形成工程を示すように、光電変換部の形成されたシリコン基板1表面に、第1の電極のパターンの間に電極間絶縁膜を介して第2の電極を形成し、単層構造の電荷転送電極を形成する方法であって、第2の電極を形成すべく第2のシリコン系導電性膜をエッチバックするに先立ち、光電変換部を構成するフォトダイオード形成領域PDおよび第1の電極上の第2のシリコン系導電性膜をエッチング除去し、その後、エッチバックにより平坦化するようにしたことを特徴とする。
【0035】
なおこのゲート酸化膜は、酸化シリコン膜2aと窒化シリコン膜2bと酸化シリコン膜2cとの3層構造膜で構成される。
【0036】
なお、図3および図4に全体の概要説明図を示すように、シリコン基板1には、複数のフォトダイオード30が形成され、フォトダイオードで検出した信号電荷を転送するための電荷転送部40が、フォトダイオード30の間に蛇行形状を呈するように形成される。
【0037】
電荷転送電極によって転送される信号電荷が移動する電荷転送チャネル31は、図3では図示していないが、電荷転送部40が延在する方向と交差する方向に、やはり蛇行形状を呈するように形成される。
【0038】
なお、図3においては、電極間絶縁膜3の内、フォトダイオード領域と電荷転送部40との境界近傍に形成されるものの記載を省略してある。
【0039】
図4に示すように、シリコン基板1内には、フォトダイオード30、電荷転送チャネル31、チャネルストップ領域32、電荷読み出し領域33が形成され、シリコン基板1表面には、ゲート酸化膜2が形成される。ゲート酸化膜2表面には、酸化シリコン膜からなる電極間絶縁膜6と電荷転送電極(第1の電極3、第2の電極7)が形成される。
【0040】
電荷転送部40は、上述したとおりであるが、電荷転送部40の電荷転送電極上面には層間絶縁膜としての、酸化シリコン膜70が形成される。
【0041】
固体撮像素子の上方には、フォトダイオード30部分を除いて遮光膜(図示せず)が設けられ、さらにカラーフィルタ50、マイクロレンズ60が設けられる。また、電荷転送部40と遮光膜との間、および遮光膜とカラーフィルタ50との間は、絶縁性の透明樹脂等が充填される。電荷転送部40および電極間絶縁膜3を除いて通例のものと同様であるので説明を省略する。また、図3では、いわゆるハニカム構造の固体撮像素子を示しているが、正方格子型の固体撮像素子にも適用可能であることはいうまでもない。
【0042】
次にこの固体撮像素子の製造工程について詳細に説明する。
まず、n型のシリコン基板1表面に、膜厚20nmの酸化シリコン膜2aと、膜厚50nmの窒化シリコン膜2bと、膜厚10nmの酸化シリコン膜2cを形成し、3層構造のゲート酸化膜2を形成する。
【0043】
続いて、このゲート酸化膜2上に、Heで希釈したSiHを反応性ガスとして用いた減圧CVD法により、膜厚0.4μmの第1層多結晶シリコン膜を形成する。このときの基板温度は600〜700℃とする。この後POClとNとOとの混合ガス雰囲気中で900℃の熱処理を行い第1層多結晶シリコン膜をドーピングしドープされた第1層多結晶シリコン膜を形成する(リン酸処理)。
【0044】
そして、フォトリソグラフィにより形成したレジストパターンなど所望のマスクを用い、HBrとOとの混合ガスを用いた反応性イオンエッチングにより、ゲート酸化膜2の窒化シリコン膜2bをエッチングストッパとして第1層多結晶シリコン膜3を選択的にエッチング除去し、第1の電極を形成する。ここでは高密度プラズマエッチング装置を用いるのが望ましい。
【0045】
続いて、減圧CVD法により第1の電極のパターンの表面に膜厚80nmの酸化シリコン膜からなる電極間絶縁膜6を形成する(図1(a))。
【0046】
次に、SiHガスを用いた減圧CVD法により膜厚0.3〜0.4μmの第2層多結晶シリコン膜7を形成する(図1(b))。
【0047】
そして、図1(c)に示すように、レジストを塗布しパターニングしてフォトダイオード30上および第1の電極3上以外の表面をレジストパターンR1で被覆する。
この後、図1(d)に示すように、このレジストパターンR1をマスクとして、フォトダイオード30上および第1の電極3上の第2層多結晶シリコン膜7をエッチング除去する。
【0048】
そして、図2(a)に示すように、アッシングによりレジストパターンR1を除去する。
さらに、図2(b)に示すように、レジストR2を十分に厚く塗布する。そして、このレジストと第2層多結晶シリコン膜とのエッチング速度がほぼ等しくなるようなエッチング条件でエッチングを行い表面の平坦化をはかるとともに第2層多結晶シリコン膜7のパターニングを行うことにより、図2(c)に示すように、第2層多結晶シリコン膜7からなる第2の電極を形成し、表面の平坦な固体撮像素子電極が形成される。
なおこの電極間絶縁膜6の幅は、酸化シリコン膜の膜厚によって制御可能であり、酸化シリコン膜の膜厚を上げていくと電極間絶縁膜の幅も広くなり、隣接電極間の短絡マージンを広げることができる。この酸化シリコン膜は減圧CVD法によって形成したが、熱酸化膜あるいは熱酸化膜とCVD法によって形成した酸化シリコン膜との積層構造体でもよい。
【0049】
そしてこの上層に膜厚100nmのP−TEOS膜を形成した後、膜厚700〜1000nmのBPSG膜を形成し、850〜900℃でリフローし平坦化して絶縁膜70を得る。この後遮光膜、カラーフィルタ50、マイクロレンズ60などを形成して、図3および4に示すような固体撮像素子を得る。
【0050】
かかる構成によれば、フォトダイオード領域PDの多結晶シリコン膜を除去した後、エッチバックを行うようにしているため、あわせずれも低減することができ、エッチング残渣の低減をはかることができるとともに、高感度で信頼性の高い固体撮像素子を提供することが可能となる。
【0051】
なお、前記実施の形態では、電極をドープト多結晶シリコン膜で構成したが、これに限定されることなく、アモルファスシリコン膜を用いてもよい。この場合は、成膜後に、不純物を注入する必要はなく、成膜しながら不純物を注入することができる。
【0052】
また、ゲート酸化膜2の膜厚としては、下層側の酸化シリコン膜は25〜35nmであってもよく、また上層側の酸化シリコン膜は8〜10程度とするのが望ましい。
さらに第1層多結晶シリコン膜は0.3〜0.4μmであればよい。
【0053】
(第2の実施の形態)
本発明の第2の実施の形態の固体撮像素子の製造方法を説明する。
【0054】
この固体撮像素子は、図5乃至6にその電極形成工程を示すように、第2の電極形成のための第2層多結晶シリコン膜のエッチバックに先立ち、前記第1の実施の形態ではフォトダイオード形成領域および第1の電極3上の第2層多結晶シリコン膜を除去したが、この例では、フォトダイオード形成領域PD上の多結晶シリコン膜のみをエッチングするようにしたことを特徴とする。他の工程については前記第1および第2の実施の形態と同様に形成する。
すなわち、図5(a)、(b)に示すようにシリコン基板1上に、前記第1の実施の形態と同様にゲート酸化膜2を形成するとともに、第1層多結晶シリコン膜3を形成しこれをパターニングして第1の電極を形成し、このまわりに酸化シリコン膜を形成して電極間絶縁膜6とした後、この上層に第2層多結晶シリコン膜7を形成する。
そして、図5(c)に示すように、フォトダイオード形成領域PDを開口したレジストパターンR3を形成する。
この後、図5(d)に示すように、このレジストパターンR3をマスクとしての第2層多結晶シリコン膜7をエッチングし、フォトダイオード形成領域の基板表面を露呈せしめる。
そして、前記第1の実施の形態と同様に、レジストR3をアッシングし(図6(a))、基板表面全体をレジストR2で被覆し(図6(b)、エッチバックすることにより、表面の平坦化をはかるとともに第2層多結晶シリコン膜7をパターニングする(図6(c))。
そしてさらに、第1層電極上の酸化シリコン膜をエッチング除去し、第1層および第2層多結晶シリコン膜をエッチングして、電極間絶縁膜6よりも低くなるようにする。ここでエッチングガスとしては、CFとOとNとの混合ガスを用い、エッチング処理を行う。
このようにして電極間絶縁膜6よりも多結晶シリコン膜3,7の表面が低くなるようにする。
【0055】
そして、第1の電極3および第2の電極7を構成する多結晶シリコン膜の上層に、スパッタリング法などにより、膜厚50〜300nmのチタン膜を形成する。
なお、ここでチタン膜のスパッタリングに先立ち、スパッタリング装置内でアルゴンプラズマによるスパッタエッチを行い、多結晶シリコン膜表面の自然酸化膜を除去した後、大気に曝すことなく連続してチタン膜のスパッタリングを行うことにより、安定して低抵抗化をはかることができる。
【0056】
続いて、760℃90秒のRTA(急速熱処理)を行い、第1及び第2の電極3、7の多結晶シリコン膜とチタン膜との界面に同時にチタンシリサイド8を形成する(図6(d))。なお、縮退濃度までリンをドープした多結晶シリコンではシリサイド化のための加熱温度は760℃が最適である。
【0057】
ここでp多結晶シリコンに比べ、シリサイド化反応が遅いn多結晶シリコンにおいては、シリサイド化によるせり上がりが生じにくいため、低抵抗化を優先して760℃又はそれ以上の温度で加熱することができる。
【0058】
このとき多結晶シリコンとチタンとの反応は第1および第2の電極上でのみ起こり、電極間絶縁膜6で覆われているフォトダイオード上や、絶縁膜で覆われている周辺回路上のチタンは未反応のままとなる。
【0059】
この後、アンモニアと過酸化水素水の混合液を用いたSC−1処理を行い、未反応のチタン膜を除去し、800℃90秒のアニール工程を経てチタンシリサイドの低抵抗化をはかり、多結晶シリコン膜とチタンシリサイドとの2層構造の電荷転送電極が形成される。
【0060】
この方法によれば、第1及び第2の電極を構成する多結晶シリコン膜の側壁に電極間絶縁膜を形成し、この電極間絶縁膜から露呈する多結晶シリコン膜の表面にチタンシリサイド膜を形成しているため、耐圧不良や短絡が生じることはない。従って微細で信頼性の高い固体撮像素子を得ることが可能となる。
【0061】
なお、光電変換部の形成のためのイオン注入については、電荷転送電極の形成前に形成したが、これに限定されることなく、形成後に実行するようにしても良い。
【0062】
なおここで用いる金属シリサイド膜としては、チタンシリサイドのほか、タンタル、タングステン、モリブデン、ニッケル、コバルト、白金のシリサイドなどが適用可能である。またこれらの金属シリサイドの上層にさらにこれらチタン、タンタル、タングステン、モリブデン、ニッケル、コバルト、白金の窒化物、合金、化合物、複合物を形成しても良い。
【0063】
また前記実施の形態では、シリコン系導電性膜として、多結晶シリコン膜を用いたが、多結晶シリコン膜に限定されることなく、アモルファスシリコン、マイクロクリスタルシリコンなど他のシリコン系導電性膜を用いてもよい。
【0064】
【発明の効果】
以上説明してきたように、本発明によれば、第2の電極の平坦化に先立ち、光電変換部の多結晶シリコン膜をエッチング除去するようにしているため、あわせずれなどによる残渣の発生を抑制することができるとともに、平坦化により感度の低下を防止することができ、高感度の単層電極構造の電荷転送電極を備えた固体撮像素子を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の固体撮像素子の製造工程を示す図である。
【図2】本発明の第1の実施の形態の固体撮像素子の製造工程を示す図である。
【図3】本発明の第1の実施の形態の固体撮像素子を示す図である。
【図4】本発明の第1の実施の形態の固体撮像素子を示す断面図である。
【図5】本発明の第2の実施の形態の固体撮像素子の製造工程を示す図である。
【図6】本発明の第2の実施の形態の固体撮像素子の製造工程を示す図である。
【符号の説明】
1 シリコン基板
2 ゲート酸化膜
3 第1の電極(第1層多結晶シリコン膜)
6 電極間絶縁膜
7 第2の電極(第2層多結晶シリコン膜)
8 チタンシリサイド膜
6S 電極間絶縁膜
30 フォトダイオード部
40 電荷転送部
50 カラーフィルタ
60 マイクロレンズ
70 酸化シリコン膜

Claims (8)

  1. 光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部とを具備した固体撮像素子の製造方法において、
    前記電荷転送電極の形成工程が、
    ゲート酸化膜の形成された半導体基板表面に、第1の電極を構成する第1のシリコン系導電性膜を形成する工程と、
    前記第1のシリコン系導電性膜をパターニングし、第1の電極を形成する工程と、
    前記第1の電極の少なくとも側壁を覆うように電極間絶縁膜を形成する工程と、
    前記ゲート酸化膜、前記第1の電極および前記電極間絶縁膜の形成された前記半導体基板表面に第2の電極を構成する第2のシリコン系導電性膜を形成する工程と、
    少なくとも光電変換部形成領域の前記第2のシリコン系導電性膜をエッチング除去する工程と、
    前記エッチング除去する工程の後、前記第2のシリコン系導電性膜をパターニングし第2の電極を形成する工程とを含み、
    第1の電極と第2の電極とが電極間絶縁膜を介して平面上に交互に配列された電荷転送電極を形成するようにしたことを特徴とする固体撮像素子の製造方法。
  2. 前記第2のシリコン系導電性膜をエッチング除去する工程は、前記光電変換部形成領域および前記第1の電極上の前記第2のシリコン系導電性膜を除去する工程を含むことを特徴とする請求項1に記載の固体撮像素子の製造方法。
  3. 前記第2の電極を形成する工程は、前記第2のシリコン系導電性膜をエッチバックし、表面を平坦化する工程であることを特徴とする請求項1又は2に記載の固体撮像素子の製造方法。
  4. 前記平坦化する工程は、表面にレジストを塗布して平坦化した後、前記レジストと前記第2のシリコン系導電性膜のエッチング速度が等しくなるようなエッチング条件でエッチングする工程であることを特徴とする請求項3に記載の固体撮像素子の製造方法。
  5. 前記平坦化する工程は、化学的機械研磨(CMP)工程であることを特徴とする請求項4に記載の固体撮像素子の製造方法。
  6. 前記第1の電極は側壁および上層を絶縁膜で被覆されており、前記平坦化する工程は、前記絶縁膜をエッチングストッパとして平坦化する工程であることを特徴とする請求項4または5に記載の固体撮像素子の製造方法。
  7. 前記第1の電極上の絶縁膜をエッチング除去する工程と、
    前記第1および第2の電極上に金属膜を形成する工程とを含むことを特徴とする請求項6に記載の固体撮像素子の製造方法。
  8. 熱処理により前記第1および第2の電極と前記金属膜との界面に金属シリサイドを形成するシリサイド化工程と、
    シリサイド化されずに残った金属膜を選択的に除去する工程とを含み、シリコン系導電性膜と金属シリサイド層とからなる電荷転送電極を形成することを特徴とする請求項7に記載の固体撮像素子の製造方法。
JP2003130722A 2003-05-08 2003-05-08 固体撮像素子の製造方法 Pending JP2004335800A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130722A JP2004335800A (ja) 2003-05-08 2003-05-08 固体撮像素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130722A JP2004335800A (ja) 2003-05-08 2003-05-08 固体撮像素子の製造方法

Publications (1)

Publication Number Publication Date
JP2004335800A true JP2004335800A (ja) 2004-11-25

Family

ID=33506147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130722A Pending JP2004335800A (ja) 2003-05-08 2003-05-08 固体撮像素子の製造方法

Country Status (1)

Country Link
JP (1) JP2004335800A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142098A (ja) * 2005-11-17 2007-06-07 Fujifilm Corp 固体撮像素子の製造方法
CN110098218A (zh) * 2018-01-31 2019-08-06 松下知识产权经营株式会社 摄像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142098A (ja) * 2005-11-17 2007-06-07 Fujifilm Corp 固体撮像素子の製造方法
CN110098218A (zh) * 2018-01-31 2019-08-06 松下知识产权经营株式会社 摄像装置

Similar Documents

Publication Publication Date Title
TWI435443B (zh) 固態攝像裝置及其製造方法
US11538837B2 (en) Semiconductor imaging device having improved dark current performance
JP4473240B2 (ja) Cmosイメージセンサの製造方法
CN111584527B (zh) 图像传感器、像素传感器与其形成方法
JP5963449B2 (ja) 光電変換装置の製造方法
JP2008166725A (ja) Cmos素子及びその製造方法
TWI613816B (zh) 半導體裝置及其製造方法
US7541630B2 (en) CMOS image sensor and method for manufacturing the same
US20230131599A1 (en) Image sensor pixel with deep trench isolation structure
US6995349B2 (en) Solid-state image pickup device and method for manufacturing the same
JP2006351759A (ja) 固体撮像素子およびその製造方法
JP2004335804A (ja) 固体撮像素子およびその製造方法
JP2004335800A (ja) 固体撮像素子の製造方法
JP4225836B2 (ja) 固体撮像素子の製造方法
JP4159306B2 (ja) 固体撮像素子およびその製造方法
JP2011151139A (ja) 固体撮像素子の製造方法および固体撮像素子
JP2004335801A (ja) 固体撮像素子およびその製造方法
JP4705791B2 (ja) 固体撮像素子の製造方法
JP2005191480A (ja) 固体撮像素子の製造方法
JP2011171575A (ja) 固体撮像素子とその製造方法
JP4500508B2 (ja) 固体撮像素子およびその製造方法
JP2004200319A (ja) 固体撮像素子およびその製造方法
JP2006216655A (ja) 電荷転送素子及びその製造方法
JP2773739B2 (ja) 固体撮像装置の製造方法
JP2004363473A (ja) 固体撮像素子およびその製造方法