JP2004327729A - 窒化物半導体素子および窒化物半導体素子の製造方法 - Google Patents

窒化物半導体素子および窒化物半導体素子の製造方法 Download PDF

Info

Publication number
JP2004327729A
JP2004327729A JP2003120646A JP2003120646A JP2004327729A JP 2004327729 A JP2004327729 A JP 2004327729A JP 2003120646 A JP2003120646 A JP 2003120646A JP 2003120646 A JP2003120646 A JP 2003120646A JP 2004327729 A JP2004327729 A JP 2004327729A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
electrode
semiconductor layer
convex member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003120646A
Other languages
English (en)
Other versions
JP2004327729A5 (ja
JP4543621B2 (ja
Inventor
Kazuyuki Akashi
和之 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003120646A priority Critical patent/JP4543621B2/ja
Publication of JP2004327729A publication Critical patent/JP2004327729A/ja
Publication of JP2004327729A5 publication Critical patent/JP2004327729A5/ja
Application granted granted Critical
Publication of JP4543621B2 publication Critical patent/JP4543621B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、発光層から外部へ取り出される光取り出し効率を向上できる窒化物半導体素子および窒化物半導体素子の製造方法を提供する。
【解決手段】本発明の窒化物半導体素子1は第1の電極21と、第1の導電型の窒化物半導体層11、発光層13、および第2の導電型の窒化物半導体層12を有する窒化物半導体層10と、第2の電極22とを備える。第1の電極21と窒化物半導体層10との間に凸状部材31が配置される。これにより、発光層13からの光を効率的に乱反射でき、外部へ取り出される光取り出し効率を向上することができる。第1の導電型の窒化物半導体層11は例えばp型窒化物半導体層から形成され、第1の電極21はp型窒化物半導体層と接するp電極とすることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、発光ダイオード(LED)、レーザダイオード(LD)等に利用される窒化物半導体素子および窒化物半導体素子の製造方法に関し、特に光の取り出し効率を向上することのできる窒化物半導体素子および窒化物半導体素子の製造方法に関する。
【0002】
【従来の技術】
窒化物半導体は青色、緑色の高輝度発光ダイオード(LED)の材料としてフルカラーLEDディスプレイ、交通信号灯、イメージスキャナ光源等の各種光源に用いられている。また、窒化物半導体を用いた青色LEDは黄色の蛍光を発する蛍光体と組み合わせることによって白色LEDとして実用化されている。白色LEDは、長寿命、低消費電力といったLEDの特性を有することから、白色蛍光灯の代替光源として期待されている。
【0003】
このようなLEDの構造として、透光性基板100上に、N型窒化物系化合物半導体層200、P型窒化物系化合物半導体層300、P型透光性電極400、P型パッド電極500とN型パッド電極600を配置した素子構造が知られている(図7)。
【0004】
【特許文献1】
特開2003−86843号公報(第6図)
【0005】
【発明が解決しようとする課題】
しかしながら、従来のLEDではP型電極またはN型電極で吸収され光出力が低減されるという問題が生じる。このために、従来構造のLEDにおいては、発光層から外部へ取り出される光取り出し効率を低下させるという問題があった。
【0006】
本発明は、このような問題を解決するためになされたものであり、発光層から外部へ取り出される光取り出し効率を向上できる窒化物半導体素子および窒化物半導体素子の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る窒化物半導体素子は、第1の電極と、発光層を有する窒化物半導体層と、第2の電極とを備えた窒化物半導体素子であって、第1の電極と窒化物半導体層との間に凸状部材が配置されることを特徴とする。
【0008】
さらに、本発明の請求項2に係る窒化物半導体素子は、請求項1の特徴に加えて、前記窒化物半導体素子は、支持基板と、支持基板上に導電層とをさらに備え、第1の電極は導電層上に配置されることを特徴とする。この構成によって、第1の電極と第2の電極とが対向する対向電極構造において、支持基板側の電極、すなわち第1電極側で効率的に光を乱反射させることができ、発光層から外部へ取り出される光取り出し効率を向上することができる。
【0009】
さらに、本発明の請求項3係る窒化物半導体素子は、請求項1または2の特徴に加えて、窒化物半導体層はp型窒化物半導体層をさらに有し、第1の電極はp型窒化物半導体層と接するp電極であることを特徴とする。p型窒化物半導体とオーミック接触が得られる材料は、n型窒化物半導体層とオーミック接触が得られるAlと比較して反射率が小さい材料しか従来知られていない。したがって、凸状部材をp型窒化物半導体層とp電極との間に配置した場合、p電極側における光を効率的に乱反射でき、p電極による光の吸収を低減できる。また、窒化物半導体においては、n型窒化物半導体に比べてp型窒化物半導体の抵抗が大きい。そのためp型窒化物半導体層の膜厚を小さくする必要があり、特に、キャリア横方向(結晶成長方向に対して垂直方向)移動の抵抗が大きくなる。したがって、p型窒化物半導体層と接するp電極は一般に大きな面積で形成される。このことから、一般に面積が大きい側の電極であるp電極と窒化物半導体層との間に凸状部材が配置されることによって、外部へ取り出される光取り出し効率をより向上することができる。
【0010】
さらに、本発明の請求項4係る窒化物半導体素子は、請求項1から3のいずれかの特徴に加えて、窒化物半導体層は第1の電極側の面に凹部を有し、凸状部材は凹部に配置されることを特徴とする。この場合、凸状部材は第1の電極側に形成された窒化物半導体層よりも小さい屈折率である材料から構成されることが好ましい。
【0011】
さらに、本発明の請求項6係る窒化物半導体素子は、請求項1から3のいずれかの特徴に加えて、第1の電極は窒化物半導体層側の面に凹部を有し、凸状部材は凹部に配置されることを特徴とする。この場合、凸状部材は第1の電極側に形成された窒化物半導体層と同程度の屈折率である材料から構成されることが好ましい。ここで、窒化物半導体層と同程度の屈折率とは、窒化物半導体層との境界面において発光層からの光を十分に入射することができる程度をいい、窒化物半導体層との屈折率差が20%以下であることが好ましい。このような材料としては、例えば、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタル、ZrO等が用いられるが、特に、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタルが好ましい。
【0012】
また、上記目的を達成するために、本発明の請求項8に係る窒化物半導体素子の製造方法は、第1の電極と、発光層を有する窒化物半導体層と、第2の電極とを備える窒化物半導体素子の製造方法であって、成長基板上に窒化物半導体層を形成する工程と、窒化物半導体層の表面に凹部を形成する工程と、凹部に凸状部材を形成する工程と、窒化物半導体層および凸状部材の表面に第1の電極を形成する工程とを備えることを特徴とする。
【0013】
さらにまた、上記目的を達成するために、本発明の請求項9に係る窒化物半導体素子は、第1の電極と、発光層を有する窒化物半導体層と、第2の電極とを備える窒化物半導体素子の製造方法であって、成長基板上に窒化物半導体層を形成する工程と、窒化物半導体層の表面に凸状部材を形成する工程と、窒化物半導体層および凸状部材の表面に第1の電極を形成する工程とを備えることを特徴とする。
【0014】
さらに、本発明の請求項10に係る窒化物半導体素子は、請求項8または9の特徴に加えて、前記窒化物半導体素子の製造方法は、 第1の電極上に支持基板を貼り合わせる工程と、成長基板を除去して窒化物半導体層を露出する工程と、窒化物半導体層の露出面上に第2の電極を形成する工程とをさらに備えることを特徴とする。この構成によって、第1の電極と第2の電極とが対向する対向電極構造において、支持基板側の電極、すなわち第1電極側で効率的に光を乱反射させることができ、発光層から外部へ取り出される光取り出し効率を向上できる窒化物半導体素子の製造方法を提供することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための窒化物半導体素子および窒化物半導体素子の製造方法を例示するものであって、本発明は窒化物半導体素子および窒化物半導体素子の製造方法を以下のものに特定しない。
【0016】
また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を随時省略する。
【0017】
[実施の形態1]
〔素子構造〕
図1に本発明の実施の形態1に係る窒化物半導体素子1の概略図を示す。図1(b)は窒化物半導体素子1の平面図であり、図1(a)は図1(b)に示す一点鎖線X−X’の側面断面図である。窒化物半導体素子1は第1の電極21と、第1の導電型の窒化物半導体層11、発光層13、および第2の導電型の窒化物半導体層12を有する窒化物半導体層10と、第2の電極22とを備える。
【0018】
第1の電極21と窒化物半導体層10との間に凸状部材31が配置される。凸状部材31は、例えば上面から見て円形に形成される。図1の例では、図1(b)の破線で表されるように、複数の凸状部材31が第1の電極21の領域内に配置される。凸状部材31は、側面から見て傾斜面(半導体の成長面に対して傾斜している面)を有することが好ましい。凸状部材31の側面である傾斜面の角度は、0°より大きく90°より小さい。好ましくは30°以上60°以下である。この構成によって、発光層13からの光をより効率的に乱反射でき、外部へ取り出される光取り出し効率をより向上できるからである。凸状部材31は第1の電極21側に形成された窒化物半導体層である第1の導電型の窒化物半導体層11よりも小さい屈折率の材料から形成される。窒化物半導体層よりも小さい屈折率の材料としては、例えばSiO等が挙げられる。これによって、発光層13からの光を第1の導電型の窒化物半導体層11と凸状部材31との境界面で効率的に反射することができる。
【0019】
窒化物半導体素子1は、支持基板42と、支持基板42上に導電層41とをさらに備える。第1の電極21は導電層41上に配置される。第1の電極21および凸状部材31が形成されていない領域と導電層41との間には保護膜50が配置される。また、導電層41の露出面、すなわち窒化物半導体層10が形成されていない領域にも保護膜50が配置される。さらに、保護膜50は第1の電極21と導電層41との間に部分的に配置される構成としてもよい。また、保護膜50は凸状部材31と同じ材料としてもよい。さらにまた、保護膜50と導電層41との間にAl、Ag、Rh等の高反射率の材料からなる反射膜を配置してもよい。これにより、発光層13からの光を保護膜50と反射膜との境界面で効率的に反射することができる。
【0020】
第1の導電型の窒化物半導体層11は例えばp型窒化物半導体層から形成され、第1の電極はp型窒化物半導体層と接するp電極とすることができる。この場合、p電極としての第1の電極21は、n型窒化物半導体層と接するn電極と同じか、n電極よりも大きな面積で形成される。図1の例では、図1(b)の破線で表されるように、第1の電極21は、上面から見て、第2の電極22が形成される領域を除く窒化物半導体層のほぼ全領域に形成される。p型窒化物半導体層とオーミック接触が得られるp電極の材料としては、Ni、Au、W、Pt、Ti、Al、Ir、Rh、Ag、Ni−Au、Ni―Au―RhO、Rh−Ir、Rh−Ir−Pt等が挙げられ、特に反射率の高いRh、Ag、Ni、Auを用いることが好ましい。n型窒化物半導体層とオーミック接触が得られるn電極の材料としては、Ti−Al、W−Al、Al等が挙げられる。またn電極上にはn側パッド電極を形成する。n側パッド電極の材料としては、Ni−Au、W−Pt−Au、Pt−Au等が挙げられる。
【0021】
実施の形態1の窒化物半導体素子1において、第1の導電型の窒化物半導体層11は第1の電極21側の面に凹部を有し、凸状部材31は凹部に配置される。凸状部材31は、高さを5μm以下、好ましくは3μm程度とする。また、凸状部材31の直径は、1μm以上10μm以下とする。
【0022】
なお図1(a)では、凸状部材31を第1の導電型の窒化物半導体層11内に設ける例を説明したが、この例に限られず、例えば図8に示すように発光層13や第2の導電型の窒化物半導体層12を貫通するように、凸状部材31を縦方向に延長して設けることもできる。
【0023】
〔製造方法〕
次に、図2および図3を用いて実施の形態1に係る窒化物半導体素子1の製造方法を説明する。
【0024】
(窒化物半導体層)
まず、図2(a)に示すように、成長基板60上に第2導電型の窒化物半導体層12、発光層13、第1導電型の窒化物半導体層11を有する窒化物半導体層10を形成する。成長基板60は、窒化物半導体をエピタキシャル成長させることができる基板であればよく、成長基板の大きさや厚さ等は特に限定されない。この成長基板としては、C面、R面、及びA面のいずれかを主面とするサファイアやスピネル(MgAl)のような絶縁性基板、また炭化珪素(6H、4H、3C)、シリコン、ZnS、ZnO、Si、GaAs、ダイヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板が挙げられる。また、デバイス加工が出来る程度の厚膜(数十μm以上)であればGaNやAlN等の窒化物半導体基板を用いることもできる。成長基板はオフアングルしていてもよく、サファイアC面を用いる場合には、0.01°〜0.5°、好ましくは0.05°〜0.2°の範囲とする。
【0025】
窒化物半導体はバッファ層を介して成長基板上に形成される。バッファ層は、例えば、一般式AlGa1−gN(0≦g<1)で表される窒化物半導体、より好ましくは、AlGa1−gN(0≦g≦0.5)で示される窒化物半導体が用いられる。バッファ層の膜厚は、好ましくは0.002〜0.5μm、より好ましくは0.005〜0.2μm、さらに好ましくは0.01〜0.05μmである。バッファ層の成長温度は、好ましくは200〜900℃、より好ましくは400〜800℃である。これにより、窒化物半導体層上の転位やピットを低減させることができる。さらに、成長基板上にELO(Epitaxial Lateral Overgrowth)法によりAlGa1−xN(0≦X≦1)層を成長させてもよい。このELO法とは窒化物半導体を横方向成長させることで貫通転位を曲げて収束させることにより転位を低減させるものである。
【0026】
成長基板60上にバッファ層を形成後、バッファ層よりも高温で成長させた高温成長層を形成することが好ましい。高温成長層としては、アンドープのGaN又はn型不純物をドープしたGaNを用いることができる。好ましくは、アンドープのGaNを用いることで結晶性をよく成長させることができる。高温成長層の膜厚は、1μm以上、好ましくは3μm以上である。また、高温成長層の成長温度は、900〜1100℃、好ましくは1050℃以上である。
【0027】
次に、高温成長層上に第2導電型の窒化物半導体層12を形成する。ここでは第2導電型の窒化物半導体層12がn型窒化物半導体層である例を説明する。高温成長層上にn型コンタクト層を形成する。n型コンタクト層は第2の電極22としてのn電極が形成される層である。n型コンタクト層には例えばn型不純物をドープしたGaNが用いられる。n型コンタクト層のn型不純物濃度は特に限定されるものではないが、好ましくは1×1017〜1×1020/cm、より好ましくは1×1018〜1×1019/cmである。n型コンタクト層の膜厚は特に限定されるものではないが、好ましくは1μm以上、より好ましくは3μm以上である。
【0028】
n型コンタクト層上にはn側多層膜層が形成される。n側多層膜層としては、後述する活性層のバンドギャップエネルギーより大きい組成であり、AlGa1−jN(0≦j<0.3)が好ましい。n側多層膜層はたとえばアンドープGaN、n型不純物をドープしたGaNおよびアンドープGaNの3層構造が用いられる。n型不純物濃度は特に限定されるものではないが、好ましくは1×1017〜1×1020/cm、より好ましくは1×1018〜1×1019/cmである。
【0029】
n側多層膜層に代えて、n型不純物濃度に濃度傾斜を設定したAlGa1−jN(0≦j<0.3)、あるいはAlの組成傾斜を設定したAlGa1−jN(0≦j<0.3)とすることもできる。また、n側多層膜層を省略することもできる。さらに、n側多層膜層を省略し、n型コンタクト層をAlGa1−eN(0<e<0.3)とすることもできる。この場合、高温成長層のGaNを除去することによって発光層からの光をGaN層が吸収することを効果的に低減することができる。さらにまた、n側多層膜層上に第2のn側多層膜層を形成することもできる。第2のn側多層膜層は、例えば、InGa1−rN(0<r<1)、AlGa1−sN(0≦s<1)から構成される。多層膜層を形成する各層の膜厚は、超格子構造の場合は、一層の膜厚が好ましくは100Å以下、より好ましくは70Å以下、さらに好ましくは10〜40Åとすることができる。
【0030】
本発明に用いる発光層(活性層)は、例えば、AlInGa1−a−bN(0≦a≦1、0≦b≦1、a+b≦1)からなる井戸層と、AlInGa1−c−dN(0≦c≦1、0≦d≦1、c+d≦1)からなる障壁層とを含む量子井戸構造を有する。活性層に用いられる窒化物半導体は、ノンドープ、n型不純物ドープ、p型不純物ドープのいずれでもよいが、好ましくは、ノンドープもしくは、又はn型不純物ドープの窒化物半導体を用いることにより発光素子を高出力化することができる。障壁層は井戸層よりもバンドギャップエネルギーの大きな窒化物半導体が用いられる。
【0031】
次に、発光層13上に第1導電型の窒化物半導体層11を形成する。ここでは、第1導電型の窒化物半導体層11がp型窒化物半導体層である例を説明する。まず発光層13上にp型クラッド層が形成される。p型クラッド層は、活性層のバンドギャップエネルギーより大きい組成である材料から構成される。p型クラッド層は、活性層へのキャリアの閉じ込めができるものであれば特に限定されないが、例えばAlGa1−kN(0≦k<1)が用いられ、AlGa1−kN(0<k<0.4)が好ましい。p型クラッド層の膜厚は特に限定されないが、好ましくは0.01〜0.3μm、より好ましくは0.04〜0.2μmである。p型クラッド層のp型不純物濃度は、1×1018〜1×1021/cm、1×1019〜5×1020cmである。p型不純物濃度がこの範囲にあると、結晶性を低下させることなくバルク抵抗を低下させることができる。p型クラッド層は、単一層でも多層膜層(超格子構造)でもよい。多層膜層の場合、上記のAlGa1−kNと、それよりバンドギャップエネルギーの小さい窒化物半導体層とからなる多層膜層から構成される。多層膜層は、例えば、InGa1−lN(0≦l<1)、AlGa1−mN(0<m<1)から構成される。多層膜層を形成する各層の膜厚は、超格子構造の場合は、一層の膜厚が好ましくは100Å以下、より好ましくは70Å以下、さらに好ましくは10〜40Åとすることができる。また、p型クラッド層がバンドギャップエネルギーの大きい層と、バンドギャップエネルギーの小さい層からなる多層膜層である場合、バンドギャップエネルギーの大きい層及び小さい層の少なくともいずれか一方にp型不純物をドープさせてもよい。また、バンドギャップエネルギーの大きい層及び小さい層の両方にドープする場合は、ドープ量は同一でも異なってもよい。
【0032】
次に、p型クラッド層上にp型コンタクト層を形成する。p型コンタクト層は、AlGa1−fN(0≦f<1)が用いられ、特に、AlGa1−fN(0≦f<0.3)で構成することにより第1の電極21と良好なオーミックコンタクトが可能となる。p型不純物濃度は1×1017/cm以上が好ましい。また、p型コンタクト層は、p電極側でp型不純物濃度が高く、かつ、Alの混晶比が小さくなる組成勾配を有することが好ましい。この場合、組成勾配は、連続的に組成を変化させても、あるいは、不連続に段階的に組成を変化させてもよい。例えば、p型コンタクト層を、オーミック電極と接するとともにp型不純物濃度が高くAl組成比の低い第1のp型コンタクト層と、p型不純物濃度が低くAl組成比の高い第2のp型コンタクト層とで構成することもできる。第1のp型コンタクト層により良好なオーミック接触が得られ、第2のp型コンタクト層により自己吸収を防止することが可能となる。
【0033】
上述の窒化物半導体は、有機金属化学気相成長(MOCVD)法、やハライド気相エピタキシャル成長(HVPE)法、分子線エピタキシー(MBE)法等の気相成長法を用いて形成することができる。
【0034】
次に、窒化物半導体をn型窒化物半導体層、p型窒化物半導体層の順に形成した場合には、成長基板60上に窒化物半導体2を成長後、ウェハを反応装置から取り出し、その後、酸素を含む雰囲気中において450℃以上で熱処理をする。これによりp型窒化物半導体層に結合している水素が取り除かれ、p型の伝導を示すp型窒化物半導体層が得られる。
【0035】
(凸状部材)
次に、図2(b)に示すように、窒化物半導体層の表面、ここでは第1導電型の窒化物半導体層11の表面に凸状部材31を形成する。凸状部材31は、エッチング等によって第1導電型の窒化物半導体層11の表面に形成された例えば直径数μm程度の微小な複数の円形状の凹部に形成される。凹部は例えばフォトリソグラフィーを用いてパターン形成することによって所望の形状に形成される。凸状部材31の材料としては、例えばSiO等の窒化物半導体層よりも小さい屈折率の透光性の材料が用いられる。
【0036】
(第1の電極)
次に、図2(c)に示すように、第1導電型の窒化物半導体層11および凸状部材31の表面にRh,Ag,Ni,Au等からなる第1の電極21をパターン形成する。第1の電極21は、第2の電極22が形成される領域を除く窒化物半導体層のほぼ全領域に、凸状部材31を覆うように形成される。そして、酸素を含む雰囲気中において熱処理を行う。
【0037】
その後、窒化物半導体素子1の周辺部等の第1の電極21が形成された領域を除く領域には保護膜50が形成される。この保護膜50の材料はSiO、Al、ZrO、TiO等の単層膜または多層膜を用いることができる。さらに、保護膜50と導電層41との間にAl、Ag、Rh等の高反射率の金属膜を形成してもよい。この金属膜により反射率が高くなるから光の取り出し効率を良くすることができる。
【0038】
(半導体層側導電層)
次に、第1の電極21上に、貼り合わせ時に合金化させるための半導体層側導電層41aを形成する。半導体層側導電層41aは、Au、Sn、Pd、Inからなる群から選ばれる少なくとも1つを含有する合金から形成される。半導体層側導電層41aは密着層、バリア層、共晶層からなる3層構造が好ましい。密着層は、Ni、Ti、RhO、W、Moからなる群から選ばれる少なくとも一を含有する。バリア層は、Pt、Ti、Pd、TiN、W、Mo、WN、Auからなる群から選ばれる少なくとも一を含有する。共晶層は、Au、Sn、Pd、Inからなる群より選ばれる少なくとも一を含有する。また、半導体層側導電層41aの膜厚は5μm以下とする。
【0039】
(支持基板)
他方、支持基板42を用意する。支持基板42の材料としては、Cu−W、Cu−Mo、AlSiC、AlN、Si、SiC、Cu−ダイヤ等の金属とセラミックの複合体等が挙げられるである。例えば、Cu−W、Cu−Moの一般式をCu100−x(0≦x≦30)、CuMo100−x(0≦x≦50)のようにそれぞれ示すことができる。AlNを支持基板とすれば絶縁性基板であるのでプリント基板等の回路上にチップを載せるときに有利である。またSiを用いる利点は安価でチップ化がしやすい点である。支持基板42の好ましい膜厚としては50〜500μmである。支持基板42の膜厚をこの範囲に設定することで放熱性が良くなる。
【0040】
この支持基板42の表面に対しても支持基板側導電層41bを形成することが好ましい。また、支持基板側導電層41bには密着層、バリア層、共晶層からなる3層構造を用いることが好ましい。支持基板側導電層41bは、例えばTi−Pt−Au、Ti−Pt−Sn、Ti−Pt−Pd又はTi−Pt−AuSn、W−Pt−Sn、RhO−Pt−Sn、RhO−Pt−Au、RhO−Pt−(Au、Sn)等の金属膜から形成される。
【0041】
(貼り合わせ工程)
そして、半導体層側導電層41aの表面と支持基板側導電層41bの表面を対向させ(図3(a))、支持基板42を加熱圧接により窒化物半導体層側の第1の電極21上に貼り合わせる(図3(b))。この加熱圧接は、プレスをしながら150℃以上の熱を加えて行われる。
【0042】
貼り合わせにおいて共晶させるには支持基板側と窒化物半導体側との接着面にそれぞれ密着層、バリア層、共晶層とを備えていることが好ましい。密着層は第1の電極との間に高い密着性を確保する層であり、好ましくはTi、Ni、W及びMoのいずれかの金属である。また、バリア層は、共晶層を構成する金属が密着層へ拡散するのを防止する層であり、好ましくはPtあるいはWである。また、共晶層の金属が密着層へ拡散するのをさらに防止するため、バリア層と共晶層との間に、0.3μm程度の厚さのAu膜を形成してもよい。貼り合わせ時には第1の電極/Ti―Pt―AuSn―Pt―Ti/支持基板、その他に第1の電極/RhO−Pt−AuSn―Pt―Ti/支持基板、第1の電極/Ti―Pt―PdSn―Pt―Ti/支持基板、第1の電極/Ti―Pt―AuSn―Pt―RhO/支持基板となる。これにより剥がれにくい合金形成ができる。導電層を共晶とすることで低温での貼り合わせが可能となり、また接着力も強力になる。低温で貼り合わせることで反りの緩和効果を有する。
【0043】
共晶により半導体層側導電層41aおよび支持基板側導電層41bの金属膜は合金化され、導電層41を形成する。また、貼り合わせの表面金属は支持基板側と窒化物半導体素子側が異なることが好ましい。低温で共晶が可能で、共晶後の融点が上がるためである。
【0044】
(成長基板除去工程)
その後、図3(c)に示すように、成長基板を除去して窒化物半導体層を露出させ、チップ状に窒化物半導体層を分割し、第2導電型の窒化物半導体層12の露出面に第2の電極22を形成する。成長基板60は、成長基板側からエキシマレーザを照射するか、又は研削によって取り除かれる。成長基板60を除去後、露出した窒化物半導体の表面をCMP(ケミカル・メカニカル・ポリッシュ)処理することで所望の膜である第2導電型の窒化物半導体層12を露出させる。このとき高温成長したGaN層を除去、あるいは膜厚を低減することによって、紫外領域の発光波長を持つLEDにおいても吸収の影響を低減することができる。この処理によりダメージ層の除去や窒化物半導体層の厚みを調整、表面の面粗さの調整ができる。次に、窒化物半導体素子をチップ化するため、RIE等で外周エッチングを行い、外周の窒化物半導体層を除去する。また、光の取り出し効率を向上させるために第2導電型の窒化物半導体層の露出面をRIE等で凹凸(ディンプル加工)を形成してもよい。
【0045】
第2の電極22にn型電極を用いる場合にはTi−Al−Ni−Au、W−Al−W−Pt−Au、Al−Pt−Au等が用いられる。第2の電極は膜厚を0.1〜1.5μmとする。
【0046】
その後、ワイヤーボンディング領域を除いて窒化物半導体素子の上面を絶縁性の外部保護膜(図示せず)で覆い、チップ化することで窒化物半導体素子とする。外部保護膜はSiO、Nb、Al、ZrO、TiO等の絶縁膜が用いられる。また、光の取り出し効率を向上させるために外部保護膜の表面をRIE等で凹凸形状を形成してもよい。
【0047】
[実施の形態2]
〔素子構造〕
図4に本発明の実施の形態2に係る窒化物半導体素子2の概略図を示す。図4(b)は窒化物半導体素子2の平面図であり、図4(a)は図4(b)に示す一点鎖線X−X’の側面断面図である。実施の形態2に係る窒化物半導体素子2は、第1の電極221が窒化物半導体層側の面に凹部を有し、凸状部材32は凹部に配置される点、および実施の形態2における第1の導電型の窒化物半導体層211は、支持基板42側の面に凹部を有していない点が実施の形態1と異なり、その他の実施の形態1における符号と同一の符号が付された部材は実施の形態1と同様であり、説明を省略する。
【0048】
第1の電極221と窒化物半導体層10との間には凸状部材32が配置される。凸状部材32は、例えば上面から見て円形に形成される。図4の例では、図4(b)の破線で表されるように、複数の凸状部材32が第1の電極221の領域内に配置される。凸状部材32は、第1の電極側に形成された窒化物半導体層と同程度の屈折率の材料から形成される。窒化物半導体層と同程度の屈折率の材料としては、Nb等の吸収のない材料である酸化ニオブやTa等の吸収のない材料である酸化タンタル、ZrO等が挙げられるが、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタルが好ましい。これによって、発光層13からの光を第1の導電型の窒化物半導体層211と凸状部材32との境界面における反射を低減し、効率的に凸状部材32に入射させることができる。したがって、凸状部材32と第1の電極211との境界面において発光層13からの光を効率的に反射することができる。ここで、窒化物半導体層と同程度の屈折率とは、窒化物半導体層との境界面において発光層からの光を十分に入射することができる程度をいい、窒化物半導体層との屈折率差が20%以下であることが好ましい。凸状部材32は、側面から見て傾斜面(半導体の成長面に対して傾斜している面)を有することが好ましい。この構成によって、発光層13からの光を効率的に乱反射でき、外部へ取り出される光取り出し効率をより向上できるからである。
【0049】
図4(b)に示す第1の電極221および第2の電極22のパターンは、図9(a)に示すように第2の電極22を対角線上の隅部に略方形状に配置し、残りの領域の全面を第1の電極221が占めるようなパターンとしている。ただ、電極配置のパターンはこの例に限られず、例えば図9(b)に示すパターンも利用できる。図9(b)の例では、第1の電極221のパターンをL字状の2部材で周辺部を覆う部材と、略方形状で内部に均等に配置された部材で構成している。また第2の電極22のパターンは、第1の電極221と重ならないように残りの領域、すなわち対角線上の隅部に略方形状の部材と、内部で第1の電極221の方形状パターンを囲むようにしてこれよりも若干大きい方形状のパターンを開口した部材で構成している。凸状部材32は図示しないが、方形状の第1の電極221に設けることができる。これによって、光取り出しの効率がさらに改善される。
【0050】
〔製造方法〕
次に、実施の形態2に係る窒化物半導体素子2の製造方法を説明する。実施の形態2に係る窒化物半導体素子2の製造方法は、第1の電極221が窒化物半導体層側の面に凹部を形成し、凸状部材32を凹部に形成する点、および実施の形態2における第1の導電型の窒化物半導体層211には凹部が形成されない点が実施の形態1と異なり、その他の部材の製造方法は実施の形態1と同様であり説明を省略する。
【0051】
実施の形態2に係る窒化物半導体素子2の製造方法においては、第1導電型の窒化物半導体層211の表面に凹部が形成されることなくその表面に例えば直径数μm程度の微小な複数の円形状の凸状部材32が形成される。凸状部材32は例えばフォトリソグラフィーを用いてパターン形成することによって所望の形状に形成される。凸状部材32の材料としては、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタル、ZrO等が用いられるが、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタルが好ましい。
【0052】
次に、第1導電型の窒化物半導体層211および凸状部材32の表面にRh,Ag,Ni,Au等からなる第1の電極221をパターン形成する。第1の電極221は、第2の電極22が形成される領域を除く窒化物半導体層のほぼ全領域に、凸状部材32を覆うように形成される。
【0053】
[実施の形態3]
〔素子構造〕
図5に本発明の実施の形態3に係る窒化物半導体素子3の概略図を示す。図5(b)は窒化物半導体素子3の平面図であり、図5(a)は図5(b)に示す一点鎖線X−X’の側面断面図である。実施の形態3に係る窒化物半導体素子3は、窒化物半導体層10を成長させた成長基板60を除去することなくそのまま窒化物半導体素子3として用いる点、および第2の導電型の窒化物半導体層312を露出させて第1の電極321、第2の電極322を同一面側に配置した点とが実施の形態1と異なり、その他の実施の形態1における符号と同一の符号が付された部材は実施の形態1と同様であり説明を省略する。
【0054】
第1の電極321と窒化物半導体層10との間に凸状部材31が配置される。凸状部材31は、例えば上面から見て円形に形成される。図5の例では、図5(b)の破線で表されるように、複数の凸状部材31が第1の電極321の領域内に配置される。凸状部材31は、側面から見て傾斜面(半導体の成長面に対して傾斜している面)を有することが好ましい。この構成によって、発光層13からの光を効率的に乱反射でき、外部へ取り出される光取り出し効率をより向上できるからである。凸状部材31は第1の電極321側に形成された窒化物半導体層である第1の導電型の窒化物半導体層11よりも小さい屈折率の材料から形成される。窒化物半導体層よりも小さい屈折率の材料としては、例えばSiO等が挙げられる。これによって、発光層13からの光を第1の導電型の窒化物半導体層11と凸状部材31との境界面で効率的に反射することができる。
【0055】
〔製造方法〕
次に、実施の形態3に係る窒化物半導体素子3の製造方法を説明する。実施の形態3に係る窒化物半導体素子3における窒化物半導体層10の製造方法は、実施の形態1と同様であり説明を省略する。
【0056】
窒化物半導体層10を形成した後、窒化物半導体層の表面、ここでは第1導電型の窒化物半導体層11の表面に凸状部材31を形成するとともに、第1導電型の窒化物半導体層11および発光層13を除去して第2の導電型の窒化物半導体層12を部分的に露出させる。凸状部材31は、エッチング等によって第1導電型の窒化物半導体層11の表面に形成された例えば直径数μm程度の微小な複数の円形状の凹部に形成される。凹部は例えばフォトリソグラフィーを用いてパターン形成することによって所望の形状に形成される。凸状部材31の材料としては、例えばSiO等の窒化物半導体層よりも小さい屈折率の透光性の材料が用いられる。一方、第2の導電型の窒化物半導体層312を露出させる領域にエッチングを行うことによって、第2の電極322を形成させる領域をほぼ矩形状に露出させる。
【0057】
次に、第1導電型の窒化物半導体層11および凸状部材31の表面にRh,Ag,Ni,Au等からなる第1の電極321を、露出させた第2の導電型の窒化物半導体層312にはTi−Al−Ni−Au、W−Al−W−Pt−Au、Al−Pt−Au等からなる第2の電極322をそれぞれパターン形成する。第1の電極321は、第1導電型の窒化物半導体層11のほぼ全領域に、凸状部材31を覆うように形成される。そして、酸素を含む雰囲気中において熱処理を行う。
【0058】
その後、窒化物半導体素子をチップ化するためRIE等で外周エッチングを行い、外周の窒化物半導体層を除去する。そして、第1の電極321および第2の電極322におけるワイヤーボンディング領域を除いて窒化物半導体素子の上面を絶縁性の外部保護膜(図示せず)で覆い、チップ化することで窒化物半導体素子とする。外部保護膜はSiO、Nb、Al、ZrO、TiO等の絶縁膜が用いられる。
【0059】
[実施の形態4]
〔素子構造〕
図6に本発明の実施の形態4に係る窒化物半導体素子4の概略図を示す。図6(b)は窒化物半導体素子3の平面図であり、図6(a)は図6(b)に示す一点鎖線X−X’の側面断面図である。実施の形態4に係る窒化物半導体素子4は、第1の電極421が窒化物半導体層側の面に凹部を有し、凸状部材34は凹部に配置される点、および実施の形態4における第1の導電型の窒化物半導体層411は、支持基板42側の面に凹部を有していない点が実施の形態3と異なり、その他の実施の形態3における符号と同一の符号が付された部材は実施の形態3と同様であり説明を省略する。
【0060】
第1の電極321と窒化物半導体層10との間に凸状部材34が配置される。凸状部材34は、例えば上面から見て円形に形成される。図6の例では、図6(b)の破線で表されるように、複数の凸状部材34が第1の電極321の領域内に配置される。凸状部材34は、第1の電極側に形成された窒化物半導体層と同程度の屈折率の材料から形成される。窒化物半導体層と同程度の屈折率の材料としては、Nb等の吸収のない材料である酸化ニオブやTa等の吸収のない材料である酸化タンタル等が挙げられる。これによって、発光層13からの光を第1の導電型の窒化物半導体層411と凸状部材34との境界面における反射を低減し、効率的に凸状部材34に入射させることができる。したがって、凸状部材34と第1の電極421との境界面において発光層13からの光を効率的に反射することができる。ここで、窒化物半導体層と同程度の屈折率とは、窒化物半導体層との境界面において発光層からの光を十分に入射することができる程度をいい、窒化物半導体層との屈折率差が20%以下であることが好ましい。凸状部材34は、側面から見て傾斜面(半導体の成長面に対して傾斜している面)を有することが好ましい。この構成によって、発光層13からの光を効率的に乱反射でき、外部へ取り出される光取り出し効率をより向上できるからである。
【0061】
〔製造方法〕
次に、実施の形態4に係る窒化物半導体素子4の製造方法を説明する。実施の形態4に係る窒化物半導体素子4の製造方法は、第1の電極421が窒化物半導体層側の面に凹部を形成し、凸状部材34を凹部に形成する点、および実施の形態4における第1の導電型の窒化物半導体層411には凹部が形成されない点が実施の形態3と異なり、その他の部材の製造方法は実施の形態3と同様であり説明を省略する。
【0062】
実施の形態4に係る窒化物半導体素子4の製造方法においては、第1導電型の窒化物半導体層411の表面に凹部が形成されることなくその表面に例えば直径数μm程度の微小な複数の円形状の凸状部材34が形成される。凸状部材34は例えばフォトリソグラフィーを用いてパターン形成することによって所望の形状に形成される。凸状部材34の材料としては、Nb等の吸収のない材料である酸化ニオブやTa等の吸収のない材料である酸化タンタル等が用いられる。
【0063】
次に、第1導電型の窒化物半導体層411および凸状部材34の表面にRh,Ag,Ni,Au等からなる第1の電極421を、露出させた第2の導電型の窒化物半導体層312にはTi−Al−Ni−Au、W−Al−W−Pt−Au、Al−Pt−Au等からなる第2の電極322をそれぞれパターン形成する。第1の電極421は、第1導電型の窒化物半導体層11のほぼ全領域に、凸状部材34を覆うように形成される。
【0064】
【実施例】
以下、本発明の実施例を詳述する。ただし、以下に示す実施例は、本発明は窒化物半導体素子および窒化物半導体素子の製造方法を以下のものに特定しない。
【0065】
[実施例1]
以下、実施例1の窒化物半導体発光ダイオードの製造方法について説明する。まず、サファイア(C面)よりなる成長基板60をMOVPEの反応容器内にセットする。そして、水素を流しながら、成長基板60の温度を1050℃まで上昇させ、成長基板60のクリーニングを行う。
【0066】
(バッファ層)
続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)とを用い、成長基板60上にGaNよりなるバッファ層を約100Åの膜厚で成長させる。
【0067】
(高温成長層)
バッファ層成長後、高温成長層を形成する。まず、TMGのみを止めて、温度を1050℃まで上昇させる。温度が1050℃に達した後、同じく原料ガスにTMG、アンモニアガスを用い、アンドープGaN層を1.5μmの膜厚で成長させる。
【0068】
(第2の導電型の窒化物半導体層)
続いて1050℃で、同じく原料ガスにTMG、アンモニアガス、不純物ガスにシランガスを用い、Siを4.5×1018/cmドープしたGaNよりなるn型コンタクト層を2.25μmの膜厚で成長させる。このn型コンタクト層の膜厚は2〜30μmであればよい。
【0069】
次にシランガスのみを止め、1050℃で、TMG、アンモニアガスを用い、アンドープGaN層を3000Åの膜厚で成長させ、続いて同温度にてシランガスを追加しSiを4.5×1018/cmドープしたGaN層を300Åの膜厚で成長させ、更に続いてシランガスのみを止め、同温度にてアンドープGaN層を50Åの膜厚で形成し、3層からなる総膜厚3350Åの第1のn側多層膜層とする
【0070】
さらに、アンドープGaN層を40Åの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニアを用いてアンドープIn0.13Ga0.87N層を20Åの膜厚で成長させる。これらの操作を繰り返し、交互に10層ずつ積層し、最後にアンドープGaN層を40Åの膜厚で成長させた超格子構造の第2のn側多層膜層を640Åの膜厚で形成する。
【0071】
(発光層)
次に、同様の温度で、アンドープGaN層を40Åの膜厚で成長させる。次に、温度を800℃にして、TMG、TMI、アンモニアを用い、アンドープIn0.13Ga0.87N層を20Å成長させる。これらの操作を繰り返し、交互に10層ずつ積層させ、最後にGaN層を40Å成長させて形成される超格子構造層を640Åの膜厚で成長させる。
【0072】
次に、アンドープGaNよりなる障壁層を200Åの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニアを用いアンドープIn0.4Ga0.6Nよりなる井戸層を30Åの膜厚で成長させる。そして障壁+井戸+障壁+井戸・・・・+障壁の順で障壁層を5層、井戸層を4層、交互に積層して、総膜厚1120Åの多重量子井戸構造よりなる活性層(発光層)を成長させる。
【0073】
(第1導電型の窒化物半導体層)
次に、温度1050℃でTMG、TMA、アンモニア、CpMg(シクロペンタジエニルマグネシウム)を用い、Mgを1×1020/cmドープしたp型Al0.2Ga0.8N層を40Åの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニア、CpMgを用いMgを1×1020/cmドープしたIn0.03Ga0.97N層を25Åの膜厚で成長させる。これらの操作を繰り返し、交互に5層ずつ積層し、最後にp型Al0.2Ga0.8N層を40Åの膜厚で成長させた超格子構造の多層膜を365Åの膜厚で成長させる。
【0074】
続いて1050℃で、TMG、アンモニア、CpMgを用い、Mgを1×1020/cmドープしたp型GaNよりなるp型コンタクト層を1200Åの膜厚で成長させる。
【0075】
反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウェハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化する。
【0076】
(凸状部材)
アニーリング後、ウェハを反応容器から取り出し、フォトリソグラフィーを用いてエッチングによってp型コンタクト層の表面に形成された例えば直径3μmの複数の円形状の凹部を形成する。これらの凹部にSiOを形成する。
【0077】
(第1の電極)
そして、第1の電極21としてp電極を、第2の電極22が形成される領域を除く窒化物半導体層のほぼ全領域に、Rhを用いて2000Åの膜厚で、凸状部材31を覆うように形成する。その後、オーミックアニールを600℃で行った後、保護膜SiOを膜厚0.3μmで形成する。その後、導電層41aを形成するために密着層、バリア層、共晶層をTi−Pt−Au−Sn−Auの順に膜厚2000Å−3000Å−3000Å−30000Å−1000Åで形成する。
【0078】
(支持基板)
他方、支持基板42を用意する。膜厚が200μmでありCu15%、W85%から成る支持基板の表面に導電層をTi−Pt−Pdの順に膜厚2000Å−3000Å−12000Åで形成する。
【0079】
(貼り合わせ工程)
次に、第1の電極21であるp型電極及び保護膜上に形成された導電層41と支持基板42側の金属膜形成面とを貼り合わせる。ヒーター設定温度を280℃としてプレス圧力をかける。ここで共晶ができる。
【0080】
(成長基板除去工程)
その後、研削によってサファイア基板を除去後、露出した後、第2導電型の窒化物半導体層12の露出面であるn型コンタクト層を研磨して面荒れを無くす。
【0081】
(第2の電極)
次に、RIE装置により、SiOマスクで窒化物半導体層をチップ状に分離を行う。次に、n型コンタクト層上に第2の電極22であるn型電極をTi−Al―Ti―Pt−Auの順に膜厚100Å−2500Å−1000Å−2000Å−6000Åで形成する。
【0082】
次に、SiOからなる外部保護膜を、n電極のワイヤーボンディング領域を除いて形成する。さらに、外部保護膜に3μm間隔で凹凸形成を行う。その後、支持基板42を100μmまで研磨し、支持基板42の裏面にTi−Pt−Auを1000Å−2000Å−3000Åで形成後、ダイシングを行う。
【0083】
[実施例2]
次に、実施例2に係る窒化物半導体発光ダイオードの製造方法を説明する。実施例2に係る窒化物半導体発光ダイオードの製造方法は、p電極が窒化物半導体層側の面に凹部を形成し、凸状部材32を凹部に形成する点、および実施例2におけるp型コンタクト層には凹部が形成されない点が実施例1と異なり、その他の部材の製造方法は実施例1と同様であり説明を省略する。
【0084】
実施例2に係る窒化物半導体発光ダイオードの製造方法においては、p型コンタクト層の表面に凹部が形成されることなくその表面に例えば直径3μmの複数の円形状の凸状部材32が形成される。凸状部材32は例えばフォトリソグラフィーを用いてパターン形成することによって所望の形状に形成される。凸状部材32の材料としては、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタル、ZrO等が用いられるが、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタルが好ましい。
【0085】
次に、p型コンタクト層および凸状部材32の表面にRhからなるp電極を2000Åでパターン形成する。p電極は、n電極が形成される領域を除くp型コンタクト層のほぼ全領域に、凸状部材32を覆うように形成される。
【0086】
[実施例3]
次に、実施例3に係る窒化物半導体発光ダイオードの製造方法を説明する。実施例3に係る窒化物半導体発光ダイオードにおける窒化物半導体層10の製造方法は、実施例1と同様であり説明を省略する。
【0087】
窒化物半導体層10を形成した後、p型コンタクト層の表面に凸状部材31を形成するとともに、第1導電型の窒化物半導体層、発光層、およびn側多層膜を除去してSiを4.5×1018/cmドープしたGaNよりなるn型コンタクト層を露出させる。凸状部材31は、エッチング等によってp型コンタクト層の表面に形成された例えば直径3μmの複数の円形状の凹部に形成される。凹部は例えばフォトリソグラフィーを用いてパターン形成することによって所望の形状に形成される。凸状部材31の材料としては、例えばSiO等の窒化物半導体層よりも小さい屈折率の透光性の材料が用いられる。一方、n型コンタクト層を露出させる領域にエッチングを行うことによって、n電極322を形成させる領域をほぼ矩形状に露出させる。
【0088】
次に、p型コンタクト層および凸状部材31の表面に第1の電極321としてのRhからなるp電極を2000Åで、n型コンタクト層の露出面にはn型電極をTi−Al―Ti―Pt−Auの順に膜厚100Å−2500Å−1000Å−2000Å−6000Åでそれぞれパターン形成する。p電極は、p型コンタクト層のほぼ全領域に、凸状部材31を覆うように形成される。そして、オーミックアニールを600℃で行う。
【0089】
その後、窒化物半導体素子をチップ化するためRIE等で外周エッチングを行い、外周の窒化物半導体層を除去する。そして、p電極およびn電極におけるワイヤーボンディング領域を除いて窒化物半導体素子の上面をSiOからなる外部保護膜で覆い、チップ化することで窒化物半導体発光ダイオードとする。本実施例の窒化物半導体発光ダイオードはフリップチップ型の窒化物半導体発光ダイオードに好適である。発光層からの光を発光ダイオードの側面および成長基板側から効率的に取り出すことができるからである。
【0090】
(実施例4)
次に、実施例4に係る窒化物半導体発光ダイオードの製造方法を説明する。実施例4に係る窒化物半導体発光ダイオードの製造方法は、p電極が窒化物半導体層側の面に凹部を形成し、凸状部材34を凹部に形成する点、および実施例4におけるp型コンタクト層には凹部が形成されない点が実施例3と異なり、その他の部材の製造方法は実施例3と同様であり説明を省略する。
【0091】
実施例4に係る窒化物半導体発光ダイオードの製造方法においては、p型コンタクト層の表面に凹部が形成されることなくその表面に例えば直径数μm程度の微小な複数の円形状の凸状部材34が形成される。凸状部材34は例えばフォトリソグラフィーを用いてパターン形成することによって所望の形状に形成される。凸状部材34の材料としては、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタル、ZrO等が用いられるが、Nb等の吸収のない材料である酸化ニオブ、Ta等の吸収のない材料である酸化タンタルが好ましい。
【0092】
次に、p型コンタクト層および凸状部材34の表面に第1の電極421としてのRhからなるp電極を2000Åで、n型コンタクト層の露出面にはn型電極をTi−Al―Ti―Pt−Auの順に膜厚100Å−2500Å−1000Å−2000Å−6000Åでそれぞれパターン形成する。p電極は、p型コンタクト層のほぼ全領域に、凸状部材34を覆うように形成される。本実施例の窒化物半導体発光ダイオードはフリップチップ型の窒化物半導体発光ダイオードに好適である。発光層からの光を発光ダイオードの側面および成長基板側から効率的に取り出すことができるからである。
【0093】
(実施例5)
次に、実施例5に係る窒化物半導体発光ダイオードについて説明する。実施例5の窒化物半導体発光ダイオードは、実施例1において、第1の電極21をRh−Ir−Ptの順に膜厚400Å−500Å−1000Åで形成する以外は同様の条件で製造した。
【0094】
(実施例6)
次に、実施例6に係る窒化物半導体発光ダイオードについて説明する。実施例6の窒化物半導体発光ダイオードは、実施例1又は実施例5において、第2の電極22をTi−Al−Ni−Auの順に膜厚100Å−5000Å−800Å−7000Åで形成する以外は同様の条件で製造した。
【0095】
以上の例では、凸状部材の平面形状を円状に形成する例を示したが、本発明はこれに限定されず、縞状、格子状、矩形状、あるいは三角形や六角形等の多角形状等、種々の形状とすることができる。また凸状部材は密な配置が好ましい。
【0096】
【発明の効果】
以上説明した通り、本発明においては、凸状部材が少なくともp電極あるいはn電極のいずれかの電極と窒化物半導体層との間に配置されることによって、発光層からの光を効率的に乱反射でき、外部へ取り出される光取り出し効率を向上することができる。凸状部材が少なくとも面積が大きい側の電極と窒化物半導体層との間に配置されることによって、外部へ取り出される光取り出し効率をより向上することができる。p型窒化物半導体とオーミック接触が得られる材料は、n型窒化物半導体層とオーミック接触が得られるAlと比較して反射率が小さい材料しか従来知られていない。したがって、凸状部材をp型窒化物半導体層とp電極との間に配置した場合、p電極側における光を効率的に乱反射でき、p電極による光の吸収を低減できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る窒化物半導体素子の概略図である。
【図2】本発明の実施の形態1に係る窒化物半導体素子の製造方法を説明する概略図である。
【図3】本発明の実施の形態1に係る窒化物半導体素子の製造方法を説明する概略図である。
【図4】本発明の実施の形態2に係る窒化物半導体素子の概略図である。
【図5】本発明の実施の形態3に係る窒化物半導体素子の概略図である。
【図6】本発明の実施の形態4に係る窒化物半導体素子の概略図である。
【図7】従来の窒化物半導体発光ダイオードの概略図である。
【図8】本発明の実施の形態1に係る他の窒化物半導体素子の断面図である。
【図9】本発明の実施の形態2に係る窒化物半導体素子の電極配置の例を示す平面図である。
【符号の説明】
1,2,3,4・・・窒化物半導体素子
10・・・窒化物半導体層
11,211,411・・・第1の導電型の窒化物半導体層
12,312・・・第2の導電型の窒化物半導体層
13・・・発光層
21,221,321,421・・・第1の電極
22,322・・・第2の電極
31,32,34・・・凸状部材
41・・・導電層
42・・・支持基板
50・・・保護膜
60・・・成長基板

Claims (10)

  1. 第1の電極と、発光層を有する窒化物半導体層と、第2の電極とを備えた窒化物半導体素子であって、
    第1の電極と窒化物半導体層との間に凸状部材が配置されることを特徴とする窒化物半導体素子。
  2. 前記窒化物半導体素子は、支持基板と、支持基板上に導電層とをさらに備え、
    第1の電極は導電層上に配置されることを特徴とする請求項1に記載の窒化物半導体素子。
  3. 窒化物半導体層はp型窒化物半導体層をさらに有し、
    第1の電極はp型窒化物半導体層と接するp電極であることを特徴とする請求項1または2に記載の窒化物半導体素子。
  4. 窒化物半導体層は第1の電極側の面に凹部を有し、
    凸状部材は凹部に配置されることを特徴とする請求項1から3のいずれかに記載の窒化物半導体素子。
  5. 凸状部材は第1の電極側に形成された窒化物半導体層よりも小さい屈折率であることを特徴とする請求項4に記載の窒化物半導体素子。
  6. 第1の電極は窒化物半導体層側の面に凹部を有し、
    凸状部材は凹部に配置されることを特徴とする請求項1から3のいずれかに記載の窒化物半導体素子。
  7. 凸状部材は第1の電極側に形成された窒化物半導体層と同程度の屈折率であることを特徴とする請求項6に記載の窒化物半導体素子。
  8. 第1の電極と、発光層を有する窒化物半導体層と、第2の電極とを備える窒化物半導体素子の製造方法であって、
    成長基板上に窒化物半導体層を形成する工程と、
    窒化物半導体層の表面に凹部を形成する工程と、
    凹部に凸状部材を形成する工程と、
    窒化物半導体層および凸状部材の表面に第1の電極を形成する工程と、
    を備えることを特徴とする窒化物半導体素子の製造方法。
  9. 第1の電極と、発光層を有する窒化物半導体層と、第2の電極とを備える窒化物半導体素子の製造方法であって、
    成長基板上に窒化物半導体層を形成する工程と、
    窒化物半導体層の表面に凸状部材を形成する工程と、
    窒化物半導体層および凸状部材の表面に第1の電極を形成する工程と、
    を備えることを特徴とする窒化物半導体素子の製造方法。
  10. 前記窒化物半導体素子の製造方法は、
    第1の電極上に支持基板を貼り合わせる工程と、
    成長基板を除去して窒化物半導体層を露出する工程と、
    窒化物半導体層の露出面上に第2の電極を形成する工程と、
    をさらに備えることを特徴とする請求項8または9に記載の窒化物半導体素子の製造方法。
JP2003120646A 2003-04-24 2003-04-24 窒化物半導体素子および窒化物半導体素子の製造方法 Expired - Fee Related JP4543621B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120646A JP4543621B2 (ja) 2003-04-24 2003-04-24 窒化物半導体素子および窒化物半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120646A JP4543621B2 (ja) 2003-04-24 2003-04-24 窒化物半導体素子および窒化物半導体素子の製造方法

Publications (3)

Publication Number Publication Date
JP2004327729A true JP2004327729A (ja) 2004-11-18
JP2004327729A5 JP2004327729A5 (ja) 2006-06-15
JP4543621B2 JP4543621B2 (ja) 2010-09-15

Family

ID=33499484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120646A Expired - Fee Related JP4543621B2 (ja) 2003-04-24 2003-04-24 窒化物半導体素子および窒化物半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP4543621B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347728A (ja) * 2004-06-03 2005-12-15 Samsung Electro Mech Co Ltd フリップチップ用窒化物半導体発光素子
JP2006237386A (ja) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd 窒化物系半導体発光ダイオード
JP2007067198A (ja) * 2005-08-31 2007-03-15 Harison Toshiba Lighting Corp 発光素子
JP2007149976A (ja) * 2005-11-28 2007-06-14 Stanley Electric Co Ltd 共晶ボンディング発光装置とその製造方法
JP2011029612A (ja) * 2009-06-24 2011-02-10 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
JP2017112203A (ja) * 2015-12-16 2017-06-22 シャープ株式会社 半導体発光素子
JP7448832B2 (ja) 2022-01-31 2024-03-13 日亜化学工業株式会社 発光素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338630A (ja) * 1993-05-28 1994-12-06 Omron Corp 半導体発光素子、並びに当該発光素子を用いた光学検知装置、光学的情報処理装置、光結合装置及び発光装置
JPH098403A (ja) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338630A (ja) * 1993-05-28 1994-12-06 Omron Corp 半導体発光素子、並びに当該発光素子を用いた光学検知装置、光学的情報処理装置、光結合装置及び発光装置
JPH098403A (ja) * 1995-06-15 1997-01-10 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347728A (ja) * 2004-06-03 2005-12-15 Samsung Electro Mech Co Ltd フリップチップ用窒化物半導体発光素子
US7294864B2 (en) 2004-06-03 2007-11-13 Samsung Electro-Mechanics Co., Ltd. Flip chip type nitride semiconductor light-emitting diode
JP2006237386A (ja) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd 窒化物系半導体発光ダイオード
JP2007067198A (ja) * 2005-08-31 2007-03-15 Harison Toshiba Lighting Corp 発光素子
JP2007149976A (ja) * 2005-11-28 2007-06-14 Stanley Electric Co Ltd 共晶ボンディング発光装置とその製造方法
JP2011029612A (ja) * 2009-06-24 2011-02-10 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
JP2017112203A (ja) * 2015-12-16 2017-06-22 シャープ株式会社 半導体発光素子
JP7448832B2 (ja) 2022-01-31 2024-03-13 日亜化学工業株式会社 発光素子

Also Published As

Publication number Publication date
JP4543621B2 (ja) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4325232B2 (ja) 窒化物半導体素子
JP4507532B2 (ja) 窒化物半導体素子
TWI278995B (en) Nitride semiconductor element with a supporting substrate and a method for producing a nitride semiconductor element
JP5334601B2 (ja) 半導体発光ダイオード素子及び半導体発光装置
JP4572597B2 (ja) 窒化物半導体素子
TWI287880B (en) Group III nitride semiconductor light-emitting device and method of producing the same
JP2005244207A (ja) 窒化ガリウム系化合物半導体発光素子
JP2005150675A (ja) 半導体発光ダイオードとその製造方法
JPWO2006082687A1 (ja) GaN系発光ダイオードおよび発光装置
JP2013120829A (ja) 窒化物半導体紫外発光素子
JP2008300621A (ja) 半導体発光素子及びその製造方法
JP2004088083A (ja) 半導体発光素子、その製造方法及びその実装方法
JP2009043764A (ja) 半導体発光素子及びその製造方法
EP2346096A1 (en) Semiconductor light-emitting element, manufacturing method, and light-emitting device
KR100774198B1 (ko) 수직형 발광 소자
KR20070046174A (ko) 금속 기판 위의 GaN계 발광 소자
JP4543621B2 (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
KR101499954B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및제조방법
KR100587018B1 (ko) 플립칩용 질화물 반도체 발광소자
KR20060109375A (ko) 플립칩용 질화물 반도체 발광소자 및 그 제조방법
JP2004281445A (ja) 積層型発光ダイオード素子
KR20090109598A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
KR20090111889A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
KR100631970B1 (ko) 플립칩용 질화물 반도체 발광소자
JP2012124538A (ja) 窒化物半導体発光素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4543621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees