JP2004326067A - プラスチック光ファイバおよび光ファイバケーブル - Google Patents

プラスチック光ファイバおよび光ファイバケーブル Download PDF

Info

Publication number
JP2004326067A
JP2004326067A JP2003188040A JP2003188040A JP2004326067A JP 2004326067 A JP2004326067 A JP 2004326067A JP 2003188040 A JP2003188040 A JP 2003188040A JP 2003188040 A JP2003188040 A JP 2003188040A JP 2004326067 A JP2004326067 A JP 2004326067A
Authority
JP
Japan
Prior art keywords
core
optical fiber
pof
refractive index
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188040A
Other languages
English (en)
Inventor
Kikue Irie
菊枝 入江
Yasushi Kawarada
泰 川原田
Tomoya Yoshimura
朋也 吉村
Yoshihiro Uozu
吉弘 魚津
Yahei Oyamada
弥平 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003188040A priority Critical patent/JP2004326067A/ja
Publication of JP2004326067A publication Critical patent/JP2004326067A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】低伝送損失でかつ広帯域なプラスチック光ファイバ及びプラスチック光ファイバケーブルを提供する。
【解決手段】第一コアの半径r1と第三コアの半径r3との比X1(r1/r3)と、第一コアとクラッドの屈折率差n1と第二コアとクラッドの屈折率差n2との比Y1(n2/n1)と、第二コアの半径r2と第三コアの半径r3との比X2(r2/r3)と、第一コアとクラッドの屈折率差n1と第三コアとクラッドの屈折率差n3との比Y2(n3/n1)が、下記式(1)〜(4)
0.51≦X1≦0.67 (1)
0.58≦Y1≦0.73 (2)
0.71≦X2≦0.95 (3)
0.24≦Y2≦0.44 (4)
を満たすことを特徴とするプラスチック光ファイバ。

Description

【0001】
【発明の属する技術分野】
本発明は、高速光通信に用いられるプラスチック光ファイバ及びプラスチック光ファイバケーブルに関するものである。
【0002】
【従来の技術】
近年、自動車やオーディオ機器等において、機器内、あるいは機器間の短距離通信の情報伝送媒体として、ステップインデックス型のプラスチック光ファイバ(以下、SI型POFと略す。)が使用されているが、SI型POFは、伝送される情報量が増大するに伴って、より一層の広帯域化が求められるようになった。
そこで、帯域幅を広くするための手法の一つとして、屈折率の異なる複数のコア層を同心円状に積層し、多層化することが行われている。
【0003】
特許文献1には、クラッドと、3層からなるコア(中心層から第一コア、第二コア、第三コアの順)を有するプラスチック光ファイバにおいて、X1,Y1,およびX2,Y2が次の式(9)〜(12)の範囲とすることにより、伝送損失が小さくかつ広い帯域幅を有するプラスチック光ファイバ(以下、POFと略す。)を提供できることが開示されている。
【数3】
Figure 2004326067
(上記X1、Y1、X2,Y2はそれぞれ、X1=r1/r3、Y1=n2/n1、X2=r2/r3、Y2=n3/n1を表す。なお、r1は第一コア径、r2は第二コア径、r3は第三コア径を表し、n1は第一コアとクラッドとの屈折率差、n2は第二コアとクラッドとの屈折率差、n3は第三コアとクラッドとの屈折率差を表す。)
【0004】
上記特許文献1のPOFの製造方法には、円筒管内に材料を注入して回転させながら重合するという工程を、コアおよびクラッドの層数分だけ繰り返してプリフォームを作製し、その後円筒状加熱器内で間接加熱しながら熱延伸するプリフォーム法が採用されている。
【0005】
また、上記のプリフォーム法により作成されたPOFにおいては、3層からなるコアの各層界面に相溶層が形成されるため、屈折率分布は完全な階段状ではなく、相溶層部分において多少まるみを帯びた分布が得られたこと、さらには屈折率分布を与えるための方法の1つとして、ポリマー中に低分子有機物質(ジフェニルスルフィド)をドーパントとして導入することについて記載されている。
【特許文献1】
特開平10−186157号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載され、式(9)〜(12)を満足するPOFでは、伝送損失が十分に小さく、かつ広帯域のPOFを得ることができるものではなかった。また、特許文献1記載のPOFは、プリフォーム法により製造されており、コア各層界面には共重合組成が異なるポリマー同士の相溶層が形成されるため光散乱が大きくなり、伝送損失が増大するという問題を有していた。
【0007】
さらに、上記プリフォーム法によるPOFの作製はバッチ工程のため生産性が低く、工程が複雑であるため大量生産時には製造コストが嵩む。
【0008】
そこで本発明の目的は、3層のコアが同心円状に配置された、低伝送損失で、かつ広帯域なPOF及びPOFケーブルを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、第一コアと、その外周に同心円状に配置され第一コアと屈折率が異なる第二コアと、第二コアの外周に同心円状に配置され第二コアと屈折率が異なる第三コアと、第三コアの外周に同心円状に配置されたクラッドを有し、外周部に行くにつれて屈折率が小さくなるように形成され、各層界面に実質的に相溶層が存在しないプラスチック光ファイバであって、第一コアの半径r1と第三コアの半径r3との比X1(r1/r3)と、第一コアとクラッドの屈折率差n1と第二コアとクラッドの屈折率差n2との比Y1(n2/n1)と、第二コアの半径r2と第三コアの半径r3との比X2(r2/r3)と、第一コアとクラッドの屈折率差n1と第三コアとクラッドの屈折率差n3との比Y2(n3/n1)が、下記式(1)〜(4)を満たすことを特徴とするプラスチック光ファイバに関する。
【数4】
Figure 2004326067
【0010】
また、本発明は、上記プラスチック光ファイバの外周を樹脂で被覆してなるプラスチック光ファイバケーブルに関する。
【0011】
【発明の実施の形態】
本発明のPOFは、第一コアと、その外周に同心円状に配置され第一コアと屈折率が異なる第二コアと、第二コアの外周に同心円状に配置され第二コアと屈折率が異なる第三コアと、第三コアの外周に同心円状に配置されたクラッドを有する(以下、このような三層のコアを有する構造を「3層コア」という。)。
【0012】
また、本発明のPOFを構成する各層は、屈折率分布の制御用等を目的としたドーパント等を含んでいてもよいが、光の散乱による伝送損失の増加を抑えるためにはドーパント等を含有しないことが好ましい。
【0013】
また、本発明のPOFは、伝送損失を小さくするという観点から、各コア層の界面には相溶層が実質的に存在しないことが好ましい。ここで各層界面に相溶層が存在しないとは、相溶層が全く存在しないものに加えて、その厚さが1μm以下程度であって、光学顕微鏡で観察したときに相溶層が観察されないということをいう。
【0014】
このような本発明のPOFにおいては、第一コアの半径r1と第三コアの半径r3との比X1(r1/r3)、第一コアとクラッドの屈折率差n1と第二コアとクラッドの屈折率差n2との比Y1(n2/n1)、第二コアの半径r2と第三コアの半径r3との比X2(r2/r3)、第一コアとクラッドの屈折率差n1と第三コアとクラッドの屈折率差n3との比Y2(n3/n1)が、下記式(1)〜(4)を満たすことが必要である。
【式5】
Figure 2004326067
X1、Y1,X2、Y2が、上記の範囲外となる場合には、伝送帯域が大きく低下してしまうためである。特に各コア層の層界面に相溶層が実質的に存在しないようなPOFにおいては、X1、Y1、X2、Y2をこの範囲とすることが伝送帯域を広くすることから好ましい。
【0015】
本発明において、X1は、0.54≦X1≦0.63(13)の範囲にあることが好ましく、0.57≦X1≦0.59(5)の範囲にあることがより好ましい。また、Y1は、0.6≦Y1≦0.71(14)の範囲にあることが好ましく、0.66≦Y1≦0.68(6)の範囲にあることが特に好ましい。またX2は、0.76≦X2≦0.91 (15)の範囲にあることが好ましく、0.81≦X2≦0.83(7)の範囲にあることがより好ましい。Y2は 0.28≦Y2≦0.38(16)の範囲にあることが好ましく、0.32≦Y≦0.34(8)の範囲にあることがより好ましい。特にX1、Y1、X2、Y2を上記式(13)〜(16)の範囲とすることによって相対帯域が90%以上となり、広い帯域を得ることができる。最も好ましくはX1、Y1、X2、Y2を前記式(5)〜(8)を満足する範囲である。
【0016】
本発明のPOFにおいて、3層コアを構成する第一コア、第二コア及び第3コアの材料(以下、コア材という)としては、例えば以下に示す単量体をそれぞれ単独で重合して得られる単独重合体、あるいは2種類以上の単量体を共重合して得られる共重合体を、目的とする屈折率に応じて適宜選択して用いることができる。その際、第一コアの材料の屈折率が第二コアの材料の屈折率より高くなるようにし、第二コアの材料の屈折率が第三コアの材料の屈折率より高くなるように選択する。
【0017】
本発明のPOFにおけるコア材の製造に用いられる単量体は、工業的生産を考慮すると、容易にラジカル重合で高分子化するビニル系単量体が望ましい。このような単量体としては、例えばメチルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、安息香酸ビニル、スチレン、1−フェニルエチルメタクリレート、2−フェニルエチルメタクリレート、ジフェニルメチルメタクリレート、1,2−ジフェニルエチルメタクリレート、1−ブロモエチルメタクリレート、ベンジルアクリレート、α,α−ジメチルベンジルメタクリレート、4−フルオロスチレン、2−クロロエチルメタクリレート、イソボルニルメタクリレート、アダマンチルメタクリレート、トリシクロデシルメタクリレート、1−メチルシクロヘキシルメタクリレート、2−クロロシクロヘキシルメタクリレート、1,3−ジクロロプロピルメタクリレート、2−クロロ−1−クロロメチルエチルメタクリレート、ボルニルメタクリレート、シクロヘキシルメタクリレート、アリルメタクリレート、テトラヒドロフルフリルメタクリレート、ビニルクロロアセテイト、グリシジルメタクリレート、メチル−α−クロロアクリレート、2,2,2−トリフルオロエチルメタクリレート、2,2,3,3−テトラフルオロプロピルメタクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレート、2,2,2−トリフルオロ−1−トリフルオロメチルエチルメタクリレート、2,2,3,4,4,4−ヘキサフルオロブチルメタクリレート、2,2,3,3,4,4,5,5−オクタフルオロペンチルメタクリレート、2,2,2−トリフルオロエチル−α−フルオロアクリレート、2,2,3,3−テトラフルオロプロピル−α−フルオロアクリレート、2,2,3,3,3−ペンタフルオロプロピル−α−フルオロアクリレート、2,2,3,3,4,4,5,5−オクタフルオロペンチル−α−フルオロアクリレート、2,4−ジフルオロスチレン、ビニルアセテイト、ターシャリブチルメタクリレート、イソプロピルメタクリレート、ヘキサデシルメタクリレート、イソブチルメタクリレート、α−トリフルオロメチルアクリレート、β−フルオロアクリレート、β,β−ジフルオロアクリレート、β−トリフルオロメチルアクリレート、β,β−ビス(トリフルオロメチル)アクリレート、α−クロロアクリレ
ート等が挙げられる。
【0018】
特に、低伝送損失のPOFを得る点からは、第一コアのコア材として、メチルメタクリレートの単独重合体(PMMA)を用いることが好ましい。このときの第二コアおよび第三コアのコア材としては、メチルメタクリレートとフッ素化アルキル(メタ)アクリレートとの共重合体を用いることが好ましく、特に、メチルメタクリレートと2,2,3,3−テトラフルオロプロピルメタクリレートとの共重合体を用いることが、伝送損失をより低くできる点から好ましい。また、コア各層に、ベンジルメタクリレートとメチルメタクリレートの共重合体、あるいはPMMAを用いた場合においても比較的低伝送損失なPOFを得ることができる。
【0019】
本発明のPOFに用いられるクラッドの材料(以下クラッド材という。)としては、屈折率が第三コアの屈折率よりも小さい公知の重合体を用いることができ、例えば上記の単量体の2種類以上からなる共重合体や、フッ化ビニリデン系共重合体などを用いることができる。
【0020】
本発明のPOFは、クラッド層の外周に保護層を設けてもよい。保護層を設けることにより、POFの曲げ強度等の機械的特性を向上させることができるとともに、クラッド材の損傷を防ぐことができる。保護層の材料としては、クラッド材よりも屈折率の低い材料であり、例えば、フッ化ビニリデン、テトラフルオロエチレン、6フッ化プロピレン等の単量体を2種以上共重合して得られる共重合体を用いることができる。また、保護層の厚みは適宜設定することができるが、好ましくは10μm以上400μm以下の範囲である。
【0021】
本発明のPOFにおいては、各コア層の界面に存在する相溶層の厚さが1μm以下であって、実質的に相溶層を形成させないように製造することが好ましく、通常の同心円多層複合構造を持ったPOFの製造法と同様な方法で製造することができるが、特に溶融複合紡糸法により製造することが好ましい。
【0022】
本発明のPOFを溶融複合紡糸法により製造する場合、ラム押出複合紡糸法、連続複合紡糸法等を用いることが好ましい。
【0023】
ラム押出複合紡糸法は、第一コア、第二コア、第三コア、クラッド、さらに必要に応じて保護層を構成する重合体のロッドを形成し、それらをシリンダに挿入し、シリンダの一端においてこのロッドを溶融しながらピストンにより他端から押圧して押し出し、図1に示すような構造の複合紡糸ノズルの第一コア材流入孔1、第二コア材流入孔2、第三コア材流入孔3、クラッド材流入孔4、保護層材流入孔5に、それぞれの重合体が所定の層厚になるように定量的に供給し、順次積層して多層構造とした後にノズルより吐出する方法であり、吐出された糸状体は定速で引き取られながら冷却さる。
【0024】
連続複合紡糸法は、押出機で連続的に各層を構成する重合体を溶融し、必要に応じて脱揮を行った後、図1に示すような複合紡糸ノズルに、前述したラム押出複合紡糸法と同様にして定量的に供給し、順次積層して多層構造とした後にノズルより吐出する方法であり、吐出された糸状体は定速で引き取られながら冷却される。
【0025】
特に、連続複合紡糸法はポリマーの重合から紡糸までを一貫して連続的に紡糸することが容易であり、生産性に優れるとともに紡糸の工程以前に連続脱揮工程を導入することにより、残留モノマーや不純物等を十分に取り除くことができるため、伝送損失が良好で光学的耐久性に優れたPOFが得られることから、本発明のPOFの製造法として最適である。
【0026】
このようにして製造されたPOFは、紡糸後に連続的にあるいは一旦巻き取られた後に熱延伸処理を施し、POF内部の歪みを除去することが好ましい。これはPOF内部に歪みが残留していると、各層の界面において、クラックが発生する等の問題が生じ、伝送損失が悪化するおそれがあるためである。
【0027】
次に本発明のPOFケーブルについて説明する。
本発明のPOFケーブルは、上記のようにして得られた3層コアとクラッドからなるPOF、あるいはさらにクラッドの外周に保護層が形成されたPOFの外周に被覆材を被覆したものである。このようにPOFに被覆を施してPOFケーブルとすることにより、細いPOFの取り扱いや識別を容易にしたり、外力による傷等の機械的損傷の防止、耐熱性・耐湿性の付与、外光のPOF内への侵入防止等を行うことができる。
【0028】
被覆材の厚みは、所望のPOFの直径とPOFケーブルの外形寸法に応じて適宜設定するが、通常、0.2mm以上1.5mm以下の範囲とすることが好ましい。
【0029】
被覆材としては、塩化ビニル樹脂、ポリアミド樹脂、ポリエチレンなどのポリオレフィン樹脂などの熱可塑性樹脂を挙げることができる。中でもエチレン/酢酸ビニル共重合体、エチレン/酢酸ビニル共重合体と塩化ビニル樹脂の混合物が、柔軟性があり曲げの応力に対して抵抗が少ない点で好ましい。
【0030】
POF外周への被覆材の被覆は、公知のPOFケーブルの製造方法で実施することができる。例えば、POFを被覆ダイスに通しながら、溶融した被覆材をその周囲に所定の厚みで被覆する方法によりPOFケーブルを製造することができる。
【0031】
【実施例】
以下本発明における具体的な実施例について説明する。
実施例1〜5および比較例1、2
第一コアの材料としてポリメチルメタクリレート(以下、PMMAと略す。)を、第二コアおよび第三コアの材料として2,2,3,3−テトラフルオロプロピルメタクリレート(以下、4FMと略す。)とメチルメタクリレート(以下、MMAと略す。)との2元共重合体を、またクラッド材として3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10−ヘプタデカフルオロデシルメタクリレート(以下、17FMと略す。)とメチルメタクリレートの共重合体を用い、図1に示す構造を持つ複合紡糸ノズルを用いて所定の層厚になるように複合化を行い、同心円状に多層構造とした後にノズルより吐出させた。次いで、定速で引き取りながら冷却し、続いて、延伸温度145℃で2倍延伸した後に巻き取ることによって、表1に示した第1コア面積比S1およびX1を有し、Y1が0.67、X2が0.82、Y2が0.33直径が750μm、クラッド厚さが10μmである3層コアPOFを製造した。
【0032】
なお、第一コアの面積比は、ノズルからの重合体の吐出量の比や吐出速度、紡糸速度、延伸倍率を変更することにより調節した。第一コア面積比は全コア面積に対する第一コア面積の占める比率であり、全コア面積を1として示した。
【0033】
また、複合ノズル手前にある放流口で各層を形成する上記ポリマーを採取し、それぞれの屈折率を測定した。屈折率の測定は、オプトロニクス,No.3,pp.71−77(1984) “干渉顕微鏡インターファコ 福重達蔵“ に記載の測定法を用いた。
【0034】
また、得られた3層コアPOFの断面を光学顕微鏡で観察したが、第一コアと第二コア間、第二コアと第三コア間及び第二コアとクラッド間に、相溶層は視認されず、相溶層は実質的に形成されていなかった。
【0035】
さらに、得られた3層コアPOFについて、浜松ホトニクス社製の光サンプリングオシロスコーブ及び発光波長650nmの光源を用いて、全モード励振条件で測定した帯域および3層コアPOFの帯域を基準に規格化した値を表1に示した。また、X1と帯域の関係を図2に示した。
【0036】
図2より、X1を 0.51≦X1≦0.67の範囲とすることにより相対帯域が70%以上である帯域の広い3層コアPOFが得られることがわかる。
【表1】
Figure 2004326067
【図2】
Figure 2004326067
【0037】
実施例6〜8、および比較例3〜8
第二コアとして4FMとMMAの共重合比を変えることによって種々の屈折率を有する共重合体を用いた以外は実施例1と同様にして、表2に示したY1を有し、X1が0.58、X2が0.82、Y2が0.33である3層コアPOFを製造した。得られた3層コアPOFの断面を光学顕微鏡で観察したが、第一コアと第二コア間、第二コアと第三コア間及び第二コアとクラッド間に、相溶層は視認されず、相溶層は実質的に形成されていなかった。また図3より、0.58≦Y1≦0.73の範囲とすることにより相対帯域が70%以上である帯域の広い3層コアPOFが得られることがわかる。
【表2】
Figure 2004326067
【図3】
Figure 2004326067
【0038】
実施例9〜14 比較例9、10
実施例1と同様にして、表3に示した第二コア面積比S2およびX2を有し、X1が0.58、Y1が0.67、Y2が0.33である3層コアPOFを製造した。なお、第一コアの面積比は、ノズルからの重合体の吐出量の比や吐出速度、紡糸速度、延伸倍率を変更することにより調節した。第一コア面積比は全コア面積に対する第一コア面積の占める比率であり、全コア面積を1として示した。図3より、0.71≦X2≦0.95 の範囲とすることにより相対帯域が70%以上である広い帯域を有する3層コアPOFが得られることがわかる。
【表3】
Figure 2004326067
【図4】
Figure 2004326067
【0039】
実施例15〜19および比較例11〜13
次に、比屈折率差Y1が0.67、半径比X1が0.58、X2が0.82である3層コアPOFであって、第三コアとして4FMとMMAの共重合比を変えることによって種々の屈折率を有する共重合体を用いた以外は実施例1と同様にして、表3に示したY2を有し、X1が0.58、Y1が0.67、X2が0.82である3層コアPOFを製造した。得られた3層コアPOFの断面を光学顕微鏡で観察したが、第一コアと第二コア間、第二コアと第三コア間及び第二コアとクラッド間に、相溶層は視認されず、相溶層は実質的に形成されていなかった。
図5より、0.24≦Y2≦0.44とすることにより、相対帯域が最大帯域の70%以上である広い帯域を有する3層コアPOFを得られることがわかる。
【表4】
Figure 2004326067
【図5】
Figure 2004326067
【0040】
また、ハロゲンランプと分光器とで単色光に分解した650nmの波長の光を入射光学系を介して、実施例1〜24の3層コアPOFの端面に開口数NA=0.3で入射させて、通常のカットバック法を用い、51mと1mの長さで伝送損失を測定したところ、いずれの3層コアPOFも伝送損失が130〜160dB/km程度と良好な値を示した。
【0041】
さらに、3層コアPOFの外周部にクロスヘッド型の被覆装置を用いて温度150℃で溶融されたポリエチレンを被覆し、外径2.2mmのPOFケーブルを得た。得られたPOFケーブルにおいても、上記POFと同様広い帯域を維持していた。
【発明の効果】
本発明によれば、3層コアPOFにおいて、X1、X2,Y1,Y2を特定の範囲とすることによって、伝送損失が小さく帯域の広いプラスチック光ファイバ及びプラスチック光ファイバケーブルを提供することができる。
【図面の簡単な説明】
【図1】本発明のプラスチック光ファイバの製造に用いられる複合紡糸ノズルの一例を示す断面図である。
【符号の説明】
1 第一コア材流入孔
2 第二コア材流入孔
3 第二コア材流入孔
4 クラッド材流入孔
5 保護層材流入孔
【図2】X2=0.82、Y1=0.67、Y2=0.33のときの、X1に対する相対帯域を示すグラフである。
【図3】X1=0.58、X2=0.82、Y2=0.33のときの、Y1に対する相対帯域を示すグラフである。
【図4】X1=0.58、Y1=0.67、Y2=0.33のときの、X2に対する相対帯域を示すグラフである。
【図5】X1=0.58、Y1=0.67、X2=0.82のときの、Y2に対する相対帯域を示すグラフである。

Claims (5)

  1. 第一コアと、その外周に同心円状に配置され第一コアと屈折率が異なる第二コアと、第二コアの外周に同心円状に配置され第二コアと屈折率が異なる第三コアと、第三コアの外周に同心円状に配置されたクラッドを有し、外周部に行くにつれて屈折率が小さくなるように形成されたプラスチック光ファイバであって、第一コアの半径r1と第三コアの半径r3との比X1(r1/r3)と、第一コアとクラッドの屈折率差n1と第二コアとクラッドの屈折率差n2との比Y1(n2/n1)と、第二コアの半径r2と第三コアの半径r3との比X2(r2/r3)と、第一コアとクラッドの屈折率差n1と第三コアとクラッドの屈折率差n3との比Y2(n3/n1)が、下記式(1)〜(4)を満たすことを特徴とするプラスチック光ファイバ。
    Figure 2004326067
  2. 前記X1、Y1、X2、Y2が、下記式(5)〜(8)
    を満たす範囲にあることを特徴とする請求項1記載のプラスチック光ファイバ。
    Figure 2004326067
  3. 前記第一コア、第二コアおよび第三コアの各層界面に実質的に相溶層が存在しないことを特徴とする請求項1または2記載のプラスチック光ファイバ。
  4. 溶融複合紡糸によって製造されることを特徴とする請求項1〜3のいずれか1項に記載のプラスチック光ファイバ。
  5. 請求項1〜4のいずれか1項に記載のプラスチック光ファイバの外周を樹脂で被覆してなるプラスチック光ファイバケーブル。
JP2003188040A 2003-03-05 2003-06-30 プラスチック光ファイバおよび光ファイバケーブル Pending JP2004326067A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188040A JP2004326067A (ja) 2003-03-05 2003-06-30 プラスチック光ファイバおよび光ファイバケーブル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003058256 2003-03-05
JP2003188040A JP2004326067A (ja) 2003-03-05 2003-06-30 プラスチック光ファイバおよび光ファイバケーブル

Publications (1)

Publication Number Publication Date
JP2004326067A true JP2004326067A (ja) 2004-11-18

Family

ID=33512851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188040A Pending JP2004326067A (ja) 2003-03-05 2003-06-30 プラスチック光ファイバおよび光ファイバケーブル

Country Status (1)

Country Link
JP (1) JP2004326067A (ja)

Similar Documents

Publication Publication Date Title
JP3437848B2 (ja) 屈折率分布型光ファイバ及びその製法
KR20050035537A (ko) 플라스틱 광섬유
JP4612273B2 (ja) プラスチック光ファイバ、光ファイバケーブル及び光伝送装置
KR100401150B1 (ko) 굴절률 분포형 광섬유
US7509018B2 (en) Plastic optical fiber and production method thereof
JP2003531394A (ja) プラスチック光伝送媒体を製造する方法および装置
KR101041756B1 (ko) 플라스틱 광학 파이버 및 그 제조 방법
JP2004326067A (ja) プラスチック光ファイバおよび光ファイバケーブル
KR20040088402A (ko) 플라스틱 광섬유 제조 방법 및 장치
JP5915709B2 (ja) プラスチック光ファイバ及びその製造方法、並びにプラスチック光ファイバケーブル
JP4183157B2 (ja) プラスチック光ファイバ及びこれを用いた光ファイバケーブル
JP2011253108A (ja) プラスチック光ファイバ及びその製造方法、並びにプラスチック光ファイバケーブル
JP2001166174A (ja) 多層コア光ファイバ
JP3945910B2 (ja) 光ファイバ及び光ファイバケーブル
JPH10221543A (ja) 高帯域プラスチック光ファイバ
JP2006293156A (ja) プラスチック光ファイバの製造方法
JPS61279812A (ja) プラスチツク光フアイバの製造方法
JPH11237512A (ja) プラスチック光ファイバ
JPH10104455A (ja) 高帯域プラスチック光ファイバ
JP2000171644A (ja) プラスチック光ファイバ
JP2001343535A (ja) プラスチック光ファイバー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701