JP2004296776A - 光起電力素子およびその製造方法 - Google Patents

光起電力素子およびその製造方法 Download PDF

Info

Publication number
JP2004296776A
JP2004296776A JP2003087079A JP2003087079A JP2004296776A JP 2004296776 A JP2004296776 A JP 2004296776A JP 2003087079 A JP2003087079 A JP 2003087079A JP 2003087079 A JP2003087079 A JP 2003087079A JP 2004296776 A JP2004296776 A JP 2004296776A
Authority
JP
Japan
Prior art keywords
semiconductor film
amorphous semiconductor
impurity
amorphous silicon
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087079A
Other languages
English (en)
Other versions
JP4159390B2 (ja
Inventor
Takeshi Nakajima
武 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003087079A priority Critical patent/JP4159390B2/ja
Publication of JP2004296776A publication Critical patent/JP2004296776A/ja
Application granted granted Critical
Publication of JP4159390B2 publication Critical patent/JP4159390B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

【課題】低い直列抵抗成分および高い開放電圧Vocを維持しつつ、高い曲線因子F.F.を得ることができる光起電力素子を提供する。
【解決手段】n型単結晶シリコン基板1の主面(表側の面)上にi型非晶質シリコン膜2およびp型非晶質シリコン膜3が順に形成されている。n型単結晶シリコン基板1の裏面には、i型非晶質シリコン膜6およびn型非晶質シリコン膜7が順に形成されている。i型非晶質シリコン膜2には、厚さ方向の一部の領域にB(ボロン)が導入されることによりB導入層21が形成されている。それにより、i型非晶質シリコン膜2は、Bが導入されていない層にB導入層21が挟まれた3層構造となっている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体接合を用いた光起電力素子に関する。
【0002】
【従来の技術】
近年、n型単結晶シリコン基板とp型非晶質シリコン膜との接合を有する光起電力素子が開発されている。このような光起電力素子において、光電変換効率を向上させるためには、高い短絡電流Iscおよび開放電圧Vocを維持しつつ曲線因子F.F.を向上させる必要がある。
【0003】
しかしながら、n型単結晶シリコン基板とp型非晶質シリコン膜との接合部においては、界面準位が多数存在するため、キャリアの再結合が発生し、開放電圧Vocが低下する。
【0004】
そこで、n型単結晶シリコン基板とp型非晶質シリコン膜との接合部におけるキャリア再結合を抑制するために、n型単結晶シリコン基板とp型非晶質シリコン膜との間に実質的に真性な非晶質シリコン膜(i型非晶質シリコン膜)が挿入されたHIT(真性薄膜を有するヘテロ接合:Heterojunction with Intrinsic Thin−Layer)構造を有する光起電力素子が提案されている(例えば、特許文献1および2参照)。
【0005】
【特許文献1】
特許第2614561号公報
【特許文献2】
特開2001−345463号公報
【0006】
【発明が解決しようとする課題】
上記の従来のHIT構造を有する光起電力素子では、i型非晶質シリコン膜によりn型単結晶シリコン基板とp型非晶質シリコン膜との接合部の界面特性が改善される。これをパッシベーション効果と呼ぶ。
【0007】
高い開放電圧Vocを維持しつつより高い曲線因子F.F.を得るためには、i型非晶質シリコン膜を厚くすることによりパッシベーション効果を高めることが考えられる。しかしながら、i型非晶質シリコン膜を厚くすると、i型非晶質シリコン膜により吸収される光の量が増加し、光電変換層である単結晶シリコン基板に入射する光の量が減少するため短絡電流Iscの低下が起こる。さらに、i型非晶質シリコン膜による直列抵抗成分が増加し、曲線因子F.F.の低下も生じる結果、高い光電変換効率を得ることができない。
【0008】
本発明の目的は、低い直列抵抗成分および高い開放電圧を維持しつつ、高い曲線因子を得ることができる光起電力素子およびその製造方法を提供することである。
【0009】
【課題を解決するための手段および発明の効果】
本明細書中における結晶系半導体には単結晶半導体および多結晶半導体が含まれるものとし、非晶質系半導体には非晶質半導体および微結晶半導体が含まれるものとする。
【0010】
本発明に係る光起電力素子は、結晶系半導体と、第1の非晶質系半導体膜と、第2の非晶質系半導体膜とを順に備え、第1の非晶質系半導体膜は一導電型を示す不純物を含有し、第2の非晶質系半導体膜は一導電型を示す不純物を含有し、第1の非晶質系半導体膜における不純物の濃度が第2の非晶質系半導体膜側から結晶系半導体側へ減少しつつ不純物の濃度の減少率が部分的に低下した後に増加するものである。
【0011】
本発明に係る光起電力素子においては、結晶系半導体と一導電型の第2の非晶質系半導体膜との間に低い不純物濃度の領域を有する第1の非晶質系半導体膜が存在する。それにより、結晶系半導体と一導電型の第2の非晶質系半導体膜との接合部における界面特性が改善されるので、高い開放電圧を維持することができる。また、第1の非晶質系半導体膜において、不純物の濃度が第2の非晶質系半導体膜側から結晶系半導体側へ減少しつつ、不純物の濃度の減少率が部分的に低下した後に増加するそれにより、結晶系半導体と第2の非晶質系半導体膜との間の直列抵抗成分が増加することなく曲線因子が増加する。したがって、高い光電変換効率が得られる。
【0012】
結晶系半導体は、第2の非晶質系半導体膜とは異なる導電型を示してもよい。この場合、結晶系半導体と第1の非晶質系半導体膜との間にpn接合が形成され、キャリアの取り出しが効率よく行われる。
【0013】
第1の非晶質系半導体膜における不純物の濃度の減少率が低下する部分の不純物の濃度が第2の非晶質系半導体膜の不純物の濃度よりも低いことが好ましい。この場合、第1の非晶質系半導体膜中に電位差が生じるのでキャリアの取り出しを効率よく行うことができ、高い短絡電流を維持することができる。
【0014】
第1の非晶質半導体膜における不純物の濃度の減少率が低下する部分の不純物の濃度は5×1020atom/cm以下であってもよい。この場合、第1の非晶質系半導体膜中に電位差が生じ、直列抵抗成分の増加が抑制され、高い短絡電流を維持することができる。
【0015】
本発明に係る光起電力素子の製造方法は、結晶系半導体上に第1の非晶質系半導体膜を形成するとともに前記第1の非晶質系半導体膜の厚さ方向における一部の領域に一導電型を示す不純物をドープし、第1の非晶質系半導体膜上に第2の非晶質系半導体膜を形成するとともに第2の非晶質半導体膜に一導電型を示す不純物をドープし、第1の非晶質系半導体膜中の一部の領域における不純物の濃度が第2の非晶質系半導体膜中の不純物の濃度よりも低くするものである。
【0016】
本発明に係る光起電力素子の製造方法においては、結晶系半導体と一導電型の第2の非晶質系半導体膜との間に低い不純物濃度の領域を有する第1の非晶質系半導体膜が形成される。それにより、結晶系半導体と一導電型の第2の非晶質系半導体膜との接合部における界面特性が改善されるので、高い開放電圧を維持することができる。また、第1の非晶質系半導体膜において、不純物の濃度が第2の非晶質系半導体膜側から結晶系半導体側へ減少しつつ部分的に減少率が低下するとともに、第1の非晶質系半導体膜中の一部の領域における不純物の濃度が第2の非晶質系半導体膜中の不純物の濃度よりも低くなるように第1の非晶質半導体膜および第2の非晶質半導体膜が形成される。それにより、結晶系半導体と第2の非晶質系半導体膜との間の直列抵抗成分が増加することなく曲線因子が増加する。したがって、高い光電変換効率が得られる。
【0017】
処理室内でプラズマ化学蒸着法により第1の非晶質系半導体膜を形成するとともに処理室内に一導電型を示す不純物を含むドーパントガスを導入することにより第1の非晶質系半導体膜の厚さ方向における一部の領域に一導電型を示す不純物をドープし、処理室内でプラズマ化学蒸着法により第2の非晶質系半導体膜を形成するとともに処理室内に一導電型を示す不純物を含むドーパントガスを導入することにより第2の非晶質系半導体膜に一導電型を示す不純物をドープし、第2の非晶質系半導体膜に一導電型の不純物をドープする際のドーパントガスの流量に対する第1の非晶質系半導体膜の厚さ方向における一部の領域に一導電型を示す不純物をドープする際のドーパントガスの流量の比が0.05〜0.5の範囲であってもよい。
【0018】
この場合、第1の非晶質系半導体膜において、不純物の濃度が第2の非晶質系半導体膜側から結晶系半導体側へ減少しつつ部分的に減少率が低下するとともに、第1の非晶質系半導体膜中の一部の領域における不純物の濃度が第2の非晶質系半導体膜中の不純物の濃度よりも低くなるように第1の非晶質系半導体膜および第2の非晶質系半導体膜が形成される。それにより、結晶系半導体と第2の非晶質系半導体膜との間の直列抵抗成分が増加せずに曲線因子が増加する。
【0019】
第1の非晶質系半導体膜における不純物の濃度が第2の非晶質系半導体膜側から結晶系半導体側へ減少しつつ、不純物の濃度の減少率が部分的に低下した後に増加するように不純物をドープしてもよい。
【0020】
この場合、結晶系半導体と第2の非晶質系半導体膜との直列抵抗成分が増加することなく曲線因子が増加する。したがって、高い光電変換効率が得られる。
【0021】
【発明の実施の形態】
以下、本発明の一実施の形態について説明する。
【0022】
図1は、本実施の形態に係る光起電力素子の構造を示す模式的断面図である。
図1に示すように、n型単結晶シリコン基板1の主面(表側の面)上にi型非晶質シリコン膜2(ノンドープ非晶質シリコン膜)およびp型非晶質シリコン膜3が順に形成されている。p型非晶質シリコン膜3上に表面電極4が形成され、表面電極4上にくし形の集電極5が形成されている。n型単結晶シリコン基板1の裏面には、i型非晶質シリコン膜6およびn型非晶質シリコン膜7が順に形成されている。n型非晶質シリコン膜7上に裏面電極8が形成され、裏面電極8上にくし形の集電極9が形成されている。図1の光起電力素子では、n型単結晶シリコン基板1が主たる発電層となる。
【0023】
i型非晶質シリコン膜2の膜厚は50〜200Åであることが好ましく、例えば100Åである。i型非晶質シリコン膜2には、厚さ方向の一部の領域にp型不純物としてB(ボロン)がドープされることによりB導入層21が形成されている。それにより、i型非晶質シリコン膜2は、Bがドープされていない層にB導入層21が挟まれた3層構造となっている。
【0024】
B導入層21の膜厚は、例えば、i型非晶質シリコン膜2の膜厚の25%程度である。また、B導入層21中のB濃度は、5×1020atom/cm以下であることが好ましく、1×1018atom/cm〜5×1020atom/cmの範囲であることがより好ましい。
【0025】
表面電極4および裏面電極8は、ITO(酸化インジウム錫)、SnO(酸化錫)、ZnO(酸化亜鉛)等からなる透明電極である。集電極5,9は、Ag(銀)等からなる。
【0026】
本実施の形態の光起電力素子は、pn接合特性を改善するためにn型単結晶シリコン基板1とp型非晶質シリコン膜3との間にi型非晶質シリコン膜2を設けたHIT構造を有するとともに、裏面でのキャリア再結合を防止するためにn型単結晶シリコン基板1の裏面にi型非晶質シリコン膜6およびn型非晶質シリコン膜7を設けたBSF(Back Surface Field)構造を有する。
【0027】
次に、図1の光起電力素子の製造方法を説明する。まず、洗浄したn型単結晶シリコン基板1を真空チャンバ内で加熱する。それにより、n型単結晶シリコン基板1の表面に付着した水分が除去される。その後、真空チャンバ内にH(水素)ガスを導入して、プラズマ放電によりn型単結晶シリコン基板1表面のクリーニングを行う。
【0028】
次に、真空チャンバ内にSiH(シラン)ガスおよびHガスを導入し、プラズマCVD(化学蒸着)法によりn型単結晶シリコン基板1の主面上にi型非晶質シリコン膜2を形成する。H希釈したB(ジボラン)ガスは、B導入層21を形成する際に導入する。続いて、真空チャンバ内にSiHガス、HガスおよびBガスを導入して、i型非晶質シリコン膜2上にプラズマCVD法によりp型非晶質シリコン膜3を形成する。
【0029】
次いで、真空チャンバ内にSiHガスおよびHガスを導入して、プラズマCVD法によりn型単結晶シリコン基板1の裏面にi型非晶質シリコン膜6を形成する。続いて、真空チャンバ内にSiHガス、HガスおよびPH(ホスフィン)ガスを導入して、i型非晶質シリコン膜6上にプラズマCVD法によりn型非晶質シリコン膜7を形成する。
【0030】
次に、スパッタリング法により、p型非晶質シリコン膜3上に表面電極4を形成し、n型非晶質シリコン膜7上に裏面電極8を形成する。さらに、スクリーン印刷法により、表面電極4上に集電極5を形成し、裏面電極8上に集電極9を形成する。
【0031】
本実施の形態の光起電力素子においては、i型非晶質シリコン膜2を有することによりn型単結晶シリコン基板1とp型非晶質シリコン膜3との間でのキャリア再結合の抑制効果が高まる。また、B導入層21を有することにより直列抵抗成分が減少する。したがって、高い開放電圧Vocおよび高い曲線因子F.F.が得られる。その結果、光電変換効率が向上する。
【0032】
なお、本実施の形態のB導入層21はプラズマCVD法により形成したがそれに限られない。例えば、プラズマCVD法によりi型非晶質シリコン膜2を形成した後に、イオン注入法またはプラズマイオン注入法によりi型非晶質シリコン膜2にBを導入してB導入層21を形成してもよい。
【0033】
また、本実施の形態のi型非晶質シリコン膜2には不純物としてBをドープしたB導入層21を形成したが、それに限られない。例えば、Al(アルミニウム)、Ga(ガリウム)等のIII 族元素を不純物としてドープした導入層を形成してもよい。また、n型単結晶シリコン基板1の代わりにn型多結晶シリコン基板を用いてもよい。i型非晶質シリコン膜2、p型非晶質シリコン膜3、i型非晶質シリコン膜6およびn型非晶質シリコン膜7が微結晶シリコンを含んでもよい。
【0034】
また、本実施の形態のn型単結晶シリコン基板1、i型非晶質シリコン膜2、p型非晶質シリコン膜3、i型非晶質シリコン膜6およびn型非晶質シリコン膜7の代わりに、例えば、SiC(炭化シリコン)、SiGe(シリコンゲルマニウム)、Ge(ゲルマニウム)等のような他のIV族元素を用いてもよい。
【0035】
さらに、n型単結晶シリコン基板1の裏面側のi型非晶質シリコン膜6に不純物導入層を設けてもよい。この場合には、不純物としてN(窒素)、P(リン)、As(ヒ素)等のV族元素をドープする。
【0036】
また、本実施の形態の光起電力素子においては、n型単結晶シリコン基板1の表裏面に膜を形成しているがそれに限られない。例えば、p型単結晶シリコン基板の主面にi型非晶質シリコン膜およびn型非晶質シリコン膜を形成し、裏面にはi型非晶質シリコン膜およびp型非晶質シリコン膜を形成し、p型単結晶シリコン基板の主面側のi型非晶質シリコン膜の一部にN、P、As等のV族元素をドープした層を形成してもよい。
【0037】
さらに、本発明は、図1に示す光起電力素子の構造に限定されず、他の種々の構造を有する光起電力素子に適用することができる。例えば、n型単結晶シリコン基板1の裏面のi型非晶質シリコン膜6およびn型非晶質シリコン膜7を設けなくてもよい。
【0038】
本実施の形態では、n型単結晶シリコン基板1が結晶系半導体に相当し、i型非晶質シリコン膜2が第1の非晶質半導体膜に相当し、p型非晶質シリコン膜3が第2の非晶質半導体膜に相当する。
【0039】
【実施例】
以下の実施例1〜8では、上記実施の形態の方法で図1の構造を有する光起電力素子を作製し、出力特性を測定した。実施例1〜8の光起電力素子の作製条件を表1に示す。
【0040】
【表1】
Figure 2004296776
【0041】
表1に示すように、B導入層21を形成する際にはHガス希釈したBガスを用い、SiHに対するBの濃度を1%以下にした。なお、Bガスの濃度を変化させても、水素希釈率は一定とする。
【0042】
(実施例1〜4)
実施例1〜4では、図1のB導入層21を形成する際に導入するBガスの濃度を変えて光起電力素子を作製し、Bガスの濃度が開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxに及ぼす影響を調べた。以下、実験方法および実験結果について説明する。
【0043】
図2は、実施例1〜4の光起電力素子におけるB導入層21形成時のB流量比およびB導入層21の位置を示す図である。図2の縦軸はB流量比を示し、横軸は膜厚方向の位置を示す。
【0044】
ここで、B流量比とは、p型非晶質シリコン膜3の形成時に導入するBガスの流量に対するB導入層21の形成時に導入するBガスの流量の比である。
【0045】
実施例1では、SiHに対するBガスの濃度を1%に調整した。したがって、B導入層21の形成時のBガスの濃度は図1のp型非晶質シリコン膜3の形成時のBガスの濃度と等しく、B流量比は1である。
【0046】
実施例2では、SiHに対するBガスの濃度を0.5%に調整した。したがって、B導入層21の形成時のBガスの濃度はp型非晶質シリコン膜3の形成時のBガスの濃度の0.5倍であり、B流量比は0.5である。
【0047】
実施例3では、SiHに対するBガスの濃度を1×10−2%に調整した。したがって、B導入層21の形成時のBガスの濃度はp型非晶質シリコン膜3の形成時のBガスの濃度の0.01倍であり、B流量比は0.01である。
【0048】
実施例4では、SiHに対するBガスの濃度を0.5×10−2%に調整した。したがって、B導入層21の形成時のBガスの濃度はp型非晶質シリコン膜3の形成時のBガスの濃度の0.005倍であり、B流量比は0.005である。
【0049】
実施例1〜4において、B導入層21の膜厚は25Åで一定であり、i型非晶質シリコン膜2の膜厚は100Åで一定である。また、B導入層21は、i型非晶質シリコン膜2中においてp型非晶質シリコン膜3との界面から膜厚方向に12.5Å〜37.5Å離れた範囲内に位置する。
【0050】
(比較例)
比較例では、H希釈したBガスを導入せずにi型非晶質シリコン膜2を形成した点を除いて実施例1〜4と同様の条件および方法で光起電力素子を作製した。したがって、比較例におけるi型非晶質シリコン膜2はB導入層21を含まない。
【0051】
(評価1)
実施例1〜4および比較例の光起電力素子の出力特性を測定した。表2に実施例1〜4および比較例の光起電力素子の出力特性の測定結果を示す。表2においては、実施例1〜4の光起電力素子における開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxの測定結果を比較例の光起電力素子における測定結果を1.000として規格化し、規格化した開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxを示している。
【0052】
【表2】
Figure 2004296776
【0053】
表2に示すように、実施例1の光起電力素子では、比較例の光起電力素子に比較して、開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxが低下した。
【0054】
実施例2の光起電力素子では、開放電圧Vocおよび短絡電流Iscは若干低下したが、曲線因子F.F.および最大出力Pmaxは向上した。特に、曲線因子F.F.が大幅に向上した。
【0055】
実施例3の光起電力素子では、比較例の光起電力素子に比較して、開放電圧Vocおよび短絡電流Iscにほとんど変化は見られなかったが、曲線因子F.F.および最大出力Pmaxが向上した。特に、曲線因子F.F.および最大出力Pmaxが大幅に向上した。実施例4の光起電力素子では、比較例の光起電力素子に比較して、変化がほとんど見られなかった。
【0056】
実施例1の光起電力素子における開放電圧Vocの低下は、B導入層21のB濃度が高くなるとキャリアの再結合抑制効果が低下していくことが原因であると考えられる。また、短絡電流Iscの低下は、Bの導入による再結合準位が増加したためだと考えられる。さらに、B導入層21のB濃度が高くなるとp型非晶質シリコン膜3とB導入層21との間の電位差が小さくなり、電流が流れにくくなり直列抵抗成分が大きくなったと考えられる。
【0057】
実施例2および3の光起電力素子においては、直列抵抗成分の低下によると考えられる曲線因子F.F.の向上が見られている。
【0058】
実施例4の光起電力素子においては、曲線因子F.F.の向上があまり見られていない。これは、B濃度が低いためにBの影響を受ける実効的なB導入層21が形成されなかったためであると考えられる。
【0059】
以上のことから、曲線因子F.F.および最大出力Pmaxを向上させるには、p型非晶質シリコン膜3形成時のBガス流量に対してB導入層21形成時のBガス流量の比を0.05〜0.5とすることが好ましい。
【0060】
(実施例5)
i型非晶質シリコン膜2中におけるB濃度の分布をSIMS(二次イオン質量分析法)により測定した。以下、図3および図4を用いてi型非晶質シリコン膜2中のB濃度の分布について説明する。
【0061】
図3は、実施例5のi型非晶質シリコン膜2中のB濃度を示す図である。
図3の縦軸はB濃度比を示し、横軸は膜厚方向の位置を示す。ここで、B濃度比とは、p型非晶質シリコン膜3中のB濃度に対するi型非晶質シリコン膜2中のB濃度の比である。
【0062】
実施例5のi型非晶質シリコン膜2の形成条件は、図2の実施例2と同様である。SIMS分析の精度を向上させるために、i型非晶質シリコン膜2の膜厚は160Åとし、B導入層21の膜厚はその25%である40Åとした。i型非晶質シリコン膜2中のB濃度比の測定結果を、図3中に実線で示す。なお、破線は比較例のi型非晶質シリコン膜2中のB濃度比を示している。
【0063】
膜厚0Åの位置は、p型非晶質シリコン膜3中のある深さを示す。膜厚20Åの位置は、p型非晶質シリコン膜3とi型非晶質シリコン膜2との境界である。図示していないが、膜厚180Åの位置にはi型非晶質シリコン膜2とn型単結晶シリコン基板1との境界が存在する。
【0064】
比較例のi型非晶質シリコン膜2では、B濃度比はp型非晶質シリコン膜3側からn型単結晶シリコン基板1側へ膜厚方向に単調に減少している。
【0065】
実施例5のi型非晶質シリコン膜2中のB濃度比は、比較例のi型非晶質シリコン膜2中のB濃度比と同様にp型非晶質シリコン膜3側からn型単結晶シリコン基板1側へ膜厚方向に単調に減少しているが、途中で傾きが緩やかになっている部分が見られた。そこで、この部分を詳しく調べるために、図3の実線で表されるB濃度比を2回微分した。
【0066】
図4は、図3の実線で表されるB濃度比を2回微分した曲線を示す図である。
縦軸は2回微分したB濃度比を示し、横軸は膜厚方向の位置を示す。図5に示すように、2回微分したB濃度比はp型非晶質シリコン膜3側からn型単結晶シリコン基板1側へ膜厚方向に減少しつつも、膜厚方向の位置100Å付近で極大点Sを有する。したがって、実施例5のi型非晶質シリコン膜2中のB濃度比は単調に減少しているが、B導入層21においては、B濃度比の減少率が低下していることがわかった。また、図4の極大点SにおけるB濃度は、5×1020atom/cmであった。
【0067】
以上のように、i型非晶質シリコン膜2中にB導入層21を形成し、p型非晶質シリコン膜3とB導入層21との間に電位差が生じる程度にB導入層21中のB濃度を調整することで、曲線因子F.F.および最大出力Pmaxが向上することがわかった。
【0068】
(実施例6〜8)
実施例6〜8では、i型非晶質シリコン膜2中のB導入層21の位置を変えて光起電力素子を作製し、B導入層21の位置が開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxに及ぼす影響を調べた。以下、実験方法および実験結果について説明する。
【0069】
図5は、実施例6〜8のi型非晶質シリコン膜2中のB導入層21の位置を示す図である。
【0070】
図5のXは、p型非晶質シリコン膜3側のBを含まないi型非晶質シリコン膜2の膜厚を示す。Yは、B導入層21の膜厚を示す。Zは、n型単結晶シリコン基板1側のBを含まないi型非晶質シリコン膜の膜厚を示す。
【0071】
図5(a)に示す実施例6ではX:Y:Z=1:2:5であり、図5(b)に示す実施例7ではX:Y:Z=2:2:4であり、図5(d)に示す実施例8ではX:Y:Z=3:2:3である。
【0072】
各実施例6〜8において、B導入層21の膜厚は25Åで一定であり、i型非晶質シリコン膜2全体の膜厚は100Åで一定である。i型非晶質シリコン膜2を形成する際にHガス希釈したBガスを導入するタイミングを変化させることにより、B導入層21の位置を変化させた。Hガス希釈したBガスの濃度は0.01%である。
【0073】
(評価2)
実施例6〜8および比較例の光起電力素子の出力特性を測定した。表3に実施例6〜8および比較例の光起電力素子の出力特性の測定結果を示す。表3においては、実施例6〜8の光起電力素子における開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxの測定結果を比較例の光起電力素子における測定結果を1.000として規格化し、規格化した開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxを示している。
【0074】
【表3】
Figure 2004296776
【0075】
表3に示すように、実施例6〜8のいずれにおいても、開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxにあまり変化は見られず、曲線因子F.F.および最大出力Pmaxは比較例に比較して高い値を維持した。
【0076】
以上のことから、i型非晶質シリコン膜2中におけるB導入層21の位置は、開放電圧Voc、短絡電流Isc、曲線因子F.F.および最大出力Pmaxに大きな影響を及ぼさないものと考えられる。
【0077】
評価1および評価2より、図1のi型非晶質シリコン膜2中にB導入層21を形成し、B導入層21中におけるB濃度をp型非晶質シリコン膜3中のB濃度以下とすることで、曲線因子F.F.および最大出力Pmaxの向上に伴う光電変換効率の向上が見られた。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る光起電力素子の構造を示す模式的断面図である。
【図2】実施例1〜4の光起電力素子におけるB導入層形成時のB流量比およびB導入層の位置を示す図である。
【図3】実施例5のi型非晶質シリコン膜中のB濃度を示す図である。
【図4】図3の実線で表されるB濃度比を2回微分した曲線を示す図である。
【図5】図5は、実施例6〜8のi型非晶質シリコン膜中のB導入層の位置を示す図である。
【符号の説明】
1 n型単結晶シリコン基板
2,6 i型非晶質シリコン膜
3 p型非晶質シリコン膜
7 n型非晶質シリコン膜
21 B導入層

Claims (7)

  1. 結晶系半導体と、
    第1の非晶質系半導体膜と、
    第2の非晶質系半導体膜とを順に備え、
    前記第1の非晶質系半導体膜は一導電型を示す不純物を含有し、
    前記第2の非晶質系半導体膜は前記一導電型を示す不純物を含有し、
    前記第1の非晶質系半導体膜における不純物の濃度が前記第2の非晶質系半導体膜側から前記結晶系半導体側へ減少しつつ、前記不純物の濃度の減少率が部分的に低下した後に増加することを特徴とする光起電力素子。
  2. 前記結晶系半導体は、前記第2の非晶質系半導体膜とは異なる導電型を示すことを特徴とする請求項1記載の光起電力素子。
  3. 前記第1の非晶質系半導体膜における不純物の濃度の減少率が低下する部分の不純物の濃度が前記第2の非晶質系半導体膜の不純物の濃度よりも低いことを特徴とする請求項1または2記載の光起電力素子。
  4. 前記第1の非晶質系半導体膜における不純物の濃度の減少率が低下する部分の不純物の濃度が5×1020atom/cm以下であることを特徴とする請求項1〜3のいずれかに記載の光起電力素子。
  5. 結晶系半導体上に第1の非晶質系半導体膜を形成するとともに前記第1の非晶質系半導体膜の厚さ方向における一部の領域に一導電型を示す不純物をドープし、
    前記第1の非晶質系半導体膜上に第2の非晶質系半導体膜を形成するとともに前記第2の非晶質半導体膜に前記一導電型を示す不純物をドープし、
    前記第1の非晶質系半導体膜中の前記一部の領域における不純物の濃度が前記第2の非晶質系半導体膜中の不純物の濃度よりも低いことを特徴とする光起電力素子の製造方法。
  6. 処理室内でプラズマ化学蒸着法により前記第1の非晶質系半導体膜を形成するとともに前記処理室内に前記一導電型を示す不純物を含むドーパントガスを導入することにより前記第1の非晶質系半導体膜の厚さ方向における一部の領域に一導電型を示す不純物をドープし、
    前記処理室内でプラズマ化学蒸着法により前記第2の非晶質系半導体膜を形成するとともに前記処理室内に前記一導電型を示す不純物を含むドーパントガスを導入することにより前記第2の非晶質系半導体膜に前記一導電型を示す不純物をドープし、
    前記第2の非晶質系半導体膜に一導電型の不純物をドープする際の前記ドーパントガスの流量に対する前記第1の非晶質系半導体膜の厚さ方向における一部の領域に一導電型を示す不純物をドープする際の前記ドーパントガスの流量の比が0.05〜0.5の範囲であることを特徴とする請求項5記載の光起電力素子の製造方法。
  7. 前記第1の非晶質系半導体膜における不純物の濃度が前記第2の非晶質系半導体膜側から前記結晶系半導体側へ減少しつつ、前記不純物の濃度の減少率が部分的に低下した後に増加するように不純物をドープすることを特徴とする請求項5または6記載の光起電力素子の製造方法。
JP2003087079A 2003-03-27 2003-03-27 光起電力素子およびその製造方法 Expired - Fee Related JP4159390B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087079A JP4159390B2 (ja) 2003-03-27 2003-03-27 光起電力素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087079A JP4159390B2 (ja) 2003-03-27 2003-03-27 光起電力素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2004296776A true JP2004296776A (ja) 2004-10-21
JP4159390B2 JP4159390B2 (ja) 2008-10-01

Family

ID=33401529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087079A Expired - Fee Related JP4159390B2 (ja) 2003-03-27 2003-03-27 光起電力素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4159390B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021993A (ja) * 2006-06-30 2008-01-31 General Electric Co <Ge> 全背面接点構成を含む光起電力デバイス及び関連する方法
JP2010239139A (ja) * 2004-09-29 2010-10-21 Sanyo Electric Co Ltd 光起電力装置
WO2013128628A1 (ja) * 2012-03-02 2013-09-06 三洋電機株式会社 光起電力装置
WO2013168515A1 (ja) * 2012-05-10 2013-11-14 シャープ株式会社 光電変換装置およびその製造方法
US9252316B2 (en) 2014-04-02 2016-02-02 Korea Institute Of Energy Research Ultra thin hit solar cell and fabricating method of the same
KR20200059979A (ko) * 2018-11-22 2020-05-29 주성엔지니어링(주) 이종접합 태양전지 및 그 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161551A (ja) 2019-03-25 2020-10-01 パナソニック株式会社 太陽電池セル及び太陽電池モジュール

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239139A (ja) * 2004-09-29 2010-10-21 Sanyo Electric Co Ltd 光起電力装置
JP2008021993A (ja) * 2006-06-30 2008-01-31 General Electric Co <Ge> 全背面接点構成を含む光起電力デバイス及び関連する方法
WO2013128628A1 (ja) * 2012-03-02 2013-09-06 三洋電機株式会社 光起電力装置
CN104145344A (zh) * 2012-03-02 2014-11-12 三洋电机株式会社 光伏器件
JPWO2013128628A1 (ja) * 2012-03-02 2015-07-30 パナソニックIpマネジメント株式会社 光起電力装置
US9705022B2 (en) 2012-03-02 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic device
WO2013168515A1 (ja) * 2012-05-10 2013-11-14 シャープ株式会社 光電変換装置およびその製造方法
JPWO2013168515A1 (ja) * 2012-05-10 2016-01-07 シャープ株式会社 光電変換装置およびその製造方法
US9252316B2 (en) 2014-04-02 2016-02-02 Korea Institute Of Energy Research Ultra thin hit solar cell and fabricating method of the same
KR20200059979A (ko) * 2018-11-22 2020-05-29 주성엔지니어링(주) 이종접합 태양전지 및 그 제조방법
KR102661526B1 (ko) * 2018-11-22 2024-04-26 주성엔지니어링(주) 이종접합 태양전지 및 그 제조방법

Also Published As

Publication number Publication date
JP4159390B2 (ja) 2008-10-01

Similar Documents

Publication Publication Date Title
US8872020B2 (en) Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
US6878921B2 (en) Photovoltaic device and manufacturing method thereof
EP2439780B1 (en) Photovoltaic cell
JP3998619B2 (ja) 光起電力素子およびその製造方法
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
US20130298973A1 (en) Tunneling-junction solar cell with shallow counter doping layer in the substrate
JP5424800B2 (ja) デュアルドーピングを備えたヘテロ接合光電池及びその製造方法
JP2008021993A (ja) 全背面接点構成を含む光起電力デバイス及び関連する方法
JP5526461B2 (ja) 光起電力装置
US20080174028A1 (en) Method and Apparatus For A Semiconductor Structure Forming At Least One Via
EP1913644A2 (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
EP2165371A2 (en) Method for producing an emitter structure and emitter structures resulting therefrom
JP5031007B2 (ja) 光起電力素子
JP4152197B2 (ja) 光起電力装置
CN103907205A (zh) 光电变换装置及其制造方法、以及光电变换模块
JP2006237452A (ja) 光起電力素子
JP4169671B2 (ja) 光起電力素子の製造方法
JP4159390B2 (ja) 光起電力素子およびその製造方法
JP4070648B2 (ja) 光起電力素子
KR101103706B1 (ko) 후면접합 태양전지의 제조방법
EP3593389A1 (en) Mask-less patterning of amorphous silicon layers for low-cost silicon hetero-junction interdigitated back-contact solar cells
JP2024503613A (ja) 太陽電池
US20170012149A1 (en) High efficiency single crystal silicon solar cell with epitaxially deposited silicon layers with deep junction(s)
JPH0823114A (ja) 太陽電池
WO2019188716A1 (ja) 太陽電池およびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R151 Written notification of patent or utility model registration

Ref document number: 4159390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees