JP2004281749A - 固体電解コンデンサ - Google Patents
固体電解コンデンサ Download PDFInfo
- Publication number
- JP2004281749A JP2004281749A JP2003071747A JP2003071747A JP2004281749A JP 2004281749 A JP2004281749 A JP 2004281749A JP 2003071747 A JP2003071747 A JP 2003071747A JP 2003071747 A JP2003071747 A JP 2003071747A JP 2004281749 A JP2004281749 A JP 2004281749A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- capacitor element
- cathode
- layer
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
【課題】固体電解コンデンサについて、低ESR化とともに低ESL化を図ること。
【解決手段】弁金属粉末を焼結してなる陽極体14、この陽極体の表面に誘電体酸化皮膜層16、固体電解質層18及び陰極層20が積層され、陽極体の端面に導出させた陽極導出線8を備えるコンデンサ素子4と、陽極体の陽極導出線に接続された陽極端子10A、10Bと、陰極層に接続された陰極端子12A、12Bと、コンデンサ素子を被覆する外装樹脂層6とを備え、陽極端子及び陰極端子を複数の外部端子として構成している。
【選択図】 図1
【解決手段】弁金属粉末を焼結してなる陽極体14、この陽極体の表面に誘電体酸化皮膜層16、固体電解質層18及び陰極層20が積層され、陽極体の端面に導出させた陽極導出線8を備えるコンデンサ素子4と、陽極体の陽極導出線に接続された陽極端子10A、10Bと、陰極層に接続された陰極端子12A、12Bと、コンデンサ素子を被覆する外装樹脂層6とを備え、陽極端子及び陰極端子を複数の外部端子として構成している。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、陽極体に弁金属粉末の焼結体を用いた固体電解コンデンサに係り、特に、固体電解コンデンサの低ESR(Equivalent Series Resistance:等価直列抵抗)化、低ESL(Equivalent Series Inductance:等価直列インダクタンス)化を図る固体電解コンデンサに関する。
【0002】
【従来の技術】
近年、表面実装デバイスの小型化技術の飛躍的進歩により、携帯電話機、パソコン、デジタルカメラ等の電子機器では、配線基板に対する電子部品の実装は高密度化している。タンタル電解コンデンサは、小型大容量化が図れるという優れた特性を備えており、弁作用金属にはタンタル金属の他、アルミニウム、ニオブ、チタン等の金属類があるが、耐熱性、誘電体皮膜形成性の点でタンタル金属が優れている。
【0003】
弁作用金属粉末として例えば、タンタルを用いた電解コンデンサでは、陽極金属にタンタルを使用し、このタンタル金属粉末にバインダー樹脂を混ぜ合わせて金型でプレス加工することにより、チップ状の素子を作成する。このような素子形成では、タンタル金属粉末の充填密度にばらつきを生じると、コンデンサの電気特性に影響を及ぼすため、材料の充填、加圧条件等に厳重な管理が必要である。そして、チップ化素子には、陽極端子としてタンタルリード線を設け、このリード線は通常、金型内に植立されてタンタル金属粉末の加圧成形により固定される。かかる工程で得られた素子は、真空中での高温加熱処理工程により、タンタル金属粉末間に存在していた樹脂を蒸発させて除去し、かつ、タンタル金属粉末同士の接触点の溶着により、多孔質体の形態からなるタンタル電解コンデンサ用陽極素子を得る。このタンタル電解コンデンサ用陽極素子を電解質槽中に入れ、所定の直流電圧を加えて化成処理を行い、タンタル金属粉末表面に酸化タンタル皮膜を形成させ、その皮膜の上に二酸化マンガン又は、機能性高分子の固体電解質皮膜を形成させた後、カーボン、銀ペースト陰極層処理を施し、樹脂外装を施してタンタル電解コンデンサが形成される。
【0004】
電解コンデンサの小型化、薄型化の要請について、薄型化された素子を積層化すると、低い等価直列抵抗(ESR)を実現でき、高周波特性も大幅に向上することができる。このために、コンデンサに埋設する部分を扁平化した扁平リード線を使用して、コンデンサを薄型化する技術が提案されている。
【0005】
このような固体電解コンデンサに関する技術には、次のような特許文献が存在している。
【0006】
【特許文献1】
特公平7−58672号公報
【0007】
【特許文献2】
実開昭59−187129号公報
【0008】
【特許文献3】
実開昭57−138330号公報
【0009】
【特許文献4】
特開平4−164309号公報
【0010】
【特許文献5】
特開昭53−99456号公報
【0011】
【特許文献6】
特開昭56−83022号公報
【0012】
【特許文献7】
特開2002−305129号公報
【0013】
【特許文献8】
特開2000−306782号公報
【0014】
【特許文献9】
特開平2−125603号公報
【0015】
【特許文献10】
特開平6−267802号公報
【0016】
【特許文献11】
特開2002−299184号公報
【0017】
特許文献1〜4には、扁平な埋込み部分を有するリード線を用いることによって薄形化した固体電解コンデンサが開示されている。また、特許文献5には、薄形コンデンサの製造方法として、弁作用金属粉末を板状に成形、焼結した多孔質焼結体に、リード線を接合するために切欠部を設け、該焼結体の切欠部にリード線を接続固定する電解コンデンサの製造方法が開示されている。また、特許文献6には、他の方法として、電極用金属の粉末と可塑性樹脂からなるバインダーとを混合してシートを形成し、このシートにリード線を接合し、脱バインダ処理をした後、焼結する電解コンデンサ用電極の製造方法が開示されている。また、この特許文献6には、重畳したシート間にリード線を挿入すること、シートにリード線挿入用の孔又は条溝を設けることが開示されている。また、特許文献7には、特許文献6に記載の課題を解決する方法として、弁作用金属粉末とバインダーと溶剤とを混合して得られる金属粉末分散液を基体上に塗布し或いは印刷してシートとし、次いで少なくとも一部を扁平にした弁作用金属からなる扁平リード線の該扁平部分を挟んでシートを重ね合わせて接合体を形成し、次いで該接合体を焼結して得ることを特徴とする電解コンデンサ用電極、それを用いた電解コンデンサ及びその製造方法が開示されている。また、特許文献8には、さらに他の方法として、弁作用金属粉末をバインダー及び溶剤で分散してスラリー化し、これを弁作用金属箔上に塗布後焼結して固体電解コンデンサ用電極を作成し、この電極部材を用いて固体電解コンデンサを構成することが開示されている。また、特許文献9、10には、4端子型の固体電解コンデンサが開示されている。また、特許文献11には、成形体によって形成された電解コンデンサ用陽極素子、この陽極素子を用いた電解コンデンサ及びその製造方法について開示されている。
【0018】
【発明が解決しようとする課題】
ところで、パーソナルコンピュータ等に使用されるCPU(Central Processing Unit )の高速化、高周波化により、タンタル電解コンデンサでは、低ESR化、低ESL化が求められているが、このような要請に対し、ポリピロール、ポリチオフェン又はそれらの誘導体を固体電解質に用いた固体電解コンデンサが実用化されている。
【0019】
しかしながら、従来の固体電解コンデンサやその製造方法には、薄形の陽極素子を使用し、又はそれを製造する技術があるものの、これらは低ESR化に対応する技術であって、低ESL化に対応できるものではなかった。固体電解コンデンサでは、その小型化とチップ化により、低ESL化を図ることができるが、高周波での低ESL化を図ることができなかった。
【0020】
また、特許文献1〜8の開示技術では低ESL化を実現することは困難であり、また、特許文献9、10、11の開示技術でも高周波での低ESL化を図ることは困難であった。
【0021】
そこで、本発明は、この固体電解コンデンサについて、低ESR化とともに低ESL化を図ることを目的とする。
【0022】
【課題を解決するための手段】
そこで、本発明の固体電解コンデンサにあっては、弁金属粉末を焼結してなる陽極体14、この陽極体の表面に誘電体酸化皮膜層16、固体電解質層18及び陰極層20が積層され、前記陽極体の端面に導出させた陽極導出線8を備えるコンデンサ素子4と、前記陽極体の前記陽極導出線に接続された陽極端子10A、10Bと、前記陰極層に接続された陰極端子12A、12Bと、前記コンデンサ素子を被覆する外装樹脂層6とを備え、前記陽極端子及び前記陰極端子を複数の外部端子として構成し、上記目的を達成している。
【0023】
また、本発明の固体電解コンデンサは、弁金属粉末を焼結してなる陽極体を備えるとともに、誘電体酸化皮膜層、固体電解質層及び陰極層が前記陽極体の表面に積層されたコンデンサ素子と、このコンデンサ素子の前記陽極体を貫通させて設けられ、前記コンデンサ素子の複数面部から引き出された複数の陽極導出線と、前記陽極体の前記各陽極導出線に接続された陽極端子と、前記陰極層に接続された陰極端子と、前記コンデンサ素子を被覆する外装樹脂層とを備え、前記陽極端子及び前記陰極端子を複数の外部端子として構成してもよい。係る構成とすれば、複数の陽極導出線がコンデンサ素子の複数面部から引き出されているので、各陽極導出線に対応した陽極端子の形成が可能である。
【0024】
また、本発明の固体電解コンデンサにあっては、弁金属粉末を焼結してなる陽極体14を貫通し、該陽極体の対向端面から導出された陽極導出線8を有し、前記陽極体の表面に誘電体酸化皮膜層16、固体電解質層18及び陰極層20が積層されたコンデンサ素子4の複数個を配列させたコンデンサ素子群30と、このコンデンサ素子群の前記コンデンサ素子の一方の前記陽極導出線のそれぞれに接続される第1の陽極端子10Aと、前記コンデンサ素子群の前記コンデンサ素子の他方の前記陽極導出線のそれぞれに接続される第2の陽極端子10Bと、前記コンデンサ素子の陰極層に接続された陰極端子12A、12Bと、前記コンデンサ素子を被覆する外装樹脂層6とを備え、前記第1の陽極端子、前記第2の陽極端子及び前記陰極端子を複数の外部端子として構成し、上記目的を達成している。
【0025】
このような構成とすれば、コンデンサの陽極体が弁金属粉末の焼結体であり、この陽極体と陽極導出線との接触面積を大きく取ることができることから、低ESR化とともに低ESL化が得られる。
【0026】
【発明の実施の形態】
本発明の第1の実施形態に係る固体電解コンデンサを図1に示す実施の形態を参照して詳細に説明する。図1は、第1の実施形態に係る固体電解コンデンサについて、外装樹脂層を部分的に省略して示している。
【0027】
この実施の形態の固体電解コンデンサ2は、角柱状のコンデンサ素子4を備えており、その外装部分を外装樹脂層6で被覆したものである。このコンデンサ素子4の陽極側の複数面部から引き出されて外装樹脂層6から一部を露出させた複数の陽極導出線8の一方の端部に第1の陽極端子10A、その他方の端部に第2の陽極端子10Bが接続されている。この実施形態では、単一の線素材を用いてコンデンサ素子4の2面部のそれぞれから陽極導出線8が引き出されている。この陽極導出線8は、例えば、タンタル等の弁作用金属で形成されている。コンデンサ素子4の陰極側には単一の陰極端子板12が陽極導出線8と直交方向に接続され、各端部が外装樹脂層6から引き出され、第1及び第2の陰極端子12A、12Bが形成されている。陽極端子10A、10Bと陰極端子12A、12Bとが直交方向の各側面に導出された固体電解コンデンサ2は、これら陽極端子10A、10Bと陰極端子12A、12Bとを以て4端子構造を構成している。
【0028】
この固体電解コンデンサ2において、コンデンサ素子4の陽極体14は、例えば、図2に示すように、タンタル粉末等の弁金属粉末の焼結体であって、その内部を貫通させて両側端面に陽極導出線8が引き出されており、陽極体14の表面に誘電体酸化皮膜層16が形成され、その表面に固体電解質層18が形成され、この固体電解質層18の上にカーボン層、銀層よりなる陰極層20が形成されたものである。
【0029】
このコンデンサ素子4の形成方法は、この場合、弁作用金属粉末とバインダー樹脂を含有するシート状又は薄片状成形体に弁作用金属からなる陽極導出線8を挟んで重ね合わせ、加圧して接合体としての成形体を形成する。例えば、図3に示すように、成形型22にタンタル粉末等の弁金属粉末24を充填させて所定形状として例えば、角柱状に加圧成形し、その加圧成形の際、タンタルリード等の陽極導出線8を弁金属粉末24中に貫通させて埋設し、角柱状の成形体26を形成し、この成形体26を焼結して焼結体からなる陽極体14に変化させる。この陽極体14に陽極酸化処理により、弁金属からなる陽極体14の表面に誘電体酸化皮膜層16を形成し、その表面に導電性高分子層を形成して固体電解質層18とする。この固体電解質層18の上にカーボン層、銀層よりなる陰極層20を形成し、コンデンサ素子4が形成されている。
【0030】
このコンデンサ素子4の陽極導出線8のそれぞれには、陽極端子10A、10Bが接合され、陽極体14の表面に形成された陰極層20の上には導電性接着材28により、単一の陰極端子板12が接合され、陰極端子12A、12Bが形成されている。陰極端子12A、12Bを構成する陰極端子板12は、コンデンサ素子4の形状に沿って屈曲させ、この実施の形態では、コンデンサ素子4を跨ぐように取り付けられる。
【0031】
そして、このコンデンサ素子4には絶縁性合成樹脂からなる外装樹脂層6が被覆され、この外装樹脂層6で被覆されたコンデンサ素子4は、例えば、直方体状である。従って、陽極端子10A、10B及び陰極端子12A、12Bは、外装樹脂層6の被覆部分の4面部から導出されている。そして、例えば、図4に示すように、外装樹脂層6の側面及び底面に沿って陽極端子10A、10B及び陰極端子12A、12Bを折り曲げて、4端子型の表面実装型の固体電解コンデンサ2が得られている。
【0032】
本発明の第2の実施形態に係る固体電解コンデンサを図5に示す実施の形態を参照して詳細に説明する。図5は、第2の実施形態に係る固体電解コンデンサについて、コンデンサ素子4を示している。
【0033】
このコンデンサ素子4は、前記陽極体14として弁金属粉末を焼結した板状の2枚のシート状の陽極体14A、14Bを形成し、各陽極体14A、14Bの間に陽極導出線としてリード箔80を挟み込んで形成されている。この場合、陽極体14A、14Bは、弁作用金属粉末とバインダー樹脂と溶剤とを混合して得られる金属粉末分散液を基体上に塗布し、又は印刷して塗布物或いは印刷物とし、その基体より塗布層或いは印刷層を剥離して形成することができる。
【0034】
リード箔80を用いた場合、その厚さは製造する陽極素子10A、10Bの厚み、その強度を勘案して適宜選定でき、例えば、陽極体14の厚さの5〜50%、より好ましくは10〜35%の厚さとすればよい。また、そのリード箔80の幅は、陽極体14A、14Bの幅の35%以上、より好ましくは45%以上とすれば、リード箔80と陽極体14A、14Bとの接触面積が十分大きくなるため、等価直列抵抗(ESR)を下げることができ、良好な高周波特性を得ることができる。
【0035】
また、陽極体14A、14Bを弁作用金属粉末とバインダー樹脂とを含有するシート状或いは薄片状成形体とすれば、これらの間に弁作用金属からなるリード箔80の中間部分を挟んで重ね合わせ、加圧して接合し、それを焼結して陽極体14とすれば、リード箔80と各陽極体14A、14Bとの密着性が高く、製造が容易である。しかも、焼結して得られる陽極体14は、弁作用金属粉末焼結体中にリード箔80の中央部分が埋入されているので、焼結体である陽極体14A、14Bとリード箔80との接合強度が高く、リード箔80の抜出が生じない等、リード箔80と陽極体14A、14Bとの電気的接続状態が良好となり、電気特性の良い固体電解コンデンサ2が得られる。
【0036】
また、リード箔80を用いた場合には、棒状の引出線に比較し、外圧に対する安定性に優れ、特に、陽極体14からの引出部分に過剰な応力を与えることがなく、陽極体14の割れやクラックの発生を防ぐことができる。
【0037】
また、弁作用金属粉末からなるシート間にリード箔80を挟んで焼結することにより、陽極体14を形成すれば、焼結体である陽極体14や陽極体14の形成前のシートにリード線埋設用の切欠や溝を形成する必要がなく、焼結体である陽極体14の所定位置にリード箔80が正確に埋設した陽極体14に形成できるので、陽極体14等にリード線埋設用の切欠や溝を形成する工程が不要である。従って、切欠や溝を形成することに起因する陽極体14A、14Bに切れ等の損傷を生じることがない。また、極めて薄い均一なシート状で、より一層薄形の陽極体14A、14Bを製造できる。
【0038】
また、陽極体14A、14Bは電解液槽中に入れて所定の直流電圧を加え、化成処理を施し、酸化タンタル皮膜としての誘電体酸化皮膜層を形成させた後、その上に二酸化マンガン又は、機能性高分子の固体電解質層を形成させる。この後、カーボン、銀ペーストにより陰極層を形成し、コンデンサ素子4を形成する。この場合、リード箔80に誘電体酸化皮膜層、固体電解質層、陰極層が形成された場合には、例えばレーザーアブレーション等の手段を使って各皮膜を除去し、金属面を露出させればよい。そして、コンデンサ素子4は、例えば、所定の枚数を積層し、銀接着剤で相互を固定し、貫通した複数のリード箔80を両側で束ねてレーザー等で溶接し、外部端子である陽極端子(例えば、図1の陽極端子10A、10B)を接続し、外装樹脂層6(図1、2)を施して、貫通型タンタル固体電解コンデンサ2が得られる。
【0039】
このような固体電解コンデンサ2について、特徴事項を列挙すれば次の通りである。
【0040】
(1) 陽極体14を弁作用金属の多孔質焼結体で構成すれば、従来の電解コンデンサ製造プロセスでは高い生産性での製造が困難だった極めて薄い、例えば厚さ0.6mm以下の、特に厚さ0.4mm以下の高性能な固体電解コンデンサを実現できる。陽極体14の厚さを薄くし、また、リード箔80と陽極体14との接触状態を良くし、接触面積を大きくすることができ、等価直列抵抗(ESR)を下げることができ、高周波特性も良好になる。
【0041】
(2) リード箔80を挟んで陽極体14を構成したので、リード箔80とシート状の陽極体14との密着性が良好となるとともに、製造も容易となる。また、陽極体14を構成する基体から剥離した塗布面又は印刷面とは反対側の面を重ね合わせれば、リード箔との接触状態がさらに良くなり、等価直列抵抗を低下させることができる。
【0042】
(3) 陽極体14にリード箔80が埋入された構造であるため、両者の接合強度が高く、リード箔の抜出が生じないとともに、リード線と焼結体との電気的接続状態が良好となり、LC特性の良い固体電解コンデンサが得られる。
【0043】
(4) 外圧に対する安全性に優れ、特にリード箔80の引出部分に割れやクラックの発生を防止できる。また、リード箔80の埋設用の切欠や溝が不要であり、陽極体14の所定位置に正確にリード箔80を設置でき、リード箔80の設置用の切欠や溝を形成する必要がなく、切欠や溝に沿ったシートの切れをも抑制できる。極めて薄い均一なシート状の陽極体14の形成が可能であり、リード箔80の厚さ、幅を適宜選定することにより、等価直列抵抗及び漏れ電流を減少させることができる。これを数枚積層することでESRが枚数分の一に減少し、両端の貫通したリード箔を陽極、金属粉末焼結体部分に形成された陰極層部分を陰極とする貫通型固体電解コンデンサを実現でき、ESLを低減できる。
【0044】
次に、本発明の第3の実施形態に係る固体電解コンデンサ及びその製造方法を図6を参照して詳細に説明する。図6は、第3の実施形態に係る固体電解コンデンサを示している。
【0045】
複数のコンデンサ素子4を用いてマトリクス状に配列させ、この実施の形態では18個のコンデンサ素子4を6行、3列に配置してコンデンサ素子群30が構成されている。このコンデンサ素子群30において、各行のコンデンサ素子4を陽極導出線8により直列に接続し、3組ずつの6行の素子行とし、各端部のコンデンサ素子4の陽極導出線8を共通の陽極端子10A、10Bに接続する。即ち、この場合、3組ずつのコンデンサ素子4からなる素子行の陽極側が並列化されている。
【0046】
また、各列のコンデンサ素子4を以て素子列が構成され、列毎に陰極端子板12を共通に接続し、各陰極端子板12の端部に陰極端子12A、12Bを接続したものである。この場合、6組ずつの3列のコンデンサ素子4からなる素子列の陰極側が並列化されている。各陰極端子板12には例えば、一枚の金属板をプレス加工等により所定形状に加工したものを用いれば良い。
【0047】
そして、以上のように構成したコンデンサ素子群30は、例えば、図7の(A)及び(B)に示すように、外装樹脂層6で被覆すれば、複数のコンデンサ素子4を直並列化してなる固体電解コンデンサ2が構成でき、この固体電解コンデンサ2の4面部から陽極端子10A、10B及び陰極端子12A、12Bが導出されている。そして、外装樹脂層6の側面及び底面に沿って陽極端子10A、10B及び陰極端子12A、12Bを例えば、図4に示したように折り曲げて外部端子として構成すれば、例えば、図8の等価回路に示すように、複数のコンデンサ素子4をマトリクス状に配列させて直並列化した表面実装型の固体電解コンデンサ2が得られる。
【0048】
このような固体電解コンデンサ2によれば、複数のコンデンサ素子4を用いることができるとともに、その並列化接続が行われているので、静電容量の拡大とともにESR及びESLの低減化を図ることができる。
【0049】
また、この場合、静電容量の異なるコンデンサ素子4を組み合せてコンデンサ素子群30を構成すれば、所望の合成静電容量値を容易に調節、設定することができる。
【0050】
次に、本発明の第4の実施形態について、図9を参照して説明する。
【0051】
第3の実施形態では、コンデンサ素子4の幅より狭く陰極端子板12を形成したが、図9に示すように、コンデンサ素子4と同一幅に形成された2枚の陰極端子板121、122でコンデンサ素子4の上下面部を挟み込むように形成し、端部側のコンデンサ素子4にあっては、その側面部側で各陰極端子板121、122を当接させる構成とすれば、等価直列インダクタンスを低減できるとともに、コンデンサ素子群30を構成する各コンデンサ素子4の保持強度を高めることができる。
【0052】
なお、各実施形態では、単一の素材からなる陽極導出線を用いて2面部から2本の陽極導出線を引き出す場合について説明したが、2以上の素材を用いてコンデンサ素子の複数面部から3以上の陽極導出線を引き出すように構成してもよい。
【0053】
【発明の効果】
以上説明したように、本発明によれば、次の効果が得られる。
a 陽極体に設けられた陽極導出線をコンデンサ素子の陽極体の少なくとも2箇所から導出させたことにより、陽極体から外部端子が形成され、固体電解コンデンサを搭載した回路に対する電流経路を増加させることができ、ESRが低下し、高周波特性に優れた固体電解コンデンサを提供できる。また、同様に、陰極端子も固体電解コンデンサが搭載された回路に対する電流経路が増えるため、ESRが低下し、高周波特性に優れた固体電解コンデンサを実現できる。
b 陽極体を貫通させて設けられた陽極導出線をコンデンサ素子の複数面部から引き出したので、各陽極導出線に対応して陽極端子を形成することができるとともに、電流経路を増加させ、陽極端子の選択によって所望の容量形成やESRの低下に加え、高周波特性に優れた固体電解コンデンサを実現することができる。
c この固体電解コンデンサを従前の方法を用いることにより、容易に製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る固体電解コンデンサの一部を除いて示した斜視図である。
【図2】第1の実施形態に係る固体電解コンデンサの一部を除いて示した側面図である。
【図3】陽極体の形成方法を示す図である。
【図4】固体電解コンデンサの外観形態を示す側面図である。
【図5】本発明の第2の実施形態に係る固体電解コンデンサにおけるコンデンサ素子等を示す斜視図である。
【図6】本発明の第3の実施形態に係る固体電解コンデンサにおけるコンデンサ素子及び端子構造を示す斜視図である。
【図7】第3の実施形態に係る固体電解コンデンサの外観構成を示し、(A)はその側面図、(B)はその平面図である。
【図8】第3の実施形態に係る固体電解コンデンサの等価回路を示す回路図である。
【図9】本発明の第4の実施形態に係る固体電解コンデンサの一部を示す斜視図である。
【符号の説明】
2 固体電解コンデンサ
4 コンデンサ素子
6 外装樹脂層
8 陽極導出線
10A 第1の陽極端子
10B 第2の陽極端子
12A、12B 陰極端子
14 陽極体
16 誘電体酸化皮膜層
18 固体電解質層
20 陰極層
30 コンデンサ素子群
【発明の属する技術分野】
本発明は、陽極体に弁金属粉末の焼結体を用いた固体電解コンデンサに係り、特に、固体電解コンデンサの低ESR(Equivalent Series Resistance:等価直列抵抗)化、低ESL(Equivalent Series Inductance:等価直列インダクタンス)化を図る固体電解コンデンサに関する。
【0002】
【従来の技術】
近年、表面実装デバイスの小型化技術の飛躍的進歩により、携帯電話機、パソコン、デジタルカメラ等の電子機器では、配線基板に対する電子部品の実装は高密度化している。タンタル電解コンデンサは、小型大容量化が図れるという優れた特性を備えており、弁作用金属にはタンタル金属の他、アルミニウム、ニオブ、チタン等の金属類があるが、耐熱性、誘電体皮膜形成性の点でタンタル金属が優れている。
【0003】
弁作用金属粉末として例えば、タンタルを用いた電解コンデンサでは、陽極金属にタンタルを使用し、このタンタル金属粉末にバインダー樹脂を混ぜ合わせて金型でプレス加工することにより、チップ状の素子を作成する。このような素子形成では、タンタル金属粉末の充填密度にばらつきを生じると、コンデンサの電気特性に影響を及ぼすため、材料の充填、加圧条件等に厳重な管理が必要である。そして、チップ化素子には、陽極端子としてタンタルリード線を設け、このリード線は通常、金型内に植立されてタンタル金属粉末の加圧成形により固定される。かかる工程で得られた素子は、真空中での高温加熱処理工程により、タンタル金属粉末間に存在していた樹脂を蒸発させて除去し、かつ、タンタル金属粉末同士の接触点の溶着により、多孔質体の形態からなるタンタル電解コンデンサ用陽極素子を得る。このタンタル電解コンデンサ用陽極素子を電解質槽中に入れ、所定の直流電圧を加えて化成処理を行い、タンタル金属粉末表面に酸化タンタル皮膜を形成させ、その皮膜の上に二酸化マンガン又は、機能性高分子の固体電解質皮膜を形成させた後、カーボン、銀ペースト陰極層処理を施し、樹脂外装を施してタンタル電解コンデンサが形成される。
【0004】
電解コンデンサの小型化、薄型化の要請について、薄型化された素子を積層化すると、低い等価直列抵抗(ESR)を実現でき、高周波特性も大幅に向上することができる。このために、コンデンサに埋設する部分を扁平化した扁平リード線を使用して、コンデンサを薄型化する技術が提案されている。
【0005】
このような固体電解コンデンサに関する技術には、次のような特許文献が存在している。
【0006】
【特許文献1】
特公平7−58672号公報
【0007】
【特許文献2】
実開昭59−187129号公報
【0008】
【特許文献3】
実開昭57−138330号公報
【0009】
【特許文献4】
特開平4−164309号公報
【0010】
【特許文献5】
特開昭53−99456号公報
【0011】
【特許文献6】
特開昭56−83022号公報
【0012】
【特許文献7】
特開2002−305129号公報
【0013】
【特許文献8】
特開2000−306782号公報
【0014】
【特許文献9】
特開平2−125603号公報
【0015】
【特許文献10】
特開平6−267802号公報
【0016】
【特許文献11】
特開2002−299184号公報
【0017】
特許文献1〜4には、扁平な埋込み部分を有するリード線を用いることによって薄形化した固体電解コンデンサが開示されている。また、特許文献5には、薄形コンデンサの製造方法として、弁作用金属粉末を板状に成形、焼結した多孔質焼結体に、リード線を接合するために切欠部を設け、該焼結体の切欠部にリード線を接続固定する電解コンデンサの製造方法が開示されている。また、特許文献6には、他の方法として、電極用金属の粉末と可塑性樹脂からなるバインダーとを混合してシートを形成し、このシートにリード線を接合し、脱バインダ処理をした後、焼結する電解コンデンサ用電極の製造方法が開示されている。また、この特許文献6には、重畳したシート間にリード線を挿入すること、シートにリード線挿入用の孔又は条溝を設けることが開示されている。また、特許文献7には、特許文献6に記載の課題を解決する方法として、弁作用金属粉末とバインダーと溶剤とを混合して得られる金属粉末分散液を基体上に塗布し或いは印刷してシートとし、次いで少なくとも一部を扁平にした弁作用金属からなる扁平リード線の該扁平部分を挟んでシートを重ね合わせて接合体を形成し、次いで該接合体を焼結して得ることを特徴とする電解コンデンサ用電極、それを用いた電解コンデンサ及びその製造方法が開示されている。また、特許文献8には、さらに他の方法として、弁作用金属粉末をバインダー及び溶剤で分散してスラリー化し、これを弁作用金属箔上に塗布後焼結して固体電解コンデンサ用電極を作成し、この電極部材を用いて固体電解コンデンサを構成することが開示されている。また、特許文献9、10には、4端子型の固体電解コンデンサが開示されている。また、特許文献11には、成形体によって形成された電解コンデンサ用陽極素子、この陽極素子を用いた電解コンデンサ及びその製造方法について開示されている。
【0018】
【発明が解決しようとする課題】
ところで、パーソナルコンピュータ等に使用されるCPU(Central Processing Unit )の高速化、高周波化により、タンタル電解コンデンサでは、低ESR化、低ESL化が求められているが、このような要請に対し、ポリピロール、ポリチオフェン又はそれらの誘導体を固体電解質に用いた固体電解コンデンサが実用化されている。
【0019】
しかしながら、従来の固体電解コンデンサやその製造方法には、薄形の陽極素子を使用し、又はそれを製造する技術があるものの、これらは低ESR化に対応する技術であって、低ESL化に対応できるものではなかった。固体電解コンデンサでは、その小型化とチップ化により、低ESL化を図ることができるが、高周波での低ESL化を図ることができなかった。
【0020】
また、特許文献1〜8の開示技術では低ESL化を実現することは困難であり、また、特許文献9、10、11の開示技術でも高周波での低ESL化を図ることは困難であった。
【0021】
そこで、本発明は、この固体電解コンデンサについて、低ESR化とともに低ESL化を図ることを目的とする。
【0022】
【課題を解決するための手段】
そこで、本発明の固体電解コンデンサにあっては、弁金属粉末を焼結してなる陽極体14、この陽極体の表面に誘電体酸化皮膜層16、固体電解質層18及び陰極層20が積層され、前記陽極体の端面に導出させた陽極導出線8を備えるコンデンサ素子4と、前記陽極体の前記陽極導出線に接続された陽極端子10A、10Bと、前記陰極層に接続された陰極端子12A、12Bと、前記コンデンサ素子を被覆する外装樹脂層6とを備え、前記陽極端子及び前記陰極端子を複数の外部端子として構成し、上記目的を達成している。
【0023】
また、本発明の固体電解コンデンサは、弁金属粉末を焼結してなる陽極体を備えるとともに、誘電体酸化皮膜層、固体電解質層及び陰極層が前記陽極体の表面に積層されたコンデンサ素子と、このコンデンサ素子の前記陽極体を貫通させて設けられ、前記コンデンサ素子の複数面部から引き出された複数の陽極導出線と、前記陽極体の前記各陽極導出線に接続された陽極端子と、前記陰極層に接続された陰極端子と、前記コンデンサ素子を被覆する外装樹脂層とを備え、前記陽極端子及び前記陰極端子を複数の外部端子として構成してもよい。係る構成とすれば、複数の陽極導出線がコンデンサ素子の複数面部から引き出されているので、各陽極導出線に対応した陽極端子の形成が可能である。
【0024】
また、本発明の固体電解コンデンサにあっては、弁金属粉末を焼結してなる陽極体14を貫通し、該陽極体の対向端面から導出された陽極導出線8を有し、前記陽極体の表面に誘電体酸化皮膜層16、固体電解質層18及び陰極層20が積層されたコンデンサ素子4の複数個を配列させたコンデンサ素子群30と、このコンデンサ素子群の前記コンデンサ素子の一方の前記陽極導出線のそれぞれに接続される第1の陽極端子10Aと、前記コンデンサ素子群の前記コンデンサ素子の他方の前記陽極導出線のそれぞれに接続される第2の陽極端子10Bと、前記コンデンサ素子の陰極層に接続された陰極端子12A、12Bと、前記コンデンサ素子を被覆する外装樹脂層6とを備え、前記第1の陽極端子、前記第2の陽極端子及び前記陰極端子を複数の外部端子として構成し、上記目的を達成している。
【0025】
このような構成とすれば、コンデンサの陽極体が弁金属粉末の焼結体であり、この陽極体と陽極導出線との接触面積を大きく取ることができることから、低ESR化とともに低ESL化が得られる。
【0026】
【発明の実施の形態】
本発明の第1の実施形態に係る固体電解コンデンサを図1に示す実施の形態を参照して詳細に説明する。図1は、第1の実施形態に係る固体電解コンデンサについて、外装樹脂層を部分的に省略して示している。
【0027】
この実施の形態の固体電解コンデンサ2は、角柱状のコンデンサ素子4を備えており、その外装部分を外装樹脂層6で被覆したものである。このコンデンサ素子4の陽極側の複数面部から引き出されて外装樹脂層6から一部を露出させた複数の陽極導出線8の一方の端部に第1の陽極端子10A、その他方の端部に第2の陽極端子10Bが接続されている。この実施形態では、単一の線素材を用いてコンデンサ素子4の2面部のそれぞれから陽極導出線8が引き出されている。この陽極導出線8は、例えば、タンタル等の弁作用金属で形成されている。コンデンサ素子4の陰極側には単一の陰極端子板12が陽極導出線8と直交方向に接続され、各端部が外装樹脂層6から引き出され、第1及び第2の陰極端子12A、12Bが形成されている。陽極端子10A、10Bと陰極端子12A、12Bとが直交方向の各側面に導出された固体電解コンデンサ2は、これら陽極端子10A、10Bと陰極端子12A、12Bとを以て4端子構造を構成している。
【0028】
この固体電解コンデンサ2において、コンデンサ素子4の陽極体14は、例えば、図2に示すように、タンタル粉末等の弁金属粉末の焼結体であって、その内部を貫通させて両側端面に陽極導出線8が引き出されており、陽極体14の表面に誘電体酸化皮膜層16が形成され、その表面に固体電解質層18が形成され、この固体電解質層18の上にカーボン層、銀層よりなる陰極層20が形成されたものである。
【0029】
このコンデンサ素子4の形成方法は、この場合、弁作用金属粉末とバインダー樹脂を含有するシート状又は薄片状成形体に弁作用金属からなる陽極導出線8を挟んで重ね合わせ、加圧して接合体としての成形体を形成する。例えば、図3に示すように、成形型22にタンタル粉末等の弁金属粉末24を充填させて所定形状として例えば、角柱状に加圧成形し、その加圧成形の際、タンタルリード等の陽極導出線8を弁金属粉末24中に貫通させて埋設し、角柱状の成形体26を形成し、この成形体26を焼結して焼結体からなる陽極体14に変化させる。この陽極体14に陽極酸化処理により、弁金属からなる陽極体14の表面に誘電体酸化皮膜層16を形成し、その表面に導電性高分子層を形成して固体電解質層18とする。この固体電解質層18の上にカーボン層、銀層よりなる陰極層20を形成し、コンデンサ素子4が形成されている。
【0030】
このコンデンサ素子4の陽極導出線8のそれぞれには、陽極端子10A、10Bが接合され、陽極体14の表面に形成された陰極層20の上には導電性接着材28により、単一の陰極端子板12が接合され、陰極端子12A、12Bが形成されている。陰極端子12A、12Bを構成する陰極端子板12は、コンデンサ素子4の形状に沿って屈曲させ、この実施の形態では、コンデンサ素子4を跨ぐように取り付けられる。
【0031】
そして、このコンデンサ素子4には絶縁性合成樹脂からなる外装樹脂層6が被覆され、この外装樹脂層6で被覆されたコンデンサ素子4は、例えば、直方体状である。従って、陽極端子10A、10B及び陰極端子12A、12Bは、外装樹脂層6の被覆部分の4面部から導出されている。そして、例えば、図4に示すように、外装樹脂層6の側面及び底面に沿って陽極端子10A、10B及び陰極端子12A、12Bを折り曲げて、4端子型の表面実装型の固体電解コンデンサ2が得られている。
【0032】
本発明の第2の実施形態に係る固体電解コンデンサを図5に示す実施の形態を参照して詳細に説明する。図5は、第2の実施形態に係る固体電解コンデンサについて、コンデンサ素子4を示している。
【0033】
このコンデンサ素子4は、前記陽極体14として弁金属粉末を焼結した板状の2枚のシート状の陽極体14A、14Bを形成し、各陽極体14A、14Bの間に陽極導出線としてリード箔80を挟み込んで形成されている。この場合、陽極体14A、14Bは、弁作用金属粉末とバインダー樹脂と溶剤とを混合して得られる金属粉末分散液を基体上に塗布し、又は印刷して塗布物或いは印刷物とし、その基体より塗布層或いは印刷層を剥離して形成することができる。
【0034】
リード箔80を用いた場合、その厚さは製造する陽極素子10A、10Bの厚み、その強度を勘案して適宜選定でき、例えば、陽極体14の厚さの5〜50%、より好ましくは10〜35%の厚さとすればよい。また、そのリード箔80の幅は、陽極体14A、14Bの幅の35%以上、より好ましくは45%以上とすれば、リード箔80と陽極体14A、14Bとの接触面積が十分大きくなるため、等価直列抵抗(ESR)を下げることができ、良好な高周波特性を得ることができる。
【0035】
また、陽極体14A、14Bを弁作用金属粉末とバインダー樹脂とを含有するシート状或いは薄片状成形体とすれば、これらの間に弁作用金属からなるリード箔80の中間部分を挟んで重ね合わせ、加圧して接合し、それを焼結して陽極体14とすれば、リード箔80と各陽極体14A、14Bとの密着性が高く、製造が容易である。しかも、焼結して得られる陽極体14は、弁作用金属粉末焼結体中にリード箔80の中央部分が埋入されているので、焼結体である陽極体14A、14Bとリード箔80との接合強度が高く、リード箔80の抜出が生じない等、リード箔80と陽極体14A、14Bとの電気的接続状態が良好となり、電気特性の良い固体電解コンデンサ2が得られる。
【0036】
また、リード箔80を用いた場合には、棒状の引出線に比較し、外圧に対する安定性に優れ、特に、陽極体14からの引出部分に過剰な応力を与えることがなく、陽極体14の割れやクラックの発生を防ぐことができる。
【0037】
また、弁作用金属粉末からなるシート間にリード箔80を挟んで焼結することにより、陽極体14を形成すれば、焼結体である陽極体14や陽極体14の形成前のシートにリード線埋設用の切欠や溝を形成する必要がなく、焼結体である陽極体14の所定位置にリード箔80が正確に埋設した陽極体14に形成できるので、陽極体14等にリード線埋設用の切欠や溝を形成する工程が不要である。従って、切欠や溝を形成することに起因する陽極体14A、14Bに切れ等の損傷を生じることがない。また、極めて薄い均一なシート状で、より一層薄形の陽極体14A、14Bを製造できる。
【0038】
また、陽極体14A、14Bは電解液槽中に入れて所定の直流電圧を加え、化成処理を施し、酸化タンタル皮膜としての誘電体酸化皮膜層を形成させた後、その上に二酸化マンガン又は、機能性高分子の固体電解質層を形成させる。この後、カーボン、銀ペーストにより陰極層を形成し、コンデンサ素子4を形成する。この場合、リード箔80に誘電体酸化皮膜層、固体電解質層、陰極層が形成された場合には、例えばレーザーアブレーション等の手段を使って各皮膜を除去し、金属面を露出させればよい。そして、コンデンサ素子4は、例えば、所定の枚数を積層し、銀接着剤で相互を固定し、貫通した複数のリード箔80を両側で束ねてレーザー等で溶接し、外部端子である陽極端子(例えば、図1の陽極端子10A、10B)を接続し、外装樹脂層6(図1、2)を施して、貫通型タンタル固体電解コンデンサ2が得られる。
【0039】
このような固体電解コンデンサ2について、特徴事項を列挙すれば次の通りである。
【0040】
(1) 陽極体14を弁作用金属の多孔質焼結体で構成すれば、従来の電解コンデンサ製造プロセスでは高い生産性での製造が困難だった極めて薄い、例えば厚さ0.6mm以下の、特に厚さ0.4mm以下の高性能な固体電解コンデンサを実現できる。陽極体14の厚さを薄くし、また、リード箔80と陽極体14との接触状態を良くし、接触面積を大きくすることができ、等価直列抵抗(ESR)を下げることができ、高周波特性も良好になる。
【0041】
(2) リード箔80を挟んで陽極体14を構成したので、リード箔80とシート状の陽極体14との密着性が良好となるとともに、製造も容易となる。また、陽極体14を構成する基体から剥離した塗布面又は印刷面とは反対側の面を重ね合わせれば、リード箔との接触状態がさらに良くなり、等価直列抵抗を低下させることができる。
【0042】
(3) 陽極体14にリード箔80が埋入された構造であるため、両者の接合強度が高く、リード箔の抜出が生じないとともに、リード線と焼結体との電気的接続状態が良好となり、LC特性の良い固体電解コンデンサが得られる。
【0043】
(4) 外圧に対する安全性に優れ、特にリード箔80の引出部分に割れやクラックの発生を防止できる。また、リード箔80の埋設用の切欠や溝が不要であり、陽極体14の所定位置に正確にリード箔80を設置でき、リード箔80の設置用の切欠や溝を形成する必要がなく、切欠や溝に沿ったシートの切れをも抑制できる。極めて薄い均一なシート状の陽極体14の形成が可能であり、リード箔80の厚さ、幅を適宜選定することにより、等価直列抵抗及び漏れ電流を減少させることができる。これを数枚積層することでESRが枚数分の一に減少し、両端の貫通したリード箔を陽極、金属粉末焼結体部分に形成された陰極層部分を陰極とする貫通型固体電解コンデンサを実現でき、ESLを低減できる。
【0044】
次に、本発明の第3の実施形態に係る固体電解コンデンサ及びその製造方法を図6を参照して詳細に説明する。図6は、第3の実施形態に係る固体電解コンデンサを示している。
【0045】
複数のコンデンサ素子4を用いてマトリクス状に配列させ、この実施の形態では18個のコンデンサ素子4を6行、3列に配置してコンデンサ素子群30が構成されている。このコンデンサ素子群30において、各行のコンデンサ素子4を陽極導出線8により直列に接続し、3組ずつの6行の素子行とし、各端部のコンデンサ素子4の陽極導出線8を共通の陽極端子10A、10Bに接続する。即ち、この場合、3組ずつのコンデンサ素子4からなる素子行の陽極側が並列化されている。
【0046】
また、各列のコンデンサ素子4を以て素子列が構成され、列毎に陰極端子板12を共通に接続し、各陰極端子板12の端部に陰極端子12A、12Bを接続したものである。この場合、6組ずつの3列のコンデンサ素子4からなる素子列の陰極側が並列化されている。各陰極端子板12には例えば、一枚の金属板をプレス加工等により所定形状に加工したものを用いれば良い。
【0047】
そして、以上のように構成したコンデンサ素子群30は、例えば、図7の(A)及び(B)に示すように、外装樹脂層6で被覆すれば、複数のコンデンサ素子4を直並列化してなる固体電解コンデンサ2が構成でき、この固体電解コンデンサ2の4面部から陽極端子10A、10B及び陰極端子12A、12Bが導出されている。そして、外装樹脂層6の側面及び底面に沿って陽極端子10A、10B及び陰極端子12A、12Bを例えば、図4に示したように折り曲げて外部端子として構成すれば、例えば、図8の等価回路に示すように、複数のコンデンサ素子4をマトリクス状に配列させて直並列化した表面実装型の固体電解コンデンサ2が得られる。
【0048】
このような固体電解コンデンサ2によれば、複数のコンデンサ素子4を用いることができるとともに、その並列化接続が行われているので、静電容量の拡大とともにESR及びESLの低減化を図ることができる。
【0049】
また、この場合、静電容量の異なるコンデンサ素子4を組み合せてコンデンサ素子群30を構成すれば、所望の合成静電容量値を容易に調節、設定することができる。
【0050】
次に、本発明の第4の実施形態について、図9を参照して説明する。
【0051】
第3の実施形態では、コンデンサ素子4の幅より狭く陰極端子板12を形成したが、図9に示すように、コンデンサ素子4と同一幅に形成された2枚の陰極端子板121、122でコンデンサ素子4の上下面部を挟み込むように形成し、端部側のコンデンサ素子4にあっては、その側面部側で各陰極端子板121、122を当接させる構成とすれば、等価直列インダクタンスを低減できるとともに、コンデンサ素子群30を構成する各コンデンサ素子4の保持強度を高めることができる。
【0052】
なお、各実施形態では、単一の素材からなる陽極導出線を用いて2面部から2本の陽極導出線を引き出す場合について説明したが、2以上の素材を用いてコンデンサ素子の複数面部から3以上の陽極導出線を引き出すように構成してもよい。
【0053】
【発明の効果】
以上説明したように、本発明によれば、次の効果が得られる。
a 陽極体に設けられた陽極導出線をコンデンサ素子の陽極体の少なくとも2箇所から導出させたことにより、陽極体から外部端子が形成され、固体電解コンデンサを搭載した回路に対する電流経路を増加させることができ、ESRが低下し、高周波特性に優れた固体電解コンデンサを提供できる。また、同様に、陰極端子も固体電解コンデンサが搭載された回路に対する電流経路が増えるため、ESRが低下し、高周波特性に優れた固体電解コンデンサを実現できる。
b 陽極体を貫通させて設けられた陽極導出線をコンデンサ素子の複数面部から引き出したので、各陽極導出線に対応して陽極端子を形成することができるとともに、電流経路を増加させ、陽極端子の選択によって所望の容量形成やESRの低下に加え、高周波特性に優れた固体電解コンデンサを実現することができる。
c この固体電解コンデンサを従前の方法を用いることにより、容易に製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る固体電解コンデンサの一部を除いて示した斜視図である。
【図2】第1の実施形態に係る固体電解コンデンサの一部を除いて示した側面図である。
【図3】陽極体の形成方法を示す図である。
【図4】固体電解コンデンサの外観形態を示す側面図である。
【図5】本発明の第2の実施形態に係る固体電解コンデンサにおけるコンデンサ素子等を示す斜視図である。
【図6】本発明の第3の実施形態に係る固体電解コンデンサにおけるコンデンサ素子及び端子構造を示す斜視図である。
【図7】第3の実施形態に係る固体電解コンデンサの外観構成を示し、(A)はその側面図、(B)はその平面図である。
【図8】第3の実施形態に係る固体電解コンデンサの等価回路を示す回路図である。
【図9】本発明の第4の実施形態に係る固体電解コンデンサの一部を示す斜視図である。
【符号の説明】
2 固体電解コンデンサ
4 コンデンサ素子
6 外装樹脂層
8 陽極導出線
10A 第1の陽極端子
10B 第2の陽極端子
12A、12B 陰極端子
14 陽極体
16 誘電体酸化皮膜層
18 固体電解質層
20 陰極層
30 コンデンサ素子群
Claims (3)
- 弁金属粉末を焼結してなる陽極体、この陽極体の表面に誘電体酸化皮膜層、固体電解質層及び陰極層が積層され、前記陽極体の端面に導出させた陽極導出線を備えるコンデンサ素子と、
前記陽極体の前記陽極導出線に接続された陽極端子と、
前記陰極層に接続された陰極端子と、
前記コンデンサ素子を被覆する外装樹脂層と、
を備え、前記陽極端子及び前記陰極端子を複数の外部端子として構成したことを特徴とする固体電解コンデンサ。 - 弁金属粉末を焼結してなる陽極体を備えるとともに、誘電体酸化皮膜層、固体電解質層及び陰極層が前記陽極体の表面に積層されたコンデンサ素子と、
このコンデンサ素子の前記陽極体を貫通させて設けられ、前記コンデンサ素子の複数面部から引き出された複数の陽極導出線と、
前記陽極体の前記各陽極導出線に接続された陽極端子と、
前記陰極層に接続された陰極端子と、
前記コンデンサ素子を被覆する外装樹脂層と、
を備え、前記陽極端子及び前記陰極端子を複数の外部端子として構成したことを特徴とする固体電解コンデンサ。 - 弁金属粉末を焼結してなる陽極体を貫通し、該陽極体の対向端面から導出された陽極導出線を有し、前記陽極体の表面に誘電体酸化皮膜層、固体電解質層及び陰極層が積層されたコンデンサ素子の複数個を配列させたコンデンサ素子群と、
このコンデンサ素子群の前記コンデンサ素子の一方の前記陽極導出線のそれぞれに接続される第1の陽極端子と、
前記コンデンサ素子群の前記コンデンサ素子の他方の前記陽極導出線のそれぞれに接続される第2の陽極端子と、
前記コンデンサ素子の陰極層に接続された陰極端子と、
前記コンデンサ素子を被覆する外装樹脂層と、
を備え、前記第1の陽極端子、前記第2の陽極端子及び前記陰極端子を複数の外部端子として構成したことを特徴とする固体電解コンデンサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003071747A JP2004281749A (ja) | 2003-03-17 | 2003-03-17 | 固体電解コンデンサ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003071747A JP2004281749A (ja) | 2003-03-17 | 2003-03-17 | 固体電解コンデンサ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004281749A true JP2004281749A (ja) | 2004-10-07 |
Family
ID=33288107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003071747A Pending JP2004281749A (ja) | 2003-03-17 | 2003-03-17 | 固体電解コンデンサ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004281749A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2412242A (en) * | 2004-03-02 | 2005-09-21 | Vishay Sprague Inc | A surface mountable capacitor |
JP2008118137A (ja) * | 2006-10-31 | 2008-05-22 | Avx Corp | 薄型固体電解コンデンサアセンブリ |
US8125769B2 (en) * | 2010-07-22 | 2012-02-28 | Avx Corporation | Solid electrolytic capacitor assembly with multiple cathode terminations |
WO2023053811A1 (ja) * | 2021-10-01 | 2023-04-06 | ルビコン株式会社 | コンデンサ装置 |
-
2003
- 2003-03-17 JP JP2003071747A patent/JP2004281749A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2412242A (en) * | 2004-03-02 | 2005-09-21 | Vishay Sprague Inc | A surface mountable capacitor |
GB2412242B (en) * | 2004-03-02 | 2008-05-21 | Vishay Sprague Inc | Surface Mount MELF Capacitor |
JP2008118137A (ja) * | 2006-10-31 | 2008-05-22 | Avx Corp | 薄型固体電解コンデンサアセンブリ |
US8125769B2 (en) * | 2010-07-22 | 2012-02-28 | Avx Corporation | Solid electrolytic capacitor assembly with multiple cathode terminations |
CN102403128A (zh) * | 2010-07-22 | 2012-04-04 | Avx公司 | 带多个阴极端子的固体电解电容器组件 |
WO2023053811A1 (ja) * | 2021-10-01 | 2023-04-06 | ルビコン株式会社 | コンデンサ装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100356194B1 (ko) | 고체 전해 콘덴서 및 그 제조방법 | |
US6400556B1 (en) | Solid electrolytic capacitor and method of fabricating the same | |
JP2003133183A (ja) | 固体電解コンデンサおよびその製造方法 | |
JPH04123416A (ja) | チップ型固体電解コンデンサ | |
JP2001185460A (ja) | 固体電解コンデンサおよびその製造方法並びに回路基板 | |
JP2009117590A (ja) | 固体電解コンデンサ、固体電解コンデンサ素子およびその製造方法 | |
CN103430261A (zh) | 固体电解电容器的制造方法以及固体电解电容器 | |
US20120281338A1 (en) | Aluminum electrolytic capacitor and method of manfacturing the same | |
JPH10144573A (ja) | 固体電解コンデンサおよびその製造方法 | |
TWI284335B (en) | Anode member for solid electrolytic condenser and solid electrolytic condenser using the anode member | |
JP2003332173A (ja) | コンデンサ素子、固体電解コンデンサおよびコンデンサ内蔵基板 | |
JP2004281749A (ja) | 固体電解コンデンサ | |
JP2007180328A (ja) | 積層型固体電解コンデンサおよびコンデンサモジュール | |
JP2004281750A (ja) | 固体電解コンデンサアレイ | |
JP2004158577A (ja) | 積層型大面積アルミ固体電解コンデンサの製造方法及び該方法によるコンデンサ | |
JP4671347B2 (ja) | 固体電解コンデンサ | |
US11211204B2 (en) | Solid electrolytic capacitor and method for manufacturing same | |
JP2004088073A (ja) | 固体電解コンデンサ | |
JP2004241435A (ja) | 固体電解コンデンサ用電極とその製造方法および固体電解コンデンサ | |
US8518127B2 (en) | Solid capacitor and manufacturing method thereof | |
JP4737773B2 (ja) | 表面実装薄型コンデンサ | |
JP2004281716A (ja) | チップ状固体電解コンデンサ | |
JP2004281515A (ja) | 積層型固体電解コンデンサ | |
CN114639548B (zh) | 一种mlpc基板式电镀端子结构电容器的制造方法 | |
JP5411047B2 (ja) | 積層固体電解コンデンサ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090309 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090728 |