JP2004281130A - 燃料電池発電システム - Google Patents

燃料電池発電システム Download PDF

Info

Publication number
JP2004281130A
JP2004281130A JP2003068527A JP2003068527A JP2004281130A JP 2004281130 A JP2004281130 A JP 2004281130A JP 2003068527 A JP2003068527 A JP 2003068527A JP 2003068527 A JP2003068527 A JP 2003068527A JP 2004281130 A JP2004281130 A JP 2004281130A
Authority
JP
Japan
Prior art keywords
heat
supply pump
pure water
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003068527A
Other languages
English (en)
Inventor
Hiroyuki Yoshida
宏行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003068527A priority Critical patent/JP2004281130A/ja
Publication of JP2004281130A publication Critical patent/JP2004281130A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】設置場所の温度が氷点下以下で燃料電池システムが作動される場合にあって、純水が供給ポンプ内で凍結するのを防止できる燃料電池発電システムを提供する。
【解決手段】純水2を貯える純水タンク3と、純水タンク3内の純水2を供給先に導く純水配管4と、純水配管4の途中に設けられた供給ポンプ11とを備えた燃料電池発電システム1であって、冷却水通路7の外壁5に接触された受熱部16と、供給ポンプ11を加熱するヒートパイプ15を設け、このヒートポンプ15は、この受熱部16より高い位置に配置され、供給ポンプ11の外周に接触された放熱部17と、受熱部16と放熱部17との間を連結し、内部に液体冷媒20が封入された冷媒通路18を有する連結部19とから構成された。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電システムに関し、特に、燃料及び酸化剤の加湿に使用する純水の純水供給系にあって純水の凍結を防止する技術に係わる。
【0002】
【従来の技術】
従来例の燃料電池発電システムとしては、図16に示す特開2002−298880号公報に開示されたものがある。
【0003】
この燃料電池発電システム100は、図16に示すように、燃料と空気から発電を行う燃料電池スタック101と、燃料電池スタック101に供給される燃料と空気の加湿を行う加湿器102と、燃料電池スタック101を冷却するための冷却水を貯める水タンク103と、加湿器102に供給される純水を貯める純水タンク104とを備えている。
【0004】
純水タンク104と加湿器102との間には純水配管105a,105bが接続されており、純水タンク104内の純水は純水配管105aを通って加湿器102に供給され、且つ、加湿器102から排出された純水は純水配管105bを通って純水タンクに戻されるようになっている。
【0005】
水タンク103と燃料電池スタック101との間には冷却水配管106a,106bが接続され、水タンク103内の冷却水は冷却水配管106aを通って燃料電池スタック101に供給され、且つ、燃料電池スタック101から排出される冷却水は冷却水配管106bを通って水タンク103に戻るようになっている。冷却水配管106bは、純水配管105a,105bに対してなるべく同じ経路を通るように配置され、共通経路の区間では純水配管105a,105bに接するように配置されている。
【0006】
水タンク103より燃料電池スタック101に供給された冷却水は、燃料電池スタック101内を通る際に熱を吸収するために冷却水自体が加熱される。この加熱された冷却水が冷却水配管106bを通ることによって純水配管105a,105bを加熱する。
【0007】
つまり、燃料電池発電システム100が氷点下以下の場所に設置される場合(例えば自動車用の燃料電池発電システムとして利用した場合)にあって、純水配管105a,105b内で純水が凍結するのを防止できる。
【0008】
【特許文献1】
特開2002−298880号公報
【0009】
【発明が解決しようとする課題】
しかしながら、前記従来の燃料電池発電システム100では、純水配管105a,105b内の純水の凍結を防止できるが、供給ポンプ内での純水の凍結を防止できない。つまり、純水配管105a,105bの途中には供給ポンプが設けられ、供給ポンプは純水配管105a,105bに較べて遙かに熱容量が大きい。従って、燃料電池発電システム100が氷点下以下の場所に設置された場合には、純水が凍結することなく供給ポンプ内に導かれても供給ポンプ内を通過する際に凍結し、システムの起動が不可能になる恐れがあった。
【0010】
そこで、本発明は、前記した課題を解決すべくなされたものであり、設置場所の温度が氷点下以下で燃料電池発電システムが作動される場合にあって、純水が供給ポンプ内で凍結するのを防止できる燃料電池発電システムを提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1の発明は、純水を貯える純水タンクと、この純水タンク内の純水を供給先に導く純水配管と、この純水配管の途中に設けられた供給ポンプとを備えた燃料電池発電システムであって、前記供給ポンプを暖めるポンプ加熱手段を設けたことを特徴とする燃料電池発電システムである。
【0012】
請求項2の発明は、請求項1記載の燃料電池発電システムであって、前記ポンプ加熱手段は、前記純水タンクの冷却水通路と前記供給ポンプとを連結し、前記冷却水通路側から熱を受けて前記供給ポンプ側に放熱する熱輸送手段であることを特徴とする燃料電池発電システムである。
【0013】
請求項3の発明は、請求項2記載の燃料電池発電システムであって、前記熱輸送手段は、前記冷却水通路の壁部に接触された受熱部と、この受熱部より高い位置に配置され、前記供給ポンプに接触された放熱部と、受熱部と放熱部との間を連結し、内部に冷媒通路が設けられた連結部と、前記冷媒通路内に貯められた液体冷媒とを備えたヒートパイプであることを特徴とする燃料電池発電システムである。
【0014】
請求項4の発明は、請求項1記載の燃料電池発電システムであって、前記ポンプ加熱手段は、前記供給ポンプの近傍を通る冷却水配管と前記供給ポンプとを連結し、前記冷却水配管側から熱を受けて前記供給ポンプ側に放熱する熱輸送手段であることを特徴とする燃料電池発電システムである。
【0015】
請求項5の発明は、請求項4記載の燃料電池発電システムであって、前記熱輸送手段は、前記冷却水配管に接触された受熱部と、この受熱部より高い位置に配置され、前記供給ポンプに接触された放熱部と、受熱部と放熱部との間を連結し、内部に冷媒通路が設けられた連結部と、前記冷媒通路内に貯められた液体冷媒とを備えたヒートパイプであることを特徴とする燃料電池発電システムである。
【0016】
請求項6の発明は、請求項1記載の燃料電池発電システムであって、前記ポンプ加熱手段は、前記供給ポンプ内に配置された流体通路を有し、この流体通路に暖められた流体を流通させることを特徴とする燃料電池発電システムである。
【0017】
請求項7の発明は、請求項1記載の燃料電池発電システムであって、前記ポンプ加熱手段は、前記供給ポンプの外周に配置された流体配管を有し、この流体配管に暖められた流体を流通させることを特徴とする燃料電池発電システムである。
【0018】
【発明の効果】
請求項1の発明によれば、設置場所の温度が氷点下以下で燃料電池発電システムが起動される場合にあって、ポンプ加熱手段で供給ポンプが暖められるため、純水が供給ポンプ内で凍結するのを防止できる。
【0019】
請求項2の発明によれば、請求項1の発明の効果に加え、設置場所の温度が氷点下以下で燃料電池発電システムが起動される場合にあっては、暖められた冷却水が純水タンク内の冷却水通路を流通して純水タンク内の純水を解凍するよう温度管理され、暖められた冷却水の熱が熱輸送手段によって供給ポンプに伝達され、供給ポンプが加熱される。従って、供給ポンプを加熱する専用の発熱手段を付設する必要がない。
【0020】
請求項3の発明によれば、請求項2の発明の効果に加え、ヒートポンプは熱輸送に伴う損失が皆無であるため、効率良く供給ポンプを加熱できる。
【0021】
請求項4の発明によれば、請求項1の発明の効果に加え、設置場所の温度が氷点下以下で燃料電池発電システムが起動されると、伝熱ヒータ、燃焼器などで暖められた冷却水の熱が熱輸送手段によって供給ポンプに伝達され、供給ポンプが加熱される。従って、供給ポンプを加熱する専用の発熱手段を付設する必要がない。
【0022】
請求項5の発明によれば、請求項4の発明の効果に加え、ヒートポンプは熱輸送に伴う損失が皆無であるため、効率良く供給ポンプを加熱できる。
【0023】
請求項6の発明によれば、請求項1の発明の効果に加え、0℃より高温に暖められた流体を流通通路に流すことにより直に供給ポンプを加熱できる。
【0024】
請求項7の発明によれば、請求項1の発明の効果に加え、0℃より高温に暖められた流体を流通配管に流すことにより直に供給ポンプを加熱できる。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0026】
図1及び図2は本発明の第1実施形態を示し、図1はヒートパイプ15を付設した純水タンク3と供給ポンプ11の斜視図、図2は図1のA−A線断面図である。
【0027】
燃料電池発電システム1は、燃料と空気から発電を行う燃料電池スタック(図示せず)と、純水2を貯える純水タンク3と、この純水タンク3内の純水2を供給先(例えば加湿器(図示せず))に導く純水配管4とを備えている。
【0028】
図1及び図2に示すように、純水タンク3は、外壁5と内壁6の2重構造を有し、内壁6内のスペースに純水2が貯えられている。外壁5と内壁6との間は冷却水通路7として形成され、この冷却水通路7の両端には循環パイプ8が接続されている。循環パイプ8の途中には電気ヒータや燃焼器等の加熱手段9と循環ポンプ10が設けられている。循環ポンプ10によって冷却水を循環し、冷却水通路7を通る過程で純水2との間で熱交換を行うことによって純水2が所定温度範囲内に管理される。具体的には、燃料電池イオン交換膜の保護のために、冷却水は上限温度が80℃程度に管理される、又、純水タンク3の設置場所の温度が氷点下以下になった場合には、加熱手段9によって循環される冷却水の温度を上昇させて純水2が凍結しないように管理される。
【0029】
純水配管4は、その一端が純水タンク3の内壁6内のスペースに配置されている。純水タンク3より外部に導かれた純水配管4の箇所には供給ポンプ11が設けられている。
【0030】
供給ポンプ11は、純水タンク3の内の純水2を吸引し、吸引した純水を圧送するポンプ本体部12と、このポンプ本体部12を回転駆動させるモータ部13とを有する。そして、供給ポンプ11はポンプ加熱手段である熱輸送手段の一種のヒートパイプ15によって加熱されるようになっている。
【0031】
ヒートパイプ15は、冷却水通路7の壁部である外壁5に接触された受熱部16と、この受熱部16より高い位置に配置され、供給ポンプ11のポンプ本体部12の外周に接触された放熱部17と、受熱部16と放熱部17とを連結し、内部に冷媒通路18が形成された連結部19と、冷媒通路18内に貯められた液体冷媒(例えば純水、フロン系冷媒)20とから構成されている。ヒートパイプ15は、熱伝導性が非常に良い材料(銅製、アルミ製など)にて形成されている。受熱部16と純水タンク3の外壁5との間、及び、放熱部17と供給ポンプ11の外周との間は、ろう付けなどによって固定されている。
【0032】
上記構成において、設置場所の温度が氷点下以下(例えば−30℃)で燃料電池発電システム1が起動されると、加熱手段9が作動して冷却水が0℃以上の高温に暖められる。この暖められた冷却水が純水タンク3内の冷却水通路7を通過する際に低温の純水2と熱交換し、純水タンク3内の純水2が解凍される。純水2は0℃〜10℃程度に暖められる。
【0033】
又、冷却水の熱で冷却水通路7の外壁5も暖められるため、この熱がヒートパイプ15の受熱部16に伝達される。すると、ヒートパイプ内15の液体冷媒20が加熱されて蒸気に変化し、蒸気が冷媒通路18を上昇する。上昇した蒸気は冷媒通路18の上方で放熱部17に熱を受け渡して液体に変わる。液体はそのまま滴下し、冷媒通路18の下方に戻され、以上の熱交換行程を繰り返す。この熱交換行程によって放熱部17が加熱され、放熱部17の熱がポンプ本体部12に伝達される。ヒートポンプ15の加熱によって供給ポンプ11が加熱され、供給ポンプ11が適正な温度(0℃より高い温度)に暖められる。仮に、ポンプ本体部12内で純水2が凍結されている場合にも解凍され、純水2が適正な温度まで上昇する。
【0034】
供給ポンプ11内などが適正な温度になると、供給ポンプ11が起動され、純水タンク3内の純水2が純水配管4を通って供給ポンプ11内に吸引される。供給ポンプ11内は適正な温度(0℃より高い温度)に暖められているため、吸引された純水2が凍結することがない。そして、吸引された純水2は供給先に純水配管4を通って圧送される。
【0035】
以上、設置場所の温度が氷点下以下で燃料電池発電システム1が起動される場合にあって、ポンプ加熱手段であるヒートポンプ15で供給ポンプ11が暖められるため、純水2が供給ポンプ11内で凍結するのを防止できる。
【0036】
この第1実施形態では、純水タンク3内を通過する冷却水は凍結しないように温度管理されており、暖められた冷却水の熱がヒートパイプ15によって供給ポンプ11に伝達され、供給ポンプ11が加熱される。従って、供給ポンプ11を加熱する専用の発熱手段を付設する必要がない。
【0037】
この第1実施形態では、熱輸送手段がヒートパイプ15にて構成されているため、熱輸送に伴う損失が皆無であり、効率良く供給ポンプ11を加熱できる。熱輸送手段としては、ヒートパイプ15以外のものであっても良く、純水タンク3の冷却水通路7と供給ポンプ11とを連結し、冷却水通路側から熱を受けて供給ポンプ側に放熱するものであれば良い。
【0038】
この第1実施形態では、冷却水の温度上限が80℃程度に設定され、結果的にヒートパイプ15の上限温度も80℃以下に温度管理されるため、加熱によってヒートパイプ15が破損するのを防止できる。
【0039】
尚、この第1実施形態では、冷却水通路7は、純水タンク3の内部に設けられているが、純水タンクの外周に沿って設けても良い。
【0040】
図3は上記ヒートパイプ15の第1変形例を示し、第1変形例のヒートパイプ15と供給ポンプ11の分解斜視図である。変形例のヒートパイプ15は、その放熱部17a,17bが供給ポンプ11のポンプ本体部12とモータ部13の双方に接触されている。このようにすれば、第1実施形態の場合と比較して供給ポンプ11をより迅速に加熱できる。尚、ヒートパイプ15の放熱部17を供給ポンプ11のモータ部13にのみ接触させても良い。つまり、ヒートパイプ15の放熱部17は、ポンプ本体部12とモータ部13の少なくとも一方に接触させれれば良い。但し、いずれか一方に接触させる場合には、ポンプ本体部12に接触させた方が内部の純水2が暖たまり易く、好ましい。
【0041】
図4は上記ヒートパイプ15の第2変形例の一部断面図である。図4に示すように、この第2変形例のヒートパイプ15は、放熱部17の内部にまで冷媒通路18が延設されている。蒸気から液体に変化した冷媒によって放熱部17の全体が内部から加熱されるため、迅速に供給ポンプ11を加熱できる。
【0042】
図5は上記ヒートパイプ15の第3変形例の一部断面図である。図5に示すように、この第3変形例のヒートパイプ15は、受熱部16の内部にまで冷媒通路18が延設されている。冷却水の熱を受熱部16に伝達されると、その熱によって迅速に液体冷媒20が蒸気に変化するため、結果的に供給ポンプ11の加熱を促進できる。
【0043】
尚、ヒートパイプ15は、受熱部16と放熱部17の双方の内部にまで冷媒通路18を延設しても良い。このように構成すれば、供給ポンプ11の加熱を一層促進できる。又、受熱部16や放熱部17に配置された冷媒通路18を純水タンク3の外壁5や供給ポンプ11の外周にまで開口させて液体冷媒20が外壁5や外周に直接触れるような構造としても良い。
【0044】
図6は本発明の第2実施形態を示し、ヒートパイプ15を付設した純水タンク3と供給ポンプ11の断面図である。
【0045】
図6に示すように、前記第1実施形態と比較して第2実施形態では、純水タンク3の内部で、且つ、純水2が貯えられた内壁6内のスペースに供給ポンプ11が内蔵されている点が異なる。ポンプ加熱手段である熱輸送手段がヒートパイプ15によって構成され、ヒートパイプ15の受熱部16は純水タンク3の冷却水通路7の壁部である内壁6に接触されている。ヒートパイプ15の構成を含め、その以外の他の構成は前記第1実施形態と同様であり、同一構成箇所には同一符号を付して明確化を図る。
【0046】
この第2実施形態においても、設置場所の温度が氷点下以下で燃料電池発電システム1が起動される場合にあって、前記第1実施形態と同様に、ポンプ加熱手段であるヒートパイプ15で供給ポンプ11が暖められるため、純水2が供給ポンプ11内で凍結するのを防止できる。
【0047】
この第2実施形態では、供給ポンプ11は、純水タンク3内で、且つ、凍結しないように温度管理されるスペースに内蔵されるため、暖められた純水2の熱も供給ポンプ11が受け、供給ポンプ11を迅速に暖めることができるという利点がある。
【0048】
図7及び図8は本発明の第3実施形態を示し、図7はヒートパイプ15を付設した冷却水配管21と供給ポンプ11の斜視図、図8は図7のB−B線断面図である。
【0049】
図7に示すように、燃料電池発電システム1は、純水2を貯える純水タンク3と、この純水タンク3内の純水2を供給先(例えば加湿器(図示せず))に導く純水配管4と、この純水配管4の途中に設けられた供給ポンプ11とを備え、この供給ポンプ11の近傍に冷却水配管21が配置されている。冷却水配管21内を流通する冷却水は、燃料電池発電システム1が起動されると、電熱ヒータ、燃焼器などで暖められることができるように構成されている。そして、冷却水配管21と供給ポンプ11とは、ポンプ加熱手段である熱輸送手段の一種のヒートパイプ15を介して連結されている。
【0050】
ヒートパイプ15は、図7及び図8に示すように、冷却水配管21の外面に接触された受熱部16と、この受熱部16より高い位置に配置され、供給ポンプ11のポンプ本体部12の外周に接触された放熱部17と、受熱部16と放熱部17とを連結し、内部に冷媒通路18が形成された連結部19と、冷媒通路18内に貯められた液体冷媒20とから構成されている。ヒートパイプ15は、熱伝導性が非常に良い材料(銅製、アルミ製など)にて形成されている。受熱部16と冷却水配管21の外面との間、及び、放熱部17と供給ポンプ11の外周との間は、ろう付けなどによって固定されている。
【0051】
この第3実施形態では、設置場所の温度が氷点下以下で燃料電池発電システム1が起動されると、電熱ヒータ、燃焼器などで暖められた冷却水が冷却水配管21内を流通する。この暖められた冷却水の熱がヒートパイプ15の上述した熱交換メカニズムによって供給ポンプ11に伝達され、供給ポンプ11が加熱される。従って、設置場所の温度が氷点下以下で燃料電池発電システム1が起動される場合にあって、純水2が供給ポンプ11内で凍結するのを防止できる。又、供給ポンプ11を加熱する専用の発熱手段を付設する必要がない。
【0052】
図9は上記ヒートパイプ15の変形例の一部断面図である。図9に示すように、この変形例のヒートパイプ15は、図5と同様の変形例であり、受熱部16の内部にまで冷媒通路18が延設されている。冷却水の熱が受熱部16に伝達されると、その熱によって迅速に液体冷媒20が蒸気に変化するため、結果的に供給ポンプ11の加熱を促進できる。又、ヒートパイプ15の他の変形例としては、図6と同様の変形例が考えられる。そして、上述したように、ヒートパイプ11は、受熱部16と放熱部17の双方の内部にまで冷媒通路20を延設したものとしても良く、又、放熱部や受熱部に配置された冷媒通路を冷却水配管の外壁面や供給ポンプの外壁面ににまで開口させて液体冷媒が外壁面に直接触れるような構造としても良い。
【0053】
図10〜図12は本発明の第4実施形態を示し、図10は供給ポンプ11の斜視図、図11は図10のC−C線(ポンプ本体部側)の断面図、図12は図10のD−D線(モータ部側)の断面図である。
【0054】
図10〜図12に示すように、燃料電池発電システムの供給ポンプ11は、純水を吸引し、吸引した純水を圧送するポンプ本体部12と、このポンプ本体部12を回転駆動させるモータ部13とを有する。そして、供給ポンプ11には、ポンプ加熱手段22が付設されている。
【0055】
ポンプ加熱手段22は、ポンプ本体部12とモータ部13の外周壁23,24を2層構造とすることによって形成された流体通路25a,25bをそれぞれ有し、このポンプ本体部12側の流体通路25aとモータ部13側の流体通路25bは連結パイプ26によって連通されている。ポンプ本体部12側の流体通路25aには供給側配管27が、モータ部13側の流体通路25bには排出側配管28がそれぞれ接続されている。供給側配管27からは、電熱ヒータ、燃焼器などで0℃より高い温度に暖められた流体(冷却水、空気など)を供給できるように構成されている。
【0056】
この第4実施形態では、設置場所の温度が氷点下以下で燃料電池発電システムが起動されると、供給ポンプ11の流体通路25a,25bを電熱ヒータ、燃焼器などで0℃より高い温度に暖められた流体(冷却水、空気など)が流通し、この暖められた流体の熱で直に供給ポンプ11が加熱される。従って、設置場所の温度が氷点下以下で燃料電池システムが起動される場合にあって、純水が供給ポンプ11内で凍結するのを防止できる。
【0057】
第4実施形態では、供給ポンプ11の外周部に流体通路25a,25bを設けたが、スペースが確保できれば供給ポンプ11の内部に流体通路を設けても良いことはもちろんである。
【0058】
第4実施形態では、供給ポンプ11のポンプ本体部12とモータ部13との双方に流体通路25a,25bを形成したが、いずれか一方にのみ流体通路25a(又は25b)を設けても良い。但し、第4実施形態のように、ポンプ本体部12とモータ部13の双方に流体通路25a,25bを設けた方が迅速に、且つ、確実に供給ポンプ11の温度を上昇させることができ、好ましい。
【0059】
図13及び図14は本発明の第5実施形態を示し、図13は流体配管29を付設した供給ポンプ11の斜視図、図14は流体配管29の巻付け状態を示す供給ポンプ11の外周側の拡大断面図である。
【0060】
図13に示すように、燃料電池発電システムの供給ポンプ11は、純水を吸引し、吸引した純水を圧送するポンプ本体部12と、このポンプ本体部12を回転駆動させるモータ部(図示せず)とを有する。そして、供給ポンプ11には、ポンプ加熱手段22が付設されている。
【0061】
ポンプ加熱手段22は、図13及び図14に示すように、ポンプ本体部12とモータ部(図示せず)の全外周に亘って隙間なく巻装された流体配管29を有する。この流体配管29は、断面円形状の管であり、供給ポンプ11の外周壁11aに樹脂やシリコンなどの伝導性部材30を充填して固定されている。流体配管29には、電熱ヒータ、燃焼器などで0℃より高い温度に暖められた流体(冷却水、空気など)を供給できるように構成されている。
【0062】
この第5実施形態では、設置場所の温度が氷点下以下で燃料電池発電システムが起動されると、供給ポンプ11の外周の流体配管29内を電熱ヒータ、燃焼器などで0℃より高い温度に暖められた流体(冷却水、空気など)が流通し、この暖められた流体の熱で直に供給ポンプ11が加熱される。従って、設置場所の温度が氷点下以下で燃料電池発電システムが起動される場合にあって、純水が供給ポンプ11内で凍結するのを防止できる。
【0063】
第5実施形態では、供給ポンプ11のポンプ本体部12とモータ部(図示せず)との双方に流体配管29を巻装したが、いずれか一方にのみ流体配管29を巻装しても良い。但し、第5実施形態の場合と同様に、ポンプ本体部12とモータ部(図示せず)の双方に流体配管29を巻装した方が迅速に、且つ、確実に供給ポンプ11の温度を上昇させることができ、好ましい。
【0064】
この第5実施形態と前記第4実施形態とを比較するに、第5実施形態は供給ポンプ11の外周に単に流体配管29を巻き付ければ良いため、実現が容易であると共に、既存の供給ポンプに適用できるという利点がある。
【0065】
図15は上記流体配管29の変形例を示す供給ポンプ11の外周側の拡大断面図である。この変形例の流体配管29は、断面が偏平円形状を有している点のみが異なり、この流体配管29でも前記と同様の作用・効果が得られる。尚、流体配管29の断面形状を種々考えられる。
【0066】
尚、上記各実施形態では、ポンプ加熱手段は、ヒートパイプ15等の種々のものを説明したが、供給ポンプ11を加熱できる手段であれば良く、上述した手段に限定されるものではない。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示し、ヒートパイプを付設した純水タンクと供給ポンプの斜視図である。
【図2】本発明の第1実施形態を示し、図1のA−A線断面図である。
【図3】本発明の第1実施形態の第1変形例のヒートパイプを示すヒートパイプと供給ポンプの分解斜視図である。
【図4】本発明の第1実施形態の第2変形例のヒートパイプを示す一部断面図である。
【図5】本発明の第1実施形態の第3変形例のヒートパイプを示す一部断面図である。
【図6】本発明の第2実施形態を示し、ポンプ加熱手段を付設した純水タンクと供給ポンプの断面図である。
【図7】本発明の第3実施形態を示し、ポンプ加熱手段を付設した冷却水配管と供給ポンプの斜視図である。
【図8】本発明の第3実施形態を示し、図7のB−B線断面図である。
【図9】本発明の第3実施形態のヒートパイプの変形例を示す一部断面図である。
【図10】本発明の第4実施形態を示し、供給ポンプの斜視図である。
【図11】本発明の第4実施形態を示し、図10のC−C線(ポンプ本体部側)の断面図である。
【図12】本発明の第4実施形態を示し、図10のD−D線(モータ部側)の断面図である。
【図13】本発明の第5実施形態を示し、流体配管を付設した供給ポンプの斜視図である。
【図14】本発明の第5実施形態を示し、流体配管の巻付け状態を示す供給ポンプ外周側の拡大断面図である。
【図15】本発明の第5実施形態の流体配管の変形例を示し、流体の巻付け状態を示す供給ポンプ外周側の拡大断面図である。
【図16】従来例の燃料電池発電システムの構成図である。
【符号の説明】
1 燃料電池発電システム
2 純水
3 純水タンク
4 純水配管
5 外壁(冷却水通路の壁部)
6 内壁(冷却水通路の壁部)
7 冷却水通路
11 供給ポンプ
15 ヒートパイプ(ポンプ加熱手段,熱輸送手段)
16 受熱部
17 放熱部
18 冷媒通路
19 連結部
20 液体冷媒
21 冷却水配管
22 ポンプ加熱手段
25a,25b 流体通路
29 流体配管
31 電気ヒータ(ポンプ加熱手段)

Claims (7)

  1. 純水(2)を貯える純水タンク(3)と、この純水タンク(3)内の純水(2)を供給先に導く純水配管(4)と、この純水配管(4)の途中に設けられた供給ポンプ(11)とを備えた燃料電池発電システム(1)であって、
    前記供給ポンプ(11)を暖めるポンプ加熱手段(15),(22)を設けたことを特徴とする燃料電池発電システム(1)。
  2. 請求項1記載の燃料電池発電システムであって、
    前記ポンプ加熱手段(15)は、前記純水タンク(3)の冷却水通路(7)と前記供給ポンプ(11)とを連結し、前記冷却水通路(7)側から熱を受けて前記供給ポンプ(11)側に放熱する熱輸送手段(15)であることを特徴とする燃料電池発電システム(1)。
  3. 請求項2記載の燃料電池発電システム(1)であって、
    前記熱輸送手段(15)は、前記冷却水通路(7)の壁部(5),(6)に接触された受熱部(16)と、この受熱部(16)より高い位置に配置され、前記供給ポンプ(11)に接触された放熱部(17)と、受熱部(16)と放熱部(17)との間を連結し、内部に冷媒通路(18)が設けられた連結部(19)と、前記冷媒通路(18)内に貯められた液体冷媒(20)とを備えたヒートパイプ(15)であることを特徴とする燃料電池発電システム(1)。
  4. 請求項1記載の燃料電池発電システム(1)であって、
    前記ポンプ加熱手段(15)は、前記供給ポンプ(11)の近傍を通る冷却水配管(21)と前記供給ポンプ(11)とを連結し、前記冷却水配管(21)側から熱を受けて前記供給ポンプ(11)側に放熱する熱輸送手段(15)であることを特徴とする燃料電池発電システム(1)。
  5. 請求項4記載の燃料電池発電システム(1)であって、
    前記熱輸送手段(15)は、前記冷却水配管(21)に接触された受熱部(16)と、この受熱部(16)より高い位置に配置され、前記供給ポンプ(11)に接触された放熱部(17)と、受熱部(16)と放熱部(17)との間を連結し、内部に冷媒通路(18)が設けられた連結部(19)と、前記冷媒通路(18)内に貯められた液体冷媒(20)とを備えたヒートパイプ(15)であることを特徴とする燃料電池発電システム(1)。
  6. 請求項1記載の燃料電池発電システム(1)であって、
    前記ポンプ加熱手段(22)は、前記供給ポンプ(11)内に配置された流体通路(25a)、(25b)を有し、この流体通路(25a)、(25b)に暖められた流体を流通させることを特徴とする燃料電池発電システム(1)。
  7. 請求項1記載の燃料電池発電システム(1)であって、
    前記ポンプ加熱手段(22)は、前記供給ポンプ(11)の外周に配置された流体配管(29)を有し、この流体配管(29)に暖められた流体を流通させることを特徴とする燃料電池発電システム(1)。
JP2003068527A 2003-03-13 2003-03-13 燃料電池発電システム Pending JP2004281130A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068527A JP2004281130A (ja) 2003-03-13 2003-03-13 燃料電池発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068527A JP2004281130A (ja) 2003-03-13 2003-03-13 燃料電池発電システム

Publications (1)

Publication Number Publication Date
JP2004281130A true JP2004281130A (ja) 2004-10-07

Family

ID=33285828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068527A Pending JP2004281130A (ja) 2003-03-13 2003-03-13 燃料電池発電システム

Country Status (1)

Country Link
JP (1) JP2004281130A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114267A (ja) * 2004-10-13 2006-04-27 Nissan Motor Co Ltd 燃料電池システム
KR100830994B1 (ko) 2006-11-15 2008-05-20 삼성에스디아이 주식회사 연료 전지 시스템 및 그 구동 방법
US7846605B2 (en) 2005-03-07 2010-12-07 Samsung Sdi Co., Ltd. Pump having noise-proof and vibration-proof structure and fuel cell system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114267A (ja) * 2004-10-13 2006-04-27 Nissan Motor Co Ltd 燃料電池システム
US7846605B2 (en) 2005-03-07 2010-12-07 Samsung Sdi Co., Ltd. Pump having noise-proof and vibration-proof structure and fuel cell system using the same
KR100830994B1 (ko) 2006-11-15 2008-05-20 삼성에스디아이 주식회사 연료 전지 시스템 및 그 구동 방법
US8597845B2 (en) 2006-11-15 2013-12-03 Samsung Sdi Co., Ltd. Fuel cell system with heat transferor and fuel tank and method of driving the same

Similar Documents

Publication Publication Date Title
JP4875485B2 (ja) 凍結始動時の冷却剤水の燃料電池スタック溶解
JP2009186056A (ja) 蓄熱容器
JP3711970B2 (ja) 燃料電池システム
JP3951861B2 (ja) 燃料電池装置
JP4626239B2 (ja) ヒートポンプ蓄熱装置
KR20130093883A (ko) 냉각수 가열식 cnt 히터
JP2004281130A (ja) 燃料電池発電システム
JP2007218551A (ja) 熱交換装置及びそれを用いたヒートポンプ給湯装置
JP4415639B2 (ja) 燃料電池システム
JP2004362807A (ja) 燃料電池システム
JP4240150B1 (ja) 貯湯式給湯装置
JP2005093117A (ja) 燃料電池システム
JP2005069608A (ja) 温水利用システム
JP2005156026A (ja) 冷却装置
JP2005302361A (ja) 貯水タンク
CN220227296U (zh) 泵装置和空调器
JP2002147858A (ja) 凍結防止ヒータ付き給湯装置
JP4379059B2 (ja) 燃料電池システム
JP2004362808A (ja) 燃料電池発電システムの純水タンク
JP2005032626A (ja) 燃料電池発電システムの純水タンク
JP2004095506A (ja) 凍結し得る液体の貯留タンク
JP2004108712A (ja) ヒートポンプ式給湯機用熱交換器
JP2012225623A (ja) 冷却装置およびこれを搭載した電子機器、および電気自動車
JP2009109051A (ja) ヒートポンプ給湯機
JPH0351665A (ja) 熱交換器