JP2004266029A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2004266029A
JP2004266029A JP2003053565A JP2003053565A JP2004266029A JP 2004266029 A JP2004266029 A JP 2004266029A JP 2003053565 A JP2003053565 A JP 2003053565A JP 2003053565 A JP2003053565 A JP 2003053565A JP 2004266029 A JP2004266029 A JP 2004266029A
Authority
JP
Japan
Prior art keywords
region
semiconductor
semiconductor region
opening
sige
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053565A
Other languages
English (en)
Inventor
Kazuro Tokunaga
和朗 徳永
Tsutomu Udo
勉 有働
Takashi Hashimoto
尚 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Hitachi Solutions Technology Ltd
Original Assignee
Renesas Technology Corp
Hitachi ULSI Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp, Hitachi ULSI Systems Co Ltd filed Critical Renesas Technology Corp
Priority to JP2003053565A priority Critical patent/JP2004266029A/ja
Publication of JP2004266029A publication Critical patent/JP2004266029A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】バイポーラトランジスタの特性を向上させる技術を提供する。
【解決手段】多結晶シリコン膜9の開口部OA1の底部から露出した窒化シリコン膜7をオーバーエッチングし、多結晶シリコン膜9を窒化シリコン膜7の端部から突出させた後、開口部OA1中にコレクタ領域、ベース領域およびエミッタ領域となる半導体領域を形成する際、ベース領域の下部および上部に、それぞれ炭素を含有した半導体領域(i−SiGeC23およびCapSiC27)を形成する。また、ベース領域上のCapSiC27は、多結晶シリコン膜9の突出部の裏面から下方向に成長する多結晶SiGe30が、p−SiGe25と接触(接合)した後に形成する。その結果、ベース領域中の不純物の拡散が炭素を含有した半導体領域によって抑えられ、また、多結晶SiGe30の下部に高抵抗の炭素を含有した半導体領域が形成されず、素子の特性が良くなる。
【選択図】 図12

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、特に、選択エピタキシャル成長技術を用いてベース層を形成する、いわゆる自己整合型のバイポーラトランジスタを有する半導体装置に適用して有効な技術に関するものである。
【0002】
【従来の技術】
バイポーラトランジスタの性能を向上させるため、種々の検討がなされている。
【0003】
例えば、電流増幅率を大きくするためHBT(ヘテロ接合バイポーラトランジスタ:Hetero−junction Bipolar Transistor)技術が検討されている。HBTとは、エミッタベース接合のエミッタ禁制帯幅をベースより大きくしたヘテロ接合(異種接合)構造のバイポーラトランジスタである。例えば、SiGe(シリコンゲルマニウム)とSi(シリコン)のような異種の半導体の接合をベースとエミッタとの接合に用いる。
【0004】
一方、ベース、エミッタおよびコレクタを構成するnpnもしくはpnpの各領域の不純物の拡散、特に、ベースを構成する半導体領域の不純物の拡散を抑制するため、炭素(C)をドープさせる技術が検討されている。即ち、ベースを構成する不純物が拡散しベースが広がると、遮断周波数特性が劣化する。そこで、炭素をベース、エミッタおよびコレクタ領域に注入し、これらの内部の不純物の拡散を防止する。
【0005】
このような炭素のドープによる不純物の拡散の抑制については、例えば、非特許文献1(High−Speed SiGe:C bipolar Technology J.Bock, H.Schafer等 2001 IEEE)にその記載がある。
【0006】
また、特許文献1(特開2000−77425号公報)には、Siコレクタ層2とSiGeベース層4との間及びSiGeベース層4とSiエミッタ層6の間に炭素という電気的に不活性な不純物を含有する不純物拡散抑制層となるCドープSi層2及び5を形成することにより、熱処理などの際に発生する不純物の拡散を抑制する技術が開示されている。
【0007】
なお、特許文献2(特開2001−68479号公報)や特許文献3(特開2002−270817号公報)には、ベース材料としてp型SiGeCを、エミッタ材料としてn型のSiを用い、ベース中のGe濃度とC濃度を変化させることでベース中のバンドギャップを変化させる技術が開示されている。
【0008】
【特許文献1】
特開2000−77425号公報(
等)
【0009】
【特許文献2】
特開2001−68479号公報
【0010】
【特許文献3】
特開2002−270817号公報(段落[0022]等)
【0011】
【非特許文献1】
High−Speed SiGe:C bipolar Technology J.Bock, H.Schafer等 2001 IEEE
【0012】
【発明が解決しようとする課題】
しかしながら、前記特許文献1等においては、バイポーラトランジスタの具体的な構成や製造条件等と炭素を含有する層との関係については、何ら開示されていない。
【0013】
本発明者らは、ベース電極を半導体基板と対向するよう配置し、半導体基板上にコレクタ、ベースおよびエミッタ領域を順次成長させ、この際、ベース電極から成長してくる半導体領域とベースとを自己整合的に接続させることにより微細なバイポーラトランジスタ構造を実現する技術について検討している。なお、具体的な構造および製法については、追って詳細に説明する。
【0014】
さらに、本発明者らは、バイポーラトランジスタの特性を向上させるため、コレクタ、ベースおよびエミッタ領域の成長の際、炭素をドープすることを検討している。
【0015】
しかしながら、対象のバイポーラトランジスタの構造や製造方法に応じてより良い炭素のドープの方法や位置を検討する必要がある。
【0016】
これは、炭素をドープすると、不純物の拡散は抑えられるものの、1)炭素のドープによりバイポーラトランジスタを構成する半導体領域の結晶性が悪くなる、2)キャリア(正孔や電子)が走行する際、炭素原子に起因する不純物散乱が起こり、キャリア寿命が短くなる。言い換えれば、炭素によりキャリアの移動度が低下し、バイポーラトランジスタの特性が劣化する。また、3)炭素のドープ量によっては、リーク電流が多くなり、電流増幅率(hFE)が悪くなる等、却って、バイポーラトランジスタの特性を劣化させる、といった問題があるからである。なお、前記非特許文献においては、炭素原子を例えば4×1019/cm程度注入している。
【0017】
本発明の目的は、バイポーラトランジスタの特性を向上させる技術を提供することにある。
【0018】
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【0019】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
【0020】
本発明の半導体装置は、(a)(a1)半導体基板上に絶縁膜を介して形成され、(a2)第1開口部であって、前記絶縁膜中の第2開口部上に形成され、前記第2開口部より小さい第1開口部を有し、(a3)前記第2開口部上から突出した突出部の裏面が前記半導体基板と対向している半導体膜と、(b)前記半導体基板の上部の前記第2開口部内に前記半導体基板側から順に形成された第1導電型の第1半導体領域、前記第1導電型と逆導電型である第2導電型の第2半導体領域および前記第1導電型の第3半導体領域と、(c)前記突出部の裏面下に形成され、前記第2半導体領域と接続された第4半導体領域と、を有し、(d)前記第3半導体領域の下方領域には炭素が含まれており、前記炭素は、前記第2半導体領域と前記第4半導体領域との接続領域以外の領域に含まれているものである。
【0021】
また、本発明の半導体装置の製造方法は、(a)半導体基板の上部に絶縁膜を形成し、前記絶縁膜上に第1開口部を有する半導体膜を形成する工程と、(b)前記第1開口部から露出した前記絶縁膜を除去し、さらに、露出した前記絶縁膜の側壁を後退させることにより、前記絶縁膜中に前記第1開口部より大きい第2開口部を形成し、前記半導体膜の裏面の一部を露出させる工程と、(c)(c1)前記半導体基板の上部の前記第2開口部内に第1、第2および第3半導体領域を順次成長させ、前記半導体膜の裏面から第4半導体領域を成長させる工程であって、(c2)前記第2半導体領域が前記第4半導体領域と接続した後に、炭素をドープしながら前記第3半導体領域の下方領域を形成する工程と、を有するものである。例えば、第1半導体領域は、コレクタ、第2半導体領域は、ベース、第3半導体領域はエッミタに対応する。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
【0023】
(実施の形態1)
以下、本実施の形態の半導体装置(HBT)をその製造工程に従って説明する。図1〜図17は、本実施の形態の半導体装置の製造方法を示す基板の要部断面図である。図18は、本実施の形態の半導体装置の要部断面図である。
【0024】
図1に示すように、例えば単結晶シリコンからなる半導体基板1を準備し、その上部にn型エピタキシャル層3を形成する。なお、このn型エピタキシャル層3と半導体基板1との積層物を半導体基板(いわゆるエピウエハ)と呼ぶこともある。このn型エピタキシャル層3は、例えば、半導体基板1上にn型不純物をドープしながら単結晶シリコンをエピタキシャル法によって成長させることにより形成する。
【0025】
次いで、n型エピタキシャル層3中に素子分離5を形成する。この素子分離5により素子形成領域が区画され、また、他の素子形成領域との分離が図られる。この素子分離5は、例えば、素子分離領域のn型エピタキシャル層3をエッチングし、溝を形成した後、この溝の内部に絶縁膜として酸化シリコン膜を埋め込むことにより形成する。
【0026】
次いで、図2に示すように、半導体基板(n型エピタキシャル層3)1上に、絶縁膜として薄い酸化シリコン膜(図示せず)を例えば熱酸化法により形成する。次いで、その上部に窒化シリコン膜7を例えばCVD(Chemical Vapor Deposition)法により50nm程度形成する。次いで、窒化シリコン膜7上に導電性膜として多結晶シリコン膜(半導体膜)9を例えばCVD法により200nm程度形成する。次いで、多結晶シリコン膜9の表面部にp型不純物としてホウ素(ボロン、B)をイオン注入し、多結晶シリコン膜9中にボロンドーピング層11を形成する。この多結晶シリコン膜9中のボロンドーピング層11は、その後の熱処理により徐々に拡散する。従って、ホウ素濃度は、多結晶シリコン膜9の表面部から底部にかかて徐々に減少する。なお、今後は、多結晶シリコン膜9はこのボロンドーピング層11を含むものとする。また、この多結晶シリコン膜9はベース電極(ベース引き出し部、ベース引き出し電極)となる。
【0027】
次いで、図3に示すように、多結晶シリコン膜9上に絶縁膜として酸化シリコン膜13を例えばCVD法で形成する。次いで、図示しないフォトレジスト膜(以下、単に「レジスト膜」という)をマスクに、酸化シリコン膜13および多結晶シリコン膜9をエッチングし、開口部(エミッタ開口部)OA1を形成する。言い換えれば、このエッチングにより多結晶シリコン膜9中に開口部OA1が形成される。この開口部OA1の底部からは窒化シリコン膜7が露出している。
【0028】
次いで、必要に応じて開口部OA1の下のn型エピタキシャル層3中にリン(P)等のn型不純物を窒化シリコン膜7を介してイオン注入する(図示せず)。この際、レジスト膜をマスクとしてイオン注入し、その後、レジスト膜を除去し、半導体基板1の表面を洗浄する。このような半導体基板の洗浄の際に、酸化シリコン膜13が僅かに後退する。その結果、図4に示すように、多結晶シリコン膜9の開口部OA1側の端部上面(肩部)が露出する。
【0029】
次いで、図5に示すように、多結晶シリコン膜9の露出部、即ち、多結晶シリコン膜9の前記肩部と側壁に、酸化シリコン膜15を形成する。この酸化シリコン膜15は、後述するコレクタ領域等の形成の際、多結晶シリコン膜9の露出部からSiGe(シリコンゲルマニウム)等が成長することを防止するために形成する。なお、前述したように、多結晶シリコン膜9の表面部には不純物が注入されているため、かかる部分の酸化速度が大きくなり、酸化シリコン膜15が厚く形成される。
【0030】
次いで、図6に示すように、この開口部OA1の底部から露出した窒化シリコン膜7を熱リン酸等を用いてエッチングする。この際、オーバーエッチングを行い、窒化シリコン膜7の側壁を開口部OA1の側壁から後退させる。その結果、窒化シリコン膜7中に開口部OA2が形成される。この開口部OA2は、開口部OA1より大きい。
【0031】
言い換えれば、多結晶シリコン膜9の下部にはアンダーカット部(窪み)が形成される。また、多結晶シリコン膜9は、窒化シリコン膜7の端部から張り出している(オーバーハングしている)。また、多結晶シリコン膜9は、窒化シリコン膜7の端部(第2開口部上)から突出した突出部を有する。この突出部は、半導体基板(n型エピタキシャル層3)1と対向している。また、この突出部の裏面は露出している。
【0032】
次いで、窒化シリコン膜7下の薄い酸化シリコン膜(図示せず)を希フッ酸等を用いてエッチングし、半導体基板(n型エピタキシャル層3)1の表面を露出させる。なお、このエッチング後に酸化シリコン膜15が残存するよう、あらかじめ酸化シリコン膜15の厚さを前記薄い酸化シリコン膜より厚く設定しておく。
【0033】
次いで、図7に示すように、開口部OA2中に半導体基板(n型エピタキシャル層3)1側からコレクタ領域、ベース領域およびエミッタ領域となる半導体領域を順次形成するとともに、ベース領域と多結晶シリコン膜(ベース電極)9との接続部となる半導体領域を形成する。図7においては、これらの半導体領域を17として示してある。
【0034】
この半導体領域17は、主としてSiGe(シリコンゲルマニウム)とSi(シリコン)よりなり、その内部に炭素(C)やn型もしくはp型不純物が拡散している。半導体領域17を構成する各部位(21、23、25、27、29、30)は、エピタキシャル法により連続的に形成することができ、装置への原料ガスの供給を種々切り換えることにより連続的に形成することができる。このような成膜には、例えば低圧CVD(LP−CVD:Low Pressure−CVD)法を用いることができる。
【0035】
この半導体領域17の詳細な構成を各部位の製造方法に従って説明する。図8〜図13は、開口部OA2近傍の拡大図である。なお、図を見やすくするため縦横比を変えてある。また、図19は、各部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度[%]を示すグラフである。また、図20は、各部位を形成する際の条件等を示す図表であり、図21は、図20に示す時間(Time[s])と原料ガスの流量との関係を示すグラフである。
【0036】
ここでは、原料ガスの一例として次のようなガスを用いた。Siの供給源として、ジクロルシラン(SiHCl、DCS)を、Geの供給源としてモノゲルマン(GeH)を、ホウ素(p型不純物)の供給源としてB(ジボラン)を、炭素(C)の供給源としてモノメチルシラン(CHSiH)用いた。なお、塩酸(HCl)は、SiとSiOのエピタキシャル成長の選択性(比)を得るために用いる。即ち、SiO上にSiGeを成長させないために用いる。
炭素は電気的に不活性な不純物であるが、本発明で供給する炭素の量は、各部位の半導体としての特性を損なわない程度の量であることは言うまでもない。炭素やホウ素等の不純物の濃度は、それぞれの供給源である原料ガスの装置内の分圧を変えることにより調整することができる。例えば成膜装置内の圧力や各原料ガスの流量等を変えることにより調整することができる。
【0037】
図8に示すように、開口部OA2からは半導体基板(n型エピタキシャル層3)1が露出している。また、前述したように、開口部OA2上には、多結晶シリコン膜9が突出しており、その突出部の裏面は露出している。なお、6は半導体基板(n型エピタキシャル層3)1と窒化シリコン膜7との間の薄い酸化シリコン膜である。
【0038】
(ステップ1)まず、図9、図19、図20および図21に示すように、開口部OA2から露出したn型エピタキシャル層3上にエピタキシャル法を用いてi−SiGe(シリコンゲルマニウム)21を形成する。この際、多結晶シリコン膜9の突出部の裏面から多結晶SiGe30が成長する。なお、「i」は、イントリンシック(intrinsic、真性)の略で、n型もしくはp型不純物をドープしていないことを意味する。また、この方法では、絶縁膜上には膜は形成されないため選択成長とも呼ばれる。
【0039】
このi−SiGe21(半導体領域)は、コレクタ領域となる。i−SiGe21は、図20および図21に示すように、原料ガスとして、例えば、DCSを50sccm、GeHを24sccmおよびHClを10sccm供給しながら215s(秒)成膜することにより形成する。この際、圧力(Press.)は、7Torr(1Torr=1.33322×10Pa)、温度(Temp.)は、670℃である。この結果、31nm程度の厚さ(Thickness)のi−SiGe21が形成される。また、このi−SiGe21のGe濃度は、12.5%程度である。なお、sccmは、Standard cc(cm)/minを表す。
【0040】
(ステップ2)その後、図10、図19、図20および図21に示すように、さらに炭素の供給源であるCHSiHを5sccm供給し、14s程度成膜し、厚さ2nm程度の炭素を含有したi−SiGe(以下、「i−SiGeC」という)23を形成する。このi−SiGeC23のGe濃度は、12.6%程度である。また、炭素濃度は、例えば0.1%程度である。このi−SiGeC23は、ベース領域の不純物がコレクタ領域に拡散することを防止する役割を果たす。即ち、ベース領域を薄型化し、ナノベース型HBTとすることで、素子の動作の高速化が図れ、また、遮断周波数特性(fT特性)が向上する。例えば、ベース領域の不純物がその上下に位置するエミッタ領域やコレクタ領域に拡散すると、実効ベース長が増加し、素子特性が劣化する。特に、後述するように、エミッタ領域やコレクタ領域へn型不純物を拡散する際に、熱処理が行われ、この際、ベース領域の不純物が拡散しやすい。しかしながら、i−SiGeC23を設けることでベース領域の不純物の拡散を低減できる。
【0041】
(ステップ3)その後、図11、図19、図20および図21に示すように、HClと炭素の供給源であるCHSiHの供給を停止し、ホウ素(p型不純物)の供給源であるBを7.9sccm供給する。この際、Siの供給源であるDCSの供給量を増加させ、100sccmとする。一方、Geの供給源であるGeHの供給量を減少させ、12.6sccmとする。また、圧力を10Torrと、温度を660℃とする。前記条件で40s程度成膜し、厚さ5nm程度のp型不純物を含有したSiGe(以下、「p−SiGe」という)25を形成する。このp−SiGe25は、ベース領域となる。また、Ge濃度は、7.5%程度である。このようにGe濃度を調整し、ベース領域よりコレクタ領域(i−SiGe21)のGe濃度を高くすることによって、ベース領域の不純物がコレクタ領域に拡散することを低減できる。
【0042】
ここで、重要なことは、前記ステップ1からステップ3の間に多結晶シリコン膜9の突出部の裏面から下方向に成長する多結晶SiGe30が、このp−SiGe25と接触するまでp−SiGe25を成長させることである。言い換えれば、多結晶SiGe30とp−SiGe25とが接触(接合)した後、後述するステップ4へ進むのである。
【0043】
なお、多結晶シリコンからの半導体の成長は、単結晶シリコンからの半導体の成長より遅いため、多結晶SiGe30は、半導体基板側から成長した膜より薄くなる。また、この多結晶SiGe30中にも、各原料ガスの切り換えに応じて炭素やp型不純物がドープされる。例えば、多結晶シリコン膜9側からi−多結晶SiGe、i−多結晶SiGeCおよびp−多結晶SiGeの積層構造となると考えられる。しかしながら、ステップ2の炭素源の導入期間は短く、単結晶シリコン側からでも2nm程度しか成膜されないため、i−多結晶SiGeCは、ほとんど成長しないと考えられる。従って、多結晶SiGe30の炭素の含有量は、ほぼ0もしくは極々微量(1ppm(0.0001%)以下)である。
【0044】
このように、多結晶シリコン膜9の突出部の裏面から下方向に成長する多結晶SiGe30をp−SiGe25と接触させることで、自己整合的にベース領域(p−SiGe25)と多結晶シリコン膜(ベース電極)9との接続を図ることができる。即ち、多結晶SiGe30は、ベース領域(p−SiGe25)と多結晶シリコン膜(ベース電極)9との接続部(接触部、接合部)となる。
【0045】
(ステップ4)その後、図12、図19、図20および図21に示すように、Geの供給源であるGeHの供給を停止し、炭素の供給源であるCHSiHを5sccm供給する。また、ホウ素(p型不純物)の供給源であるBの供給を停止する。この際、Siの供給源であるDCSを50sccmとする。また、温度を740℃とする。前記条件で23s程度成膜し、厚さ2nm程度の炭素を含有したSi(以下、「CapSiC」という)27を形成する。このCapSiC27のGe濃度は、もちろん0%である。また、炭素濃度は、例えば0.1%(5×1019/cm)程度である。なお、この炭素濃度[%]は、CapSiC27中のSi原子に対する炭素原子の割合をいう(i−SiGeC23の炭素濃度についても同じ)。このCapSiC27は、i−SiGeC23と同様にベース領域の不純物が後述するエミッタ領域に拡散することを防止する役割を果たす。炭素濃度は、ベース領域のホウ素(p型不純物)の濃度と同程度もしくはそれ以下にすることが好ましい(i−SiGeC23の炭素濃度についても同じ)。
【0046】
ここで、多結晶SiGe30とp−SiGe25とが接触(接合)した後、炭素の供給源である原料ガスを供給したので、CapSiC27は、多結晶シリコン膜9の突出部の裏面の下(多結晶SiGe30の下)には成長しない。言い換えれば、CapSiC27は、多結晶SiGe30とp−SiGe25との接続領域以外の領域に形成される(図18参照)。
【0047】
その結果、ベース領域(p−SiGe25)と多結晶シリコン膜(ベース電極)9との接続抵抗を低減できる。即ち、炭素は、電気的に不活性な不純物であるため、そのドープにより抵抗が高くなる。特に、半導体基板側からのCapSiC27の成長は早いため、多結晶SiGe30とベース領域(p−SiGe25)との間に隙間があれば、その隙間が高抵抗のCapSiC27により埋まることとなる。
【0048】
また、炭素がドープされる平面領域を小さくでき、ドープされる炭素量を少なくできる。その結果、キャリア(正孔や電子)の移動度を大きくできる。
【0049】
このように、本実施の形態によれば、多結晶SiGe30とp−SiGe25とが接触(接合)した後、炭素の供給源である原料ガスを供給したので、HBT(半導体素子)の特性を向上させることができる。
【0050】
(ステップ5)その後、図13、図19、図20および図21に示すように、炭素の供給源であるCHSiHの供給を停止し、160s程度成膜し、厚さ14nm程度のSi(CapSi)29を形成する。このCapSi29は、エミッタ領域となる。このCapSi29のGe濃度は、もちろん0%である。このように、ベース領域(p−SiGe25)とエミッタ領域(CapSi29)との接合に異種半導体を用いることにより電流増幅率を大きくすることができる。
【0051】
なお、前述した各部位の膜厚は一例であり、その数値に限定されるものではない。
【0052】
次いで、半導体基板1に熱処理を施すことによりi−SiGe21中にn型エピタキシャル層3中のn型不純物を拡散させる。その結果、n型のコレクタ領域21nが形成される。
【0053】
なお、n−SiGe21nおよびi−SiGeC23をコレクタ領域と考えてもよい。従って、前記n型不純物は、i−SiGeC23まで拡散させてもよい。
【0054】
また、前記i−SiGe21の成長の際、n型不純物の供給源(例えば、ホスフィン(PH)等を供給し、n−SiGeを成長させてもよい。また、i−SiGeC23の拡散の際にもn型不純物を供給してもよい。
【0055】
以上の工程により半導体領域17が形成される。なお、エミッタ領域中のn型不純物は、後述するエミッタ電極から拡散される。その結果、CapSi29中にn−CapSi29nが形成される。
【0056】
なお、n−CapSi29n、その周囲に残存するCapSi29およびCapSiC27をエミッタ領域と考えてもよい。従って、前記n型不純物は、CapSiC27まで拡散させてもよい。
【0057】
また、前記CapSi29の成長の際、n型不純物の供給源(例えば、ホスフィン(PH)等を供給し、n−CapSi29nを成長させてもよい。また、CapSiC27の拡散の際にもn型不純物を供給してもよい。
【0058】
次いで、図14に示すように、希フッ酸等を用いたエッチングにより酸化シリコン膜15を除去する。前述したように、酸化シリコン膜15は、多結晶シリコン膜9の表面部にかけて厚く形成されている。従って、この酸化シリコン膜15を除去することにより、開口部OA1の開口幅は下部から上部に向かうにつれて幅広となる(L1<L3)。また、この酸化シリコン膜15を除去することにより、多結晶シリコン膜9の肩部がラウンド化する。さらに、このエッチングの際、酸化シリコン膜13の表面部も除去される。この酸化シリコン膜13の開口幅L4は、L3より大きい。
【0059】
次いで、絶縁膜として酸化シリコン膜33を例えばCVD法により30nm程度堆積し、さらに、その上部に、導電性膜としてリン等の不純物をドープした多結晶シリコン膜35を例えばCVD法により80nm程度堆積する。次いで、図15に示すように、多結晶シリコン膜35をドライエッチング法を用いてエッチバックする(異方的にエッチングする)ことにより開口部OA1の側壁に残存させる。
【0060】
次いで、図16に示すように、露出した酸化シリコン膜33を希フッ酸等を用いてエッチングし、開口部OA1の底部から半導体領域(CapSi29)17を露出させる。
【0061】
次いで、図17に示すように、導電性膜としてリン等の不純物をドープした多結晶シリコン膜37を例えばCVD法により200nm程度堆積する。次いで、図示しないレジスト膜をマスクに多結晶シリコン膜37をエッチングする。この多結晶シリコン膜37は、エミッタ電極(エミッタ引き出し部、エミッタ引き出し電極)となる。同じレジスト膜を用いて、さらに、酸化シリコン膜13もエッチングする。
【0062】
次いで、例えば900℃で、30秒程度の熱処理を施すことにより、多結晶シリコン膜37中の不純物(リン)を半導体領域(CapSi29)17中に拡散させ、CapSi29中にn−CapSi(n型半導体領域)29nを形成する。このn−CapSi29nは、エミッタ領域となる。
【0063】
次いで、多結晶シリコン膜9を所望の形状にパターニングし、ベース電極を形成する。次いで、半導体基板1上に、高融点金属としてチタン(Ti)膜を例えばスパッタリング法により40nm程度堆積する。この際、指向性が大きいスパッタリング法を用いることで、多結晶シリコン膜37および酸化シリコン膜13の側壁にTi膜が形成することを防止できる。さらに、前述した酸化シリコン膜13のエッチングの際、オーバーエッチングし、多結晶シリコン膜37の側壁より酸化シリコン膜13の側壁を後退させておけば、多結晶シリコン膜37の端部が庇となり酸化シリコン膜13の側壁へのTi膜の付着をさらに低減することができる。その結果、ベース電極とエミッタ電極のシリサイド膜による短絡を防止できる。
【0064】
次いで、例えば680℃で、1分程度の熱処理を施すことにより、多結晶シリコン膜9および37とTi膜との接触部においてシリサイド化反応を起こさせ、チタンシリサイド(TiSi)膜41を形成する。次いで、未反応のTi膜を除去する。なお、Ti膜の他、コバルト(Co)膜等を用いてもよい。
【0065】
ここまでの工程によりn−SiGe21nをコレクタ領域、p−SiGe25をベース領域、n−CapSi29nをエミッタ領域とするHBTが形成される。なお、ベース領域は、多結晶SiGe(ベース接続部)30および多結晶シリコン膜(ベース電極)9によって引き出され、また、エミッタ領域は、多結晶シリコン膜(エミッタ電極)37によって引き出される。なお、コレクタ領域は、半導体基板(n型エピタキシャル層3)1を介して図示しない導電性膜により引き出される。また、ベース領域の下部および上部には、それぞれ炭素を含有した半導体領域(i−SiGeC23およびCapSiC27)が形成されている。言い換えれば、コレクタ領域の上方領域およびエミッタ領域の下方領域には、それぞれ炭素を含有した半導体領域が形成されている。但し、CapSiC27は、多結晶SiGe(ベース接続部)30の下には形成されていない。
【0066】
なお、図18に、本実施の形態の半導体装置の要部断面図を示す。図示するように、CapSiC27は、多結晶SiGe(ベース接続部)30の内側に形成されている。また、コレクタ領域(n−SiGe21n)およびベース領域(p−SiGe25)の内部にエミッタ領域(CapSi29、n−CapSi29n)が形成される。エミッタ領域の面積は、例えば0.2×1μm程度である。
【0067】
この後、HBTの上部に層間絶縁膜として酸化シリコン膜等が堆積され、その内部にプラグが形成され、その上部には配線が形成されるがこれらの図示は省略する。
【0068】
次いで、本実施の形態のSiGeを用いたHBT(SiGeHBT)の特性について本発明者らが検討した結果について説明する。
【0069】
図22は、本実施の形態のSiGeHBTとSiを用いたバイポーラトランジスタ(SiBJT)と遮断周波数(fT)特性を示すグラフである。縦軸は遮断周波数(fT[GHz])を、横軸はコレクタ電流(Ic[mA])を示す。図示するように、SiBJTと比較し本実施の形態のSiGeHBTは高い周波数特性を示した。本実施の形態のSiGeHBTの周波数特性が良好なのは、ベース領域の上下の炭素ドープ層(炭素ドープ領域)により、ベース領域内の不純物の拡散が抑制されたためと考えられる。
【0070】
図23は、ベース領域の上下に炭素ドープをしたSiGeHBTと、炭素ドープをしていないSiGeHBTのhFE特性を示すグラフである。縦軸は電流増幅率(hFE)を横軸はコレクタ電流(Ic[mA])を示す。図示するように、炭素ドープをした場合(a)は、しない場合(b)よりhFEが大きかった。
【0071】
また、hFEがほぼ一定の区間、例えばIcが0.001mA〜0.1mAの区間がある。従って、コレクタ電流の増減によりhFEが変動し難く、本実施の形態のSiGeHBTを用いることで回路特性が良くなる。特に、電流の僅かな変動がその動作に影響するセンスアンプ回路等にも用いることができる。
【0072】
次いで、ドープする炭素の濃度について説明する。本実施の形態のSiGeHBTのように、炭素をデバイス中に注入した場合、リーク電流の増加が懸念される。
【0073】
本発明者らが検討したところ、炭素ドープをした場合、図24に示すように、リーク電流が大きいデバイスが確認された。図24の縦軸は、コレクタ電流Ic[A]およびベース電流Ib[A]であり、横軸はベースエミッタ間電圧Vbe[V]である。図25は、炭素ドープしなかった場合のSiGeHBTの同様のグラフであり、これらを比較して明らかなように、ベース電流(リーク電流)が大きくなっている。例えば、Vbeが0.2V程度の場合、図25のIbは1.E−09Aであるのに対し、図24では、Vbeが1.E−07Aであり、リーク電流が2桁程度上昇している。このようにリーク電流が増加すると前述したhFEが低下する。なお、「1.E−n」は、「1×10−n」を示す。また、10k−parallelとは、SiGeHBTを1万個を並列に並べたことを意味する。
【0074】
しかしながら、本発明者がさらに検討を進めた結果、ドープする炭素の量、即ち、i−SiGeC23およびCapSiC27の膜厚や炭素濃度を調整することで、図23に示した良好なhFE特性が得られることが判明した。
【0075】
これらの膜厚については、2nm以下が好ましい。
【0076】
また、これらの膜中の炭素濃度については、リーク電流は、ベース領域中のp型不純物濃度と炭素濃度の関係により発生するものと考えられ、i−SiGeC23およびCapSiC27中の炭素濃度は、ベース領域のB濃度と同程度もしくはそれ以下とすることが好ましい。
【0077】
なお、図24は、炭素をドープした膜の膜厚が2nm、炭素濃度が0.2%の場合のデータであり、図23は、炭素をドープした膜の膜厚が2nm、炭素濃度が0.1%の場合のデータである。
【0078】
このように、ドープする炭素量を上述のように調整することにより半導体領域(例えば、i−SiGeC23およびCapSiC27)の結晶性が良くなる。さらに、この上に成長する各半導体領域の結晶性も良くなる。
【0079】
また、炭素をドープした膜を薄くし、もしくは炭素濃度を小さくすることで、キャリア(正孔や電子)の移動度を確保することができる。よって、動作の高速化(fT特性の向上)を図ることができる。また、リーク電流を抑え、電流増幅率(hFE)を向上させることができる。このように素子特性が良くなる。また、リーク電流を抑えられることから、例えば電池駆動の器機(例えば、携帯電話やノート型パソコン)等に用いて好適である。
【0080】
さらに、本実施の形態によれば、ベース領域をCapSiC27を介さずに引き出すようにしたので、ベース領域とベース電極間の抵抗を低減でき、HBTの動作特性を向上させることができる。
【0081】
(実施の形態2)
実施の形態1においては、ベース領域(p−SiGe25)の上下に炭素ドープ層(i−SiGeC23およびCapSiC27)を設けたが、以下に示すように、ベース領域の上部にのみ炭素ドープ層を設けてもよい。
【0082】
以下、図26〜図28を参照しながら説明する。図26は、本実施の形態の半導体装置の主要部位を形成する際の条件等を示す図表であり、図27は、本実施の形態の半導体装置の主要部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度[%]を示すグラフである。また、図28は、本実施の形態の半導体装置を示す基板の要部断面図である。
【0083】
なお、半導体領域17(21、23、25、27、29および30)の構成および形成工程(ステップ1〜ステップ5)以外は、実施の形態1と同様であるためその説明を省略する。
【0084】
図26に示すように、実施の形態1の半導体領域17の形成工程(ステップ1〜ステップ5)のうち、ステップ2の工程を省略する。その結果、図27および図28に示す構成の半導体装置が得られる。
【0085】
このように、ベース領域(p−SiGe25)下の炭素ドープ層(i−SiGeC23)を省略しても、ベース領域よりコレクタ領域(n−SiGe21n)のGe濃度を高くすることによって(図27)、ベース領域の不純物がコレクタ領域に拡散することを低減できる。
【0086】
その結果、実施の形態1に準じた効果を奏することができる。
【0087】
(実施の形態3)
実施の形態1においては、ベース領域(p−SiGe25)の上下に炭素ドープ層(i−SiGeC23およびCapSiC27)を設けたが、以下に示すように、ベース領域(p−SiGe25)から離間して炭素ドープ層を設けてもよい。即ち、コレクタ領域およびエミッタ領域の中間部(中間領域)に炭素ドープ層を設けてもよい。
【0088】
以下、図29〜図31を参照しながら説明する。図29は、本実施の形態の半導体装置の主要部位を形成する際の条件等を示す図表であり、図30は、本実施の形態の半導体装置の主要部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度[%]を示すグラフである。また、図31は、本実施の形態の半導体装置を示す基板の要部断面図である。
【0089】
なお、半導体領域17(21、23、25、27、29および30)の構成および形成工程(ステップ1〜ステップ5)以外は、実施の形態1と同様であるためその説明を省略する。
【0090】
図29に示すように、実施の形態1のステップ1の途中(200秒後)から14秒間、CHSiHの5sccm供給を追加し、その後CHSiHの供給を停止し、14秒間成膜する(ステップ1’)。その後、実施の形態1のステップ3の処理を行い。次いで、実施の形態1のステップ5の処理を行う。ここでも、途中(23秒後)から23秒間、CHSiHの5sccm供給を追加し、その後CHSiHの供給を停止し、137秒間成膜する(ステップ5’)。
【0091】
もちろん本実施の形態においても、実施の形態1と同様に、多結晶SiGe30とp−SiGe25とが接触(接合)した後、炭素の供給源である原料ガスを供給する。従って、CapSiC27は、多結晶シリコン膜9の突出部の裏面の下(多結晶SiGe30の下)には成長しない(図18参照)。
【0092】
以上の工程によって、コレクタ領域(i−SiGe21)の中間領域にi−SiGeC23が形成され、エミッタ領域(CapSi29)の中間領域にCapSiC27が形成される(図30、図31)。その後は、実施の形態1と同様に処理を行う。
【0093】
その結果、コレクタ領域(n−SiGe21n)の中間領域にi−SiGeC23が形成され、エミッタ領域(CapSi29、n−CapSi29n)の中間領域にCapSiC27が形成される。実施の形態1で説明したように、これらの領域(23、27)にn型不純物が含まれてもよい。
【0094】
その結果、実施の形態1に準じた効果を奏することができる。
【0095】
(実施の形態4)
実施の形態1においては、ベース領域(p−SiGe25)の上下に炭素ドープ層(i−SiGeC23およびCapSiC27)を設けたが、以下に示すように、ベース領域とコレクタ領域との間に跨るように炭素ドープ層を設けてもよい。また、ベース領域とエミッタ領域との間に跨るように炭素ドープ層を設けてもよい。
【0096】
以下、図32〜図34を参照しながら説明する。図32は、本実施の形態の半導体装置の主要部位を形成する際の条件等を示す図表であり、図33は、本実施の形態の半導体装置の主要部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度[%]を示すグラフである。また、図34は、本実施の形態の半導体装置を示す基板の要部断面図である。
【0097】
なお、半導体領域17(21、23、25、27、29および30)の構成および形成工程(ステップ1〜ステップ5)以外は、実施の形態1と同様であるためその説明を省略する。
【0098】
図32に示すように、実施の形態1のステップ3の前後にCHSiHの5sccmの40s間の供給を追加し、合計15nm程度のベース領域を形成する。
【0099】
即ち、実施の形態1のステップ1および2の後に、原料ガスとして、例えば、DCSを100sccm、GeHを12.6sccm、Bを7.9sccmおよびCHSiHを5sccm供給し、40秒間成膜し、p−SiGeC23bを形成した後、CHSiHの供給を停止し、40秒間成膜し、p−SiGe25を形成する。その後、CHSiHの供給を再開し、40秒間成膜し、p−SiGeC27aを形成する(ステップ3’)。なお、本実施の形態においては、実施の形態1のステップ2で形成されるi−SiGeCを23aと、実施の形態1のステップ4で形成されるCapSiCを27bとする。
【0100】
もちろん本実施の形態においても、実施の形態1と同様に、多結晶SiGe30とp−SiGe25とが接触(接合)した後、炭素の供給源である原料ガスを供給する。従って、p−SiGeC27aおよびCapSiC27bは、多結晶シリコン膜9の突出部の裏面の下(多結晶SiGe30の下)には成長しない(図18参照)。
【0101】
以上の工程によって、ベース領域とコレクタ領域との間に跨るように炭素ドープ層(i−SiGeCを23a、p−SiGeC23b)が7nm程度形成される(図33、図34)。言い換えれば、コレクタ領域の上方領域からベース領域の下方領域にかけて炭素ドープ層が形成される。また、ベース領域とエミッタ領域との間に跨るように炭素ドープ層(p−SiGeC27a、CapSiCを27b)が7nm程度形成される(図33、34)。言い換えれば、ベース領域の上方領域からエミッタ領域の下方領域にかけて炭素ドープ層が形成される。その後は、実施の形態1と同様に処理を行う。
【0102】
その結果、実施の形態1に準じた効果を奏することができる。
【0103】
(実施の形態5)
実施の形態1においては、ベース領域(p−SiGe25)上の炭素ドープ層をCapSiCとしたが、かかる層をi−SiGeCとしてもよい。
【0104】
以下、図35を参照しながら説明する。図35は、本実施の形態の半導体装置の主要部位を形成する際の条件等を示す図表である。
【0105】
なお、実施の形態1のCapSiC27およびステップ4の工程以外は、実施の形態1と同様であるためその図示および詳細な説明を省略する。
【0106】
即ち、実施の形態1のステップ3の後に、原料ガスとして、例えば、DCSを50sccm、GeHを24sccm、CHSiHを5sccmおよびHClを10sccm供給しながら14s成膜することにより、i−SiGeCを形成する。この際、圧力は、7Torr、温度は、670℃である(ステップ4’)。
【0107】
もちろん本実施の形態においても、実施の形態1と同様に、多結晶SiGe30とp−SiGe25とが接触(接合)した後、炭素の供給源である原料ガスを供給する。従って、i−SiGeCは、多結晶シリコン膜9の突出部の裏面の下(多結晶SiGe30の下)には成長しない(図18参照)。その後は、実施の形態1と同様に処理を行う。なお、本実施の形態の半導体装置の構成は、実施の形態1のCapSiC27をi−SiGeCに置き換えた形状である。
【0108】
このように、ベース領域の上下の炭素ドープ層をそれぞれi−SiGeCとしても実施の形態1と同様の効果を奏することができる。
【0109】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0110】
例えば前記実施の形態においては、npn型のバイポーラトランジスタについて説明したが、pnp型のバイポーラトランジスタにも本発明を適用可能である。また、SiGe/Siを用いたHBTについて説明したが、他の半導体の組合せに適用してもよい。また、HBTに限らずSiを用いたバイポーラトランジスタに適用してもよい。
【0111】
例えば前記実施の形態においては、コレクタ領域をSiGeで構成したが、Siで形成してもよい。但し、Siのエピタキシャル成長温度(例えば740℃)はSiGeのそれ(例えば670℃)より高く、SiGeを用いた方が熱負荷が小さく、また、温度の制御性が良くなる。また、その成膜性も良くなると考えられる。
【0112】
また、各実施の形態の構成を組み合わせてもよい。
【0113】
例えば、実施の形態3〜5と実施の形態2を組合せ、実施の形態3〜5のベース領域より下部の炭素ドープ層を省略してもよい。
【0114】
また、実施の形態1と3を組合せ、実施の形態1のベース領域(p−SiGe25)の上下の炭素ドープ層のいずれか一方をベース領域から離間して配置してもよい。
【0115】
また、実施の形態1と4を組合せ、実施の形態1のベース領域(p−SiGe25)の上下の炭素ドープ層のいずれか一方をベース領域と重なるよう配置してもよい。
【0116】
また、実施の形態3と4を組合せ、例えば、ベース領域(p−SiGe25)の上下の炭素ドープ層の一方をベース領域と重なるよう配置し、他方をベース領域から離間して配置してもよい。この他にも、種々の組合せが可能である。
【0117】
【発明の効果】
本願によって開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下の通りである。
【0118】
半導体基板の上部の開口部内に第1、第2および第3半導体領域を順次成長させ、開口部上から突出した突出部の裏面が前記半導体基板と対向している半導体膜の裏面から第4半導体領域を成長させる際に、前記第2半導体領域が前記第4半導体領域と接続した後に、炭素をドープしながら前記第3半導体領域の下方領域を形成したので、バイポーラトランジスタの特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図2】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図3】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図4】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図5】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図6】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図7】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図8】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図9】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図10】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図11】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図12】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図13】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図14】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図15】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図16】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図17】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図18】本発明の実施の形態1である半導体装置を示す基板の要部平面図である。
【図19】本発明の実施の形態1である半導体装置の主要部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度を示すグラフである。
【図20】本発明の実施の形態1である半導体装置の主要部位を形成する際の条件等を示す図表である。
【図21】本発明の実施の形態1である半導体装置の主要部位を形成する際の時間と原料ガスの流量との関係を示すグラフである。
【図22】SiGeHBTとSiを用いたバイポーラトランジスタ(SiBJT)と遮断周波数(fT)特性を示すグラフである。
【図23】ベース領域の上下に炭素ドープをしたSiGeHBTと、炭素ドープをしていないSiGeHBTのhFE特性を示すグラフである。
【図24】本発明の実施の形態1の効果を説明するための半導体装置のコレクタ電流Icおよびベース電流Ibとベースエミッタ間電圧Vbeとの関係を示す図である。
【図25】本発明の実施の形態1の効果を説明するための半導体装置のコレクタ電流Icおよびベース電流Ibとベースエミッタ間電圧Vbeとの関係を示す図である。
【図26】本発明の実施の形態2である半導体装置の主要部位を形成する際の条件等を示す図表である。
【図27】本発明の実施の形態2である半導体装置の主要部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度を示すグラフである。
【図28】本発明の実施の形態2である半導体装置の製造方法を示す基板の要部断面図である。
【図29】本発明の実施の形態3である半導体装置の主要部位を形成する際の条件等を示す図表である。
【図30】本発明の実施の形態3である半導体装置の主要部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度を示すグラフである。
【図31】本発明の実施の形態3である半導体装置の製造方法を示す基板の要部断面図である。
【図32】本発明の実施の形態4である半導体装置の主要部位を形成する際の条件等を示す図表である。
【図33】本発明の実施の形態4である半導体装置の主要部位の深さ方向の位置関係と各部位のGe(ゲルマニウム)濃度を示すグラフである。
【図34】本発明の実施の形態4である半導体装置の製造方法を示す基板の要部断面図である。
【図35】本発明の実施の形態5である半導体装置の主要部位を形成する際の条件等を示す図表である。
【符号の説明】
1 半導体基板
3 n型エピタキシャル層
5 素子分離
6 酸化シリコン膜
7 窒化シリコン膜
9 多結晶シリコン膜
11 ボロンドーピング層
13 酸化シリコン膜
15 酸化シリコン膜
17 半導体領域
21 i−SiGe(コレクタ領域)
21n n−SiGe(コレクタ領域)
23 i−SiGeC(炭素ドープ層)
25 p−SiGe(ベース領域)
27 CapSiC(炭素ドープ層)
29 CapSi(エミッタ領域)
29n n−CapSi(エミッタ領域)
30 多結晶SiGe
33 酸化シリコン膜
35 多結晶シリコン膜
37 多結晶シリコン膜
41 チタンシリサイド膜
fT 遮断周波数
hFE 電流増幅率
Ib ベース電流
Ic コレクタ電流
L1、L3、L4 開口幅
OA1 開口部
OA2 開口部
Vbe ベースエミッタ間電圧

Claims (32)

  1. (a)(a1)半導体基板上に絶縁膜を介して形成され、(a2)第1開口部であって、前記絶縁膜中の第2開口部上に形成され、前記第2開口部より小さい第1開口部を有し、(a3)前記第2開口部上から突出した突出部の裏面が前記半導体基板と対向している半導体膜と、
    (b)前記半導体基板の上部の前記第2開口部内に前記半導体基板側から順に形成された第1導電型の第1半導体領域、前記第1導電型と逆導電型である第2導電型の第2半導体領域および前記第1導電型の第3半導体領域と、
    (c)前記突出部の裏面下に形成され、前記第2半導体領域と接続された第4半導体領域と、を有し
    (d)前記第3半導体領域の下方領域には炭素が含まれており、前記炭素は、前記第2半導体領域と前記4半導体領域との接続領域以外の領域に含まれていることを特徴とする半導体装置。
  2. (e)前記第2半導体領域は、SiGe(シリコンゲルマニウム)であり、
    (f)前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)であり、前記第3半導体領域の他の領域はSi(シリコン)であることを特徴とする請求項1記載の半導体装置。
  3. (g)前記第1半導体領域は、SiGe(シリコンゲルマニウム)であることを特徴とする請求項2記載の半導体装置。
  4. (h)前記第1半導体領域は、前記第2半導体領域を構成するSiGeよりGe(ゲルマニウム)濃度が高いSiGe(シリコンゲルマニウム)であることを特徴とする請求項3記載の半導体装置。
  5. (h)前記半導体基板は単結晶シリコンであり、
    前記第1および第2半導体領域は、前記単結晶シリコンから成長したSiGe(シリコンゲルマニウム)であり、
    前記第3半導体領域の下方領域は、前記SiGe(シリコンゲルマニウム)から成長した炭素を含有するSi(シリコン)であることを特徴とする請求項3記載の半導体装置。
  6. 前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)であり、その炭素濃度は前記第2半導体領域のn型もしくはp型不純物の濃度と同程度もしくはそれ以下であることを特徴とする請求項1記載の半導体装置。
  7. 前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)であり、その厚さは2nm以下であることを特徴とする請求項1記載の半導体装置。
  8. (e)前記第1半導体領域の上方領域には炭素が含まれていることを特徴とする請求項1記載の半導体装置。
  9. (f)前記第1半導体領域の上方領域は、炭素を含有するSiGe(シリコンゲルマニウム)であり、前記第1半導体領域の他の領域はSiGe(シリコンゲルマニウム)であり、
    (g)前記第2半導体領域は、SiGe(シリコンゲルマニウム)であり、
    (h)前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)であり、前記第3半導体領域の他の領域はSi(シリコン)であることを特徴とする請求項8記載の半導体装置。
  10. (a)(a1)半導体基板上に絶縁膜を介して形成され、(a2)第1開口部であって、前記絶縁膜中の第2開口部上に形成され、前記第2開口部より小さい第1開口部を有し、(a3)前記第2開口部上から突出した突出部の裏面が前記半導体基板と対向している半導体膜と、
    (b)前記半導体基板の上部の前記第2開口部内に前記半導体基板側から順に形成された第1導電型の第1半導体領域、前記第1導電型と逆導電型である第2導電型の第2半導体領域および前記第1導電型の第3半導体領域と、
    (c)前記突出部の裏面下に形成され、前記第2半導体領域と接続された第4半導体領域と、を有し
    (d)前記第3半導体領域の中間領域には炭素が含まれており、前記炭素は、前記第2半導体領域と前記第4半導体領域との接続領域以外の領域に含まれていることを特徴とする半導体装置。
  11. (e)前記第1半導体領域の中間領域には炭素が含まれていることを特徴とする請求項10記載の半導体装置。
  12. (a)(a1)半導体基板上に絶縁膜を介して形成され、(a2)第1開口部であって、前記絶縁膜中の第2開口部上に形成され、前記第2開口部より小さい第1開口部を有し、(a3)前記第2開口部上から突出した突出部の裏面が前記半導体基板と対向している半導体膜と、
    (b)前記半導体基板の上部の前記第2開口部内に前記半導体基板側から順に形成された第1導電型の第1半導体領域、前記第1導電型と逆導電型である第2導電型の第2半導体領域および前記第1導電型の第3半導体領域と、
    (c)前記突出部の裏面下に形成され、前記第2半導体領域と接続された第4半導体領域と、を有し
    (d)前記第2半導体領域の上方領域から前記第3半導体領域の下方領域にかけて炭素が含有し、前記炭素は、前記第2半導体領域と前記第4半導体領域との接続領域以外の領域に含まれていることを特徴とする半導体装置。
  13. (e)前記第1半導体領域の上方領域から前記第2半導体領域の下方領域にかけて炭素が含有していることを特徴とする請求項12記載の半導体装置。
  14. (e)前記第2半導体領域は、SiGe(シリコンゲルマニウム)であり、
    (f)前記第3半導体領域の下方領域は、炭素を含有するSiGe(シリコンゲルマニウム)であり、前記第3半導体領域の他の領域はSi(シリコン)であることを特徴とする請求項1記載の半導体装置。
  15. (a)半導体基板の上部に絶縁膜を形成し、前記絶縁膜上に第1開口部を有する半導体膜を形成する工程と、
    (b)前記第1開口部から露出した前記絶縁膜を除去し、さらに、露出した前記絶縁膜の側壁を後退させることにより、前記絶縁膜中に前記第1開口部より大きい第2開口部を形成し、前記半導体膜の裏面の一部を露出させる工程と、
    (c)(c1)前記半導体基板の上部の前記第2開口部内に第1、第2および第3半導体領域を順次成長させ、前記半導体膜の裏面から第4半導体領域を成長させる工程であって、
    (c2)前記第2半導体領域が前記第4半導体領域と接続した後に、炭素をドープしながら前記第3半導体領域の下方領域を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  16. (d)前記第2半導体領域は、n型もしくはp型不純物をドープしながら形成されることを特徴とする請求項15記載の半導体装置の製造方法。
  17. (e)前記(c)工程の後、前記第1半導体領域中に、前記半導体基板側から前記第2半導体領域と逆導電型の不純物を熱拡散させる工程と、
    (f)前記(c)工程の後、前記第3半導体領域中に、その上部から前記第2半導体領域と逆導電型の不純物を熱拡散させる工程と、
    を有することを特徴とする請求項16記載の半導体装置の製造方法。
  18. 前記(f)工程の前記不純物は、前記第3半導体領域上であって、前記導電性膜と他の絶縁膜を介し形成された他の半導体膜中から熱拡散されることを特徴とする請求項17記載の半導体装置の製造方法。
  19. (d)前記(c)工程の後、熱処理工程を有することを特徴とする請求項15記載の半導体装置の製造方法。
  20. 前記第2半導体領域は、SiGe(シリコンゲルマニウム)を成長させることにより形成され、前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)を成長させることにより形成され、前記第3半導体領域の他の領域はSi(シリコン)を成長させることにより形成されることを特徴とする請求項15記載の半導体装置の製造方法。
  21. 前記第1半導体領域は、SiGe(シリコンゲルマニウム)を成長させることにより形成されることを特徴とする請求項20記載の半導体装置の製造方法。
  22. 前記第1半導体領域は、前記第2半導体領域を構成するSiGeよりGe(ゲルマニウム)濃度が高いSiGe(シリコンゲルマニウム)を成長させることにより形成されることを特徴とする請求項21記載の半導体装置の製造方法。
  23. (d)前記半導体基板は単結晶シリコンであり、
    前記第1および第2半導体領域は、前記単結晶シリコンからSiGe(シリコンゲルマニウム)を成長させることにより形成され、
    前記第3半導体領域の下方領域は、前記SiGe(シリコンゲルマニウム)から炭素を含有するSi(シリコン)を成長させることにより形成され、
    (e)前記半導体膜は、多結晶シリコンであり、
    前記第4半導体領域は、前記多結晶シリコンから多結晶SiGe(シリコンゲルマニウム)を成長させることにより形成されることを特徴とする請求項15記載の半導体装置の製造方法。
  24. 前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)を成長させることにより形成され、その炭素濃度は前記第2半導体領域のn型もしくはp型不純物の濃度と同程度もしくはそれ以下であることを特徴とする請求項15記載の半導体装置の製造方法。
  25. 前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)を成長させることにより形成され、その厚さは2nm以下であることを特徴とする請求項15記載の半導体装置の製造方法。
  26. (c3)前記第1半導体領域の上方領域は、炭素をドープしながら形成されることを特徴とする請求項15記載の半導体装置の製造方法。
  27. 前記第1半導体領域の上方領域は、炭素を含有するSiGe(シリコンゲルマニウム)を成長させることにより形成され、前記第1半導体領域の他の領域は、SiGe(シリコンゲルマニウム)を成長させることにより形成され、
    前記第2半導体領域は、SiGe(シリコンゲルマニウム)を成長させることにより形成され、
    前記第3半導体領域の下方領域は、炭素を含有するSi(シリコン)を成長させることにより形成され、前記第3半導体領域の他の領域はSi(シリコン)を成長させることにより形成されることを特徴とする請求項26記載の半導体装置の製造方法。
  28. (a)半導体基板の上部に絶縁膜を形成し、前記絶縁膜上に第1開口部を有する半導体膜を形成する工程と、
    (b)前記第1開口部から露出した前記絶縁膜を除去し、さらに、露出した前記絶縁膜の側壁を後退させることにより、前記絶縁膜中に前記第1開口部より大きい第2開口部を形成し、前記半導体膜の裏面の一部を露出させる工程と、
    (c)(c1)前記半導体基板の上部の前記第2開口部内に第1、第2および第3半導体領域を順次成長させ、前記半導体膜の裏面から第4半導体領域を成長させる工程であって、
    (c2)前記第2半導体領域が前記第4半導体領域と接続した後に、炭素をドープしながら前記第3半導体領域の中間領域を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  29. (c3)前記第1半導体領域の中間領域は、炭素をドープしながら形成されることを特徴とする請求項28記載の半導体装置の製造方法。
  30. (a)半導体基板の上部に絶縁膜を形成し、前記絶縁膜上に第1開口部を有する半導体膜を形成する工程と、
    (b)前記第1開口部から露出した前記絶縁膜を除去し、さらに、露出した前記絶縁膜の側壁を後退させることにより、前記絶縁膜中に前記第1開口部より大きい第2開口部を形成し、前記半導体膜の裏面の一部を露出させる工程と、
    (c)(c1)前記半導体基板の上部の前記第2開口部内に第1、第2および第3半導体領域を順次成長させ、前記半導体膜の裏面から第4半導体領域を成長させる工程であって、
    (c2)前記第2半導体領域が前記第4半導体領域と接続した後に、炭素をドープしながら前記第2半導体領域の上方領域と前記第3半導体領域の下方領域を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  31. (c3)前記第1半導体領域の上方領域および前記第2半導体領域の下方領域は、炭素をドープしながら形成されることを特徴とする請求項30記載の半導体装置の製造方法。
  32. 前記第2半導体領域は、SiGe(シリコンゲルマニウム)を成長させることにより形成され、前記第3半導体領域の下方領域は、炭素を含有するSiGe(シリコンゲルマニウム)を成長させることにより形成され、前記第3半導体領域の他の領域はSi(シリコン)を成長させることにより形成されることを特徴とする請求項15記載の半導体装置の製造方法。
JP2003053565A 2003-02-28 2003-02-28 半導体装置およびその製造方法 Pending JP2004266029A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053565A JP2004266029A (ja) 2003-02-28 2003-02-28 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053565A JP2004266029A (ja) 2003-02-28 2003-02-28 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2004266029A true JP2004266029A (ja) 2004-09-24

Family

ID=33118133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053565A Pending JP2004266029A (ja) 2003-02-28 2003-02-28 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2004266029A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079495A (ko) * 2011-10-19 2014-06-26 램 리서치 아게 습식 에칭을 위한 방법, 장치 및 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079495A (ko) * 2011-10-19 2014-06-26 램 리서치 아게 습식 에칭을 위한 방법, 장치 및 조성물
KR102049125B1 (ko) * 2011-10-19 2019-11-26 램 리서치 아게 습식 에칭을 위한 방법, 장치 및 조성물

Similar Documents

Publication Publication Date Title
JP3701873B2 (ja) ヘテロ接合バイポーラ・トランジスタの作製方法
US9673294B2 (en) Bipolar transistor structure and a method of manufacturing a bipolar transistor structure
US8420493B2 (en) SOI SiGe-base lateral bipolar junction transistor
US20120235151A1 (en) Horizontal polysilicon-germanium heterojunction bipolar transistor
JP3603747B2 (ja) SiGe膜の形成方法とヘテロ接合トランジスタの製造方法、及びヘテロ接合バイポーラトランジスタ
US5962879A (en) Super self-aligned bipolar transistor
JP2005260239A (ja) 半導体構造、バイポーラトランジスタの形成方法
US8847224B2 (en) Fin-based bipolar junction transistor and method for fabrication
US9159801B2 (en) Bipolar junction transistor with multiple emitter fingers
US9053939B2 (en) Heterojunction bipolar transistor with epitaxial emitter stack to improve vertical scaling
US20140264458A1 (en) Heterojunction Bipolar Transistor having a Germanium Extrinsic Base Utilizing a Sacrificial Emitter Post
JP2001267330A (ja) バイポーラトランジスタおよびその製造方法
JP2001068479A (ja) ヘテロバイポーラトランジスタ及びその製造方法
US9209264B2 (en) Heterojunction bipolar transistor having a germanium raised extrinsic base
EP1771887A1 (en) Bipolar transistor and method of manufacturing the same
JP2008182090A (ja) 半導体装置の製造方法
JP2004266029A (ja) 半導体装置およびその製造方法
JP3456864B2 (ja) 半導体装置及びその製造方法
JP3472486B2 (ja) バイポーラトランジスタ及びその製造方法
KR100390331B1 (ko) 헤테로 구조체의 바이폴라 트랜지스터 제조 방법
US7268376B2 (en) Bipolar transistor for increasing signal transfer efficiency and method of manufacturing the same
JPWO2004064161A1 (ja) 半導体集積回路の製造方法および半導体集積回路
JP2008186899A (ja) 半導体装置、並びにバイポーラトランジスタ及びその製造方法
JP2002368004A (ja) 半導体装置およびその製造方法
CN113851526A (zh) 一种双极结型晶体管及其制备方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050315

A621 Written request for application examination

Effective date: 20060209

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330