JP2004261863A - Lead-free solder - Google Patents

Lead-free solder Download PDF

Info

Publication number
JP2004261863A
JP2004261863A JP2003112287A JP2003112287A JP2004261863A JP 2004261863 A JP2004261863 A JP 2004261863A JP 2003112287 A JP2003112287 A JP 2003112287A JP 2003112287 A JP2003112287 A JP 2003112287A JP 2004261863 A JP2004261863 A JP 2004261863A
Authority
JP
Japan
Prior art keywords
solder
lead
free solder
bga
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112287A
Other languages
Japanese (ja)
Other versions
JP4144415B2 (en
Inventor
Masazumi Amami
正純 雨海
Masako Watanabe
雅子 渡辺
Kenshiyou Murata
堅昇 村田
Yoshitaka Toyoda
良孝 豊田
Minoru Uejima
稔 上島
Tsukasa Onishi
司 大西
Takeshi Tajima
武 田島
Daisuke Soma
大輔 相馬
Takahiro Roppongi
貴弘 六本木
Hiroshi Okada
弘史 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Japan Ltd
Senju Metal Industry Co Ltd
Original Assignee
Texas Instruments Japan Ltd
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Japan Ltd, Senju Metal Industry Co Ltd filed Critical Texas Instruments Japan Ltd
Priority to JP2003112287A priority Critical patent/JP4144415B2/en
Priority to US10/824,647 priority patent/US7282175B2/en
Priority to ES04291027.3T priority patent/ES2445158T3/en
Priority to EP04291027.3A priority patent/EP1468777B1/en
Publication of JP2004261863A publication Critical patent/JP2004261863A/en
Application granted granted Critical
Publication of JP4144415B2 publication Critical patent/JP4144415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that, though Sn-Ag-Cu lead-free solder has excellent resistance against impact and heat cycle if a soldering area is large, the resistance is not sufficient if a soldered part in BGA or the like is small, and Sn-Ag-Cu lead-free solder is discolored yellow on surface in a high-temperature shelf test, and correct inspection cannot be carried out in the image processing. <P>SOLUTION: The Sn-Ag-Cu lead-free solder has a composition consisting, by mass, of 0.05 to 5% Ag, 0.01 to 0.3% Cu, 0.001 to 0.05% one or two or more kinds of P, Ge, Ga, Al and Si, and the balance Sn. In addition, transition elements, elements such as Bi, In and Zn, and elements such as Sb are added thereto to enhance heat-cycle resistance, to drop the melting point, and to enhance the impact resistance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器のはんだ付け、特に微小なはんだ付け部に適した鉛フリーはんだに関する。
【0002】
【従来の技術】
近時、電子機器の小型化、高速化等から、該電子機器に使用する電子部品も小型で多機能化されてきている。この小型化、多機能化された電子部品としてはBGA、CSP、MCM(Ball Grid Array、Chip Size Package、Multi Chip Module:以下代表してBGAという)がある。BGAは、BGA基板の裏面に多数の電極が碁盤目状位置に設置されている。BGAをプリント基板に実装する場合は、BGAの電極とプリント基板のランドとをはんだで接合することにより行われる。このBGAのプリント基板への実装時、電極毎にはんだを供給してはんだ付けしていたのでは多大な手間がかかるばかりでなく、中程にある電極に外部からはんだを供給することはできない。そこでBGAをプリント基板に実装するために、前もってBGAの電極にはんだを盛り付けておくというはんだバンプの形成がなされている。
【0003】
BGAへのはんだバンプ形成には、はんだボール、ソルダペースト等を使用する。はんだボールではんだバンプ形成する場合は、BGA電極に粘着性のフラックスを塗布し、該フラックスが塗布された電極上にはんだボールを載置する。その後、該BGA基板をリフロー炉のような加熱装置で加熱して、はんだボールを溶融することにより、電極上にはんだバンプを形成するものである。またソルダペーストでウエハーのランドにはんだバンプを形成する場合、ウエハーのランドと一致した所にランドと同程度の穴が穿設されたメタルマスクを置き、メタルマスクの上からソルダペーストをスキージで掻きならしてウエハーのランドにソルダペーストを印刷塗布する。その後、ウエハーをリフロー炉で加熱し、ソルダペーストを溶融させることにより、はんだバンプを形成する。
【0004】
ところで従来のBGAでは、はんだバンプ形成用としてSn−Pb合金のはんだボールを用いていた。このSn−Pbはんだボールは、BGAの電極に対するはんだ付け性に優れているばかりでなく、特にSn−Pbの共晶組成は、はんだ付け時にBGA素子や基板等に熱影響を与えない融点を有し、しかも電子機器の使用時にトランスやコイル等から発熱がおきても、該発熱の温度ぐらいでは溶融しないという電子機器のはんだ付けには適した融点を有している。
【0005】
しかしながらSn−Pbはんだボール使用のBGAを組み込んだ電子機器が古くなって使い勝手が悪くなったり故障したりした場合、機能アップや修理をすることなく、ほとんどが廃棄処分されていた。廃棄処分するときに省資源の見地から、再使用できるものは取り外して再使用するようにしている。例えばケースの樹脂やフレームの金属、電子部品中の貴金属等が再使用の対象である。再使用できないものとしてはんだ付けしたプリント基板がある。なぜならばプリント基板は、プリント基板のランドとはんだとが金属的に接合しており、はんだとランドとを完全に分離することが難しいからである。そこでプリント基板は破砕して埋め立て処分されていた。
【0006】
この埋め立て処分されたプリント基板に近時のpHの高い酸性雨が接触すると、Sn−Pb中のPbを溶出させ、それが地下水に混入するようになる。Pb成分を含んだ地下水を人や家畜が長年月にわたって飲用するうちに、Pbが体内に蓄積され、Pb中毒を起こすとされている。そこで最近ではPbを含まない所謂鉛フリーはんだの使用が推奨されている。
【0007】
鉛フリーはんだとは、Sn主成分にAg、Cu、Sb、In、Bi、Zn、Ni、Cr、Co、Fe、P、Ge、Ga等を適宜添加したものである。一般に使用される鉛フリーはんだのうち低中温用としてはSn−Bi系、Sn−In系、Sn−Zn系等があるが、Sn−Bi系は脆性破壊しやすい、Sn−In系は高価格、そしてSn−Zn系は経時変化しやすい、等の問題がある。また低温はんだは、電子機器に組み込んだ後、発熱部品の発熱でケース内の温度が上昇したときに、溶融したり、また溶融しないまでも接合強度が極端に低下したりする。そのため低温の鉛フリーはんだは、特殊用途だけに限られていた。
【0008】
中高温用(Sn−Pb共晶よりは融点は少し高い)の鉛フリーはんだとしては、Sn−Ag系、Sn−Cu系、Sn−Ag−Cu系等がある。Sn−Ag系およびSn−Cu系はぬれ性、耐ヒートサイクル性に問題がある。Sn−Ag系およびSn−Cu系の 問題点を解決したのがSn−Ag−Cu系であり、今日鉛フリーはんだとして最も多く使用されているはんだ合金である。
【0009】
【発明が解決しようとする課題】
Sn−Ag−Cu系鉛フリーはんだは、一般の表面実装部品やディスクリート部品のように比較的接合面積が大きい部分をはんだ付けする場合は、衝撃やヒートサイクルに遭遇しても、従来のSn−Pbはんだ合金よりも優れたものであるが、BGAのような微小電極にはんだバンプを形成した場合は問題となるものであった。
【0010】
つまり携帯電話、ノート型パソコン、ビデオカメラ、デジタルカメラなどの所謂モバイル電子機器では、外部から受ける衝撃が多く、BGAのはんだ付けにSn−Ag−Cu系鉛フリーはんだを使用したものでは、この衝撃でBGAとプリント基板のはんだ付け部が剥離し、電子機器としての機能を果たせなくなってしまうことがあった。例えば携帯電話では、ワイシャツのポケットに入れておいたものが、前屈みになったときにポケットから滑り落ちてしまったり、最近のメール機能が備わった携帯電話では、片手での操作中に落としたりする。またノート型パソコンは、鞄の中に入れて運ぶときに鞄ごと落とすことが多く、ビデオカメラやデジタルカメラは、使用中に落とすことが多い。このような衝撃が電子機器に加わったときにBGAのはんだ付け部分が剥離する。
【0011】
またBGAは、バンプ形成後に高温放置試験を行うが、この時に従来のSn−Ag−Cu系鉛フリーはんだを用いたものでは、はんだバンプが黄色く変色する(以下、黄変という)ことがあった。高温放置試験とは、BGAを組み込んだ電子機器が使用中に高温雰囲気中に置かれた場合でも、BGAが熱影響で機能劣化しないことを確認する試験である。この高温放置試験は、電子部品メーカーや電子機器のセットメーカーによって条件が異なるが、通常125℃の高温雰囲気中に12時間放置する。この高温放置試験で、はんだバンプ表面が黄変すると、はんだバンプの検査を画像処理によって行うときに、正確な検査ができず、エラーの原因となるものである。従来のSn−Ag−Cu系鉛フリーはんだボールでBGAにバンプを形成した後、高温放置試験を行うと、黄変することがあった。
【0012】
さらに電子機器では、使用時に回路に電気を通すと、コイル、パワートランジスター、抵抗等の部品から熱を発し、電子機器のケース内が昇温する。そして電子機器の使用を止めるために通電を切ると、部品からの発熱がなくなってケース内は室温に戻る。このように電子機器の使用・不使用を行うたびに、ケース内が昇温と降温を繰り返すというヒートサイクルが起こる。このヒートサイクルは、当然はんだ付け部にもおよび、はんだ付け部のはんだとプリント基板が熱膨張・収縮を起こす。ところがはんだ付け部における金属のはんだと樹脂のプリント基板では熱膨張率が大いに相違するため、昇温時には、はんだ付け部のはんだが熱膨張で大きく伸びようとするが、それよりも熱膨張率の小さなプリント基板がはんだの伸びを拘束するようになる。そして熱膨張で大きく伸びていたはんだが降温時に大きく縮もうとしても、今度は、その縮みをプリント基板が拘束するようになる。そのため電子機器の使用・不使用により、はんだ付け部がヒートサイクルに曝され、はんだは伸びと縮みを拘束するストレスにより、金属疲労を起こして、ついにはヒビ割れや破壊となり、はんだ付け部が剥離する。Sn−Ag−Cu系鉛フリーはんだは、一般使用ではSn−Pbはんだよりも格段に耐ヒートサイクル性に優れているが、はんだ付け部が微小なBGAのはんだ付けにおいては、耐ヒートサイクルが充分ではなかった。
【0013】
本発明は、耐衝撃性に優れ、しかもバンプ形成時に黄変しないBGA基板へのはんだバンプ形成用の鉛フリーはんだであり、さらに耐ヒートサイクル性を改善した鉛フリーはんだを提供することにある。
【0014】
【課題を解決するための手段】
本発明者らは、Sn−Ag−Cu系鉛フリーはんだにおいて、耐衝撃性向上と黄変防止について鋭意研究を重ねた結果、微量のCuとP、Ge、Ga、Al、Siの1種以上を共存させると、これらを解決でき、またSbの添加が耐衝撃性向上に効果があり、さらに該組成に遷移元素を添加すると耐ヒートサイクル性が改善されること、等を見いだして本発明を完成させた。
【0015】
本発明は、Ag0.05〜5質量%、Cu0.01〜0.3質量%、およびP、Ge、Ga、Al、Siのいずれか1種または2種以上を合計で0.001〜0.05質量%、残部Snからなることを特徴とする鉛フリーはんだである。
【0016】
Sn主成分の鉛フリーはんだにおいて、Agは、はんだ付け性を向上させる効果がある。一般に広い面積を有するはんだ付け部、例えばプリント基板のはんだ付け部のような広いはんだ付け部に対しては、Agは0.3質量%以上添加されていれば、はんだ付け部によく広がって充分なはんだ付け部となる。しかしながら、BGAでは使用するはんだボールが直径0.25〜0.76mmの小径であり、しかも該はんだボールをはんだ付けするバンプ形成部の直径が使用するはんだボールの直径よりも小さいため、はんだ付け時に、はんだが充分なはんだ付け性を有していなくても、はんだはバンプ形成部全域に完全に付着する。従って、バンプ形成用に用いる鉛フリーはんだとしては、Agの添加量が0.05質量%以上あればバンプ形成部に充分に濡れて確実なはんだ付け部を形成する。しかるにAgの添加量が5質量%を超えると溶融温度が急激に高くなって、バンプ形成時にBGA素子を熱損傷させてしまう。
【0017】
前述のようにSn−Ag−Cu系鉛フリーはんだは、一般の表面実装部品や長いリードのあるディスクリート部品をはんだ付けした場合、耐衝撃性に優れている。つまりはんだ付け面積が或る程度大きい場合は、電子機器を落としたぐらいでは、はんだ付け部が剥離するようなことはないが、はんだ付け面積が小さいBGAでは、電子機器を落下させたような衝撃で剥離することがある。
【0018】
本発明において、P、Ge、Ga、Al、Siの1種または2種以上とCuを共存させると、バンプ形成時にSnと他の金属、例えばはんだ付け部(電極やランド)の材料であるCuやNi等とで形成される金属間化合物の成長を抑制して落下衝撃ではんだ付け部が剥離するのを防ぐ効果を奏するようになる。P、Ge、Ga、Al、Si等の存在下において、Cuの含有量が0.01質量%よりも少ないと金属間化合物抑制効果が現れない。Cuはボイド発生の原因となるものであり、Cuの添加量にともなってボイドの発生も多くなるが、0.3質量%までの添加であればボイドが増えた分以上に金属間化合物抑制効果の方が強く現れ、結果的には落下衝撃に対して強くなる。従って、本発明ではCuの添加量を0.01〜0.3質量%とした。
【0019】
またSn主成分の鉛フリーはんだにおいてP、Ge、Ga、Al、Siは、はんだバンプ形成時に加熱されることによりはんだバンプ表面が黄変するのを防止する効果もある。P、Ge、Ga、Al、Siの1種または2種以上の合計が0.001質量%未満では、この効果が現れず、しかるに0.05質量%よりも多くなるとはんだ付け性を害するようになる。
【0020】
はんだ付け面積の大きい部分をSn−Ag−Cu系鉛フリーはんだではんだ付けしたものは、耐ヒートサイクル性に優れているが、BGAのようにはんだ付け部が微小なものでは、長年月にわたってヒートサイクルに曝されると、はんだ付け部にヒビ割れや破壊が発生することがある。本発明では、Sn−Ag−Cu系に、さらにCr、Mn、Fe、Co、Ni、Zr、Mo、Pd、W、Pt、Au、La等の遷移元素の1種または2種以上を微量添加して耐ヒートサイクル性を向上させることもできる。前述のように、電子機器では使用・不使用を繰り返すことにより、はんだ付け部にヒートサイクルがかかるが、Sn−Ag−Cu−Pに微量の遷移元素を1種または2種以上添加すると耐ヒートサイクル性を向上させる効果がある。遷移元素の添加量が0.1質量%を超えると融点が高くなるばかりでなく、はんだ付け性を阻害するようになる。耐ヒートサイクル性向上効果が現れるのは、遷移元素の1種または2種以上が0.001質量%以上であり、好適には0.005〜0.05質量%である。
【0021】
さらにまた本発明は、融点を下げるために上記組成にBi、In、Znのいずれか1種または2種以上を5質量%以下添加することもできる。これらの融点降下元素は5質量%よりも多くなると、これらとSnの二元系の低い固相線温度、例えばSn−Bi系の139℃、Sn−In系の117℃、Sn−Zn系の199℃が現れてしまい、耐熱性に問題がでてきてしまう。
【0022】
そしてさらにまた本発明は、Sbを1質量%以下添加することもできる。Sbの添加は、耐衝撃性向上に効果がある。Sbの添加量が1質量%を超えると、脆性が現れるようになり、かえって耐衝撃性を弱めることになる。
【0023】
実施例と比較例を表1に示す。
【0024】
【表1】

Figure 2004261863
【0025】
表1の説明
耐衝撃:はんだバンプではんだ付けしたCSP基板とプリント基板間に落下による衝撃を与えて、はんだ付け部が剥離するまでの落下回数を測定する。
(衝撃試験の工程は以下のとおりである)
▲1▼直径0.25mmの電極が150個設置されたCSP用基板(大きさ10×10mm)にソルダペーストを印刷塗布し、該塗布部に直径0.3mmのはんだボールを載置する。
▲2▼はんだボールが載置されたCSP用基板をリフロー炉で加熱して電極にはんだバンプを形成する。
▲3▼はんだバンプが形成されたCSP用基板を30×120mmのガラエポのプリント基板の中央に搭載し、リフロー炉で加熱してCSP用基板をプリント基板にはんだ付けする。
▲4▼CSP用基板がはんだ付けされたプリント基板の両端を、外形40×200×80mmのステンレス製で下部中央に三角形の衝突部が設けられた枠状治具上に治具と間隔をあけて固定する。
▲5▼治具を500mmの高さから落下させてプリント基板に衝撃を与える。このとき両端を治具に固定されたプリント基板は、中央が振動し、プリント基板とCSP用基板のはんだ付け部は、振動による衝撃を受ける。この落下試験でCSP用基板が剥離するまでの落下回数を測定する。
【0026】
黄変:高温加熱後のはんだ表面の黄変を目視で観察する。
(黄変試験の工程は以下のとおりである)
▲1▼CSP用基板に直径0.3mmのはんだボールを載置する。
▲2▼CSP用基板に載置したはんだボールをリフロー炉で溶融してはんだバンプを形成する。
▲3▼はんだバンプが形成されたCSP用基板を150℃の恒温槽中に24時間放置後、目視にて黄変状態を観察する。黄変がほんとんどないものを無、黄変が顕著なものを有とする。
【0027】
耐ヒートサイクル:電子部品を実装したプリント基板にヒートサイクルをかけて、はんだ付け部の破壊が発生するまでの回数を測定する。
(ヒートサイクル試験の工程は以下のとおりである)
▲1▼直径0.25mmの電極が150個設置されたCSP用基板(大きさ10×10mm)にソルダペーストを印刷塗布し、該塗布部に直径0.3mmのはんだボールを載置する。
▲2▼はんだボールが載置されたCSP用基板をリフロー炉で加熱して電極にはんだバンプを形成する。
▲3▼はんだバンプが形成されたCSP用基板を120×140mmのガラエポのプリント基板に搭載し、リフロー炉で加熱してCSP用基板をプリント基板にはんだ付けする。
▲4▼CSP用基板がはんだ付けされたプリント基板を、−40℃に10分間、+120℃に10分間それぞれ曝すというヒートサイクルをかけて、はんだ付け部にヒビ割れや破壊が発生して導通不良になるまでのサイクル数を測定する。
【0028】
【発明の効果】
以上説明したように、本発明の鉛フリーはんだで形成したはんだバンプは、モバイル電子機器が外的衝撃を受けてもBGAのはんだ付け部が容易に剥離しないため、BGAを多く使用しているモバイル電子機器においては信頼性が向上するものであり、また高温放置試験においても黄変しないことから、画像検査が正確に行えるという従来にない優れた効果を有している。さらにまた本発明の鉛フリーはんだは、BGAの微小なはんだ付け部において耐ヒートサイクル性が向上しているため、長年月の使用・不使用の繰り返しでも、はんだ付け部が破壊しにくいという長寿命化も図れるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lead-free solder suitable for soldering electronic equipment, particularly for a fine soldered portion.
[0002]
[Prior art]
In recent years, due to miniaturization and high speed of electronic devices, electronic components used in the electronic devices have also become smaller and have more functions. The miniaturized and multifunctional electronic components include BGA, CSP, and MCM (Ball Grid Array, Chip Size Package, Multi Chip Module: hereinafter referred to as BGA). In the BGA, a large number of electrodes are provided at grid positions on the back surface of the BGA substrate. When mounting a BGA on a printed circuit board, the BGA electrodes and the lands on the printed circuit board are joined by soldering. At the time of mounting the BGA on the printed circuit board, if solder is supplied for each electrode and soldering is performed, not only a great deal of labor is required but also it is not possible to supply solder from the outside to the middle electrode. Therefore, in order to mount the BGA on a printed circuit board, a solder bump is formed in which solder is applied to the electrodes of the BGA in advance.
[0003]
Solder balls, solder paste, and the like are used to form solder bumps on the BGA. When a solder bump is formed by a solder ball, an adhesive flux is applied to the BGA electrode, and the solder ball is placed on the electrode to which the flux is applied. Thereafter, the BGA substrate is heated by a heating device such as a reflow furnace to melt the solder balls, thereby forming solder bumps on the electrodes. Also, when forming solder bumps on the land of the wafer with solder paste, place a metal mask with holes of the same size as the land at the location that matches the land of the wafer, and scrape the solder paste from above the metal mask with a squeegee. Then, solder paste is printed and applied to the land of the wafer. Thereafter, the wafer is heated in a reflow furnace to melt the solder paste, thereby forming solder bumps.
[0004]
By the way, in the conventional BGA, a solder ball of Sn—Pb alloy is used for forming a solder bump. This Sn-Pb solder ball not only has excellent solderability to the BGA electrode, but also has a melting point that does not have a thermal effect on the BGA element or the substrate during the soldering, in particular, the eutectic composition of Sn-Pb. In addition, even when heat is generated from a transformer, a coil, or the like when the electronic device is used, the device has a melting point suitable for soldering the electronic device such that it does not melt at the temperature of the heat generation.
[0005]
However, when an electronic device incorporating a BGA using a Sn-Pb solder ball becomes old and becomes inconvenient or breaks down, most of the electronic device has been disposed of without any functional enhancement or repair. At the time of disposal, from the viewpoint of resource saving, things that can be reused are removed and reused. For example, the resin of the case, the metal of the frame, and the noble metal in the electronic components are the objects to be reused. There is a printed circuit board that cannot be reused. This is because, in the printed circuit board, the land of the printed circuit board and the solder are metallically joined, and it is difficult to completely separate the solder and the land. Therefore, the printed circuit boards were crushed and landfilled.
[0006]
When acid rain with a high pH recently comes into contact with the landfilled printed circuit board, Pb in Sn-Pb is eluted, and the Pb is mixed into groundwater. It is said that Pb is accumulated in the body and causes Pb poisoning while humans and livestock drink groundwater containing the Pb component for many months. Therefore, recently, use of a so-called lead-free solder containing no Pb has been recommended.
[0007]
The lead-free solder is one in which Ag, Cu, Sb, In, Bi, Zn, Ni, Cr, Co, Fe, P, Ge, Ga, and the like are appropriately added to the Sn main component. Among the commonly used lead-free solders, there are Sn-Bi-based, Sn-In-based, Sn-Zn-based, etc. for low and medium temperature applications, but Sn-Bi-based is liable to brittle fracture, and Sn-In-based is expensive. In addition, the Sn—Zn system has a problem that it easily changes with time. In addition, when the low-temperature solder is incorporated into an electronic device, when the temperature inside the case rises due to the heat generated by the heat-generating component, the low-temperature solder melts or the bonding strength is extremely reduced even if it is not melted. Therefore, low-temperature lead-free solder has been limited to special applications.
[0008]
Examples of the lead-free solder for medium and high temperatures (which has a slightly higher melting point than the Sn-Pb eutectic) include Sn-Ag, Sn-Cu, and Sn-Ag-Cu. Sn-Ag type and Sn-Cu type have problems in wettability and heat cycle resistance. The Sn-Ag-Cu system solves the problems of the Sn-Ag system and the Sn-Cu system, and is a solder alloy most frequently used as a lead-free solder today.
[0009]
[Problems to be solved by the invention]
The Sn-Ag-Cu-based lead-free solder is a conventional Sn-Ag-Cu-based solder when soldering a portion having a relatively large bonding area such as a general surface mount component or a discrete component, even when encountering an impact or a heat cycle. Although it is superior to a Pb solder alloy, it has a problem when a solder bump is formed on a minute electrode such as BGA.
[0010]
That is, so-called mobile electronic devices such as a mobile phone, a notebook computer, a video camera, and a digital camera receive a large amount of external impact. In the case of using Sn-Ag-Cu-based lead-free solder for BGA soldering, As a result, the soldered portion between the BGA and the printed circuit board may be peeled off, and may not be able to function as an electronic device. For example, on a mobile phone, what is in a shirt pocket may slip out of the pocket when leaning forward, or drop on a recent mobile phone with an email function during one-handed operation . In addition, a laptop computer is often dropped when it is put in a bag, and a video camera or a digital camera is often dropped during use. When such an impact is applied to the electronic device, the soldered portion of the BGA peels off.
[0011]
In the case of BGA, a high-temperature storage test is performed after the bumps are formed. At this time, when the conventional Sn-Ag-Cu-based lead-free solder is used, the solder bumps may turn yellow (hereinafter, referred to as yellowing). . The high-temperature storage test is a test for confirming that the BGA does not deteriorate in function due to heat even when the electronic device incorporating the BGA is placed in a high-temperature atmosphere during use. The conditions of this high-temperature storage test are usually 12 hours in a high-temperature atmosphere of 125 ° C., although the conditions vary depending on the electronic component manufacturer and the set manufacturer of the electronic device. If the surface of the solder bumps turns yellow in this high-temperature storage test, accurate inspection cannot be performed when the solder bumps are inspected by image processing, causing an error. After a bump was formed on a BGA with a conventional Sn-Ag-Cu-based lead-free solder ball, a high-temperature storage test was performed.
[0012]
Further, in an electronic device, when electricity is passed through a circuit at the time of use, heat is generated from components such as a coil, a power transistor, and a resistor, and the temperature inside the case of the electronic device rises. Then, when the power is turned off to stop using the electronic device, heat generation from the components is stopped and the inside of the case returns to room temperature. Thus, each time the electronic device is used or not used, a heat cycle occurs in which the temperature inside the case repeatedly rises and falls. This heat cycle naturally extends to the soldered portion, and the solder in the soldered portion and the printed circuit board undergo thermal expansion and contraction. However, since the coefficient of thermal expansion between the metal solder and the resin printed circuit board in the soldered part is significantly different, the solder in the soldered part tends to expand significantly due to the thermal expansion when the temperature rises. A small printed circuit board restrains the elongation of the solder. Then, even if the solder that has greatly expanded due to thermal expansion attempts to shrink greatly when the temperature is lowered, the shrinkage is now restricted by the printed circuit board. Due to the use or non-use of electronic equipment, the soldered part is exposed to heat cycles, and the solder causes metal fatigue due to stress that restrains elongation and shrinkage, eventually cracks and breaks, and the soldered part peels I do. Sn-Ag-Cu-based lead-free solder has much better heat cycle resistance than Sn-Pb solder in general use, but has sufficient heat cycle resistance in BGA soldering where the soldering part is minute. Was not.
[0013]
An object of the present invention is to provide a lead-free solder for forming a solder bump on a BGA substrate which is excellent in impact resistance and does not turn yellow when forming a bump, and which further has improved heat cycle resistance.
[0014]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on improvement of impact resistance and prevention of yellowing in Sn-Ag-Cu-based lead-free solder. As a result, trace amounts of Cu and one or more of P, Ge, Ga, Al, and Si were obtained. Coexistence, these problems can be solved, and addition of Sb is effective in improving impact resistance, and furthermore, addition of a transition element to the composition improves heat cycle resistance. Completed.
[0015]
In the present invention, 0.05 to 5% by mass of Ag, 0.01 to 0.3% by mass of Cu, and one or more of P, Ge, Ga, Al, and Si are used in a total of 0.001 to 0. It is a lead-free solder characterized by comprising 05 mass% and the balance Sn.
[0016]
In the lead-free solder containing Sn as a main component, Ag has an effect of improving solderability. In general, for a soldering portion having a large area, for example, a soldering portion of a printed circuit board, if Ag is added in an amount of 0.3% by mass or more, it spreads well to the soldering portion and is sufficiently sufficient. It becomes a good soldering part. However, in the BGA, the solder ball used has a small diameter of 0.25 to 0.76 mm, and the diameter of the bump forming portion for soldering the solder ball is smaller than the diameter of the solder ball used. Even if the solder does not have sufficient solderability, the solder completely adheres to the entire area where the bump is formed. Therefore, as the lead-free solder used for bump formation, if the amount of Ag added is 0.05% by mass or more, the bump formation portion is sufficiently wet and a reliable soldered portion is formed. However, if the amount of Ag exceeds 5% by mass, the melting temperature rises sharply, and the BGA element is thermally damaged during bump formation.
[0017]
As described above, Sn-Ag-Cu-based lead-free solder has excellent impact resistance when a general surface-mounted component or a discrete component having long leads is soldered. In other words, if the soldering area is large to some extent, the soldered part will not peel off just as if the electronic device was dropped. May peel off.
[0018]
In the present invention, when one or more of P, Ge, Ga, Al, and Si coexist with Cu, Sn and another metal such as Cu, which is a material of a soldered portion (electrode or land), are formed at the time of bump formation. The effect of suppressing the growth of the intermetallic compound formed with Ni and Ni or the like and preventing the soldered portion from peeling off due to a drop impact is exhibited. If the Cu content is less than 0.01% by mass in the presence of P, Ge, Ga, Al, Si, etc., the effect of suppressing intermetallic compounds does not appear. Cu causes voids, and the amount of voids increases with the addition amount of Cu. However, if the amount is up to 0.3% by mass, the effect of suppressing intermetallic compounds is more than the increase in voids. Appear stronger, and as a result, become stronger against a drop impact. Therefore, in the present invention, the addition amount of Cu is set to 0.01 to 0.3% by mass.
[0019]
P, Ge, Ga, Al, and Si in the lead-free solder containing Sn as a main component also have an effect of preventing the surface of the solder bump from yellowing due to heating during the formation of the solder bump. If the total of one or more of P, Ge, Ga, Al, and Si is less than 0.001% by mass, this effect is not exhibited. If the total is more than 0.05% by mass, solderability is impaired. Become.
[0020]
Solder parts with a large soldering area soldered with Sn-Ag-Cu-based lead-free solder have excellent heat cycle resistance. Exposure to cycles may lead to cracks and breaks in the soldered area. In the present invention, a trace amount of one or more transition elements such as Cr, Mn, Fe, Co, Ni, Zr, Mo, Pd, W, Pt, Au, and La are further added to the Sn-Ag-Cu system. Thus, the heat cycle resistance can be improved. As described above, in electronic equipment, repeated use / non-use causes a heat cycle to be applied to the soldered portion. However, when one or more trace elements are added to Sn-Ag-Cu-P, heat resistance is reduced. This has the effect of improving cycleability. If the added amount of the transition element exceeds 0.1% by mass, not only the melting point is increased but also the solderability is impaired. The effect of improving the heat cycle resistance appears when one or more transition elements are 0.001% by mass or more, preferably 0.005 to 0.05% by mass.
[0021]
Further, in the present invention, any one or more of Bi, In, and Zn may be added to the above composition in an amount of 5% by mass or less to lower the melting point. If these melting point depressing elements are more than 5% by mass, the binary solid phase temperature of the binary system of Sn and Sn, for example, 139 ° C. for Sn—Bi system, 117 ° C. for Sn—In system, and Sn—Zn based system 199 ° C. appears, which causes a problem in heat resistance.
[0022]
In the present invention, Sb may be added in an amount of 1% by mass or less. Addition of Sb is effective in improving impact resistance. If the added amount of Sb exceeds 1% by mass, brittleness will appear, and the impact resistance will be weakened.
[0023]
Table 1 shows examples and comparative examples.
[0024]
[Table 1]
Figure 2004261863
[0025]
Description of Table 1 Impact resistance: A drop impact is applied between the CSP board and the printed board which are soldered with the solder bumps, and the number of drops until the soldered portion peels is measured.
(The steps of the impact test are as follows)
(1) A solder paste having a diameter of 0.3 mm is placed on a CSP substrate (size: 10 × 10 mm) on which 150 electrodes having a diameter of 0.25 mm are printed by printing.
(2) The CSP substrate on which the solder balls are mounted is heated in a reflow furnace to form solder bumps on the electrodes.
{Circle around (3)} The CSP substrate on which the solder bumps are formed is mounted at the center of a 30 × 120 mm glass epoxy printed substrate, and heated in a reflow furnace to solder the CSP substrate to the printed substrate.
{Circle around (4)} The both ends of the printed circuit board to which the CSP board is soldered are spaced apart from the jig on a frame jig made of stainless steel having an outer shape of 40 × 200 × 80 mm and provided with a triangular collision portion in the lower center. And fix it.
(5) The jig is dropped from a height of 500 mm to give an impact to the printed circuit board. At this time, the center of the printed circuit board whose both ends are fixed to the jig vibrates, and the soldered portion between the printed circuit board and the CSP board receives an impact due to the vibration. In this drop test, the number of drops until the CSP substrate peels is measured.
[0026]
Yellowing: Yellowing of the solder surface after high-temperature heating is visually observed.
(The process of the yellowing test is as follows)
(1) A solder ball having a diameter of 0.3 mm is placed on the CSP substrate.
(2) The solder balls mounted on the CSP substrate are melted in a reflow furnace to form solder bumps.
{Circle around (3)} After the CSP substrate on which the solder bumps are formed is left in a thermostat at 150 ° C. for 24 hours, the yellowing state is visually observed. Those with little or no yellowing are considered to have no yellowing.
[0027]
Heat cycle resistance: A heat cycle is applied to a printed circuit board on which electronic components are mounted, and the number of times until breakage of a soldered portion occurs is measured.
(The steps of the heat cycle test are as follows)
(1) A solder paste having a diameter of 0.3 mm is placed on a CSP substrate (size: 10 × 10 mm) on which 150 electrodes having a diameter of 0.25 mm are printed by printing.
(2) The CSP substrate on which the solder balls are mounted is heated in a reflow furnace to form solder bumps on the electrodes.
{Circle around (3)} The CSP substrate on which the solder bumps are formed is mounted on a 120 × 140 mm glass epoxy printed circuit board, and heated in a reflow furnace to solder the CSP substrate to the printed circuit board.
(4) The printed circuit board to which the CSP board is soldered is subjected to a heat cycle of exposing to -40 ° C. for 10 minutes and to + 120 ° C. for 10 minutes. Measure the number of cycles until.
[0028]
【The invention's effect】
As described above, since the solder bumps formed by the lead-free solder of the present invention do not easily peel off the soldered portions of the BGA even when the mobile electronic device is subjected to an external impact, the mobile bumps using a large amount of BGA In an electronic device, reliability is improved, and since it does not turn yellow even in a high-temperature storage test, it has an unprecedented excellent effect that image inspection can be performed accurately. Furthermore, since the lead-free solder of the present invention has improved heat cycle resistance in the micro soldered portion of the BGA, the soldered portion is less likely to be broken even after repeated use or nonuse for many months. Can also be achieved.

Claims (4)

Ag0.05〜5質量%、Cu0.01〜0.3質量%、およびP、Ge、Ga、Al、Siのいずれか1種または2種以上を合計で0.001〜0.05質量%、残部Snからなることを特徴とする鉛フリーはんだ。Ag 0.05 to 5% by mass, Cu 0.01 to 0.3% by mass, and a total of 0.001 to 0.05% by mass of any one or more of P, Ge, Ga, Al, and Si; A lead-free solder comprising the remainder Sn. 耐ヒートサイクル性向上として遷移元素の1種または2種以上が0.1質量%以下添加されていることを特徴とする請求項1記載の鉛フリーはんだ。The lead-free solder according to claim 1, wherein one or more transition elements are added in an amount of 0.1% by mass or less to improve heat cycle resistance. 融点降下としてBi、In、Znのいずれか1種または2種以上が5質量%以下添加されていることを特徴とする請求項1または2に記載の鉛フリーはんだ。The lead-free solder according to claim 1, wherein at least one of Bi, In, and Zn is added in an amount of 5% by mass or less as a melting point drop. 耐衝撃性向上としてSbが1質量%以下添加されていることを特徴とする請求項1から3のいずれかに記載の鉛フリーはんだ。The lead-free solder according to any one of claims 1 to 3, wherein Sb is added in an amount of 1% by mass or less to improve impact resistance.
JP2003112287A 2003-01-07 2003-04-17 Lead-free solder Expired - Lifetime JP4144415B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003112287A JP4144415B2 (en) 2003-01-07 2003-04-17 Lead-free solder
US10/824,647 US7282175B2 (en) 2003-04-17 2004-04-15 Lead-free solder
ES04291027.3T ES2445158T3 (en) 2003-04-17 2004-04-16 Lead free welding
EP04291027.3A EP1468777B1 (en) 2003-04-17 2004-04-16 Lead free solder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003000788 2003-01-07
JP2003112287A JP4144415B2 (en) 2003-01-07 2003-04-17 Lead-free solder

Publications (2)

Publication Number Publication Date
JP2004261863A true JP2004261863A (en) 2004-09-24
JP4144415B2 JP4144415B2 (en) 2008-09-03

Family

ID=33133491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112287A Expired - Lifetime JP4144415B2 (en) 2003-01-07 2003-04-17 Lead-free solder

Country Status (1)

Country Link
JP (1) JP4144415B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049024A1 (en) * 2004-11-01 2006-05-11 Senju Metal Industry Co., Ltd High temperature lead-free solder and package for storing semiconductor element
WO2006129713A1 (en) * 2005-06-03 2006-12-07 Senju Metal Industry Co., Ltd. Lead-free solder alloy
WO2007023288A2 (en) * 2005-08-24 2007-03-01 Fry's Metals Inc. Solder alloy
CN1313240C (en) * 2005-05-09 2007-05-02 天津大学 Shape memory Co-Zn-Al alloy grains reinforced composite Sn-Ag welding material and its prepn process
JP2007111715A (en) * 2005-10-19 2007-05-10 Nihon Almit Co Ltd Solder alloy
WO2007092762A2 (en) 2006-02-03 2007-08-16 Texas Instruments Incorporated Semiconductor device with improved solder joint
JP2007299722A (en) * 2006-04-06 2007-11-15 Hitachi Cable Ltd Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy
CN100364713C (en) * 2005-12-12 2008-01-30 黄德欢 Ag-Al-Cu-Ni-Sn series lead-free soldering tin
JP2008030047A (en) * 2006-07-26 2008-02-14 Eishin Kogyo Kk Unleaded solder
JP2008031550A (en) * 2006-06-26 2008-02-14 Hitachi Cable Ltd Pb-FREE Sn-BASED MATERIAL, AND CONDUCTOR FOR ELECTRIC WIRING, TERMINAL-CONNECTING SECTION AND Pb-FREE SOLDER ALLOY
JP2008093701A (en) * 2006-10-12 2008-04-24 Fuji Electric Holdings Co Ltd Solder alloy
CN100396426C (en) * 2005-12-12 2008-06-25 黄德欢 Al-Cu-Sn series lead-free soldering tin
KR100885543B1 (en) * 2004-10-22 2009-02-26 엠케이전자 주식회사 Pb-free solder alloy
WO2009028147A1 (en) * 2007-08-24 2009-03-05 Kabushiki Kaisha Toshiba Bonding composition
KR100887357B1 (en) * 2006-02-14 2009-03-06 주식회사 에코조인 Pb free solder Composition for high temperature system, electronic equipment and PCB with the same
KR100887358B1 (en) * 2006-02-14 2009-03-06 주식회사 에코조인 Diluent Pb free solder Composition, electronic equipment and PCB with the same
WO2009051240A1 (en) * 2007-10-17 2009-04-23 Ishikawa Metal, Co., Ltd. Lead-free soft solder
KR100904653B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder composition for wave and deeping, electronic equipment and PCB with the same
KR100904654B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904656B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904657B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904658B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904651B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904652B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
JP2009248156A (en) * 2008-04-08 2009-10-29 Hitachi Metals Ltd Solder ball, solder layer, solder bump, and method for forming the same
US7750475B2 (en) 2003-10-07 2010-07-06 Senju Metal Industry Co., Ltd. Lead-free solder ball
WO2010119836A1 (en) * 2009-04-14 2010-10-21 新日鉄マテリアルズ株式会社 Lead-free solder alloy, solder ball, and electronic member comprising solder bump
WO2011102034A1 (en) * 2010-02-16 2011-08-25 株式会社タムラ製作所 Lead-free solder alloy, and solder paste and packaged components using same
WO2012141331A1 (en) * 2011-04-15 2012-10-18 株式会社日本スペリア社 Lead-free solder alloy
CN103008903A (en) * 2007-08-14 2013-04-03 株式会社爱科草英 Lead-free solder combination and printed circuit board and electronic device provided with lead-free solder combination
KR101283580B1 (en) 2011-12-14 2013-07-05 엠케이전자 주식회사 Tin-based solder ball and semiconductor package including the same
JP5238088B1 (en) * 2012-06-29 2013-07-17 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
JP5324007B1 (en) * 2012-06-29 2013-10-23 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
US8641964B2 (en) 2005-08-24 2014-02-04 Fry's Metals, Inc. Solder alloy
US9221131B2 (en) * 2004-12-01 2015-12-29 Alpha Metals, Inc. Solder alloy
JP2016508878A (en) * 2013-01-22 2016-03-24 馬▲ジュ▼生MA, Jusheng Solder alloy not containing Pb
WO2016152259A1 (en) * 2015-03-24 2016-09-29 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
WO2016185672A1 (en) * 2015-05-20 2016-11-24 日本電気株式会社 Solder alloy
WO2016185673A1 (en) * 2015-05-20 2016-11-24 日本電気株式会社 Solder alloy
JP2017064781A (en) * 2015-10-01 2017-04-06 株式会社Joy・zu−company Lead-free solder alloy
JP2017113756A (en) * 2015-12-21 2017-06-29 住友金属鉱山株式会社 SOLDER ALLOY INCLUDING Sn EXCELLENT IN SURFACE PROPERTY AS MAIN COMPONENT, AND SELECTION METHOD THEREFOR
JP2017159314A (en) * 2016-03-08 2017-09-14 千住金属工業株式会社 Solder alloy, solder ball, chip solder, solder paste and solder joint
KR20190040128A (en) * 2016-05-06 2019-04-17 알파 어셈블리 솔루션스 인크. High reliability lead-free solder alloy
US10442037B2 (en) 2010-04-23 2019-10-15 Iowa State University Research Foundation, Inc. Pb-free Sn—Ag—Cu—Al or Sn—Cu—Al solder
JP2020015054A (en) * 2018-07-24 2020-01-30 千住金属工業株式会社 Solder alloy and solder joint
JP2020075280A (en) * 2018-11-09 2020-05-21 千住金属工業株式会社 Solder ball, solder joint and joining method
KR20220025110A (en) * 2019-08-09 2022-03-03 센주긴조쿠고교 가부시키가이샤 Lead free and antimony free solder alloys, solder balls, ball grid arrays and solder joints
KR20220143112A (en) * 2020-03-19 2022-10-24 센주긴조쿠고교 가부시키가이샤 Solder alloys, solder balls and solder joints

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912742B1 (en) 2020-02-14 2021-08-04 千住金属工業株式会社 Lead-free and antimony-free solder alloys, solder balls, and solder fittings
JP6928284B1 (en) 2020-02-14 2021-09-01 千住金属工業株式会社 Lead-free and antimony-free solder alloys, solder balls, and solder fittings
EP4249165A4 (en) 2020-11-19 2024-05-15 Senju Metal Industry Co., Ltd. Solder alloy, solder ball and solder joint

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106075A (en) * 1996-06-13 1998-01-13 Nippon Handa Kk Lead-free solder alloy
JPH1034376A (en) * 1996-07-26 1998-02-10 Nippon Genma:Kk Lead-free solder
JPH10225790A (en) * 1997-02-15 1998-08-25 Samsung Electron Co Ltd Lead-free alloy for soldering
JPH1158066A (en) * 1997-08-07 1999-03-02 Fuji Electric Co Ltd Solder alloy
JPH1177366A (en) * 1997-07-16 1999-03-23 Fuji Electric Co Ltd Solder
JP2000015476A (en) * 1998-06-29 2000-01-18 Ishikawa Kinzoku Kk Lead-free solder
JP2000280090A (en) * 1999-01-29 2000-10-10 Fuji Electric Co Ltd Solder alloy
JP2000288772A (en) * 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
JP2001058286A (en) * 1999-08-20 2001-03-06 Senju Metal Ind Co Ltd Solder paste for joining chip part
JP2001138088A (en) * 1999-11-18 2001-05-22 Nippon Steel Corp Solder alloy, solder ball and electric member having solder bump
JP2001358458A (en) * 2000-06-12 2001-12-26 Hitachi Ltd Electronic equipment having lead-free solder connection
JP2002018589A (en) * 2000-07-03 2002-01-22 Senju Metal Ind Co Ltd Lead-free solder alloy
JP2002020807A (en) * 2000-07-03 2002-01-23 Hitachi Metals Ltd Solder ball and its production method
JP2002239780A (en) * 2001-02-09 2002-08-28 Nippon Steel Corp Solder alloy, solder ball and electronic member having solder bump
JP2003266193A (en) * 2002-01-10 2003-09-24 Senju Metal Ind Co Ltd Lead-free solder for feeding into solder bath
JP2003326386A (en) * 2002-05-13 2003-11-18 Matsushita Electric Ind Co Ltd Leadless solder alloy

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106075A (en) * 1996-06-13 1998-01-13 Nippon Handa Kk Lead-free solder alloy
JPH1034376A (en) * 1996-07-26 1998-02-10 Nippon Genma:Kk Lead-free solder
JPH10225790A (en) * 1997-02-15 1998-08-25 Samsung Electron Co Ltd Lead-free alloy for soldering
JPH1177366A (en) * 1997-07-16 1999-03-23 Fuji Electric Co Ltd Solder
JPH1158066A (en) * 1997-08-07 1999-03-02 Fuji Electric Co Ltd Solder alloy
JP2000015476A (en) * 1998-06-29 2000-01-18 Ishikawa Kinzoku Kk Lead-free solder
JP2000280090A (en) * 1999-01-29 2000-10-10 Fuji Electric Co Ltd Solder alloy
JP2000288772A (en) * 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
JP2001058286A (en) * 1999-08-20 2001-03-06 Senju Metal Ind Co Ltd Solder paste for joining chip part
JP2001138088A (en) * 1999-11-18 2001-05-22 Nippon Steel Corp Solder alloy, solder ball and electric member having solder bump
JP2001358458A (en) * 2000-06-12 2001-12-26 Hitachi Ltd Electronic equipment having lead-free solder connection
JP2002018589A (en) * 2000-07-03 2002-01-22 Senju Metal Ind Co Ltd Lead-free solder alloy
JP2002020807A (en) * 2000-07-03 2002-01-23 Hitachi Metals Ltd Solder ball and its production method
JP2002239780A (en) * 2001-02-09 2002-08-28 Nippon Steel Corp Solder alloy, solder ball and electronic member having solder bump
JP2003266193A (en) * 2002-01-10 2003-09-24 Senju Metal Ind Co Ltd Lead-free solder for feeding into solder bath
JP2003326386A (en) * 2002-05-13 2003-11-18 Matsushita Electric Ind Co Ltd Leadless solder alloy

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750475B2 (en) 2003-10-07 2010-07-06 Senju Metal Industry Co., Ltd. Lead-free solder ball
KR100885543B1 (en) * 2004-10-22 2009-02-26 엠케이전자 주식회사 Pb-free solder alloy
WO2006049024A1 (en) * 2004-11-01 2006-05-11 Senju Metal Industry Co., Ltd High temperature lead-free solder and package for storing semiconductor element
US9221131B2 (en) * 2004-12-01 2015-12-29 Alpha Metals, Inc. Solder alloy
CN1313240C (en) * 2005-05-09 2007-05-02 天津大学 Shape memory Co-Zn-Al alloy grains reinforced composite Sn-Ag welding material and its prepn process
US8691143B2 (en) 2005-06-03 2014-04-08 Senju Metal Industry Co., Ltd. Lead-free solder alloy
WO2006129713A1 (en) * 2005-06-03 2006-12-07 Senju Metal Industry Co., Ltd. Lead-free solder alloy
WO2007023288A3 (en) * 2005-08-24 2007-07-12 Fry Metals Inc Solder alloy
JP2009506203A (en) * 2005-08-24 2009-02-12 フライズ メタルズ インコーポレイテッド Solder alloy
US8641964B2 (en) 2005-08-24 2014-02-04 Fry's Metals, Inc. Solder alloy
WO2007023288A2 (en) * 2005-08-24 2007-03-01 Fry's Metals Inc. Solder alloy
KR101339025B1 (en) * 2005-08-24 2013-12-09 프라이즈 메탈스, 인코포레이티드 Solder alloy
JP2007111715A (en) * 2005-10-19 2007-05-10 Nihon Almit Co Ltd Solder alloy
CN100364713C (en) * 2005-12-12 2008-01-30 黄德欢 Ag-Al-Cu-Ni-Sn series lead-free soldering tin
CN100396426C (en) * 2005-12-12 2008-06-25 黄德欢 Al-Cu-Sn series lead-free soldering tin
EP1987540A4 (en) * 2006-02-03 2018-09-19 Texas Instruments Incorporated Semiconductor device with improved solder joint
WO2007092762A2 (en) 2006-02-03 2007-08-16 Texas Instruments Incorporated Semiconductor device with improved solder joint
KR100904651B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100887358B1 (en) * 2006-02-14 2009-03-06 주식회사 에코조인 Diluent Pb free solder Composition, electronic equipment and PCB with the same
KR100904653B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder composition for wave and deeping, electronic equipment and PCB with the same
KR100904654B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904656B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904657B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904658B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100887357B1 (en) * 2006-02-14 2009-03-06 주식회사 에코조인 Pb free solder Composition for high temperature system, electronic equipment and PCB with the same
KR100904652B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
JP2007299722A (en) * 2006-04-06 2007-11-15 Hitachi Cable Ltd Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy
US8138606B2 (en) 2006-04-06 2012-03-20 Hitachi Cable, Ltd. Wiring conductor, method for fabricating same, terminal connecting assembly, and Pb-free solder alloy
JP2008031550A (en) * 2006-06-26 2008-02-14 Hitachi Cable Ltd Pb-FREE Sn-BASED MATERIAL, AND CONDUCTOR FOR ELECTRIC WIRING, TERMINAL-CONNECTING SECTION AND Pb-FREE SOLDER ALLOY
JP2008030047A (en) * 2006-07-26 2008-02-14 Eishin Kogyo Kk Unleaded solder
JP2008093701A (en) * 2006-10-12 2008-04-24 Fuji Electric Holdings Co Ltd Solder alloy
CN103008903A (en) * 2007-08-14 2013-04-03 株式会社爱科草英 Lead-free solder combination and printed circuit board and electronic device provided with lead-free solder combination
JP5279714B2 (en) * 2007-08-24 2013-09-04 株式会社東芝 Bonding composition
JPWO2009028147A1 (en) * 2007-08-24 2010-11-25 株式会社東芝 Bonding composition
WO2009028147A1 (en) * 2007-08-24 2009-03-05 Kabushiki Kaisha Toshiba Bonding composition
JPWO2009051240A1 (en) * 2007-10-17 2011-03-03 石川金属株式会社 Lead-free solder
WO2009051240A1 (en) * 2007-10-17 2009-04-23 Ishikawa Metal, Co., Ltd. Lead-free soft solder
JP2009248156A (en) * 2008-04-08 2009-10-29 Hitachi Metals Ltd Solder ball, solder layer, solder bump, and method for forming the same
WO2010119836A1 (en) * 2009-04-14 2010-10-21 新日鉄マテリアルズ株式会社 Lead-free solder alloy, solder ball, and electronic member comprising solder bump
JP2010247167A (en) * 2009-04-14 2010-11-04 Nippon Steel Materials Co Ltd Electronic member having lead-free solder alloy, solder ball, and solder bump
JP5722302B2 (en) * 2010-02-16 2015-05-20 株式会社タムラ製作所 Lead-free solder alloy, solder paste using this, and mounted product
WO2011102034A1 (en) * 2010-02-16 2011-08-25 株式会社タムラ製作所 Lead-free solder alloy, and solder paste and packaged components using same
JPWO2011102034A1 (en) * 2010-02-16 2013-06-17 株式会社タムラ製作所 Lead-free solder alloy, solder paste using this, and mounted product
US10442037B2 (en) 2010-04-23 2019-10-15 Iowa State University Research Foundation, Inc. Pb-free Sn—Ag—Cu—Al or Sn—Cu—Al solder
US9339893B2 (en) 2011-04-15 2016-05-17 Nihon Superior Co., Ltd. Lead-free solder alloy
CN103476541A (en) * 2011-04-15 2013-12-25 日本斯倍利亚社股份有限公司 Lead-free solder alloy
JP5784109B2 (en) * 2011-04-15 2015-09-24 株式会社日本スペリア社 Lead-free solder alloy
JPWO2012141331A1 (en) * 2011-04-15 2014-07-28 株式会社日本スペリア社 Lead-free solder alloy
WO2012141331A1 (en) * 2011-04-15 2012-10-18 株式会社日本スペリア社 Lead-free solder alloy
US8716860B2 (en) 2011-12-14 2014-05-06 Mk Electron Co., Ltd. Tin-based solder ball and semiconductor package including the same
KR101283580B1 (en) 2011-12-14 2013-07-05 엠케이전자 주식회사 Tin-based solder ball and semiconductor package including the same
JP2014028391A (en) * 2012-06-29 2014-02-13 Harima Chemicals Inc Solder alloy, solder paste, and electronic circuit substrate
JP5238088B1 (en) * 2012-06-29 2013-07-17 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
KR101538286B1 (en) * 2012-06-29 2015-07-20 하리마카세이 가부시기가이샤 Solder alloy, solder paste, and electronic circuit board
WO2014002304A1 (en) * 2012-06-29 2014-01-03 ハリマ化成株式会社 Solder alloy, solder paste, and electronic circuit board
WO2014002303A1 (en) * 2012-06-29 2014-01-03 ハリマ化成株式会社 Solder alloy, solder paste, and electronic circuit board
US9221129B2 (en) 2012-06-29 2015-12-29 Harima Chemicals, Incorporated Solder alloy, solder paste, and electronic circuit board
US9221132B2 (en) 2012-06-29 2015-12-29 Harima Chemicals, Incorporated Solder alloy, solder paste, and electronic circuit board
CN104487202B (en) * 2012-06-29 2016-03-16 播磨化成株式会社 Soldering alloy, solder(ing) paste and electronic circuit substrate
CN104487202A (en) * 2012-06-29 2015-04-01 播磨化成株式会社 Solder alloy, solder paste, and electronic circuit board
JP5324007B1 (en) * 2012-06-29 2013-10-23 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
JP2014008523A (en) * 2012-06-29 2014-01-20 Harima Chemicals Inc Solder alloy, solder paste and electronic circuit board
JP2016508878A (en) * 2013-01-22 2016-03-24 馬▲ジュ▼生MA, Jusheng Solder alloy not containing Pb
CN107073657A (en) * 2015-03-24 2017-08-18 哈利玛化成株式会社 solder alloy, solder paste and electronic circuit substrate
US10300562B2 (en) 2015-03-24 2019-05-28 Harima Chemicals, Incorporated Solder alloy, solder paste, and electronic circuit board
JP2016179479A (en) * 2015-03-24 2016-10-13 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
US10213880B2 (en) 2015-03-24 2019-02-26 Harima Chemicals, Incorporated Solder alloy, solder paste, and electronic circuit board
WO2016152259A1 (en) * 2015-03-24 2016-09-29 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
WO2016185673A1 (en) * 2015-05-20 2016-11-24 日本電気株式会社 Solder alloy
WO2016185672A1 (en) * 2015-05-20 2016-11-24 日本電気株式会社 Solder alloy
US10307868B2 (en) 2015-05-20 2019-06-04 Nec Corporation Solder alloy
JPWO2016185673A1 (en) * 2015-05-20 2018-03-08 日本電気株式会社 Solder alloy
JPWO2016185672A1 (en) * 2015-05-20 2018-03-08 日本電気株式会社 Solder alloy
JP2017064781A (en) * 2015-10-01 2017-04-06 株式会社Joy・zu−company Lead-free solder alloy
JP2017113756A (en) * 2015-12-21 2017-06-29 住友金属鉱山株式会社 SOLDER ALLOY INCLUDING Sn EXCELLENT IN SURFACE PROPERTY AS MAIN COMPONENT, AND SELECTION METHOD THEREFOR
US10773345B2 (en) 2016-03-08 2020-09-15 Senju Metal Industry Co., Ltd. Solder alloy, solder ball, chip solder, solder paste, and solder joint
WO2017154957A1 (en) * 2016-03-08 2017-09-14 千住金属工業株式会社 Solder alloy, solder ball, chip solder, solder paste, and solder joint
RU2688980C1 (en) * 2016-03-08 2019-05-23 Сендзу Метал Индастри Ко., Лтд. Solder alloy, solder ball lead, solder for microcircuit chip, solder paste and soldered joint
JP2017159314A (en) * 2016-03-08 2017-09-14 千住金属工業株式会社 Solder alloy, solder ball, chip solder, solder paste and solder joint
KR102207301B1 (en) * 2016-05-06 2021-01-25 알파 어셈블리 솔루션스 인크. Lead-free solder alloy with high reliability
JP2019520985A (en) * 2016-05-06 2019-07-25 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. Highly reliable lead-free solder alloy
US20190389012A1 (en) * 2016-05-06 2019-12-26 Alpha Assembly Solutions Inc. High Reliability Lead-Free Solder Alloy
KR20190040128A (en) * 2016-05-06 2019-04-17 알파 어셈블리 솔루션스 인크. High reliability lead-free solder alloy
US10821557B2 (en) 2016-05-06 2020-11-03 Alpha Assembly Solutions Inc. High reliability lead-free solder alloy
KR102266566B1 (en) * 2018-07-24 2021-06-18 센주긴조쿠고교 가부시키가이샤 Solder alloy, and solder joint
WO2020021967A1 (en) * 2018-07-24 2020-01-30 千住金属工業株式会社 Soldering alloy and solder joint
TWI694885B (en) * 2018-07-24 2020-06-01 日商千住金屬工業股份有限公司 Solder alloys and welded joints
EP3708291A4 (en) * 2018-07-24 2020-09-16 Senju Metal Industry Co., Ltd Soldering alloy and solder joint
JP2020015054A (en) * 2018-07-24 2020-01-30 千住金属工業株式会社 Solder alloy and solder joint
KR20200118863A (en) * 2018-07-24 2020-10-16 센주긴조쿠고교 가부시키가이샤 Solder alloy, and solder seams
US10780531B2 (en) 2018-11-09 2020-09-22 Senju Metal Industry Co., Ltd. Solder ball, solder joint, and joining method
JP2020075280A (en) * 2018-11-09 2020-05-21 千住金属工業株式会社 Solder ball, solder joint and joining method
TWI696515B (en) * 2018-11-09 2020-06-21 日商千住金屬工業股份有限公司 Welding ball, welding joint and joining method
KR20220025110A (en) * 2019-08-09 2022-03-03 센주긴조쿠고교 가부시키가이샤 Lead free and antimony free solder alloys, solder balls, ball grid arrays and solder joints
KR102498103B1 (en) * 2019-08-09 2023-02-09 센주긴조쿠고교 가부시키가이샤 Lead-free and antimony-free solder alloys, solder balls, ball grid arrays and solder joints
KR20220143112A (en) * 2020-03-19 2022-10-24 센주긴조쿠고교 가부시키가이샤 Solder alloys, solder balls and solder joints
CN115335186A (en) * 2020-03-19 2022-11-11 千住金属工业株式会社 Solder alloy, solder ball and solder joint
KR102583568B1 (en) 2020-03-19 2023-10-05 센주긴조쿠고교 가부시키가이샤 Solder alloys, solder balls and solder joints

Also Published As

Publication number Publication date
JP4144415B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP4144415B2 (en) Lead-free solder
ES2445158T3 (en) Lead free welding
JP4428448B2 (en) Lead-free solder alloy
US7145236B2 (en) Semiconductor device having solder bumps reliably reflow solderable
JP4152596B2 (en) Electronic member having solder alloy, solder ball and solder bump
JP2004141910A (en) Lead-free solder alloy
EP3172349A2 (en) Low temperature high reliability tin alloy for soldering
JP3827322B2 (en) Lead-free solder alloy
JP5724411B2 (en) Solder, soldering method and semiconductor device
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
KR20180130002A (en) Method for soldering surface-mount component and surface-mount component
US7101782B2 (en) Method of making a circuitized substrate
JP2002261104A (en) Semiconductor device and electronic equipment
JP2003290974A (en) Joining structure of electronic circuit device and electronic parts used for the same
JP2004034099A (en) Solder and packaged product using the same
JP3919106B2 (en) Metal core solder ball of Cu or Cu alloy ball
JP2005072173A (en) Electronic component and solder paste
JP6370458B1 (en) Lead-free solder alloy and electronic circuit board
JP2000332403A (en) Mounting structure of electronic component and method of mounting the electronic component
JP2001244622A (en) Electronic circuit device
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
JP2002153990A (en) Alloy for solder ball
JP4391299B2 (en) Solder materials and soldered articles
JP2004214468A (en) Leadless parts and lead-free solder
JP2004058085A (en) Lead-free soldering alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Ref document number: 4144415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term