JPH106075A - Lead-free solder alloy - Google Patents

Lead-free solder alloy

Info

Publication number
JPH106075A
JPH106075A JP17421096A JP17421096A JPH106075A JP H106075 A JPH106075 A JP H106075A JP 17421096 A JP17421096 A JP 17421096A JP 17421096 A JP17421096 A JP 17421096A JP H106075 A JPH106075 A JP H106075A
Authority
JP
Japan
Prior art keywords
alloy
weight
lead
free solder
solder alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17421096A
Other languages
Japanese (ja)
Inventor
Eizaburo Asami
英三郎 浅見
Toru Murata
透 村田
Makoto Asami
真 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Priority to JP17421096A priority Critical patent/JPH106075A/en
Publication of JPH106075A publication Critical patent/JPH106075A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lead-free solder alloy capable of suppressing the occurrence of lift-off phenomenon and having high plasticity and good wettability. SOLUTION: This lead-free solder alloy is composed of 1.0-6.0wt.% Ag, 0.05-3.0wt.% Cu, 0.03-2.0wt.% Ge and the balance Sn. Particularly, the constituting ratio of Sn and Ag is (99.0:1.0)-(94.0:6.0) and the constituting ratio of Cu and Ge is 60:40. The occurrence of the lift-off phenomenon can be prevented since the alloy is four-element alloy of Sn-Ag-Cu-Ge. Further, the alloy has high plasticity and is easily machined because of containing Cu. Furthermore, the alloy added with 0.5-4.0wt.% Bi to the lead-free solder alloy is improved in the wettability and solderability and soldered strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は無鉛ハンダ合金に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-free solder alloy.

【0002】[0002]

【従来の技術】ハンダ付けは接合技術として長い歴史を
持ち、ハンダ合金としてはその化学組成がSnが63重
量%、Pbが37重量%のものがいわゆる共晶ハンダと
して広く用いられている。
2. Description of the Related Art Soldering has a long history as a joining technique, and a solder alloy having a chemical composition of 63% by weight of Sn and 37% by weight of Pb is widely used as a so-called eutectic solder.

【0003】しかし、最近の世界的な環境に対する関心
の高まりを背景に、ハンダの含有する鉛の毒性が問題と
なってきた。とくにアメリカではこの問題を深刻にとら
えており、法的側面から鉛の使用を規制する動きがあ
る。ヨーロッパにおいても状況は同様であり、無鉛ハン
ダ合金への転換は世界的趨勢であるといえる。
[0003] However, with the recent growing interest in the global environment, the toxicity of lead contained in solder has become a problem. The United States, in particular, takes this issue seriously and there is a move to regulate the use of lead from a legal perspective. The situation is similar in Europe, and the switch to lead-free solder alloys is a global trend.

【0004】このような社会状況の変化に対応して無鉛
ハンダに関する多くの研究がなされ、現在いくつかの無
鉛ハンダ合金が市場に供給されている。現在市場で入手
可能な無鉛ハンダ合金は、おおよそSn−Ag系、Sn
−Bi系、Sn−Zn系、Sn−In系に分類され、ど
れも主要構成部分としてSnを採用しており、従来より
使用されているPbの代替元素としてBiやInなどを
使用しているものである。これらの無鉛ハンダ合金は、
従来のSn−Pb系ハンダ合金と比較して劣る特性を改
善するために各種の元素を微量に添加するなどして改善
がはかられているが、Sn−Pb系ハンダ合金の代替ハ
ンダ合金としての導入は進んでいないのが現状である。
Many studies on lead-free solder have been made in response to such changes in social conditions, and some lead-free solder alloys are currently being supplied to the market. Lead-free solder alloys currently available on the market are roughly Sn-Ag based, Sn
-Bi-, Sn-Zn-, and Sn-In-based, all of which employ Sn as a main component and use Bi, In, or the like as an alternative element to Pb conventionally used. Things. These lead-free solder alloys
In order to improve the inferior properties as compared with the conventional Sn-Pb-based solder alloys, various elements have been added in trace amounts to improve the properties. However, as an alternative solder alloy to the Sn-Pb-based solder alloy, At present, the introduction of is not progressing.

【0005】なお、先行技術文献としては、特開平7−
40079号公報,特開平7−32188号公報等があ
る。
As a prior art document, Japanese Patent Application Laid-Open No.
No. 40079 and Japanese Patent Application Laid-Open No. 7-32188.

【0006】[0006]

【発明が解決しようとする課題】現在供給されている無
鉛ハンダ合金に対しては、以下のような課題が指摘され
ている。 (1) 溶融温度が高く、リフロー温度も高くなるた
め、従来の生産設備を変更したり、あるいは搭載される
電子部品の耐熱設計を変更する必要がある。 (2) Biを多く含む場合、溶融温度域が非常に広く
なり、その結果、ハンダ合金の固化過程においてハンダ
付け部の凝固時間差からスルーホール部品あるいはリー
ド付部品の接合部が剥がれるリフトオフ(lift−o
ff)現象が生じる。 (3) 可塑性が低く、鋳造後の圧延等の成形加工がで
きない。 (4) ぬれ性が悪く、ハンダ付け性とハンダ付け強度
において劣る。
The following problems have been pointed out with respect to currently supplied lead-free solder alloys. (1) Since the melting temperature is high and the reflow temperature is high, it is necessary to change the conventional production equipment or the heat-resistant design of the electronic components to be mounted. (2) When a large amount of Bi is contained, the melting temperature range becomes very wide, and as a result, in the solidification process of the solder alloy, the lift-off (lift- o
ff) The phenomenon occurs. (3) Plasticity is low, and molding such as rolling after casting cannot be performed. (4) Poor wettability and poor solderability and soldering strength.

【0007】本発明の目的は、リフトオフ現象の発生を
抑止するとともに、可塑性が高くかつぬれ性の良い無鉛
ハンダ合金を提供することにある。
An object of the present invention is to provide a lead-free solder alloy having high plasticity and good wettability while suppressing the occurrence of a lift-off phenomenon.

【0008】[0008]

【課題を解決するための手段】本発明の無鉛ハンダ合金
は、Agが1.0〜6.0重量%、Cuが0.05〜
3.0重量%、Geが0.03〜2.0重量%、残部分
がSnよりなることを特徴とする。さらに、Biを0.
5〜4.0重量%添加したことを特徴とする。
According to the lead-free solder alloy of the present invention, the content of Ag is 1.0 to 6.0% by weight and the content of Cu is 0.05 to 6.0%.
It is characterized in that 3.0% by weight, 0.03 to 2.0% by weight of Ge, and the rest are Sn. Further, Bi is set to 0.
It is characterized in that it is added in an amount of 5 to 4.0% by weight.

【0009】[0009]

【発明の実施の形態】本発明の一実施の形態に係る無鉛
ハンダ合金は、Sn96.5重量%Ag3.5重量%合
金、あるいはSn98.0重量%Ag2.0重量%合金
を基材として、Cu60重量%Ge40重量%合金を添
加して組成したSn−Ag−Cu−Ge4元合金からな
る。Sn96.5重量%Ag3.5重量%合金は、従来
より使用されている無鉛高温ハンダであり、SnとAg
の共晶合金である。また、Sn98.0重量%Ag2.
0重量%合金は、低価格化のために特性を余り変動させ
ない範囲でAgの含有量を若干減じたものである。これ
らとCuとGeの共晶合金であるCu60重量%Ge4
0重量%合金を1000:1〜100:5の割合で配合
し合金を組成した。
BEST MODE FOR CARRYING OUT THE INVENTION A lead-free solder alloy according to an embodiment of the present invention comprises a base material of Sn 96.5 wt% Ag 3.5 wt% alloy or Sn 98.0 wt% Ag 2.0 wt% alloy. It is composed of a Sn-Ag-Cu-Ge quaternary alloy composed by adding a Cu 60 wt% Ge 40 wt% alloy. The Sn 96.5 wt% Ag 3.5 wt% alloy is a lead-free high-temperature solder conventionally used, and is composed of Sn and Ag.
Eutectic alloy. In addition, Sn 98.0% by weight of Ag2.
The 0% by weight alloy has a slightly reduced Ag content within a range that does not significantly change its properties for cost reduction. Cu and 60% by weight of Ge4, which is a eutectic alloy of Cu and Ge
A 0 wt% alloy was blended at a ratio of 1000: 1 to 100: 5 to form an alloy.

【0010】さらに、Sn96.5重量%Ag3.5重
量%合金、あるいはSn98.0重量%Ag2.0重量
%合金とCu60重量%Ge40重量%合金を100:
1の割合で配合した合金に対して、Biを0.5〜4.
0重量%の配分で添加した。
Further, an alloy of 96.5% by weight of Sn, 3.5% by weight of Ag, or an alloy of 98.0% by weight of Ag, 2.0% by weight of Ag and an alloy of 60% by weight of Cu and 40% by weight of Ge are mixed with 100
Bi was added to the alloy blended at a ratio of 1 to 0.5 to 4.0.
0% by weight was added.

【0011】Sn96.5重量%Ag3.5重量%合
金、あるいはSn98.0重量%Ag2.0重量%合金
は、従来より使用されている無鉛高温ハンダ合金であ
り、Sn−Pb系ハンダ合金の代替無鉛ハンダ合金の有
力候補のひとつとして考えられているが、融点が221
度C程度と高いことおよびぬれ性と鋳造後の機械加工性
に難点があることから、そのままではなく種々の元素を
添加し、Sn−Ag系無鉛ハンダ合金を構成している。
The Sn 96.5 wt% Ag 3.5 wt% alloy or the Sn 98.0 wt% Ag 2.0 wt% alloy is a conventionally used lead-free high-temperature solder alloy and is an alternative to the Sn-Pb based solder alloy. Although it is considered as one of the promising candidates for lead-free solder alloy, its melting point is 221.
The Sn-Ag lead-free solder alloy is formed by adding various elements instead of as it is because of the high degree C and the difficulty in wettability and machinability after casting.

【0012】本実施の形態においても、Sn96.5重
量%Ag3.5重量%合金、あるいはSn98.0重量
%Ag2.0重量%合金を基材として複数の元素を添加
し、無鉛ハンダ合金を組成した。
Also in this embodiment, a lead-free solder alloy is prepared by adding a plurality of elements based on a Sn 96.5 wt% Ag 3.5 wt% alloy or a Sn 98.0 wt% Ag 2.0 wt% alloy as a base material. did.

【0013】Geは、Sn、Agと3元共晶型合金を組
成することから、その添加により溶融温度を低下させる
ことができる。
Since Ge is composed of Sn and Ag and a ternary eutectic alloy, the melting temperature can be lowered by adding Ge.

【0014】Cuは、それを添加することによって合金
の結晶粒を微細化する性質があり、このことにより合金
の可塑性が増し、鋳造後の機械加工性を向上させること
ができる。また、その添加による溶融温度の上昇に対す
る影響を最小限にするために、Geと共晶型合金を組成
するようにCuとGeの構成比を60:40とした。
[0014] Cu has the property of making the crystal grains of the alloy finer by adding it, whereby the plasticity of the alloy is increased and the machinability after casting can be improved. In addition, in order to minimize the influence of the addition on the rise in melting temperature, the composition ratio of Cu and Ge was set to 60:40 so as to form a eutectic alloy with Ge.

【0015】したがって、Sn−Ag−Cu−Ge4元
合金の製造法は、Sn96.5重量%Ag3.5重量%
合金、あるいはSn98.0重量%Ag2.0重量%合
金にCu60重量%Ge40重量%合金を添加配合する
という方法を採用した。
Therefore, the method for producing the Sn—Ag—Cu—Ge quaternary alloy is as follows: Sn 96.5% by weight Ag 3.5% by weight
A method was employed in which 60% by weight of Cu and 40% by weight of Ge were added to an alloy or an alloy of 98.0% by weight of Sn and 2.0% by weight of Ag.

【0016】この方法により製造するSn−Ag−Cu
−Ge4元合金のSn96.5重量%Ag3.5重量%
合金、あるいはSn98.0重量%Ag2.0重量%合
金とCu60重量%Ge40重量%合金の配合比は10
0:5程度(Geの構成比2.0重量%)までで、それ
以上Cu60重量%Ge40重量%合金を添加しても溶
融温度は低下しない。
[0016] Sn-Ag-Cu produced by this method
-Sn 96.5% by weight of Ge quaternary alloy 3.5% by weight of Ag
Alloy or 98.0% by weight of Sn, 2.0% by weight of Ag and 60% by weight of Cu, 40% by weight of Ge,
The melting temperature does not decrease even if an alloy containing 60% by weight of Cu and 40% by weight of Ge is added more than about 0: 5 (the composition ratio of Ge is 2.0% by weight).

【0017】Biは、その添加により溶融温度を低下さ
せることができる。さらに、Biには、表面張力を低下
させる効果があるため、ぬれ性、広がり性を改善するこ
ともできる。ただし、Biは脆い性質があり、添加し過
ぎると合金自体も脆くなり可塑性を低下させるため、ま
た前述のように、Biを多く含む場合、固相線温度がS
n−Bi共晶点温度である139度C付近に現われ溶融
温度域が非常に広くなり、その結果ハンダ合金の固化過
程においてハンダ付け部の凝固時間差からスルーホール
部品あるいはリード付部品の接合部が剥がれるリフトオ
フ現象が生じる可能性があるため、その添加量は4.0
重量%を限界とした。
Bi can reduce the melting temperature by its addition. Further, Bi has an effect of lowering the surface tension, so that the wettability and the spreadability can be improved. However, Bi has a brittle property, and if added too much, the alloy itself becomes brittle and lowers plasticity. As described above, when Bi is contained in a large amount, the solidus temperature becomes S.
Appearing around 139 ° C., which is the n-Bi eutectic point temperature, the melting temperature range becomes very wide. As a result, during the solidification process of the solder alloy, the joint of the through-hole component or the leaded component is formed due to the solidification time difference of the soldering part. Since the peeling-off lift-off phenomenon may occur, the amount of addition is 4.0.
% By weight.

【0018】なお、本発明の無鉛ハンダ合金の基材とす
るSn−Ag合金は、SnとAgの構成比が99.0:
1.0ないし94.0:6.0の範囲にあれば、本実施
の形態において使用したSn96.5重量%Ag3.5
重量%合金、あるいはSn98.0重量%Ag2.0重
量%合金と同様に使用可能である。
The Sn—Ag alloy used as the base material of the lead-free solder alloy of the present invention has a composition ratio of Sn and Ag of 99.0:
If it is in the range of 1.0 to 94.0: 6.0, Sn 96.5 wt% Ag 3.5 used in the present embodiment is used.
% Alloy or Sn 98.0% Ag Ag 2.0% alloy by weight.

【0019】[0019]

【実施例】表1に示す合金組成の試料それぞれについて
示差熱分析により液相線温度、固相線温度を測定し、そ
の結果を同じく表1に示す。
EXAMPLES The liquidus temperature and the solidus temperature of the samples having the alloy compositions shown in Table 1 were measured by differential thermal analysis, and the results are also shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】表1からわかるように、Sn96.5重量
%Ag3.5重量%合金にCu60重量%Ge40重量
%合金を添加することにより、液相線温度は5度C程度
低下し、さらにBiを添加することにより、液相線温度
は210度C程度まで下げることが可能である。この温
度は、英国のInternational TinRe
search Instituteが提案した無鉛ハン
ダ合金ALLOY・H(Sn90Bi7.5Ag2Cu
0.5)などと同水準であり、既知の無鉛ハンダ合金の
なかでは十分実用可能な部類に属する。
As can be seen from Table 1, the addition of 60 wt% Cu and 40 wt% Ge to the 96.5 wt% Ag 3.5 wt% alloy reduces the liquidus temperature by about 5 ° C. and further reduces Bi. By adding, the liquidus temperature can be lowered to about 210 ° C. This temperature is based on the International TinRe
The lead-free solder alloy ALLOY.H (Sn90Bi7.5Ag2Cu) proposed by search Institute
0.5), etc., and belongs to a class that is sufficiently practicable among known lead-free solder alloys.

【0022】また、固相線温度は200度C以上であ
り、溶融温度域が広いことから発生するリフトオフ現象
が生じる懸念はない。
The solidus temperature is 200 ° C. or higher, and there is no concern that a lift-off phenomenon occurs due to a wide melting temperature range.

【0023】鋳造後の機械加工性を比較するために圧延
試験を行い、表2に示す合金組成の試料を圧延加工した
ときの耳ワレ異常の発生を同じく表2に示す。試験は試
料をそれぞれ溶解温度450度Cで直径80mmの円筒
状に鋳込み、これを油圧押出機により厚さ3.0mm、
幅32mmのテープ状にし、それを圧延機を用いて厚み
を3.0mmから段階的に0.05mmまで薄くした。
A rolling test was performed to compare the machinability after casting, and the occurrence of cracks in the ears when the samples having the alloy compositions shown in Table 2 were rolled is also shown in Table 2. In the test, each sample was cast into a cylinder having a melting temperature of 450 ° C. and a diameter of 80 mm, and this was cast to a thickness of 3.0 mm with a hydraulic extruder.
The tape was formed into a tape having a width of 32 mm, and the thickness was gradually reduced from 3.0 mm to 0.05 mm using a rolling mill.

【0024】[0024]

【表2】 [Table 2]

【0025】試験結果から本発明による無鉛ハンダ合金
は可塑性が高く、鋳造後の機械加工性に優れることが判
明した。ALLOY・Hは、1.0mmまで圧延した段
階で耳ワレが激しく、それ以上の圧延が不可能であった
のに対して、本発明による無鉛ハンダ合金は0.05m
mまでの圧延で耳ワレは全く発生しなかった。また、B
iを添加した場合もその構成比が3.0重量%以内であ
れば、0.05mmまでの圧延であれば全く問題はな
い。Biの構成比が4.0重量%になると0.1mmま
で圧延した段階で耳ワレが発生し、5.0重量%になる
と0.34mmで耳ワレが発生していることから、Bi
の添加は4.0重量%が実用上の限界といえる。
From the test results, it was found that the lead-free solder alloy according to the present invention has high plasticity and excellent machinability after casting. ALLOY H had severe cracks at the stage of rolling to 1.0 mm, and further rolling was impossible, whereas the lead-free solder alloy according to the present invention had a thickness of 0.05 m.
No cracking occurred at the time of rolling to m. Also, B
Even when i is added, if the composition ratio is within 3.0% by weight, there is no problem if the rolling is performed up to 0.05 mm. When the composition ratio of Bi becomes 4.0% by weight, cracks occur at the stage of rolling to 0.1 mm, and when the composition ratio of Bi becomes 5.0% by weight, cracks occur at 0.34mm.
Can be said to be 4.0% by weight as a practical limit.

【0026】表3に広がり試験の結果を示す。広がり試
験は、RAタイプのフラックスを塗布した銅板に試料約
30mgを載せ、液相線温度+50度Cの温度で30秒
間加熱し、銅板上に広がらせた。冷却後、ハンダの高さ
をマイクロメーターにより測定し、JIS−Z3197
に準じて広がり率を計算した。結果より、本発明による
無鉛ハンダ合金は、Sn96.5重量%Ag3.5重量
%合金に比べて広がり率が約1ポイント向上しているこ
とがわかる。
Table 3 shows the results of the spread test. In the spread test, about 30 mg of a sample was placed on a copper plate coated with an RA type flux, heated at a temperature of liquidus temperature + 50 ° C. for 30 seconds, and spread on the copper plate. After cooling, the height of the solder was measured with a micrometer, and was measured according to JIS-Z3197.
The spread rate was calculated according to. From the results, it can be seen that the lead-free solder alloy according to the present invention has an expansion rate improved by about one point as compared with the Sn 96.5 wt% Ag 3.5 wt% alloy.

【0027】[0027]

【表3】 [Table 3]

【0028】なお、上記実施例においては、Sn98.
0重量%Ag2.0重量%合金にCu60重量%Ge4
0重量%合金を添加した場合、およびさらにBiを添加
した場合については詳しい実験値を示さなかったが、S
n96.5重量%Ag3.5重量%合金にCu60重量
%Ge40重量%合金を添加した場合、およびさらにB
iを添加した場合とほぼ同様になることは明らかであ
る。また、SnとAgの構成比が99.0:1.0ない
し94.0:6.0の範囲のSn−Ag合金を基材とし
て使用した場合も、Sn96.5重量%Ag3.5重量
%合金を基材として使用した場合とほぼ同様の実験結果
が得られることは容易に類推される。
In the embodiment described above, Sn98.
0 wt% Ag 2.0 wt% alloy 60 wt% Ge4
Detailed experimental values were not shown for the case where the 0 wt% alloy was added and the case where Bi was further added.
n6.5% by weight Ag3.5% by weight alloy added with 60% by weight Cu 40% by weight alloy, and further B
Obviously, the result is almost the same as when i is added. Also, when a Sn—Ag alloy having a composition ratio of Sn and Ag in the range of 99.0: 1.0 to 94.0: 6.0 is used as a base material, Sn 96.5 wt% Ag 3.5 wt% It is easily presumed that almost the same experimental results can be obtained as when the alloy is used as the base material.

【0029】[0029]

【発明の効果】以上説明したように、本発明の無鉛ハン
ダ合金によれば、Sn−Ag−Cu−Ge4元合金を組
成したので、溶融温度域が狭く、スルーホール部品ある
いはリード付部品の接合部が剥がれるリフトオフ現象が
生じるのを未然に防止することができるという効果があ
る。
As described above, according to the lead-free solder alloy of the present invention, since the Sn-Ag-Cu-Ge quaternary alloy is composed, the melting temperature range is narrow, and the joining of through-hole parts or leaded parts is performed. There is an effect that it is possible to prevent a lift-off phenomenon in which a portion is peeled off from occurring.

【0030】また、Cuを含むことにより、可塑性が高
くなり、鋳造後の圧延等の成形加工容易になるという効
果がある。
The inclusion of Cu has the effect of increasing the plasticity and facilitating forming such as rolling after casting.

【0031】さらに、Biを添加することにより、溶融
時の表面張力が降下してぬれ性が良くなり、ハンダ付け
性とハンダ付け強度が向上するという効果がある。
Further, by adding Bi, there is an effect that the surface tension at the time of melting is lowered, the wettability is improved, and the solderability and the soldering strength are improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Agが1.0〜6.0重量%、Cuが
0.05〜3.0重量%、Geが0.03〜2.0重量
%、残部分がSnよりなることを特徴とする無鉛ハンダ
合金。
1. Ag is 1.0 to 6.0% by weight, Cu is 0.05 to 3.0% by weight, Ge is 0.03 to 2.0% by weight, and the balance is Sn. Lead-free solder alloy.
【請求項2】 SnとAgの構成比が99.0:1.0
ないし94.0:6.0、CuとGeの構成比が60:
40である請求項1記載の無鉛ハンダ合金。
2. The composition ratio of Sn and Ag is 99.0: 1.0.
To 94.0: 6.0, and the composition ratio of Cu and Ge is 60:
The lead-free solder alloy according to claim 1, wherein the number is 40.
【請求項3】 Biを0.5〜4.0重量%添加した請
求項1または2記載の無鉛ハンダ合金。
3. The lead-free solder alloy according to claim 1, wherein Bi is added in an amount of 0.5 to 4.0% by weight.
JP17421096A 1996-06-13 1996-06-13 Lead-free solder alloy Pending JPH106075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17421096A JPH106075A (en) 1996-06-13 1996-06-13 Lead-free solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17421096A JPH106075A (en) 1996-06-13 1996-06-13 Lead-free solder alloy

Publications (1)

Publication Number Publication Date
JPH106075A true JPH106075A (en) 1998-01-13

Family

ID=15974656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17421096A Pending JPH106075A (en) 1996-06-13 1996-06-13 Lead-free solder alloy

Country Status (1)

Country Link
JP (1) JPH106075A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177367A (en) * 1997-09-05 1999-03-23 Murata Mfg Co Ltd Solder composition
EP0985486A1 (en) * 1998-03-26 2000-03-15 Nihon Superior Sha Co., Ltd Leadless solder
DE10003665C2 (en) * 1999-01-29 2003-06-26 Fuji Electric Co Ltd Solder Legierug
US6649127B2 (en) 1996-12-17 2003-11-18 Sony Chemicals Corp Lead-free solder material having good wettability
KR100424662B1 (en) * 2001-04-30 2004-03-24 주식회사 듀텍 Alloying compositions of Lead-Free Solder
JP2004261863A (en) * 2003-01-07 2004-09-24 Senju Metal Ind Co Ltd Lead-free solder
CN1295054C (en) * 2003-08-20 2007-01-17 中国科学院金属研究所 Sn-Ag-Cu-X eutectic alloy leadless welding materials for electronic elements
EP1785498A2 (en) 2005-11-15 2007-05-16 Hitachi Metals, Ltd. Solder alloy, solder ball, and solder joint using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649127B2 (en) 1996-12-17 2003-11-18 Sony Chemicals Corp Lead-free solder material having good wettability
JPH1177367A (en) * 1997-09-05 1999-03-23 Murata Mfg Co Ltd Solder composition
EP0985486A1 (en) * 1998-03-26 2000-03-15 Nihon Superior Sha Co., Ltd Leadless solder
EP0985486A4 (en) * 1998-03-26 2003-01-02 Nihon Superior Sha Co Ltd Leadless solder
DE10003665C2 (en) * 1999-01-29 2003-06-26 Fuji Electric Co Ltd Solder Legierug
KR100424662B1 (en) * 2001-04-30 2004-03-24 주식회사 듀텍 Alloying compositions of Lead-Free Solder
JP2004261863A (en) * 2003-01-07 2004-09-24 Senju Metal Ind Co Ltd Lead-free solder
CN1295054C (en) * 2003-08-20 2007-01-17 中国科学院金属研究所 Sn-Ag-Cu-X eutectic alloy leadless welding materials for electronic elements
EP1785498A2 (en) 2005-11-15 2007-05-16 Hitachi Metals, Ltd. Solder alloy, solder ball, and solder joint using the same
EP1785498A3 (en) * 2005-11-15 2007-11-28 Hitachi Metals, Ltd. Solder alloy, solder ball, and solder joint using the same
KR100813574B1 (en) 2005-11-15 2008-03-17 히타치 긴조쿠 가부시키가이샤 Solder alloy, solder ball and solder joint using the same

Similar Documents

Publication Publication Date Title
EP1897649B1 (en) Lead-free solder alloy
JP5287852B2 (en) Lead-free solder alloy with suppressed shrinkage
JP2599890B2 (en) Lead-free solder material
JP3220635B2 (en) Solder alloy and cream solder
JP4613823B2 (en) Solder paste and printed circuit board
EP1231015B1 (en) Lead-free solder and solder joint
US6156132A (en) Solder alloys
US20010000321A1 (en) Solder alloy composition
JP2001504760A (en) Lead free solder
JP2002018589A (en) Lead-free solder alloy
WO2007014529A1 (en) A low melting point lead-free solder alloy
JPH0825050B2 (en) Lead-free solder alloy
JP3643008B2 (en) Soldering method
JPH106075A (en) Lead-free solder alloy
EP1707302B1 (en) Pb-free solder alloy compositions comprising essentially tin (Sn), silver (Ag), copper (Cu), and phosphorus (P)
JP3673021B2 (en) Lead-free solder for electronic component mounting
JPH11221695A (en) Lead-free solder alloy
US6371361B1 (en) Soldering alloy, cream solder and soldering method
CN111940945A (en) Sn-Zn-In-Ga lead-free solder and preparation method thereof
CN109848606B (en) Sn-Ag-Cu lead-free solder with high interface bonding strength and preparation method thereof
CA2540486A1 (en) Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la)
JP2681742B2 (en) Lead-free solder alloy
JP2002307187A (en) Lead-free solder and solder joint
JP4039594B2 (en) Lead-free solder additive alloy
JP3835582B2 (en) Zn alloy for high temperature soldering

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A02 Decision of refusal

Effective date: 20050223

Free format text: JAPANESE INTERMEDIATE CODE: A02