JP4039594B2 - Lead-free solder additive alloy - Google Patents

Lead-free solder additive alloy Download PDF

Info

Publication number
JP4039594B2
JP4039594B2 JP15860198A JP15860198A JP4039594B2 JP 4039594 B2 JP4039594 B2 JP 4039594B2 JP 15860198 A JP15860198 A JP 15860198A JP 15860198 A JP15860198 A JP 15860198A JP 4039594 B2 JP4039594 B2 JP 4039594B2
Authority
JP
Japan
Prior art keywords
solder
alloy
lead
weight
free solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15860198A
Other languages
Japanese (ja)
Other versions
JPH11333589A (en
Inventor
哲郎 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Superior Sha Co Ltd
Original Assignee
Nihon Superior Sha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Superior Sha Co Ltd filed Critical Nihon Superior Sha Co Ltd
Priority to JP15860198A priority Critical patent/JP4039594B2/en
Publication of JPH11333589A publication Critical patent/JPH11333589A/en
Application granted granted Critical
Publication of JP4039594B2 publication Critical patent/JP4039594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無鉛はんだ用の合金に係り、はんだ母材に対して添加物として投入され、母材に溶解して有効に機能する合金に関するものである。
【0002】
【発明が解決しようとする課題】
はんだ合金の従来からの組成において鉛ははんだ合金の特性を決定するものとして非常に有効に機能するが、近年鉛の毒性が問題になっており、鉛を組成物から忌避した無鉛はんだの開発が盛んである。そして、これら無鉛はんだのほとんどは錫を主成分としている。即ち、錫は毒性が低く、金、銀、銅、ニッケルあるいは亜鉛など数多くの金属との融合性が高く、また高い反応性でよく拡散して金属表面に濡れるために、電子部品の組立用はんだ合金の主成分として不可欠である。しかし、錫を主成分にした無鉛はんだ合金では、錫の高い反応性を原因として、添加した金属や、接合時における母材表面から溶出した銅や銀などの金属と結合して金属間化合物を生成してしまうことになる。ところがこれらの化合物は一般にはんだ合金の融点よりも高い融点を有しているために、はんだ合金の流動性を阻害して、はんだ付け作業時にはんだ接合部の欠陥であるブリッジや、ツララ現象を発生させる要因となる。また、化合物は凝固時に針状結晶となってはんだ中に析出し、表面の滑らかさが失われて、光沢のないザラザラとした概観の悪いはんだ付けになり、商品価値を低くするばかりか、最近の密度の高い、線が密集している回路であればマイクロブリッジや針状線を構成してしまい、ショートの原因になることもある。
【0003】
そこで、発明者はこれらの課題を解決する組成として、錫を主成分としてニッケルを微量だけ(0.002〜1重量%)添加するはんだ合金を開示した(特願平10−100141号)。ニッケルは、比較的少量を加えることによって、錫と多くの金属との合金、例えばプリント基板のリード線や端子に用いられている銅との合金が凝固するときに不可避的に発生する針状結晶を抑制する作用があることを確認し、これに着目したものである。ニッケルは、融点が1453℃と非常に高いところにあるが、上記添加量程度であれば錫に溶解して均一に分散する。さらに、ニッケルを含む場合には、これを含まない場合とは全く異なり、凝固中の体積収縮から起こる引け巣の様子がSn−Pb系共晶はんだの特徴に似て、ひとつの大きい窪みになり、かつ表面が滑らかになることが目視によって観察された。従って、錫にニッケルを比較的少量添加することによって、はんだ合金中の化合物の発生を抑制し、さらにはんだ凝固時の針状結晶の生成をも抑制することができる。しかも、接合部の機械的強度を低下させることなく、経年安定性に優れ、高い信頼性と作業性を確保することが可能となる。
【0004】
ところで、ニッケルは上述したように融点が1453℃であるために、はんだ母材中に投入する添加量が少ない場合であっても、はんだ合金の融点は高くなるほうに推移する。また、ニッケルが錫を主とする合金に対して他の金属との間で化合物を構成することを回避する作用があるのであれば、予めはんだ合金中に溶解させるばかりでなく、溶融しているはんだ槽に別個に添加物として投入することによっても、使用中のはんだを改良することができる。発明者はこの点に着目して、はんだ合金の組成として好適であるニッケルを溶解はんだ槽に対する添加物とすることとした。
【0005】
本発明ではこのように溶解はんだ槽に添加することによってはんだを改良することができる無鉛はんだ用添加合金を開示することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明では、上述した目的を達成するために、Ni0.1〜10重量%およびSn残部とし、Sn−Cuの溶解無鉛はんだ中に投入拡散する無鉛はんだ用添加合金を構成した。また、さらなるNi含有量の限定として、1〜3重量%の範囲に特定した。
【0007】
さらにまた、はんだ合金のより有効な作用を高めるために、上記Snを残部としたNiに加えてさらにGe、Ga又はPからなる群から選ばれた1又は複数をそれぞれ0.1〜5重量%加えた無鉛はんだ合金を構成した。また、これら微量金属をさらに限定して、0.1〜1重量%の範囲に特定した。
【0008】
これらの手段において、錫ははんだ母材の主金属と同一のものであり、濡れ性が高く、電子回路を構成するリード線などとの接合性が非常に高い。本発明の添加合金においても錫を主成分としたのは、次の理由による。ニッケルは融点が錫と比較して非常に高く、はんだに投入する添加量がごくわずかであっても、240〜250℃程度の比較的低い温度で溶解しているはんだ中では短時間で均一に溶解して拡散することが困難である。そこで、本発明では元来溶解性がよく、またはんだ槽に溶解中の無鉛はんだの主成分である錫にニッケルを予め配合し、添加合金自体の融点を下げることによって、溶解はんだ中への敏速な均一拡散を行わしめるものである。
【0009】
無鉛はんだにおけるニッケル含有量は、実験の結果から0.01〜0.1重量%によってある程度の期待する効果を奏することができる。また、溶解はんだ中に新たな錫が投入されることによる成分変化を極力防ぐ必要があることを考慮すれば、投入する添加合金中のニッケル濃度は添加合金自体の融点があまり高くなりすぎない範囲で極力高いほうが好ましい。このことから、本発明ではニッケル含有量を0.1〜10重量%とした。また、溶解はんだに投入後の濃度調整を考慮して、より好ましい範囲として1〜3重量%に特定した。そして、この添加合金を溶解無鉛はんだ槽に投入して、はんだ自体のニッケル量を調整する。例えば、錫98重量%、ニッケル2重量%の添加合金を、融点が227℃である錫99.3重量%、銅0.7重量%の溶解はんだを250℃まで昇温して投入したところ、添加合金はスムーズに溶解し、短時間で均一に拡散し、Sn−Cu−Niの3元はんだを構成する。添加合金の融点よりも低い温度で溶解する理由は、錫の溶解性および添加物との同質性、さらにははんだ槽の膨大な熱エネルギーによるものである。そして、上記無鉛はんだ99kgに対して上記含有量の添加合金を1kg投入すると、ニッケル含有量が0.02重量%に調整されることになる。これらの無鉛はんだと添加合金との重量比は、上記「無鉛はんだにおけるニッケル含有量」として示した0.01〜0.1重量%の範囲で適宜調整することになる。ただし、この範囲は本発明においては絶対的なものではなく、あくまでも添加合金中の重量比が発明の本質であることはいうまでもない。
【0010】
ゲルマニウムGe、ガリウムGa、および燐Pはそれぞれはんだ槽表面に浮遊する滓の発生を防止する機能があるが、個々に溶解はんだ中において0.001〜0.01重量%で効果を発揮する。例えば、上記のように99:1の割合で添加合金を投入するのであれば、添加合金中の配分は0.1〜1重量%で十分であるが、投入割合には幅があるので、0.1〜5重量%の範囲で調整する。
【0011】
なお、一般に使用されている自動はんだ槽のはんだ容量を基本として考えれば、適切な添加量を得るためには添加合金の形状は1個で数百グラム〜数キログラムのインゴット形状や、棒状にするほうがよい。ただし、計算で算出した重量を正確に投入するためには調整用の補助物として小型のペレットや粉末、あるいはワイヤにすることもある。また、短時間で均一な拡散を要望するときには、却ってこれらの構造が有効に作用する。
【0012】
【実施例】
(実施例1)
予め作成したNi2重量%(以下の比率も全て重量%である)、残部Snの添加合金1kgの塊を、Sn99.3%、Cu0.7%の組成からなり、融点が227℃の無鉛はんだを250℃雰囲気で溶解させた99kgのはんだ槽中に投入し、2分待った後にステンレス製のへらでゆっくりと撹拌した。確認したところ、投入した添加合金の塊は既に溶解していた。この場合、Ni含有量は0.02%であった。
このはんだ合金を用いて、リード間隔が0.65mmピッチの表面実装用IC付きのプリント基板をRAタイプのフラックスを使用して250℃ではんだ付けを行ったところ、ブリッジやツララ現象は発生しなかった。また、接合部を20倍程度に拡大して観察したところ、はんだ表面は滑らかであり、異常な結晶は見当たらなかった。さらに、はんだ槽が冷え固まったときのはんだ合金表面も滑らかであり、表面に針状結晶などが生成していないことも確認することができた。
【0013】
(実施例1の強度試験)
実施例1で添加合金を投入拡散した後のはんだ合金の強度を引っ張り試験機で検査した。試験片ははんだ槽からステンレス製のしゃもじで汲み出して、鉄の鋳型に注入して放冷凝固させ、取り出してからヤスリなどを使用して整形した。引っ張り試験機にセットし、室温で引っ張り速度10mm/秒の条件にて測定した。その結果、強度が3.3kg/平方ミリメートルであった。ちなみに、添加合金を投入する前のはんだでは、同様に試験を行ったところ、強度が3.2kg/平方ミリメートルであった。
【0014】
(実施例2)
Sn99.3%、Cu0.7%の組成からなる融点が227℃の無鉛はんだ合金に、10%のNiを含む本発明の添加合金を投入して、Ni濃度が1%になるように調整したはんだ合金を、実施例1と同様に検査したところ、はんだ合金表面は非常に滑らかであった。また、実施例1と同様に強度試験を行ったところ、強度は実施例1と同じように3.3kg/平方ミリメートルであった。
【0015】
(実施例3)
予め作成したNi2%、Ga0.5%、残部Snの添加合金1kgの塊を、Sn99.3%、Cu0.7%の組成からなり、融点が227℃の無鉛はんだを250℃雰囲気で溶解させた99kgのはんだ槽中に投入し、2分待った後にステンレス製のへらでゆっくりと撹拌した。確認したところ、投入した添加合金の塊は既に溶解していた。この場合、Ni含有量は0.02%、Gaは0.005%となる。
このはんだ合金は、上記添加合金の投入直後からはんだ表面の色が金属的な白色を増し、それまで発生していた表面の滓の発生が激減した。なお、GeおよびPの添加であっても同じ効果を期待することが可能である。
【0016】
(比較例)
Sn99.3%、Cu0.7%の組成からなる融点227℃の無鉛はんだ合金を用いてリード間隔が0.65mmピッチの表面実装用IC付きのプリント基板をRAタイプのフラックスを使用して250℃ではんだ付けを行ったところ、ブリッジがリードの間に多数発生した。これらのブリッジは、リード間だけでなくリードを数本またぐようにして発生していたものも認められた。また、リード間隔が2.5mmピッチのコネクタ付きのプリント基板に同様にしてはんだ付けしたところ、やはりブリッジやツララが多数発生した。
接合部を20倍程度に拡大して観察したところ、はんだ表面はザラザラとして異常な結晶が見られた。これらはSn−Cu金属化合物による針状結晶であった。また、ICリード間のブリッジ中には非常に細い針状のマイクロブリッジが見られ、これらは融点が高く、活性の高いフラックスでも容易に除去することができないため、はんだ付け品質の向上は困難であると推測される。
はんだ槽が冷え固まったときのはんだ合金表面には針状結晶が発生し、凹凸が見られただけでなく、場所によっては大きいわれが発生して、段差もあることが観察された。これは、はんだ内部にひずみが発生しているためと考えられる。
【0017】
【発明の効果】
本発明は、上述したようにはんだ合金母材に直接添加物を入れるのではなく、別途製造した塊状やペレット状の添加合金を構成したので、錫を主成分とした溶解はんだに非常によく混ざり合い、短時間のうちに均一に拡散するので、計算通りのはんだ組成を、はんだの溶解槽中で達成することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloy for lead-free solder, and relates to an alloy that is introduced as an additive to a solder base material and functions effectively when dissolved in the base material.
[0002]
[Problems to be solved by the invention]
In the conventional composition of solder alloys, lead functions very effectively as a determinant of the properties of solder alloys. However, in recent years, the toxicity of lead has become a problem, and the development of lead-free solder that avoids lead from the composition has been developed. It is thriving. And most of these lead-free solders have tin as a main component. In other words, tin is low in toxicity, has high compatibility with many metals such as gold, silver, copper, nickel, and zinc, and diffuses well with high reactivity and wets the metal surface. Indispensable as the main component of the alloy. However, in lead-free solder alloys mainly composed of tin, due to the high reactivity of tin, it binds to added metals and metals such as copper and silver eluted from the base metal surface at the time of joining to form intermetallic compounds. Will be generated. However, since these compounds generally have a melting point higher than that of the solder alloy, they hinder the fluidity of the solder alloy and generate bridges and wiggles that are defects in the solder joints during soldering operations. It becomes a factor to make. In addition, the compound becomes acicular crystals during solidification and precipitates in the solder, resulting in a loss of surface smoothness, resulting in a poor solder appearance with a dull and rough appearance, not only reducing the commercial value, If the circuit has a high density and a dense line, a microbridge or a needle wire is formed, which may cause a short circuit.
[0003]
Therefore, the inventor has disclosed a solder alloy in which only a small amount (0.002 to 1 wt%) of nickel is added as a main component to solve these problems (Japanese Patent Application No. 10-1000014). Nickel is an acicular crystal that is inevitably generated when an alloy of tin and many metals, for example, an alloy of copper used in printed circuit board lead wires and terminals, solidifies by adding a relatively small amount. It has been confirmed that there is an action to suppress, and focused on this. Nickel has a very high melting point of 1453 ° C., but if it is about the above-mentioned addition amount, it is dissolved in tin and uniformly dispersed. Furthermore, when nickel is included, it is completely different from the case where nickel is not included, and the state of the shrinkage cavities resulting from volume shrinkage during solidification becomes one large depression similar to the characteristics of Sn—Pb eutectic solder. It was observed visually that the surface was smooth. Therefore, by adding a relatively small amount of nickel to tin, generation of a compound in the solder alloy can be suppressed, and generation of needle crystals during solder solidification can also be suppressed. Moreover, it is possible to ensure excellent reliability and workability with excellent aging stability without reducing the mechanical strength of the joint.
[0004]
By the way, since the melting point of nickel is 1453 ° C. as described above, the melting point of the solder alloy becomes higher even when the amount of addition to the solder base material is small. In addition, if nickel has an action to avoid composing a compound with other metals with respect to an alloy mainly composed of tin, it is not only dissolved in the solder alloy in advance but also melted. The solder in use can be improved also by putting it into the solder bath as an additive separately. The inventors focused on this point and decided to use nickel, which is suitable as the composition of the solder alloy, as an additive to the molten solder bath.
[0005]
The object of the present invention is to disclose an additive alloy for lead-free solder which can improve the solder by adding it to the molten solder bath.
[0006]
[Means for Solving the Problems]
In the present invention, in order to achieve the above-described object, an additive alloy for lead-free solder which is Ni 0.1 to 10% by weight and the remainder of Sn and is introduced and diffused into a lead-free solder of Sn—Cu is configured. Moreover, it specified to the range of 1-3 weight% as further limitation of Ni content.
[0007]
Furthermore, in order to enhance the more effective action of the solder alloy, one or more selected from the group consisting of Ge, Ga or P in addition to Ni with Sn as the balance is added in an amount of 0.1 to 5% by weight. Added lead-free solder alloy was constructed. Moreover, these trace metals were further limited and specified in the range of 0.1 to 1% by weight.
[0008]
In these means, tin is the same as the main metal of the solder base material, has high wettability, and has very high bondability with the lead wires constituting the electronic circuit. The reason why tin is the main component in the additive alloy of the present invention is as follows. Nickel has a very high melting point compared to tin, and even in a very small amount added to the solder, it is uniform in a short time in solder that is melted at a relatively low temperature of about 240 to 250 ° C. Difficult to dissolve and diffuse. Therefore, in the present invention, the solubility is originally good, or nickel is pre-mixed with tin, which is the main component of the lead-free solder being dissolved in the solder bath, and the melting point of the added alloy itself is lowered, so that the rapid dissolution into the molten solder is achieved. Uniform diffusion.
[0009]
The nickel content in the lead-free solder can achieve a certain expected effect by 0.01 to 0.1% by weight from the results of the experiment. In addition, considering that it is necessary to prevent changes in the components due to the addition of new tin into the molten solder, the nickel concentration in the added alloy is within the range where the melting point of the added alloy itself is not too high. It is preferable that it is as high as possible. Therefore, in the present invention, the nickel content is set to 0.1 to 10% by weight. Moreover, considering the concentration adjustment after charging into the molten solder, it was specified as 1 to 3% by weight as a more preferable range. Then, this additive alloy is put into a molten lead-free solder bath to adjust the nickel amount of the solder itself. For example, when 98% by weight of tin and 2% by weight of nickel were added to a molten solder of 99.3% by weight of tin having a melting point of 227 ° C. and 0.7% by weight of copper and heated to 250 ° C. The additive alloy dissolves smoothly and diffuses uniformly in a short time to form a Sn—Cu—Ni ternary solder. The reason for melting at a temperature lower than the melting point of the additive alloy is due to the solubility of tin, the homogeneity with the additive, and the enormous thermal energy of the solder bath. When 1 kg of the alloy having the above content is added to 99 kg of the lead-free solder, the nickel content is adjusted to 0.02% by weight. The weight ratio between the lead-free solder and the additive alloy is appropriately adjusted within the range of 0.01 to 0.1% by weight shown as the “nickel content in the lead-free solder”. However, this range is not absolute in the present invention, and it goes without saying that the weight ratio in the additive alloy is the essence of the invention.
[0010]
Each of germanium Ge, gallium Ga, and phosphorus P has a function of preventing generation of wrinkles floating on the surface of the solder bath, but is effective at 0.001 to 0.01% by weight in the molten solder. For example, if the additive alloy is charged at a ratio of 99: 1 as described above, 0.1 to 1% by weight is sufficient for the distribution in the additive alloy. Adjust in the range of 1 to 5% by weight.
[0011]
In view of the solder capacity of a generally used automatic solder bath, in order to obtain an appropriate addition amount, the shape of the additive alloy is one ingot shape of several hundred grams to several kilograms or a rod shape. Better. However, in order to accurately input the weight calculated by calculation, a small pellet, powder, or wire may be used as an auxiliary material for adjustment. In addition, when a uniform diffusion is desired in a short time, these structures are effective.
[0012]
【Example】
Example 1
Pre-made Ni 2 wt% (all the following ratios are also wt%), 1kg of the added Sn alloy, the balance of Sn 99.3%, Cu 0.7% composition, lead-free solder with a melting point of 227 ° C It was put into a 99 kg solder bath dissolved in an atmosphere of 250 ° C., and after 2 minutes, it was slowly stirred with a stainless steel spatula. As a result of confirmation, the added alloy lump was already dissolved. In this case, the Ni content was 0.02%.
When this solder alloy was used to solder a printed circuit board with a surface mount IC with a lead spacing of 0.65 mm pitch at 250 ° C. using RA type flux, no bridge or wiggle phenomenon occurred. It was. Moreover, when the joint part was observed by magnifying it about 20 times, the solder surface was smooth and no abnormal crystals were found. Furthermore, it was confirmed that the surface of the solder alloy when the solder bath was cooled and solidified was smooth, and no acicular crystals or the like were formed on the surface.
[0013]
(Strength test of Example 1)
The strength of the solder alloy after adding and diffusing the additive alloy in Example 1 was inspected with a tensile tester. The test piece was pumped out of the solder bath with a stainless steel scoop, poured into an iron mold, allowed to cool and solidify, and taken out and shaped using a file. The sample was set on a tensile tester and measured at room temperature under a tensile speed of 10 mm / second. As a result, the strength was 3.3 kg / square millimeter. Incidentally, the solder before adding the additive alloy was tested in the same manner, and the strength was 3.2 kg / square millimeter.
[0014]
(Example 2)
An additive alloy of the present invention containing 10% Ni was added to a lead-free solder alloy having a melting point of 227 ° C. and composed of Sn 99.3% and Cu 0.7%, and the Ni concentration was adjusted to 1%. When the solder alloy was inspected in the same manner as in Example 1, the surface of the solder alloy was very smooth. Further, when a strength test was performed in the same manner as in Example 1, the strength was 3.3 kg / square millimeter as in Example 1.
[0015]
(Example 3)
A pre-made lump of 1 kg of Ni 2%, Ga 0.5% and the balance Sn Sn alloy was composed of Sn 99.3%, Cu 0.7%, and lead-free solder having a melting point of 227 ° C. was dissolved in an atmosphere of 250 ° C. The mixture was put into a 99 kg solder bath, and after 2 minutes, it was slowly stirred with a stainless steel spatula. As a result of confirmation, the added alloy lump was already dissolved. In this case, the Ni content is 0.02% and Ga is 0.005%.
In this solder alloy, the color of the solder surface increased to metallic white immediately after the addition of the additive alloy, and the generation of surface wrinkles that had occurred so far was drastically reduced. Even when Ge and P are added, the same effect can be expected.
[0016]
(Comparative example)
Using a lead-free solder alloy with a melting point of 227 ° C composed of 99.3% Sn and 0.7% Cu, a printed circuit board with a surface mount IC with a lead interval of 0.65 mm pitch is 250 ° C using RA type flux. When soldering was performed, a large number of bridges were generated between the leads. Some of these bridges were generated not only between the leads but also across several leads. Further, when soldering was similarly performed on a printed circuit board with a connector having a lead interval of 2.5 mm, many bridges and wiggles were generated.
When the joint was observed with a magnification of about 20 times, an abnormal crystal was observed on the solder surface. These were needle-like crystals made of Sn—Cu metal compound. In addition, very thin needle-like microbridges are found in the bridges between IC leads, and these have a high melting point and cannot be easily removed even with a highly active flux, so it is difficult to improve the soldering quality. Presumed to be.
It was observed that needle-like crystals were generated on the surface of the solder alloy when the solder bath was cooled and solidified, and not only irregularities were observed, but also large cracks were generated in some places and there were steps. This is thought to be due to the occurrence of strain inside the solder.
[0017]
【The invention's effect】
As described above, the present invention does not directly add the additive to the solder alloy base material but constitutes a separately manufactured lump or pellet-shaped additive alloy, so that it mixes very well with the molten solder mainly composed of tin. In addition, since it diffuses uniformly within a short time, the calculated solder composition can be achieved in the solder melting bath.

Claims (3)

Ni0.1〜10重量%と、Ge、Ga又はPから選ばれた1又は複数をそれぞれ0.1〜5重量%と、残部Snとし、Sn−Cuの溶解無鉛はんだ中に投入拡散する無鉛はんだ用添加合金。  Lead-free solder that diffuses into and dissolves Sn-Cu melted lead-free solder, with 0.1 to 10% by weight of Ni, one or more selected from Ge, Ga or P being 0.1 to 5% by weight and the remaining Sn Additive alloy. 請求項1において、Niの含有量は、1〜3重量%である無鉛はんだ用添加合金。  The additive alloy for lead-free solder according to claim 1, wherein the content of Ni is 1 to 3% by weight. 請求項1又は2において、Ge、Ga又はPは0.1〜1重量%である無鉛はんだ用添加合金。  3. The lead-free solder additive alloy according to claim 1, wherein Ge, Ga, or P is 0.1 to 1% by weight.
JP15860198A 1998-05-22 1998-05-22 Lead-free solder additive alloy Expired - Lifetime JP4039594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15860198A JP4039594B2 (en) 1998-05-22 1998-05-22 Lead-free solder additive alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15860198A JP4039594B2 (en) 1998-05-22 1998-05-22 Lead-free solder additive alloy

Publications (2)

Publication Number Publication Date
JPH11333589A JPH11333589A (en) 1999-12-07
JP4039594B2 true JP4039594B2 (en) 2008-01-30

Family

ID=15675271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15860198A Expired - Lifetime JP4039594B2 (en) 1998-05-22 1998-05-22 Lead-free solder additive alloy

Country Status (1)

Country Link
JP (1) JP4039594B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE500018T1 (en) 2002-01-10 2011-03-15 Senju Metal Industry Co SOLDERING PROCESS WITH ADDITIONAL SUPPLY OF SOLDER CONTAINING ANTI-OXIDATION
ES2393029T3 (en) * 2005-07-26 2012-12-17 Nihon Superior Sha Co., Ltd Copper precipitation method in lead-free solder and tin recovery method
JP2007038228A (en) * 2005-07-29 2007-02-15 Nihon Almit Co Ltd Solder alloy
JP4890221B2 (en) * 2006-12-06 2012-03-07 株式会社日本スペリア社 Die bond material
WO2009104271A1 (en) * 2008-02-22 2009-08-27 株式会社日本スペリア社 Method of regulating nickel concentration in lead-free solder containing nickel
CN101417374B (en) * 2008-11-28 2011-05-18 广州瀚源电子科技有限公司 Leadless solder dregs-reducing method

Also Published As

Publication number Publication date
JPH11333589A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
US6180055B1 (en) Lead-free solder alloy
US6296722B1 (en) Lead-free solder alloy
WO2009131178A1 (en) Lead-free solder alloy suppressed in occurrence of shrinkage cavity
EP3666453B1 (en) Solder alloy, solder paste, solder ball, resin-flux cored solder, and solder joint
JP2016106033A (en) Solder joint
JP2000094181A (en) Solder alloy composition
CA3093091C (en) Solder alloy, solder paste, solder ball, resin flux-cored solder and solder joint
JP3786251B2 (en) Lead-free solder alloy
US11607752B2 (en) Solder alloy, solder joint material, and electronic circuit board
JP4135268B2 (en) Lead-free solder alloy
JP4039594B2 (en) Lead-free solder additive alloy
US20190134758A1 (en) Low-silver alternative to standard sac alloys for high reliability applications
TWI744907B (en) Solder alloy, solder paste, preform solder, solder ball, wire solder, grease-filled solder, solder joint, electronic circuit board and multilayer electronic circuit board
CN112077478A (en) Low-melting-point In-Sn-Zn alloy solder and preparation method thereof
JPH10166178A (en) Pb free solder material and electronic apparatus using it
JP2001047276A (en) Soldering material
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JP2910527B2 (en) High temperature solder
JP2008093701A (en) Solder alloy
KR100887358B1 (en) Diluent Pb free solder Composition, electronic equipment and PCB with the same
EP0168674A1 (en) Tin base alloy for soldering, having high resistance to the oxidation in the molten state
JPWO2014142153A1 (en) Solder joint and solder joint method
JP3166826B2 (en) Solder alloy
KR100443230B1 (en) Lead-free solder alloy
KR100327767B1 (en) Lead-Free Alloys for Soldering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050805

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term