JP2002239780A - Solder alloy, solder ball and electronic member having solder bump - Google Patents

Solder alloy, solder ball and electronic member having solder bump

Info

Publication number
JP2002239780A
JP2002239780A JP2001033878A JP2001033878A JP2002239780A JP 2002239780 A JP2002239780 A JP 2002239780A JP 2001033878 A JP2001033878 A JP 2001033878A JP 2001033878 A JP2001033878 A JP 2001033878A JP 2002239780 A JP2002239780 A JP 2002239780A
Authority
JP
Japan
Prior art keywords
solder
mass
solder alloy
electronic member
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001033878A
Other languages
Japanese (ja)
Other versions
JP4152596B2 (en
Inventor
Masamoto Tanaka
将元 田中
Michio Endo
道雄 遠藤
Kohei Tatsumi
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18897565&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002239780(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001033878A priority Critical patent/JP4152596B2/en
Publication of JP2002239780A publication Critical patent/JP2002239780A/en
Application granted granted Critical
Publication of JP4152596B2 publication Critical patent/JP4152596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a lead-free solder alloy which has excellent joining reliability and falling impact resistance without using so Ag (<=2 mass%), and can be used as a solder bump of an electronic member, to provide a solder ball having the composition, and to provide an electronic member having the solder bump having the composition. SOLUTION: The lead-free solder alloy has a composition containing, by mass, 1.0 to 2.0% Ag and 0.3 to 1.5% Cu, and the balance Sn with inevitable impurities. The solder alloy further contains one or more kinds selected from 0.005 to 1.5% Sb, 0.05 to 1.5% Zn, 0.05 to 1.5% Ni and 0.005 to 0.5% Fe, and in which the total content of Sb, Zn, Ni and Fe is <=1.5%. The concentration of O is <=10 ppm. The lead-free solder ball for an electronic member consists of the above solder alloy. The electronic member has a solder bump consisting of the above solder alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無鉛ハンダ合金に
関するものであり、特に半導体基板やプリント基板等の
電子部材における電極のハンダバンプに好適なハンダ合
金及びハンダボールである。更に該ハンダ合金を用いた
ハンダバンプを有する電子部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-free solder alloy, and more particularly to a solder alloy and a solder ball suitable for a solder bump of an electrode in an electronic member such as a semiconductor substrate or a printed board. Further, the present invention relates to an electronic member having a solder bump using the solder alloy.

【0002】[0002]

【従来の技術】最近の電子部品の小型化、高密度実装化
に伴い、プリント配線基板等に電子部品を実装する際に
は、BGA(ボールグリッドアレイ)、CSP(チップ
サイズパッケージ)技術が用いられるようになってい
る。また、これらの技術に採用される電極サイズも微細
化の一途をたどっている。
2. Description of the Related Art With the recent miniaturization and high-density mounting of electronic components, BGA (ball grid array) and CSP (chip size package) technologies are used to mount electronic components on printed wiring boards and the like. It is supposed to be. In addition, the size of the electrodes used in these technologies is also steadily miniaturized.

【0003】これらの接合においては、半導体基板、電
子部品、プリント基板等の上に配置された多数の電極に
まずハンダバンプを形成する。電子部材上の電極へのハ
ンダバンプ形成は、各電極にフラックスの粘着力を利用
してハンダボールを粘着させ、ついで該電子部材を高温
に熱してハンダボールをリフローさせることによって行
なう。このハンダバンプを介して半導体基板等とプリン
ト基板等との間を接合する。ここで、ハンダバンプと
は、銅あるいはアルミ配線電極上のメッキの上に半球状
に盛り上がって形成されたハンダをいう。
In these bondings, first, solder bumps are formed on a large number of electrodes arranged on a semiconductor substrate, an electronic component, a printed board, or the like. The formation of solder bumps on the electrodes on the electronic member is performed by adhering a solder ball to each electrode using the adhesive force of the flux, and then heating the electronic member to a high temperature to reflow the solder balls. The semiconductor substrate and the like and the printed circuit board and the like are joined via the solder bumps. Here, the solder bump refers to a solder formed in a hemispherical shape on a plating on a copper or aluminum wiring electrode.

【0004】上記実装技術によって半導体素子や電子部
品を基板上に実装した電子装置においては、当該装置を
作動させると半導体素子等自身の発熱によって温度が上
昇し、装置作動をオフとすると冷却して温度が低下する
という加熱・冷却を繰り返す熱サイクルにさらされる。
また、電子装置の使用環境によっては、装置全体が高温
と低温とを繰り返す環境にさらされる。半導体素子自身
が発熱する場合には半導体素子とプリント基板との間に
温度差が生じるため、半導体素子とプリント基板との接
合部には熱応力が発生する。また、装置全体が熱サイク
ルを受ける場合においても、半導体素子とプリント基板
との間に存在する熱膨張係数差により、同じく半導体素
子とプリント基板との接合部に熱応力が発生する。半導
体素子とプリント基板との接合はハンダ電極によって行
われているので、ハンダ電極の強度及び耐熱疲労強度が
低いと、該ハンダ電極部が熱応力によって破壊されるこ
ととなる。そのため、このような接合に用いるハンダ合
金には優れた耐熱疲労特性が要求される。
In an electronic device in which a semiconductor element or an electronic component is mounted on a substrate by the above mounting technology, the temperature rises due to heat generated by the semiconductor element itself when the device is operated, and is cooled when the device is turned off. It is exposed to a thermal cycle of repeated heating and cooling in which the temperature drops.
Further, depending on the use environment of the electronic device, the entire device is exposed to an environment in which high and low temperatures are repeated. When the semiconductor element itself generates heat, a temperature difference is generated between the semiconductor element and the printed board, so that a thermal stress is generated at a joint between the semiconductor element and the printed board. Further, even when the entire device is subjected to a thermal cycle, a thermal stress is similarly generated at a joint between the semiconductor element and the printed board due to a difference in thermal expansion coefficient between the semiconductor element and the printed board. Since the bonding between the semiconductor element and the printed circuit board is performed by the solder electrode, if the solder electrode has low strength and low thermal fatigue strength, the solder electrode portion is broken by thermal stress. Therefore, a solder alloy used for such joining is required to have excellent thermal fatigue resistance.

【0005】近年の電子部品の高密度実装化に伴い、特
にノートパソコン、ビデオカメラ、携帯電話等において
は表面実装やBGA実装が進み、基板電極パッド面積の
縮小が急激に進んでいるため、接合部位のハンダ量を少
量化せざるを得ない状況にある。即ち、ハンダ接合部位
の接合面積が低下し、接合部にかかる応力が増大してい
る。また、高密度実装により、高機能・小型化が進んだ
ため情報伝達機器の携帯化も急速に進展した。加えて経
済活動領域が地球規模に及ぶに至り、従来考えてもいな
かった灼熱の砂漠や極地高地の極寒下等での当該機器が
使用される様になっている。このような状況下では、ハ
ンダ接合部が一層厳しい環境下に曝されることを考慮し
たハンダ実装設計が求められており、そのため、ハンダ
材料に対する耐疲労性向上の要求がより一層高まってい
る。幸いなことに、無鉛ハンダ、特にSn−Ag−Cu
系においては、従来Sn−Pb共晶ハンダで見られるP
bの粗粒化は発生しないため、耐疲労性に関しては実用
上ほぼ満足できるレベルにある。
[0005] With the recent high-density mounting of electronic components, particularly in notebook computers, video cameras, mobile phones, etc., surface mounting and BGA mounting have progressed, and the area of substrate electrode pads has been rapidly reduced. There is a situation where the amount of solder at the site must be reduced. That is, the bonding area of the solder bonding portion has decreased, and the stress applied to the bonding portion has increased. In addition, due to the high functionality and miniaturization due to the high-density mounting, the portability of information transmission equipment has also rapidly advanced. In addition, the area of economic activity has reached the global scale, and such devices have come to be used in feverish deserts and polar highlands under extremely cold conditions, which have never been considered before. Under such circumstances, there is a demand for a solder mounting design that takes into account the fact that the solder joint is exposed to a more severe environment, and thus the demand for improved fatigue resistance of the solder material has been further increased. Fortunately, lead-free solders, especially Sn-Ag-Cu
In the system, P which is conventionally found in Sn-Pb eutectic solder
Since no coarse graining of b occurs, the fatigue resistance is at a practically satisfactory level.

【0006】一方、携帯電話等の持ち運び可能なデジタ
ル製品に関しては、その使用上の特質から使用中に誤っ
て床面に落下させたりぶつけたりする事態を想定する必
要がある。このような衝撃に対しても使用する電子部品
のハンダ接合部位が破壊しないだけの耐衝撃性を有する
ことが要求される。これに対し、従来の耐疲労性ハンダ
合金においては、主にハンダの強度を増大することによ
って耐疲労性の改善を図っており、その結果として耐衝
撃性についてはむしろ低下する傾向が見られた。ハンダ
接合部位の耐衝撃性の向上を図るためには、接合部位の
ハンダ合金として延性の優れた合金を用いることが最も
効果的である。
On the other hand, with respect to portable digital products such as mobile phones, it is necessary to assume a situation in which the digital products are accidentally dropped or hit on the floor during use due to the characteristics of use. It is required that the solder joint of the electronic component used has such an impact resistance that it does not break even under such an impact. On the other hand, in the conventional fatigue-resistant solder alloy, the fatigue resistance is improved mainly by increasing the strength of the solder, and as a result, the impact resistance tends to decrease. . In order to improve the impact resistance at the solder joint, it is most effective to use an alloy having excellent ductility as the solder alloy at the joint.

【0007】一方、廃棄された電子装置を廃棄処理する
に際し、環境への影響を最少とするため、電子装置に使
用するハンダ合金についても無鉛ハンダ合金が要求され
るようになっている。
On the other hand, in order to minimize the influence on the environment when discarding a discarded electronic device, a lead-free solder alloy is required for a solder alloy used in the electronic device.

【0008】無鉛ハンダ合金としては、二元系ではSn
にAgを3.5%含有した組成が共晶組成となり、融点
は221℃と比較的低く、広く無鉛ハンダとして使用さ
れている。耐熱疲労特性もそれなりに良好である。
[0008] As a lead-free solder alloy, Sn is used in a binary system.
A composition containing 3.5% of Ag is a eutectic composition, has a relatively low melting point of 221 ° C., and is widely used as a lead-free solder. The thermal fatigue properties are also reasonably good.

【0009】電子部品に用いるハンダ合金については、
上述のように優れた耐熱疲労特性を必要とする。特開平
5−50286号公報においては、電子機器用の無鉛ハ
ンダ合金として、Ag3.0〜5.0%、Cu0.5〜
3.0%、残部Snからなる耐熱疲労特性に優れた高温
ハンダが開示されている。Agの含有量については、A
gは耐熱疲労特性改善に著しく効果があるが、その添加
量が3.0%以下であると耐熱疲労特性を改善する効果
が十分でないとしている。ここで提案されているハンダ
合金の融点は218℃前後である。Sn−Ag−Cu系
ハンダ合金では、Ag4.7%−Cu1.7%で三元共
晶組成となることが報告されており、3%以上のAgを
含有することによって共晶点近傍の組成として融点を下
げ、ハンダ合金としての使いやすさを実現している。
Regarding solder alloys used for electronic parts,
As described above, it requires excellent thermal fatigue properties. In JP-A-5-50286, as lead-free solder alloys for electronic devices, Ag 3.0 to 5.0%, Cu 0.5 to
A high temperature solder comprising 3.0% and the balance of Sn and having excellent thermal fatigue resistance is disclosed. Regarding the Ag content,
Although g has a remarkable effect on the improvement of the thermal fatigue resistance, it is stated that if the addition amount is 3.0% or less, the effect of improving the thermal fatigue resistance is not sufficient. The melting point of the proposed solder alloy is around 218 ° C. It has been reported that a Sn-Ag-Cu-based solder alloy has a ternary eutectic composition at 4.7% Ag-1.7% Cu. The composition near the eutectic point by containing 3% or more of Ag is reported. As a result, the melting point has been lowered and the usability as a solder alloy has been realized.

【0010】[0010]

【発明が解決しようとする課題】電子部材用鉛フリーハ
ンダ、特に電子部材用鉛フリーハンダボールにおいて、
接合信頼性、特に耐衝撃信頼性、耐落下信頼性で重要に
なる点は、ハンダ材料の延性である。従来Sn−Ag共
晶組成、Sn−3.5AgやそのSn−Ag共晶組成近
傍のSn3.5Ag−0.7Cuでは、延性が優れてい
ることが知られている。更にはSn−Ag−Cu三元共
晶組成であるSn−4.7Ag−1.7Cuも延性に優
れていることが知られている。しかし、これらのハンダ
合金は、原材料価格的に高価なAgを3.0質量%以上
含んでいるため、非常に高価なハンダにならざるを得な
い。
SUMMARY OF THE INVENTION In lead-free solder for electronic members, particularly in lead-free solder balls for electronic members,
An important factor in joint reliability, particularly in shock resistance and drop resistance, is the ductility of the solder material. Conventionally, it is known that Sn-Ag eutectic composition, Sn-3.5Ag, and Sn3.5Ag-0.7Cu near the Sn-Ag eutectic composition have excellent ductility. Furthermore, Sn-4.7Ag-1.7Cu, which is a Sn-Ag-Cu ternary eutectic composition, is also known to have excellent ductility. However, since these solder alloys contain Ag, which is expensive in terms of raw materials, in an amount of 3.0% by mass or more, it must be very expensive.

【0011】本発明は、無鉛ハンダ合金であって、Ag
をさほど使用せず(2質量%以下)、接合信頼性、耐落
下衝撃性に優れたハンダ合金を安価に提供でき、電子部
材のハンダバンプ用として使用することのできるハンダ
合金、該組成のハンダボール、該組成のハンダバンプを
有する電子部材を提供することを目的とする。
The present invention relates to a lead-free solder alloy, comprising Ag
Solder alloy that does not use much (2% by mass or less), can provide a solder alloy excellent in joining reliability and drop impact resistance at low cost, and can be used for solder bumps of electronic members, and a solder ball of the composition. It is another object of the present invention to provide an electronic member having solder bumps having the above composition.

【0012】[0012]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは以下のとおりである。 (1)Ag:1.0〜2.0質量%、Cu:0.3〜
1.5質量%を含み、残部Sn及び不可避不純物からな
ることを特徴とする無鉛ハンダ合金。 (2)更にSb:0.005〜1.5質量%、Zn:
0.05〜1.5質量%、Ni:0.05〜1.5質量
%、Fe:0.005〜0.5質量%の1種又は2種以
上を含み、Sb、Zn、Ni、Feの合計含有量が1.
5質量%以下であることを特徴とする上記(1)に記載
の無鉛ハンダ合金。 (3)O濃度が10ppm以下であることを特徴とする
上記(1)又は(2)に記載の無鉛ハンダ合金。 (4)上記(1)乃至(3)のいずれかに記載のハンダ
合金よりなることを特徴とする電子部材用無鉛ハンダボ
ール。 (5)ハンダバンプを有する電子部材であって、該ハン
ダバンプの一部又は全部は、上記(1)乃至(3)のい
ずれかに記載のハンダ合金よりなることを特徴とする電
子部材。 (6)複数の電子部品間をハンダ電極によって接合した
電子部材であって、該ハンダ電極の一部または全部は、
上記(1)乃至(3)のいずれかに記載のハンダ合金よ
りなることを特徴とする電子部材。
That is, the gist of the present invention is as follows. (1) Ag: 1.0 to 2.0% by mass, Cu: 0.3 to
A lead-free solder alloy containing 1.5% by mass, the balance being Sn and unavoidable impurities. (2) Further, Sb: 0.005 to 1.5% by mass, Zn:
Sb, Zn, Ni, Fe containing one or more of 0.05 to 1.5% by mass, Ni: 0.05 to 1.5% by mass, and Fe: 0.005 to 0.5% by mass. Is 1.
The lead-free solder alloy according to the above (1), wherein the content is 5% by mass or less. (3) The lead-free solder alloy according to (1) or (2), wherein the O concentration is 10 ppm or less. (4) A lead-free solder ball for an electronic member, comprising the solder alloy according to any one of the above (1) to (3). (5) An electronic member having solder bumps, wherein a part or all of the solder bumps are made of the solder alloy according to any one of the above (1) to (3). (6) An electronic member in which a plurality of electronic components are joined by a solder electrode, and a part or all of the solder electrode includes:
An electronic member comprising the solder alloy according to any one of the above (1) to (3).

【0013】従来、電子部品用の無鉛ハンダ合金として
は、Agの含有量は3%以上必要であるとされていた。
本発明においては、Ag含有量1.5質量%付近におい
てハンダ合金の伸びが著しく向上するAg成分範囲が存
在することを見出し、これによってハンダ合金の延性を
顕著に増大して耐熱疲労特性及び耐衝撃性の改善を実現
した。
Hitherto, it has been considered that a lead-free solder alloy for electronic components requires a Ag content of 3% or more.
In the present invention, it has been found that there is an Ag component range in which the elongation of the solder alloy is remarkably improved when the Ag content is around 1.5% by mass. Improved impact performance.

【0014】本発明は上記知見に基づいてなされたもの
であり、Ag:1.0〜2.0質量%、Cu:0.3〜
1.5質量%を含有するSn系ハンダ合金組成を適用す
ることにより、安価な無鉛ハンダ合金を提供し、耐熱疲
労特性と耐衝撃性を著しく向上し、リフロー後の表面性
状の確保を同時に実現することを可能にした。
The present invention has been made on the basis of the above-mentioned findings, in which Ag: 1.0 to 2.0% by mass, Cu: 0.3 to
By applying an Sn-based solder alloy composition containing 1.5 mass%, an inexpensive lead-free solder alloy is provided, heat resistance and impact resistance are remarkably improved, and surface properties after reflow are simultaneously achieved. Made it possible.

【0015】[0015]

【発明の実施の形態】Ag含有量が0.5〜3質量%の
範囲にあり、かつCu含有量が0.3〜2.0質量%の
範囲にあるSnハンダ合金であれば、従来のSn−Pb
ハンダ合金やSnハンダ合金と同等の延性を有し、更に
これらに比較して良好な耐疲労特性を有している。本発
明においては、更にAg含有量を1.0〜2.0質量%
の範囲とすることにより、ハンダ合金の伸びが著しく向
上し、延性の増大を図ることができる。Ag含有量が
1.0〜1.7質量%の範囲にあれば、伸びの向上効果
を最も顕著に得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Conventional Sn solder alloys having an Ag content in the range of 0.5 to 3% by mass and a Cu content in the range of 0.3 to 2.0% by mass are known. Sn-Pb
It has the same ductility as solder alloys and Sn solder alloys, and has better fatigue resistance than these. In the present invention, the Ag content is further increased to 1.0 to 2.0% by mass.
Within this range, the elongation of the solder alloy is significantly improved, and the ductility can be increased. When the Ag content is in the range of 1.0 to 1.7% by mass, the effect of improving elongation can be obtained most remarkably.

【0016】Sn−Ag系のハンダ合金にCuを添加す
ると、Cu含有量1.5質量%までは固相線温度(融
点)が低下するが、それを超えると急激に固相線温度が
上昇する。そのため、本発明ではCu含有量上限を1.
5質量%とする。
When Cu is added to a Sn-Ag solder alloy, the solidus temperature (melting point) decreases up to a Cu content of 1.5% by mass, but when it exceeds this, the solidus temperature rises sharply. I do. Therefore, in the present invention, the upper limit of the Cu content is set to 1.
5 mass%.

【0017】Sn−Ag系合金においては、凝固組織の
中にAg3Sn金属間化合物のネットワークが生成し、
ハンダの強度や疲労特性を向上させる。Sn−Agのみ
の合金においてはAg3Sn金属間化合物のネットワー
クが相互に十分に連結されないが、Sn−Ag系のハン
ダ合金にCuを0.3質量%以上添加すると、内部のA
3Sn金属間化合物のリング状ネットワークが密にな
り、ハンダバンプの強度、疲労特性を向上し、電子部品
用として必要な強度や耐熱疲労特性を確保することが可
能になる。そのため、本発明ではCu含有量下限を0.
3質量%とする。
In the Sn—Ag alloy, a network of Ag 3 Sn intermetallic compound is formed in the solidified structure,
Improves solder strength and fatigue properties. In an alloy containing only Sn—Ag, the networks of Ag 3 Sn intermetallic compounds are not sufficiently connected to each other.
g 3 becomes dense ring network Sn intermetallic compound, the strength of the solder bump, to improve fatigue properties, it is possible to secure the necessary strength and thermal fatigue resistance for the electronic components. Therefore, in the present invention, the lower limit of the Cu content is set to 0.1.
3% by mass.

【0018】本発明はSn基ハンダ合金である。Snは
13.2℃で変態する特性を有している。低温における
Sn変態時には破断が進行しやすい。本発明のハンダ合
金に更にSb:0.005〜1.5質量%を含有させる
ことにより、低温におけるSn変態を抑制することがで
き、寒冷地条件にける耐熱疲労特性をより一層向上させ
ることができる。
The present invention is a Sn-based solder alloy. Sn has the property of transforming at 13.2 ° C. At the time of Sn transformation at a low temperature, the fracture is apt to progress. By further containing 0.005 to 1.5% by mass of Sb in the solder alloy of the present invention, Sn transformation at a low temperature can be suppressed, and the thermal fatigue resistance under cold climate conditions can be further improved. it can.

【0019】Sb含有量は、0.005質量%未満では
Snの低温変態の抑制効果が十分ではないので、下限を
0.005質量%とする。また、1.5質量%を超える
とリフロー後のハンダ表面がさつきが抑えられず、かつ
耐熱疲労特性改善効果も減少するので、上限を1.5質
量%とする。
If the Sb content is less than 0.005% by mass, the effect of suppressing the low-temperature transformation of Sn is not sufficient, so the lower limit is made 0.005% by mass. On the other hand, if the content exceeds 1.5% by mass, the solder surface after reflow cannot be suppressed from being roughened, and the effect of improving the thermal fatigue resistance is reduced. Therefore, the upper limit is set to 1.5% by mass.

【0020】本発明のハンダ合金にさらにZn、Ni又
はFeを添加することにより、ハンダ合金の強度を向上
することができる。
By further adding Zn, Ni or Fe to the solder alloy of the present invention, the strength of the solder alloy can be improved.

【0021】Zn含有量は、0.05質量%未満の添加
量では、強度向上に効果はなく、また1.5質量%を超
える添加では、リフロー後のハンダ表面のがさつきが出
始め、延性も低下し始めるので、成分範囲を0.05〜
1.5質量%とする。
When the Zn content is less than 0.05% by mass, there is no effect on the strength improvement, and when the Zn content is more than 1.5% by mass, the solder surface after reflow begins to have roughness, and the ductility increases. Starts to decrease, so the component range is 0.05 to
1.5 mass%.

【0022】Ni含有量は、0.05質量%未満の添加
量では、強度向上に効果はなく、また1.5質量%を超
える添加では、延性が低下し始めるので、成分範囲を
0.05〜1.5質量%とする。更に、0.05質量%
以上のNi添加では、Niメッキ電極基板との接合の際
に、濃度勾配差による基板メッキNiの拡散を抑制し、
Ni3Sn4等の金属間化合物の成長を抑制できる。
When the Ni content is less than 0.05% by mass, there is no effect on the strength improvement, and when the Ni content exceeds 1.5% by mass, the ductility starts to decrease. To 1.5% by mass. Further, 0.05% by mass
With the above Ni addition, the diffusion of the substrate plating Ni due to the concentration gradient difference is suppressed at the time of joining with the Ni plating electrode substrate,
Growth of an intermetallic compound such as Ni 3 Sn 4 can be suppressed.

【0023】Fe含有量は、0.005質量%未満では
強度向上に効果はなく、また0.5質量%を超えると延
性が低下し、ハンダ表面がざらつき、濡れ性が悪くなる
ことから、成分範囲を0.005〜0.5質量%とす
る。
If the Fe content is less than 0.005% by mass, there is no effect on the strength improvement, and if it exceeds 0.5% by mass, the ductility decreases, the solder surface becomes rough, and the wettability deteriorates. The range is 0.005 to 0.5% by mass.

【0024】本発明ハンダに、Sb、Zn、Ni、Fe
を、これらの1種、又は2種以上を添加すると、強度は
改善されるが、これらの1種、又は2種以上、またはS
b,Zn,Ni、Feの合計含有量が1.5質量%を超
えて添加すると、ハンダの延性が低下し始めることか
ら、Sb,Zn,Ni、Feの合計含有量を1.5質量
%以下とする。
The solder of the present invention contains Sb, Zn, Ni, Fe
When one or more of these are added, the strength is improved, but one or more of these, or S
When the total content of b, Zn, Ni, and Fe exceeds 1.5% by mass, the ductility of the solder starts to decrease, so that the total content of Sb, Zn, Ni, and Fe is 1.5% by mass. The following is assumed.

【0025】本発明ハンダ合金を溶解混錬する際、溶解
雰囲気を非酸化雰囲気にし、ハンダ合金中の固溶酸素濃
度を低下させると、強度は約10%向上する。本ハンダ
合金を、大気中溶解混錬した材料を、グローディスチャ
ージ質量分析(Gdmass)で分析すると、十数pp
mの酸素が検出される。一方、アルゴン雰囲気等の非酸
化雰囲気で溶解混錬したハンダ合金の酸素検出量は、数
ppmレベルとなる。酸素検出量が10ppm以下であ
る場合、そのシェア強度は、大気溶解のものに比して、
10%強度は改善された。よって本発明の上記(3)で
はハンダ合金中の酸素濃度を10ppm以下にする。
When melting and kneading the solder alloy of the present invention, if the melting atmosphere is changed to a non-oxidizing atmosphere and the concentration of dissolved oxygen in the solder alloy is reduced, the strength is improved by about 10%. When the material obtained by melting and kneading this solder alloy in the atmosphere is analyzed by glow discharge mass spectrometry (Gdmass), it is found that
m oxygen is detected. On the other hand, the detected amount of oxygen of a solder alloy melt-kneaded in a non-oxidizing atmosphere such as an argon atmosphere is on the order of several ppm. When the amount of detected oxygen is 10 ppm or less, the shear strength is higher than that in the atmosphere,
The 10% strength was improved. Therefore, in the above (3) of the present invention, the oxygen concentration in the solder alloy is set to 10 ppm or less.

【0026】本発明のハンダ合金を使用した電子部材に
おいては、ハンダ電極が優れた延性と強度を有するた
め、耐熱疲労特性と耐衝撃性に優れた電子部材とするこ
とができる。
In the electronic member using the solder alloy of the present invention, since the solder electrode has excellent ductility and strength, the electronic member can be excellent in thermal fatigue resistance and impact resistance.

【0027】また、本発明のハンダボールを用いて製造
した電子部材は、ハンダ電極が優れた延性と強度を有す
るため、耐熱疲労特性と耐衝撃性に優れた電子部材とす
ることができる。
Further, the electronic member manufactured by using the solder ball of the present invention can be an electronic member having excellent thermal fatigue resistance and impact resistance because the solder electrode has excellent ductility and strength.

【0028】更に、上記組成のハンダバンプを有する電
子部材は、微細かつ多数のハンダバンプを形成する場合
においても、良好な品質の電子部材とすることができ
る。特に、ハンダバンプの1辺の長さが0.2mm以下
の微小ハンダバンプにおいて、従来組成のハンダバンプ
では実現することのできない良好な成績を得ることがで
きる。上記組成のハンダ電極によって複数の電子部品間
を接合した電子部材は、ハンダ電極が極めて良好な耐熱
疲労特性と耐衝撃性を有しているという優れた特徴を有
するものである。
Further, an electronic member having solder bumps of the above composition can be a good quality electronic member even when a large number of fine and fine solder bumps are formed. In particular, in the case of a fine solder bump in which the length of one side of the solder bump is 0.2 mm or less, a good result which cannot be realized by a solder bump having a conventional composition can be obtained. An electronic member in which a plurality of electronic components are joined by a solder electrode having the above composition has an excellent feature that the solder electrode has extremely good thermal fatigue resistance and impact resistance.

【0029】[0029]

【実施例】表1に示す成分のハンダ合金を作製し、それ
ぞれの機械特性評価を実施した。実施例1〜11が本発
明例であり、比較例1はAgが本発明下限以下であり、
比較例2はAgが本発明上限以上であり、比較例3は従
来の3.5Agの高価な無鉛ハンダ合金であり、比較例
4はSb、Zn、Niの添加合計が1.5質量%を超え
たものである。
EXAMPLES Solder alloys having the components shown in Table 1 were prepared, and their mechanical properties were evaluated. Examples 1 to 11 are examples of the present invention, and Comparative Example 1 is such that Ag is equal to or less than the lower limit of the present invention,
In Comparative Example 2, Ag is equal to or more than the upper limit of the present invention, Comparative Example 3 is a conventional expensive 3.5Ag lead-free solder alloy, and Comparative Example 4 has 1.5% by mass of the total addition of Sb, Zn, and Ni. Beyond.

【0030】[0030]

【表1】 [Table 1]

【0031】ハンダ合金の延性・強度特性については、
延性(%)、強度(MPa)を評価し、さらに強度(M
Pa)×延性(%)を算出した。強度×延性が1500
以上の場合は耐衝撃性が安定して優れているとして
「○」と評価し、強度×延性が1300〜1500の場
合は耐衝撃性に優れているとして「△」と評価し、強度
×延性が1300未満は「×」と評価した。
Regarding the ductility and strength characteristics of the solder alloy,
The ductility (%) and the strength (MPa) were evaluated, and the strength (M
Pa) × ductility (%) was calculated. Strength x ductility is 1500
In the above case, the impact resistance was evaluated as “○” as being stable and excellent, and when the strength × ductility was 1300 to 1500, it was evaluated as “△” as being excellent in impact resistance, and the strength × ductility was evaluated. Is less than 1300 was evaluated as "x".

【0032】本発明例1〜11はいずれも良好な強度×
延性の成績を実現した。実施例4と実施例6との比較か
ら明らかなように、酸素以外の成分が同一成分でも、A
r雰囲気の非酸化雰囲気で溶解混練した実施例6は、酸
素濃度が5ppmであるため、酸化雰囲気で溶解混練し
て酸素濃度が16ppmである実施例4と比較し、強度
が約1割向上している。
Each of the inventive examples 1 to 11 has good strength.
Achieved ductility results. As is clear from the comparison between Example 4 and Example 6, even if the components other than oxygen are the same, A
Since the oxygen concentration of the Example 6 melt-kneaded in the non-oxidizing atmosphere of the r atmosphere is 5 ppm, the strength is improved by about 10% as compared with the Example 4 melt-kneaded in the oxidizing atmosphere and the oxygen concentration is 16 ppm. ing.

【0033】比較例1はAg含有量が低すぎ、比較例2
はAg含有量が高すぎ、比較例4はSb、Zn、Niの
添加合計が1.5質量%を超えているため、それぞれ延
性が低下し、結果として強度×延性の値が1300未満
となり、十分な耐衝撃性が得られなかった。
In Comparative Example 1, the Ag content was too low.
Is too high, and in Comparative Example 4, since the total addition of Sb, Zn, and Ni exceeds 1.5% by mass, the ductility decreases, and as a result, the value of strength × ductility becomes less than 1300, Sufficient impact resistance was not obtained.

【0034】ハンダ合金の耐落下衝撃性を評価するた
め、本発明合金を基に、φ300μmの電子部材接続用
ハンダボールを作製した。それぞれについて以下に示す
Siチップ部品と基板をハンダ付けし(240ボー
ル)、それをフリップチップ接続したものを試験片とし
た。落下衝撃試験は、同フリップチップ接続した衝撃試
験片を、金属板にネジ止め固定し、高さ50cmから落
下させた。落下後、最も衝撃の大きいチップ周辺部位の
ハンダ接合部(64ポイント)のすべてを電気的に導通
があるかを評価し、一点でも導通が無いハンダ接合部位
が生じた時点で破断とし、耐落下衝撃性を評価した。平
均耐落下衝撃数で40回以上は、耐落下衝撃性が特に優
れているとして「○」と評価し、平均耐落下衝撃数で3
0回〜40回は優れているとして「△」と評価し、平均
耐落下衝撃数30回未満は「×」と評価して表1に記載
した。本発明例である実施例1〜11は、いずれも良好
な耐落下衝撃性を示した。
In order to evaluate the drop impact resistance of the solder alloy, a solder ball for connecting electronic members having a diameter of 300 μm was prepared based on the alloy of the present invention. Each of the following Si chip components and a substrate was soldered (240 balls) and flip-chip connected to obtain a test piece. In the drop impact test, the flip-chip-connected impact test piece was fixed to a metal plate with screws and dropped from a height of 50 cm. After dropping, all solder joints (64 points) around the chip with the largest impact were evaluated for electrical continuity. When a solder joint with no continuity occurred even at one point, it was broken. The impact properties were evaluated. An average drop impact resistance of 40 or more was evaluated as “○” because the drop impact resistance was particularly excellent, and the average drop impact resistance was 3
0 to 40 times were evaluated as “Excellent” as being excellent, and the average number of drop-resistant impacts less than 30 times was evaluated as “X”, and the results are shown in Table 1. Examples 1 to 11, which are examples of the present invention, all exhibited good drop impact resistance.

【0035】上記落下強度試験に用いるSiチップ部品
は、Siチップ上にφ200μmの電極ランドを合計2
40配置したものであり、最外郭の周囲に64配置であ
る。またピッチ間隔は0.3mmである。プリント基板
は、片面配線のガラスエポキシ樹脂基板であり、Siチ
ップと同様に配置し、それらを本発明ハンダ合金のφ3
00μmのボールでフリップチップ接続した。
The Si chip component used in the drop strength test has electrode lands of φ200 μm on the Si chip for a total of two.
There are 40 arrangements, 64 arrangements around the outermost contour. The pitch interval is 0.3 mm. The printed board is a single-sided wiring glass epoxy resin board, which is arranged in the same manner as a Si chip, and is made of φ3 of the solder alloy of the present invention.
Flip chip connection was made with a 00 μm ball.

【0036】本発明の実施例1〜11と比較例3の3.
5Agハンダ合金とを対比すると、本発明はAgの含有
量が少ないので安価なハンダ合金を提供することが可能
になり、さらに比較例3と同等あるいはそれ以上の良好
な耐衝撃性、耐落下衝撃性を得ることができた。
Examples 1 to 11 of the present invention and Comparative Example 3
Compared with a 5Ag solder alloy, the present invention can provide an inexpensive solder alloy because the content of Ag is small, and furthermore has good impact resistance and drop impact resistance equivalent to or higher than that of Comparative Example 3. I was able to get the sex.

【0037】[0037]

【発明の効果】本発明の組成を有する無鉛ハンダ合金を
用いることにより、従来の無鉛ハンダ合金に比較して安
価に提供することが可能になり、同時に極めて優れた耐
熱疲労特性と耐衝撃性を実現することができた。
By using the lead-free solder alloy having the composition of the present invention, it is possible to provide the lead-free solder alloy at a lower cost as compared with the conventional lead-free solder alloy, and at the same time, to obtain extremely excellent thermal fatigue resistance and impact resistance. Could be realized.

【0038】本発明の組成を有するハンダボールを用い
てハンダバンプを形成することができる。また、本発明
の組成のハンダバンプを形成した電子部材、本発明の組
成のハンダ電極で電子部品間を接合した電子部材は、電
極の耐熱疲労特性と耐衝撃性が優れているという効果を
有するものである。
A solder bump can be formed by using a solder ball having the composition of the present invention. Further, the electronic member formed with the solder bump of the composition of the present invention and the electronic member joined between electronic components with the solder electrode of the present invention have an effect that the electrode has excellent heat fatigue properties and impact resistance. It is.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/34 512 H05K 3/34 512C (72)発明者 巽 宏平 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 5E319 AA03 AC01 AC16 BB01 BB04 BB08 CC33 CD04 CD26 GG03 GG20 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H05K 3/34 512 H05K 3/34 512C (72) Inventor Kohei Tatsumi 20-1 Shintomi, Futtsu Nippon Steel Corporation F-term (reference) in Surgery Development Division 5E319 AA03 AC01 AC16 BB01 BB04 BB08 CC33 CD04 CD26 GG03 GG20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Ag:1.0〜2.0質量%、Cu:
0.3〜1.5質量%を含み、残部Sn及び不可避不純
物からなることを特徴とする無鉛ハンダ合金。
1. Ag: 1.0 to 2.0% by mass, Cu:
A lead-free solder alloy containing 0.3 to 1.5% by mass, the balance being Sn and unavoidable impurities.
【請求項2】 更にSb:0.005〜1.5質量%、
Zn:0.05〜1.5質量%、Ni:0.05〜1.
5質量%、Fe:0.005〜0.5質量%の1種又は
2種以上を含み、Sb、Zn、Ni、Feの合計含有量
が1.5質量%以下であることを特徴とする請求項1に
記載の無鉛ハンダ合金。
2. Sb: 0.005 to 1.5% by mass,
Zn: 0.05-1.5% by mass, Ni: 0.05-1.
5 mass%, Fe: one or more of 0.005 to 0.5 mass%, and the total content of Sb, Zn, Ni, and Fe is 1.5 mass% or less. The lead-free solder alloy according to claim 1.
【請求項3】 O濃度が10ppm以下であることを特
徴とする請求項1又は2に記載の無鉛ハンダ合金。
3. The lead-free solder alloy according to claim 1, wherein the O concentration is 10 ppm or less.
【請求項4】 請求項1乃至3のいずれかに記載のハン
ダ合金よりなることを特徴とする電子部材用無鉛ハンダ
ボール。
4. A lead-free solder ball for an electronic member, comprising the solder alloy according to claim 1.
【請求項5】 ハンダバンプを有する電子部材であっ
て、該ハンダバンプの一部又は全部は、請求項1乃至3
のいずれかに記載のハンダ合金よりなることを特徴とす
る電子部材。
5. An electronic member having solder bumps, wherein a part or all of the solder bumps are provided.
An electronic member comprising the solder alloy according to any one of the above.
【請求項6】 複数の電子部品間をハンダ電極によって
接合した電子部材であって、該ハンダ電極の一部または
全部は、請求項1乃至3のいずれかに記載のハンダ合金
よりなることを特徴とする電子部材。
6. An electronic member in which a plurality of electronic components are joined by a solder electrode, wherein a part or all of the solder electrode is made of the solder alloy according to any one of claims 1 to 3. Electronic member.
JP2001033878A 2001-02-09 2001-02-09 Electronic member having solder alloy, solder ball and solder bump Expired - Lifetime JP4152596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033878A JP4152596B2 (en) 2001-02-09 2001-02-09 Electronic member having solder alloy, solder ball and solder bump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033878A JP4152596B2 (en) 2001-02-09 2001-02-09 Electronic member having solder alloy, solder ball and solder bump

Publications (2)

Publication Number Publication Date
JP2002239780A true JP2002239780A (en) 2002-08-28
JP4152596B2 JP4152596B2 (en) 2008-09-17

Family

ID=18897565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033878A Expired - Lifetime JP4152596B2 (en) 2001-02-09 2001-02-09 Electronic member having solder alloy, solder ball and solder bump

Country Status (1)

Country Link
JP (1) JP4152596B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030428A1 (en) * 2002-09-27 2004-04-08 Neomax Materials Co., Ltd. Solder-coated ball and method for manufacture thereof, and method for forming semiconductor interconnecting structure
JP2004154865A (en) * 2002-10-17 2004-06-03 Senju Metal Ind Co Ltd Lead-free solder ball alloy and solder ball
JP2004261863A (en) * 2003-01-07 2004-09-24 Senju Metal Ind Co Ltd Lead-free solder
EP1468777A1 (en) * 2003-04-17 2004-10-20 Senju Metal Industry Co., Ltd. Lead free solder
JP2005040847A (en) * 2003-07-25 2005-02-17 Hitachi Metals Ltd Manufacturing method of solder bowl
WO2006011204A1 (en) * 2004-07-29 2006-02-02 Senju Metal Industry Co., Ltd Lead-free solder alloy
JPWO2004059042A1 (en) * 2002-12-26 2006-04-27 株式会社荏原製作所 Lead-free bump and method for forming the same
JP2006289493A (en) * 2005-03-17 2006-10-26 Tamura Kaken Co Ltd Sn-zn based solder, lead-free solder, its solder work, solder paste, and electronic component-soldering substrate
WO2006129713A1 (en) 2005-06-03 2006-12-07 Senju Metal Industry Co., Ltd. Lead-free solder alloy
US7183652B2 (en) 2005-04-27 2007-02-27 Infineon Technologies Ag Electronic component and electronic configuration
WO2007023288A2 (en) * 2005-08-24 2007-03-01 Fry's Metals Inc. Solder alloy
WO2007081006A1 (en) * 2006-01-16 2007-07-19 Hitachi Metals, Ltd. Solder alloy, solder ball and solder joint using same
WO2007102589A1 (en) * 2006-03-09 2007-09-13 Nippon Steel Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
WO2007102588A1 (en) * 2006-03-09 2007-09-13 Nippon Steel Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
JP2007237249A (en) * 2006-03-09 2007-09-20 Nippon Steel Materials Co Ltd Lead-free solder alloy, solder ball and electronic member
JP2007237250A (en) * 2006-03-09 2007-09-20 Nippon Steel Materials Co Ltd Lead-free solder alloy, solder ball and electronic member
CN100457367C (en) * 2006-12-12 2009-02-04 朱晓明 A leadless solder
WO2009051240A1 (en) * 2007-10-17 2009-04-23 Ishikawa Metal, Co., Ltd. Lead-free soft solder
US7601625B2 (en) 2004-04-20 2009-10-13 Denso Corporation Method for manufacturing semiconductor device having solder layer
JPWO2008084673A1 (en) * 2007-01-09 2010-04-30 日本ジョイント株式会社 Semiconductor device and manufacturing method thereof
US7759793B2 (en) 2004-12-13 2010-07-20 Renesas Technology Corp. Semiconductor device having elastic solder bump to prevent disconnection
WO2011102034A1 (en) * 2010-02-16 2011-08-25 株式会社タムラ製作所 Lead-free solder alloy, and solder paste and packaged components using same
US8138576B2 (en) 2009-02-09 2012-03-20 Nippon Joint Co., Ltd. Production method and production apparatus of tin or solder alloy for electronic components, and solder alloy
WO2012133598A1 (en) 2011-03-28 2012-10-04 千住金属工業株式会社 Lead-free solder ball
WO2012141331A1 (en) 2011-04-15 2012-10-18 株式会社日本スペリア社 Lead-free solder alloy
JP5131412B1 (en) * 2012-04-09 2013-01-30 千住金属工業株式会社 Solder alloy
WO2013108421A1 (en) 2012-05-10 2013-07-25 千住金属工業株式会社 Solder alloy for acoustic device
US8501088B2 (en) 2007-07-25 2013-08-06 Nippon Steel & Sumikin Materials Co., Ltd. Solder alloy, solder ball and electronic member having solder bump
WO2014002283A1 (en) 2012-06-30 2014-01-03 千住金属工業株式会社 Lead-free solder ball
US8641964B2 (en) 2005-08-24 2014-02-04 Fry's Metals, Inc. Solder alloy
KR20160028015A (en) * 2014-09-02 2016-03-11 에이에치코리아주식회사 Pb FREE SOLDERING MATERIALS FOR MOUNTING ELECTRONIC COMPONENT
JP2016179498A (en) * 2015-03-24 2016-10-13 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
US9490232B2 (en) 2013-12-09 2016-11-08 Fujitsu Limited Electronic apparatus and method for fabricating the same
CN106271181A (en) * 2015-05-13 2017-01-04 广西民族大学 A kind of Sn-Sb-X system high-temperature oxidation resistant lead-free brazing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624415A (en) * 2012-08-22 2014-03-12 北京有色金属研究总院 Boron-containing stannum-based lead-free solder and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695428A (en) * 1986-08-21 1987-09-22 J. W. Harris Company Solder composition
JPH08215880A (en) * 1995-02-14 1996-08-27 Ishikawa Kinzoku Kk Leadless solder
JPH08509661A (en) * 1993-04-29 1996-10-15 エフ. シーリグ,カール Lead-free and bismuth-free tin alloy solder composition
JPH10135267A (en) * 1996-10-30 1998-05-22 Oki Electric Ind Co Ltd Structure of mounting board and its manufacture
JPH10193171A (en) * 1996-12-27 1998-07-28 Murata Mfg Co Ltd Soldering article
JPH11121520A (en) * 1997-10-15 1999-04-30 Nec Corp Ball grid array type semiconductor device
JPH11216591A (en) * 1998-01-28 1999-08-10 Murata Mfg Co Ltd Soldering product
JPH11277290A (en) * 1998-01-28 1999-10-12 Murata Mfg Co Ltd Lead free solder and soldered article
WO2000018536A1 (en) * 1998-09-30 2000-04-06 Matsushita Electric Industrial Co., Ltd. Soldering material and electric/electronic device using the same
JP2000216196A (en) * 1999-01-22 2000-08-04 Fujitsu Ltd Solder joining method and electronic device and its manufacture
JP2000288772A (en) * 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
JP2001001180A (en) * 1999-06-21 2001-01-09 Tanaka Electronics Ind Co Ltd Solder and electronic part using the solder

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695428A (en) * 1986-08-21 1987-09-22 J. W. Harris Company Solder composition
JPH08509661A (en) * 1993-04-29 1996-10-15 エフ. シーリグ,カール Lead-free and bismuth-free tin alloy solder composition
JPH08215880A (en) * 1995-02-14 1996-08-27 Ishikawa Kinzoku Kk Leadless solder
JPH10135267A (en) * 1996-10-30 1998-05-22 Oki Electric Ind Co Ltd Structure of mounting board and its manufacture
JPH10193171A (en) * 1996-12-27 1998-07-28 Murata Mfg Co Ltd Soldering article
JPH11121520A (en) * 1997-10-15 1999-04-30 Nec Corp Ball grid array type semiconductor device
JPH11216591A (en) * 1998-01-28 1999-08-10 Murata Mfg Co Ltd Soldering product
JPH11277290A (en) * 1998-01-28 1999-10-12 Murata Mfg Co Ltd Lead free solder and soldered article
WO2000018536A1 (en) * 1998-09-30 2000-04-06 Matsushita Electric Industrial Co., Ltd. Soldering material and electric/electronic device using the same
JP2000216196A (en) * 1999-01-22 2000-08-04 Fujitsu Ltd Solder joining method and electronic device and its manufacture
JP2000288772A (en) * 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
JP2001001180A (en) * 1999-06-21 2001-01-09 Tanaka Electronics Ind Co Ltd Solder and electronic part using the solder

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405883C (en) * 2002-09-27 2008-07-23 株式会社新王材料 Solder-coated ball and method for manufacture thereof, and method for forming semiconductor interconnecting structure
US7265046B2 (en) 2002-09-27 2007-09-04 Neomax Material Co., Ltd. Method of making a solder ball
WO2004030428A1 (en) * 2002-09-27 2004-04-08 Neomax Materials Co., Ltd. Solder-coated ball and method for manufacture thereof, and method for forming semiconductor interconnecting structure
JP2004154865A (en) * 2002-10-17 2004-06-03 Senju Metal Ind Co Ltd Lead-free solder ball alloy and solder ball
JPWO2004059042A1 (en) * 2002-12-26 2006-04-27 株式会社荏原製作所 Lead-free bump and method for forming the same
JP2004261863A (en) * 2003-01-07 2004-09-24 Senju Metal Ind Co Ltd Lead-free solder
EP1468777A1 (en) * 2003-04-17 2004-10-20 Senju Metal Industry Co., Ltd. Lead free solder
JP2005040847A (en) * 2003-07-25 2005-02-17 Hitachi Metals Ltd Manufacturing method of solder bowl
US7601625B2 (en) 2004-04-20 2009-10-13 Denso Corporation Method for manufacturing semiconductor device having solder layer
DE102005018108B4 (en) * 2004-04-20 2010-04-15 DENSO CORPORATION, Kariya-shi Method for producing a semiconductor device with a solder layer
WO2006011204A1 (en) * 2004-07-29 2006-02-02 Senju Metal Industry Co., Ltd Lead-free solder alloy
US8101514B2 (en) 2004-12-13 2012-01-24 Renesas Electronics Corporation Semiconductor device having elastic solder bump to prevent disconnection
US7951701B2 (en) 2004-12-13 2011-05-31 Renesas Electronics Corporation Semiconductor device having elastic solder bump to prevent disconnection
US7759793B2 (en) 2004-12-13 2010-07-20 Renesas Technology Corp. Semiconductor device having elastic solder bump to prevent disconnection
JP2006289493A (en) * 2005-03-17 2006-10-26 Tamura Kaken Co Ltd Sn-zn based solder, lead-free solder, its solder work, solder paste, and electronic component-soldering substrate
US7183652B2 (en) 2005-04-27 2007-02-27 Infineon Technologies Ag Electronic component and electronic configuration
US8691143B2 (en) 2005-06-03 2014-04-08 Senju Metal Industry Co., Ltd. Lead-free solder alloy
WO2006129713A1 (en) 2005-06-03 2006-12-07 Senju Metal Industry Co., Ltd. Lead-free solder alloy
WO2007023288A3 (en) * 2005-08-24 2007-07-12 Fry Metals Inc Solder alloy
WO2007023288A2 (en) * 2005-08-24 2007-03-01 Fry's Metals Inc. Solder alloy
JP2009506203A (en) * 2005-08-24 2009-02-12 フライズ メタルズ インコーポレイテッド Solder alloy
US8641964B2 (en) 2005-08-24 2014-02-04 Fry's Metals, Inc. Solder alloy
JP4836009B2 (en) * 2006-01-16 2011-12-14 日立金属株式会社 Solder alloy, solder ball and solder joint using the same
CN101374630B (en) * 2006-01-16 2012-01-04 日立金属株式会社 Solder alloy, solder ball and solder joint using same
WO2007081006A1 (en) * 2006-01-16 2007-07-19 Hitachi Metals, Ltd. Solder alloy, solder ball and solder joint using same
WO2007102589A1 (en) * 2006-03-09 2007-09-13 Nippon Steel Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
TWI386272B (en) * 2006-03-09 2013-02-21 Nippon Steel & Sumikin Mat Co Lead-free solder alloy, soft solder ball and electronic components and used in automotive electronic components of the lead-free solder alloy, soft alloy ball and electronic components (a)
JP2007237249A (en) * 2006-03-09 2007-09-20 Nippon Steel Materials Co Ltd Lead-free solder alloy, solder ball and electronic member
US8562906B2 (en) 2006-03-09 2013-10-22 Nippon Steel & Sumikin Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
WO2007102588A1 (en) * 2006-03-09 2007-09-13 Nippon Steel Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
KR101397271B1 (en) 2006-03-09 2014-05-20 닛데쓰스미킹 마이크로 메탈 가부시키가이샤 Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
JP2007237250A (en) * 2006-03-09 2007-09-20 Nippon Steel Materials Co Ltd Lead-free solder alloy, solder ball and electronic member
CN100457367C (en) * 2006-12-12 2009-02-04 朱晓明 A leadless solder
JPWO2008084673A1 (en) * 2007-01-09 2010-04-30 日本ジョイント株式会社 Semiconductor device and manufacturing method thereof
US8501088B2 (en) 2007-07-25 2013-08-06 Nippon Steel & Sumikin Materials Co., Ltd. Solder alloy, solder ball and electronic member having solder bump
WO2009051240A1 (en) * 2007-10-17 2009-04-23 Ishikawa Metal, Co., Ltd. Lead-free soft solder
JPWO2009051240A1 (en) * 2007-10-17 2011-03-03 石川金属株式会社 Lead-free solder
US8138576B2 (en) 2009-02-09 2012-03-20 Nippon Joint Co., Ltd. Production method and production apparatus of tin or solder alloy for electronic components, and solder alloy
JPWO2011102034A1 (en) * 2010-02-16 2013-06-17 株式会社タムラ製作所 Lead-free solder alloy, solder paste using this, and mounted product
WO2011102034A1 (en) * 2010-02-16 2011-08-25 株式会社タムラ製作所 Lead-free solder alloy, and solder paste and packaged components using same
JP5722302B2 (en) * 2010-02-16 2015-05-20 株式会社タムラ製作所 Lead-free solder alloy, solder paste using this, and mounted product
WO2012133598A1 (en) 2011-03-28 2012-10-04 千住金属工業株式会社 Lead-free solder ball
KR20160104086A (en) 2011-03-28 2016-09-02 센주긴조쿠고교 가부시키가이샤 Lead-free solder ball
US9527167B2 (en) 2011-03-28 2016-12-27 Senju Metal Industry Co., Ltd. Lead-free solder ball
US9700963B2 (en) 2011-03-28 2017-07-11 Senju Metal Industry Co., Ltd. Lead-free solder ball
CN103547408A (en) * 2011-03-28 2014-01-29 千住金属工业株式会社 Lead-free solder ball
CN103547408B (en) * 2011-03-28 2017-07-28 千住金属工业株式会社 Lead-free solder ball
WO2012141331A1 (en) 2011-04-15 2012-10-18 株式会社日本スペリア社 Lead-free solder alloy
US9339893B2 (en) 2011-04-15 2016-05-17 Nihon Superior Co., Ltd. Lead-free solder alloy
US8932519B2 (en) 2012-04-09 2015-01-13 Senju Metal Industry Co., Ltd. Solder alloy
EP2679335A4 (en) * 2012-04-09 2014-12-03 Senju Metal Industry Co Solder alloy
WO2013153595A1 (en) 2012-04-09 2013-10-17 千住金属工業株式会社 Solder alloy
EP2679335A1 (en) * 2012-04-09 2014-01-01 Senju Metal Industry Co., Ltd. Solder alloy
CN103476540B (en) * 2012-04-09 2015-11-25 千住金属工业株式会社 Solder alloy
KR101590289B1 (en) * 2012-04-09 2016-02-01 센주긴조쿠고교 가부시키가이샤 Solder alloy
KR20140130750A (en) 2012-04-09 2014-11-11 센주긴조쿠고교 가부시키가이샤 Solder alloy
JP5131412B1 (en) * 2012-04-09 2013-01-30 千住金属工業株式会社 Solder alloy
CN103476540A (en) * 2012-04-09 2013-12-25 千住金属工业株式会社 Solder alloy
WO2013108421A1 (en) 2012-05-10 2013-07-25 千住金属工業株式会社 Solder alloy for acoustic device
CN104602862A (en) * 2012-06-30 2015-05-06 千住金属工业株式会社 Lead-free solder ball
US9780055B2 (en) 2012-06-30 2017-10-03 Senju Metal Industry Co., Ltd. Lead-free solder ball
WO2014002283A1 (en) 2012-06-30 2014-01-03 千住金属工業株式会社 Lead-free solder ball
US9530745B2 (en) 2013-12-09 2016-12-27 Fujitsu Limited Electronic apparatus and method for fabricating the same
US9490232B2 (en) 2013-12-09 2016-11-08 Fujitsu Limited Electronic apparatus and method for fabricating the same
US9761552B2 (en) 2013-12-09 2017-09-12 Fujitsu Limited Electronic apparatus and method for fabricating the same
US9812418B2 (en) 2013-12-09 2017-11-07 Fujitsu Limited Electronic apparatus and method for fabricating the same
KR101630935B1 (en) * 2014-09-02 2016-06-16 에이에치코리아주식회사 Pb FREE SOLDERING MATERIALS FOR MOUNTING ELECTRONIC COMPONENT
KR20160028015A (en) * 2014-09-02 2016-03-11 에이에치코리아주식회사 Pb FREE SOLDERING MATERIALS FOR MOUNTING ELECTRONIC COMPONENT
JP2016179498A (en) * 2015-03-24 2016-10-13 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
CN106271181A (en) * 2015-05-13 2017-01-04 广西民族大学 A kind of Sn-Sb-X system high-temperature oxidation resistant lead-free brazing

Also Published As

Publication number Publication date
JP4152596B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP2002239780A (en) Solder alloy, solder ball and electronic member having solder bump
JP4428448B2 (en) Lead-free solder alloy
JP5660199B2 (en) Lead-free solder alloy
EP1468777B1 (en) Lead free solder
US9260768B2 (en) Lead-free solder alloys and solder joints thereof with improved drop impact resistance
JP4968381B2 (en) Lead-free solder
KR101738841B1 (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
JP2002224881A (en) Solder ball
US9175368B2 (en) MN doped SN-base solder alloy and solder joints thereof with superior drop shock reliability
JP2009060101A (en) Electronic device
KR102194027B1 (en) Solder alloy, solder paste, solder ball, resin-embedded solder and solder joint
JP5030442B2 (en) Lead-free solder alloys, solder balls and electronic components
JP2016040051A (en) Lead-free solder, lead-free solder ball, solder joint using lead-free solder, and semiconductor circuit having solder joint
JP2003230980A (en) Leadless solder alloy, solder ball and electronic member having solder bump
JP2002305213A (en) Solder foil, semiconductor device, and electronic device
JP4831502B2 (en) Connection terminal balls and connection terminals with excellent drop impact resistance and electronic components
JP2008238233A (en) Non-lead based alloy joining material, joining method, and joined body
JP2002261104A (en) Semiconductor device and electronic equipment
EP2747933B1 (en) A mn doped sn-base solder alloy and solder joints thereof with superior drop shock reliability
CN116689901A (en) Braze welding method and braze joint
JP4432541B2 (en) Electronics
JP2020192552A (en) Solder alloy, solder paste, preformed solder, solder ball, wire solder, resin flux-cored solder, solder joint, electronic circuit board, and multilayered electronic circuit board
JP5322469B2 (en) Solder alloy with excellent drop impact resistance, solder balls using the same, and solder joints
JP2002018590A (en) Solder alloy, solder ball and electronic member having solder bump
JP2002086294A (en) Solder alloy and electronic member having solder ball and solder bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Ref document number: 4152596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term