WO2013108421A1 - Solder alloy for acoustic device - Google Patents

Solder alloy for acoustic device Download PDF

Info

Publication number
WO2013108421A1
WO2013108421A1 PCT/JP2012/062009 JP2012062009W WO2013108421A1 WO 2013108421 A1 WO2013108421 A1 WO 2013108421A1 JP 2012062009 W JP2012062009 W JP 2012062009W WO 2013108421 A1 WO2013108421 A1 WO 2013108421A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder alloy
acoustic
evaluation
solder
acoustic solder
Prior art date
Application number
PCT/JP2012/062009
Other languages
French (fr)
Japanese (ja)
Inventor
赤木 一平
秀樹 時本
聖記 鈴木
雅文 清野
勇 大澤
上島 稔
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to AU2012363597A priority Critical patent/AU2012363597B2/en
Priority to PCT/JP2012/062009 priority patent/WO2013108421A1/en
Priority to KR1020137009324A priority patent/KR101305801B1/en
Priority to EP12858684.9A priority patent/EP2644313B1/en
Priority to CN201280003644.5A priority patent/CN103402694B/en
Priority to US13/996,459 priority patent/US20140186208A1/en
Priority to JP2012547772A priority patent/JP5186063B1/en
Priority to MX2013009113A priority patent/MX2013009113A/en
Priority to TW102109974A priority patent/TWI441926B/en
Publication of WO2013108421A1 publication Critical patent/WO2013108421A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/06Soldering, e.g. brazing, or unsoldering making use of vibrations, e.g. supersonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Definitions

  • the present invention relates to an acoustic solder alloy that can be applied to a joining solder for connecting an electronic component to a printed circuit board used in an audio system or the like.
  • Patent Document 1 to Patent Document 3 are known as solders for joining electronic components.
  • JP-A-11-277290 JP2002-239780 Japanese Patent Laid-Open No. 2003-230980 is related to a quaternary solder alloy in which Ni is added to (Sn / Ag / Cu), and has improved thermal shock resistance.
  • Patent Document 2 is a solder alloy pursuing bonding reliability and the like, and Patent Document 3 is an invention related to a solder alloy with improved bonding reliability.
  • Patent Documents 1 to 3 do not mention that the alloy composition and content of solder for joining electronic components affect the sound quality and audibility evaluation.
  • the present invention solves such a conventional problem, and provides an acoustic solder alloy that can be applied to an audio system or the like that can improve sound quality and obtain high audibility evaluation.
  • the acoustic solder alloy according to the present invention has an Ag of 0.8 to 1.20 mass%, Cu of 0.65 to 0.75 mass%, and In of 0.002 to 0.00. 004% by mass, Ni is 0.01 to 0.02% by mass, Pb is 0.005% by mass or less, and the balance is Sn.
  • a ternary solder alloy is mainly composed of (tin Sn / silver Ag / copper Cu), and a small amount of indium In, nickel Ni and lead Pb is added thereto, and each content is appropriately set. By setting the value, it is possible to realize a high-quality sound characteristic and a high-quality audio solder alloy for auditioning.
  • FIG. 3 It is a block diagram which shows an example of the audition evaluation apparatus with which it uses for description of this invention. It is a circuit diagram of the low-pass filter circuit which shows an example of the filter circuit used for the audition evaluation apparatus of FIG.
  • FIG. 3 is a component layout diagram of a low-pass filter circuit on a printed board. It is a circuit diagram of the high-pass filter circuit which shows an example of the filter circuit used for the audition evaluation apparatus of FIG. FIG. 3 is a component layout diagram of a high-pass filter circuit on a printed board.
  • an acoustic solder alloy was prepared for the audition evaluation.
  • Auditory solder alloy for soldering As the solder for joining electronic parts, the most common ternary solder alloy (tin Sn / silver Ag / copper Cu) used as a joining solder for electronic parts is used. Solder alloy) is used as the base.
  • FIG. 1 shows an example of a trial listening evaluation apparatus 10.
  • a filter circuit NW in which an electronic circuit is configured by soldering discrete components onto a printed circuit board (circuit board) is exemplified.
  • the playback device Since the sound source is usually recorded in stereo, the playback device is composed of a pair of left and right speakers. For convenience, only one side will be described.
  • a CD compact disc
  • the sound source is reproduced by a sound source reproducing apparatus having a rotation system such as a CD player and listened to the sample. Unevenness, eccentricity, and the like may occur, and the location affected by each trial listening may be different, which hinders proper evaluation of the listening. Therefore, this time, when reproducing a sound source for trial listening, a sound source reproducing apparatus with a rotating system such as a CD player is not directly used.
  • a CD when a CD is used as a sound source, the sound source can be reproduced under the same conditions by reproducing the CD with a CD player and using the recording once in a semiconductor memory such as a USB memory as the sound source. did.
  • the filter circuit NW includes a low-pass filter (LPF) 40 and a high-pass filter (HPF) 50, both of which are configured using a printed circuit board (circuit board).
  • LPF low-pass filter
  • HPF high-pass filter
  • the output signal from the low-pass filter 40 is supplied to the speaker (woofer) WF for the mid-low range through the connection lines La and Lb.
  • the output signal from the high-pass filter 50 is supplied to the loudspeaker (tweeter) TW via the connection lines Lc and Ld.
  • FIG. 2 shows an example of the low-pass filter 40, which is composed of a parallel circuit composed of an iron core coil 43 and a capacitor 44.
  • a coil having a wire diameter of 1.2 mm ⁇ is used as the iron core coil 43.
  • the inductance value used was 0.45 mH.
  • a capacitor 44 having a withstand voltage of 250 V (DC) and 12 ⁇ F was used.
  • the low-pass filter 40 uses a printed circuit board 46 as shown in FIG. 3, and an iron core coil 43 and a capacitor 44 are disposed on one surface thereof with a positional relationship as illustrated.
  • Screw type terminal blocks 47 and 48 each having two input terminals (40A and 40A) and output terminals (42A and 42A) are provided on both left and right ends of the printed circuit board 46, respectively.
  • connection between the output amplifier 30 and the low-pass filter 40 is not soldered, but is a screw type (insertion type), and between the low-pass filter 40 and the connection lines La and Lb connected to the speaker WF, It is mechanically connected not by solder but by a screw type.
  • the low-pass filter 40 shown in FIG. 2 is configured such that the iron core coil 43 and the capacitor 44 (both electronic components) are soldered onto the printed circuit board 46 by solder (acoustic solder alloy), as indicated by the black circles in FIG. It is constructed by joining four places. The number of junctions was counted including the connection with lead wires for electronic components. Actually, since the two input terminal portions and the two output terminal portions are respectively soldered to the printed circuit board (circuit board), a total of eight positions are joined in this example.
  • screw-type (insertion-type) terminal blocks 47 and 48 are used as the terminals is to allow easy exchange of a plurality of filter circuits NW, which will be described later, for comparing the audition.
  • FIG. 4 shows an example of the high-pass filter 50, which is composed of a parallel circuit composed of a capacitor 53 and an iron core coil 54.
  • the capacitor 53 having a withstand voltage of 250V (DC) and 6.8 ⁇ F is used.
  • a coil having a wire diameter of 1.0 mm ⁇ is used as the coil 54.
  • the inductance value used was 0.4 mH.
  • the terminal 52A and the high frequency reproduction speaker TW are connected by connection lines Lc and Ld.
  • a pair of attenuating resistors 56 and 58 are connected in series between the terminal 52A side and the terminal 56a, and the terminal 56b is derived from the midpoint of connection.
  • the terminals 56a and 56b are used for attenuating the output signal as necessary.
  • the high-pass filter 50 also uses a printed circuit board 66 as shown in FIG. 4, and a capacitor 53 and an iron core coil 54 are arranged on one surface thereof with the positional relationship shown in the figure.
  • screw type terminal blocks 67 and 68 each having two input terminals (50A, 50A) and four output terminals (52A, 52A, 56a, 56b) are provided.
  • the connection between the output amplifier 30 and the high-pass filter 50 is not a solder, but a screw type (plug-in type), and the high-pass filter 50 and the speaker TW are mechanically connected by a screw type instead of solder. It is connected to the lines Lc and Ld.
  • the high-pass filter 50 shown in FIG. 4 includes a capacitor 53 and an iron core coil 54 (both electronic components) that are totalized by solder (acoustic solder alloy) on the printed circuit board 66, as indicated by black circles in FIG. Four places are joined together.
  • solder acoustic solder alloy
  • the reason why the screw type (plug-in type) terminal blocks 67 and 68 are used as the terminals is to make it easy to exchange with a plurality of filter circuits NW described later for the trial comparison. .
  • the following example is based on the above-mentioned 10 kinds of metals (Sn, Ag, Cu, Pb, In, Ni, Sb, Bi, Fe, As). Among them, based on four kinds of metal elements (Sn, Ag, Cu, Pb), and by further extracting two kinds of metals from the remaining metals (six kinds), six kinds of metals A set of acoustic solder alloys (6-element solder alloys) is formed.
  • a total of 15 kinds of acoustic solder alloys with different combinations of composition metals to be extracted were prepared, and audition evaluation was performed using a filter circuit NW using the acoustic solder alloys as bonding solder.
  • the high auditory evaluation achieved by improving the sound quality is a listener's evaluation to the last, so even if the evaluator is an audio expert, the evaluation (listening evaluation value) varies.
  • quantitative means for verifying whether or not there is little variation in evaluation, first, a popular sound source often used for evaluation of sample listening was used as a sample, and items for sample evaluation were set. Next, the audition evaluation was analyzed by a multiple regression model using the correlation between the audition evaluation value and the predicted value (estimated value or theoretical value).
  • the analysis of the audition evaluation is a set of extracted six-component alloy alloys and multiple regressions for each of nine types of acoustic solder alloys having different contents. Analyze and do the same for 15 acoustic solder alloys with different compositional metals. The one with the highest multiple correlation in this multiple regression analysis was the acoustic solder alloy (invention) with the highest audition evaluation.
  • multiple regression analysis provided by Excel (registered trademark) was used as an analysis tool.
  • multiple regressions derived by multiple regression analysis with the main component (Sn / Ag / Cu) and the plural (and therefore three) metal elements added to this as explanatory variables (independent variables), respectively.
  • the audition evaluation value the dependent variable (objective variable) that is the actual measurement value, the maximum value is 5.0
  • Group 1 acoustic solder alloy The composition of acoustic solder alloy of this group is "Group 1 acoustic solder alloys: (Sn, Ag, Cu, In, Ni, Pb)" It is.
  • Table 3 to Table 5 Correspondence tables showing the results of the multiple regression analysis when using this acoustic solder alloy are shown as (Table 3 to Table 5) and (Table 6 to Table 8) in the combination examples of (Table 1).
  • Tables 3 to 5 show the results of multiple regression analysis of the acoustic solder alloys according to the present invention.
  • the solder alloy shown in data 7 is a typical solder alloy as a lead-free solder composed substantially of (Sn ⁇ 3Ag ⁇ 0.5Cu). Therefore, the evaluation was performed based on this solder alloy.
  • “present example 1” and “present example 2” indicate the composition elements and contents (mass% (Wt%)) of the acoustic solder alloy according to the present invention.
  • the trial listening evaluation value is a dependent variable, that is, an actual measurement value, and the explanatory variable is each content (addition amount) of Ag, Cu, In, Ni, and Pb.
  • the results of the multiple regression analysis of the solder alloy for sound comprising these contents are as shown in (Table 4) and (Table 5).
  • the application rate (applicability accuracy) of the multiple regression equation y is It turns out to be very good.
  • test evaluation value Y “5.0” (maximum evaluation value) in the acoustic solder alloys of “this example 1” and “this example 2” shown in (Table 3) is a very reliable evaluation value.
  • the combination of the composition elements and the content (addition amount) of the acoustic solder alloy shown in “this example 1”, “this example 2”, etc. have high sound quality and the highest audition evaluation value can be obtained. It turns out that it is suitable as a joining solder.
  • Table 3 exemplifies acoustic solder alloys in the ranges shown in “Example 1” and “Example 2” as preferable examples of appropriate acoustic solder alloys.
  • the content of the acoustic solder alloy is (Sn ⁇ Ag (1.0 to 1.01% by mass) ⁇ Cu (0.71 to 0.72% by mass) ⁇ In (0.003 to 0.0037% by mass). ) ⁇ Ni (0.016 to 0.017% by mass) ⁇ Pb (0.0025 to 0.0035% by mass)).
  • the content of the acoustic solder alloy in the present invention is not limited to these ranges, and can be expanded to the following ranges.
  • Data 1 to 6 in (Table 6) are exactly the same as data 1 to 6 in (Table 3), but data 8 to 10 in (Table 6) are newly added data. Since data 7 in (Table 3) is a solder based on the standard as described above, it was excluded from the evaluation in (Table 6).
  • (Table 6) shows the audition evaluation value Y (dependent variable as an actual measurement value) and explanatory variable values from Data 1 to Data 6 and Data 8 to 10, and (Table 7) and (Table 8) are weights. The regression analysis result is shown.
  • audio solder alloy having the same composition elements because they are used as 12 joining solder of the filter circuit NW (NW0 1 ⁇ NW0 12) for the filter circuit NW0 1 are shown in "this Example 1" contained audio solder alloy amount is used, the filter circuit NW0 2 is audio solder alloy content shown in “present embodiment 2" is used.
  • the filter circuits NW0 3 to NW0 12 the sound quality and the audition are evaluated using the acoustic solder alloys shown as data 1 to data 10 (see Table 1).
  • Group 2 acoustic solder alloy This group of acoustic solder alloy compositions uses Pb and Sb as a common additive metal, as shown in (Table 1). Alloy: (Sn / Ag / Cu / Sb / Pb) with one kind added from (Bi / Fe / As / In / Ni). Therefore, there are five types of acoustic solder alloys.
  • Tables 9 to 23 The correspondence tables showing the results of the multiple regression analysis when using this acoustic solder alloy are (Tables 9 to 23).
  • Tables 9 to 11 Results of analysis of an acoustic solder alloy comprising (Sn, Ag, Cu, Sb, Bi, Pb) (2) (Tables 12 to 14): (Sn, Ag, Cu) (3) (Table 15 to Table 17): Analysis result of acoustic solder alloy made of (Sn, Ag, Cu, Sb, As, Pb) (Sb, Fe, Pb) 4)
  • Tables 18 to 20 Analysis results of an acoustic solder alloy made of (Sn ⁇ Ag ⁇ Cu ⁇ Sb ⁇ In ⁇ Pb) (5)
  • Tables 21 to 23 (Sn ⁇ Ag ⁇ Cu ⁇ Analysis results of acoustic solder alloys made of Sb / Ni / Pb)
  • acoustic solder alloy of group 3 The composition of acoustic solder alloy of this group is such that Pb and Bi are added to (Sn ⁇ Ag ⁇ Cu) as a common additive metal. Acoustic solder alloy: (Sn / Ag / Cu / Bi / Pb) added with one kind from (Fe / As / In / Ni). Therefore, there are four types of acoustic solder alloys.
  • acoustic solder alloy of group 4 The composition of acoustic solder alloy of this group is such that Pb and Fe are added to (Sn ⁇ Ag ⁇ Cu) as a common additive metal. Acoustic solder alloy: (Sn / Ag / Cu / Fe / Pb) added with one type from (As / In / Ni). Therefore, there are three types of acoustic solder alloys.
  • acoustic solder alloys of group 5 The composition of acoustic solder alloys of this group is such that Pb and As are added to (Sn ⁇ Ag ⁇ Cu) as a common additive metal.
  • Solder alloy for acoustic (Sn / Ag / Cu / As / Pb) added with one kind from (In / Ni). Accordingly, there are two types of acoustic solder alloys.
  • any two kinds of metals except (In, Ni) are added to (Sn ⁇ Ag ⁇ Cu ⁇ Sb ⁇ Pb) except for (Bi ⁇ Fe ⁇ As ⁇ In ⁇ Ni).
  • the sound quality and audition evaluation of the obtained acoustic solder alloy are as follows. As shown in (Table 9) to (Table 50), all of the 6-component acoustic solder alloys comprising these combinations have excellent sound quality characteristics. Also, a high audition evaluation value could not be obtained.
  • solder alloy solder alloy for sound that has high sound quality and high audition evaluation with an appropriate content
  • a three-way type audition evaluation device can also be used for audition evaluation.
  • solder containing solder was used, but it is not limited to this, and it may be a solder ball, a solder paste, or the like, and its form and shape are not limited. Moreover, also in the soldering method, you may use methods, such as a reflow furnace and a jet solder bath. Furthermore, although the description has been made using the discrete component as the electronic component, a chip-shaped electronic component may be used.
  • the filter is applied to the filter circuit as solder for joining the electronic components, but the acoustic solder alloy according to the present invention can be applied as the solder for connecting the electronic components constituting the entire audio system. By doing so, further improvement in sound quality can be expected.
  • the acoustic solder alloy according to the present invention can be applied to bonding solder used for soldering various electronic components used in an audio system onto a printed circuit board (circuit board).

Abstract

 Disclosed is a solder alloy for an acoustic device, which used as solder for bonding various electronic components in an electronic circuit such as a filter circuit NW for an audio system, and which is composed of six elements (Sn, Ag, Cu, Sb, In, Ni, Pb) in an appropriate quantity in order to obtain a high sound quality and a high audio value. One example of preferable contents is: 1,0 to 1,01 mass % of Ag, 0,71 to 0,72 mass % of Cu, 0,003 to 0,0037 mass % of In, 0,016 to 0,017 mass % of Ni and 0,0025 to 0,0035 mass % of Pb, with the remainder consisting of Sn.

Description

音響用はんだ合金Acoustic solder alloy
 この発明は、オーディオシステムなどに使用されるプリント基板に電子部品を接続するための接合用はんだに適用できる音響用はんだ合金に関する。 The present invention relates to an acoustic solder alloy that can be applied to a joining solder for connecting an electronic component to a printed circuit board used in an audio system or the like.
 オーディオシステムとしての音響再生装置(音響製品)における音質を改善するには、音響再生装置に使用される電子部品の選別は勿論のこと、当該装置を構成するアンプなどに使用されるプリント基板の回路設計や、プリント基板上における部品の配置、終段アンプ(出力アンプ)とスピーカの接続線(OFC(Oxygen Free Copperなど))として使用される材質などを総合的に検討する必要がある。 In order to improve sound quality in a sound reproduction device (sound product) as an audio system, not only the electronic components used in the sound reproduction device are selected, but also a circuit of a printed circuit board used in an amplifier constituting the device. It is necessary to comprehensively consider the design, the placement of components on the printed circuit board, the materials used as the connection line between the final amplifier (output amplifier) and the speaker (OFC (Oxygen Free Copper, etc.)).
 このうち電子部品の選別やプリント基板を使用するときの回路設計などは、音質改善策として既に実施されているところであるが、さらに音質を改善し、聴感評価の高い音響再生装置を得るため、電子部品接合用のはんだが注目されている。 Of these, the selection of electronic components and circuit design when using printed circuit boards are already being implemented as sound quality improvement measures. However, in order to further improve sound quality and obtain a sound reproduction device with high auditory evaluation, Solder for joining parts is attracting attention.
 電子部品を接合するためのはんだとしては、(特許文献1)~(特許文献3)などが知られている。 (Patent Document 1) to (Patent Document 3) are known as solders for joining electronic components.
特開平11-277290JP-A-11-277290 特開2002-239780JP2002-239780 特開2003-230980 特許文献1は、(Sn・Ag・Cu)にNiを加えた4元のはんだ合金に関するものであり、耐熱衝撃性を改善したものである。特許文献2は、接合の信頼性などを追求したはんだ合金であり、特許文献3は接合の信頼性を改善したはんだ合金に関する発明である。Japanese Patent Laid-Open No. 2003-230980 is related to a quaternary solder alloy in which Ni is added to (Sn / Ag / Cu), and has improved thermal shock resistance. Patent Document 2 is a solder alloy pursuing bonding reliability and the like, and Patent Document 3 is an invention related to a solder alloy with improved bonding reliability.
 ところで、電子部品接合用のはんだの合金組成や含有量が、音質や聴感評価などに影響を与えることについては、上記した特許文献1~特許文献3では言及されていない。 By the way, the above-mentioned Patent Documents 1 to 3 do not mention that the alloy composition and content of solder for joining electronic components affect the sound quality and audibility evaluation.
 はんだ合金の金属組成やその含有量を変えることによって音質や聴感が変わることは、本出願人も諸種の実験により確認した。つまり、電子部品接合用はんだの合金組成の組合せおよびその含有量は、音質を改善し、高い聴感評価を得るための重要な要因の一つであることが判った。 It was confirmed by the present applicant through various experiments that the sound quality and the audibility change by changing the metal composition and content of the solder alloy. That is, it has been found that the combination of the alloy composition of the solder for joining electronic parts and the content thereof are one of the important factors for improving the sound quality and obtaining a high audibility evaluation.
 そこで、この発明はこのような従来の課題を解決したものであって、音質を改善し、高い聴感評価が得られるオーディオシステムなどに適用できる音響用はんだ合金を提供するものである。 Therefore, the present invention solves such a conventional problem, and provides an acoustic solder alloy that can be applied to an audio system or the like that can improve sound quality and obtain high audibility evaluation.
 上述した問題を解決するため、この発明に係る音響用はんだ合金は、Agが0.8~1.20質量%、Cuが0.65~0.75質量%、Inが0.002~0.004質量%、Niが0.01~0.02質量%、Pbが0.005質量%以下を含有し、残部がSnで構成されている。このような組成元素とその含有量を選ぶことで、高音質で、試聴評価値の高い音響用はんだ合金が得られる。 In order to solve the above-described problems, the acoustic solder alloy according to the present invention has an Ag of 0.8 to 1.20 mass%, Cu of 0.65 to 0.75 mass%, and In of 0.002 to 0.00. 004% by mass, Ni is 0.01 to 0.02% by mass, Pb is 0.005% by mass or less, and the balance is Sn. By selecting such a composition element and its content, an acoustic solder alloy with high sound quality and high audition evaluation value can be obtained.
 この発明によれば、(錫Sn・銀Ag・銅Cu)を主成分とし、これにインジウムIn、ニッケルNiおよび鉛Pbを微量に添加した6元のはんだ合金とし、それぞれの含有量を適切な値とすることによって、高い音質特性と、試聴評価の高い音響用はんだ合金を実現できる。 According to the present invention, a ternary solder alloy is mainly composed of (tin Sn / silver Ag / copper Cu), and a small amount of indium In, nickel Ni and lead Pb is added thereto, and each content is appropriately set. By setting the value, it is possible to realize a high-quality sound characteristic and a high-quality audio solder alloy for auditioning.
この発明の説明に供する試聴評価装置の一例を示すブロック図である。It is a block diagram which shows an example of the audition evaluation apparatus with which it uses for description of this invention. 図1の試聴評価装置に使用されるフィルタ回路の一例を示すローパスフィルタ回路の回路図である。It is a circuit diagram of the low-pass filter circuit which shows an example of the filter circuit used for the audition evaluation apparatus of FIG. ローパスフィルタ回路のプリント基板上における部品配置図である。FIG. 3 is a component layout diagram of a low-pass filter circuit on a printed board. 図1の試聴評価装置に使用されるフィルタ回路の一例を示すハイパスフィルタ回路の回路図である。It is a circuit diagram of the high-pass filter circuit which shows an example of the filter circuit used for the audition evaluation apparatus of FIG. ハイパスフィルタ回路のプリント基板上における部品配置図である。FIG. 3 is a component layout diagram of a high-pass filter circuit on a printed board.
 続いて、この発明に係る音響用はんだ合金の一例を上述したオーディオシステムを構成する回路系に用いられる電子部品の接合用はんだに適用した場合につき、図面等を参照して詳細に説明する。 Next, an example of the acoustic solder alloy according to the present invention will be described in detail with reference to the drawings and the like when applied to the solder for joining electronic components used in the circuit system constituting the audio system described above.
 音質や試聴評価に影響を与えることのある接合用はんだとして、試聴評価に供する音響用はんだ合金を作成した。
(一)試聴用音響用はんだ合金
 電子部品接合用はんだとしては、電子部品用の接合はんだとして使用されている最も一般的な3元のヤニ入りはんだ合金(錫Sn・銀Ag・銅Cuからなるはんだ合金)をベースに使用する。
As a solder for joining that may affect the sound quality and the audition evaluation, an acoustic solder alloy was prepared for the audition evaluation.
(1) Auditory solder alloy for soldering As the solder for joining electronic parts, the most common ternary solder alloy (tin Sn / silver Ag / copper Cu) used as a joining solder for electronic parts is used. Solder alloy) is used as the base.
 この3元のはんだ合金に対して幾つかの金属を微量に添加することによって試聴評価が変わることが試聴実験によって確認されたので、諸種の試聴実験を繰り返した結果、以下に示す金属を微量金属として選んだ。
(添加金属)
 「インジウムIn、ニッケルNi、アンチモンSb、ビスマスBi、鉄Fe、ヒ素Asおよび鉛Pb」
 鉛Pbは3元はんだ合金を組成する錫Snに含まれる微量元素であるので、実際には(錫Sn・銀Ag・銅Cu)に鉛Pbを加えた4元のはんだ合金に、上記した微量金属を添加した6元のはんだ合金として試聴評価を行った。
As the audition experiment confirmed that the trial evaluation was changed by adding a few metals to the ternary solder alloy, it was confirmed that the various metal audits were repeated. Chose as.
(Added metal)
"Indium In, Nickel Ni, Antimony Sb, Bismuth Bi, Iron Fe, Arsenic As and Lead Pb"
Since lead Pb is a trace element contained in tin Sn composing the ternary solder alloy, the trace amount described above is actually added to the quaternary solder alloy obtained by adding lead Pb to (tin Sn / silver Ag / copper Cu). Auditory evaluation was performed as a 6-element solder alloy to which metal was added.
(二)用意した接合用の音響用はんだ合金数
 添加金属として、鉛Pbの他に2種類の金属を選択し、それぞれの添加量と、他の4元金属の添加量も調整した上で、音響用はんだ合金を作成した。実際には同じ金属組成で、添加量の異なる9種類の音響用はんだ合金を試聴用として用意した。
(2) Number of prepared solder solder alloys for jointing As an additive metal, select two types of metals in addition to lead Pb, and adjust the amount of each additive and the amount of other quaternary metals, An acoustic solder alloy was prepared. Actually, nine kinds of acoustic solder alloys having the same metal composition and different addition amounts were prepared for listening.
(三)試聴用装置(試聴評価装置)
 図1に試聴評価装置10の一例を示す。試聴評価用の電子回路としては、ディスクリート部品をプリント基板(回路基板)上にはんだ付けすることで、電子回路が構成されるフィルタ回路NWを例示する。
(3) Audition device (audition evaluation device)
FIG. 1 shows an example of a trial listening evaluation apparatus 10. As an electronic circuit for trial listening evaluation, a filter circuit NW in which an electronic circuit is configured by soldering discrete components onto a printed circuit board (circuit board) is exemplified.
 音源は通常ステレオ録音されているので、再生装置では左右一対のスピーカから構成されるが、便宜上、片側のみ用いて説明する。 Since the sound source is usually recorded in stereo, the playback device is composed of a pair of left and right speakers. For convenience, only one side will be described.
 また、CD(コンパクトディスク)を音源とした場合、音源再生にはCDプレーヤなど回転系を有する音源再生装置で音源を再生して試聴することとなるが、CD音源の再生に際しては回転に伴う回転むらや偏芯等が発生する場合があり、各試聴ごとにその影響を受ける箇所が異なる可能性があるため、試聴の適正な評価を阻害する。そのために今回は試聴のための音源の再生に際しては、CDプレーヤなど回転系を伴う音源再生装置は直接使用しないこととした。すなわち、CDを音源とした場合には、CDプレーヤでCDを再生し、一旦、USBメモリなどの半導体メモリに記録されたものを音源として用いることによって、同一条件下で音源の再生ができるようにした。 When a CD (compact disc) is used as a sound source, the sound source is reproduced by a sound source reproducing apparatus having a rotation system such as a CD player and listened to the sample. Unevenness, eccentricity, and the like may occur, and the location affected by each trial listening may be different, which hinders proper evaluation of the listening. Therefore, this time, when reproducing a sound source for trial listening, a sound source reproducing apparatus with a rotating system such as a CD player is not directly used. In other words, when a CD is used as a sound source, the sound source can be reproduced under the same conditions by reproducing the CD with a CD player and using the recording once in a semiconductor memory such as a USB memory as the sound source. did.
 音源20からのオーディオ信号は出力アンプ30を介してフィルタ回路NWに供給されて、この例では中低音域と高音域の2ウエイに分割される。そのため、このフィルタ回路NW(NW0)はローパスフィルタ(LPF)40とハイパスフィルタ(HPF)50とで構成され、いずれもプリント基板(回路基板)を用いて回路が構成される。 The audio signal from the sound source 20 is supplied to the filter circuit NW via the output amplifier 30, and in this example, it is divided into two ways of the mid-low range and the high range. Therefore, the filter circuit NW (NW0) includes a low-pass filter (LPF) 40 and a high-pass filter (HPF) 50, both of which are configured using a printed circuit board (circuit board).
 ローパスフィルタ40からの出力信号は中低音域用のスピーカ(ウーハー)WFに接続線La、Lbを介して供給される。同じように、ハイパスフィルタ50からの出力信号は高音域用のスピーカ(ツイター)TWに接続線Lc、Ldを介して供給される。 The output signal from the low-pass filter 40 is supplied to the speaker (woofer) WF for the mid-low range through the connection lines La and Lb. Similarly, the output signal from the high-pass filter 50 is supplied to the loudspeaker (tweeter) TW via the connection lines Lc and Ld.
 図2はローパスフィルタ40の一例を示すもので、鉄心コイル43とコンデンサ44からなる並列回路で構成されており、鉄心コイル43として本例では線径が1.2mmφのコイルが使用されている。そのインダクタンス値は0.45mHのものを使用した。コンデンサ44は耐圧が250V(DC)で12μFのものを使用した。 FIG. 2 shows an example of the low-pass filter 40, which is composed of a parallel circuit composed of an iron core coil 43 and a capacitor 44. In this example, a coil having a wire diameter of 1.2 mmφ is used as the iron core coil 43. The inductance value used was 0.45 mH. A capacitor 44 having a withstand voltage of 250 V (DC) and 12 μF was used.
 このローパスフィルタ40は実際には、図3のようにプリント基板46が使用され、その一面に図示するような位置関係をもって鉄心コイル43とコンデンサ44とが配置される。プリント基板46の左右両端側に、それぞれ2個の入力端子(40A,40A)、出力端子(42A,42A)からなるネジ式端子台47,48が設けられている。 In actuality, the low-pass filter 40 uses a printed circuit board 46 as shown in FIG. 3, and an iron core coil 43 and a capacitor 44 are disposed on one surface thereof with a positional relationship as illustrated. Screw type terminal blocks 47 and 48 each having two input terminals (40A and 40A) and output terminals (42A and 42A) are provided on both left and right ends of the printed circuit board 46, respectively.
 その結果、出力アンプ30とローパスフィルタ40との間の結線ははんだ付けではなく、ネジ式(差し込み式)であり、ローパスフィルタ40とスピーカWFに接続された接続線La,Lbとの間も、はんだではなく同じくネジ式によって機械的に連結される。 As a result, the connection between the output amplifier 30 and the low-pass filter 40 is not soldered, but is a screw type (insertion type), and between the low-pass filter 40 and the connection lines La and Lb connected to the speaker WF, It is mechanically connected not by solder but by a screw type.
 その結果、図2に示すローパスフィルタ40は、同図の黒丸印で示すように、鉄心コイル43とコンデンサ44(何れも電子部品)が、プリント基板46上にはんだ(音響用はんだ合金)によってトータル4個所接合されて構成される。接合個数は、電子部品用リード線との接続を含めてカウントした。実際には、2ヶ所の入力端子部分、及び、2ヶ所の出力端子部分はそれぞれプリント基板(回路基板)にはんだ付けされているので、本例では合計8箇所接合されていることになる。 As a result, the low-pass filter 40 shown in FIG. 2 is configured such that the iron core coil 43 and the capacitor 44 (both electronic components) are soldered onto the printed circuit board 46 by solder (acoustic solder alloy), as indicated by the black circles in FIG. It is constructed by joining four places. The number of junctions was counted including the connection with lead wires for electronic components. Actually, since the two input terminal portions and the two output terminal portions are respectively soldered to the printed circuit board (circuit board), a total of eight positions are joined in this example.
 端子としてネジ式(差し込み式)端子台47,48を用いた理由は、試聴比較するための後述する複数のフィルタ回路NWの交換が容易に行なえるようにするためである。 The reason why the screw-type (insertion-type) terminal blocks 47 and 48 are used as the terminals is to allow easy exchange of a plurality of filter circuits NW, which will be described later, for comparing the audition.
 図4は、ハイパスフィルタ50の一例を示すもので、コンデンサ53と鉄心コイル54からなる並列回路で構成されており、コンデンサ53は耐圧が250V(DC)で6.8μFのものが使用され、鉄心コイル54として本例では線径が1.0mmφのコイルが使用されている。そのインダクタンス値は0.4mHのものを使用した。 FIG. 4 shows an example of the high-pass filter 50, which is composed of a parallel circuit composed of a capacitor 53 and an iron core coil 54. The capacitor 53 having a withstand voltage of 250V (DC) and 6.8 μF is used. In this example, a coil having a wire diameter of 1.0 mmφ is used as the coil 54. The inductance value used was 0.4 mH.
 端子52Aと高域再生用のスピーカTWとの間は接続線Lc,Ldによって接続される。端子52A側と端子56aとの間には一対の減衰用抵抗器56,58が直列接続され、その接続中点より端子56bが導出される。端子56a、56bは、必要に応じて出力信号の減衰用として使用される。 The terminal 52A and the high frequency reproduction speaker TW are connected by connection lines Lc and Ld. A pair of attenuating resistors 56 and 58 are connected in series between the terminal 52A side and the terminal 56a, and the terminal 56b is derived from the midpoint of connection. The terminals 56a and 56b are used for attenuating the output signal as necessary.
 このハイパスフィルタ50も実際には、図4のようにプリント基板66が使用され、その一の面に図示するような位置関係をもってコンデンサ53と鉄心コイル54が配置され、プリント基板66の左右両端側に、それぞれ2個の入力端子(50A,50A)、4個の出力端子(52A,52A,56a,56b)からなるネジ式端子台67,68が設けられている。その結果、出力アンプ30とハイパスフィルタ50との間の結線ははんだ付けではなく、ネジ式(差し込み式)となり、ハイパスフィルタ50とスピーカTWとの間もはんだではなく同じくネジ式によって機械的に接続線Lc,Ldと連結される。 In actuality, the high-pass filter 50 also uses a printed circuit board 66 as shown in FIG. 4, and a capacitor 53 and an iron core coil 54 are arranged on one surface thereof with the positional relationship shown in the figure. In addition, screw type terminal blocks 67 and 68 each having two input terminals (50A, 50A) and four output terminals (52A, 52A, 56a, 56b) are provided. As a result, the connection between the output amplifier 30 and the high-pass filter 50 is not a solder, but a screw type (plug-in type), and the high-pass filter 50 and the speaker TW are mechanically connected by a screw type instead of solder. It is connected to the lines Lc and Ld.
 その結果、図4に示すハイパスフィルタ50は、同図の黒丸印で示すように、コンデンサ53と鉄心コイル54(何れも電子部品)が、プリント基板66上にはんだ(音響用はんだ合金)によってトータル4個所接合されて構成されることになる。実際には、2ヶ所の入力端子部分、及び、2ヶ所の出力端子部分はそれぞれプリント基板(回路基板)にはんだ付けされているので、本例では合計8箇所接合されていることになる。 As a result, the high-pass filter 50 shown in FIG. 4 includes a capacitor 53 and an iron core coil 54 (both electronic components) that are totalized by solder (acoustic solder alloy) on the printed circuit board 66, as indicated by black circles in FIG. Four places are joined together. Actually, since the two input terminal portions and the two output terminal portions are respectively soldered to the printed circuit board (circuit board), a total of eight positions are joined in this example.
 上述のように、端子としてネジ式(差し込み式)端子台67,68を用いた理由は、試聴比較するための後述する複数のフィルタ回路NWとの交換が容易に行なえるようにするためである。 As described above, the reason why the screw type (plug-in type) terminal blocks 67 and 68 are used as the terminals is to make it easy to exchange with a plurality of filter circuits NW described later for the trial comparison. .
(四)試聴用として使用される音響用はんだ合金の仕様
 今回使用する試聴評価用音響用はんだ合金は上述したように、ベースとなる(Sn・Ag・Cu)の金属(金属元素)の他に、微量のPbがあり、さらに微量の添加金属としてIn、Ni、Sb、Bi、FeおよびAsのうち任意の2種が加わる。
(4) Specification of acoustic solder alloy used for audition listening As described above, the acoustic solder alloy for audition evaluation used in addition to the base (Sn / Ag / Cu) metal (metal element) In addition, there is a trace amount of Pb, and any two of In, Ni, Sb, Bi, Fe and As are added as a trace amount of added metal.
 試聴評価精度を高め、よりよい音響用はんだ合金を見出すため、以下に示す例は、上述した10種類の金属(Sn・Ag・Cu・Pb・In・Ni・Sb・Bi・Fe・As)のうちから、(Sn・Ag・Cu・Pb)の4種類の金属元素をベースとし、これらにさらに残りの金属(6種類)から2種の金属を任意に抽出することで、6種類の金属で1組の音響用はんだ合金(6元のはんだ合金)を構成する。 In order to improve the audition evaluation accuracy and find a better acoustic solder alloy, the following example is based on the above-mentioned 10 kinds of metals (Sn, Ag, Cu, Pb, In, Ni, Sb, Bi, Fe, As). Among them, based on four kinds of metal elements (Sn, Ag, Cu, Pb), and by further extracting two kinds of metals from the remaining metals (six kinds), six kinds of metals A set of acoustic solder alloys (6-element solder alloys) is formed.
 そして同じ組成金属でもその含有量(添加量)を変えて、この例では1組で9種類の音響用はんだ合金を作成し、これを試聴評価用の接合はんだとして用いる。 And, even in the same composition metal, the content (addition amount) is changed, and in this example, nine kinds of acoustic solder alloys are prepared as one set, and this is used as a joining solder for audition evaluation.
 さらに抽出する組成金属の組み合わせを変えたトータル15種類の音響用はんだ合金を用意し、その音響用はんだ合金を接合はんだとして使用したフィルタ回路NWを用いて試聴評価を行った。 Further, a total of 15 kinds of acoustic solder alloys with different combinations of composition metals to be extracted were prepared, and audition evaluation was performed using a filter circuit NW using the acoustic solder alloys as bonding solder.
 したがって、図1に示すように、試聴評価装置10としては、15種類のフィルタ回路NW0~NW15が使用される。その他の回路やスピーカは同じものを使用する。これらフィルタ回路NW0~NW15と、抽出元素との組み合わせは(表1)のようになる。
音響用はんだ合金として使用される共通の金属元素(Sn・Ag・Cu・Pb)は欄外に記載した。
Therefore, as shown in FIG. 1, as the trial listening evaluation apparatus 10, 15 types of filter circuits NW0 to NW15 are used. Other circuits and speakers are the same. The combinations of the filter circuits NW0 to NW15 and the extracted elements are as shown in (Table 1).
Common metal elements (Sn / Ag / Cu / Pb) used as acoustic solder alloys are listed in the column.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(五)最良の音響用はんだ合金
 試聴評価の結果、(錫Sn・銀Ag・銅Cu)に微量の鉛Pbと、インジウムIn、ニッケルNiを微量に添加すると共に、その添加量を適切に選択した6元のはんだ合金(Sn・Ag・Cu・In・Ni・Pb)が、最も高い試聴評価値(最高値は5.0)が得られた。
(5) The best acoustic solder alloy As a result of the audition evaluation, a small amount of lead Pb, indium In, and nickel Ni are added to (tin Sn / silver Ag / copper Cu), and the addition amount is appropriately selected. The 6-element solder alloy (Sn / Ag / Cu / In / Ni / Pb) obtained the highest audition evaluation value (maximum value was 5.0).
 その具体例は後述するとして、リスナーによる最も高い試聴評価が適切な試聴評価であるかどうかを検証する必要がある。 As a specific example will be described later, it is necessary to verify whether or not the highest audition evaluation by the listener is an appropriate audition evaluation.
 音質を改善することによって達成される高い聴感評価は、あくまでもリスナーの評価であるので、評価者がオーディオ専門家であっても評価(試聴評価値)にはバラツキがある。評価のバラツキが少ないかどうかを検証する1つの手段(定量的手段)として、まず試聴評価としてよく使用されるポピュラーな音源をサンプルとし、試聴評価の項目を設定した。次に、試聴評価値と予測値(推定値若しくは理論値)との相関を利用した重回帰モデルによって試聴評価を分析した。 The high auditory evaluation achieved by improving the sound quality is a listener's evaluation to the last, so even if the evaluator is an audio expert, the evaluation (listening evaluation value) varies. As one means (quantitative means) for verifying whether or not there is little variation in evaluation, first, a popular sound source often used for evaluation of sample listening was used as a sample, and items for sample evaluation were set. Next, the audition evaluation was analyzed by a multiple regression model using the correlation between the audition evaluation value and the predicted value (estimated value or theoretical value).
(六)音源のサンプルと試聴評価項目
 試聴評価としてよく使用されるポピュラーな音源として、以下に示す3つの楽曲(ポピュラー、クラシックおよびボーカル)を参考にした。音源20はCDを再生して一旦記憶したものを使用した。
(i)vincent
(ii)カルメン・バレー
(iii)somewhere somebody
 試聴評価項目の一例を(表2)に示す。この例では、低音特性から楽器特性まで、トータル10項目について5点満点で試聴評価を行い、その平均値を試聴評価値とした。
(6) Samples of sound sources and evaluation items for trial listening The following three music (popular, classical music and vocals) were referred to as popular sound sources that are often used for trial listening evaluation. The sound source 20 used was a CD that was reproduced and stored once.
(I) vincent
(Ii) Carmen Valley (iii) somewhere somebody
An example of the trial listening evaluation items is shown in (Table 2). In this example, a trial listening evaluation was performed on a total of 10 items from a bass characteristic to a musical instrument characteristic with a maximum score of 5 points, and the average value was used as a trial listening evaluation value.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(七)試聴評価の分析
試聴評価の分析は上述したように、抽出した6元の組成合金からなる1組の音響用はんだ合金で、含有量が異なる9種類の音響用はんだ合金についてそれぞれ重回帰分析を行い、同じことを組成金属が異なる15通りの音響用はんだ合金についても行う。この重回帰分析で最も重相関が取れているものを、最も試聴評価の高い音響用はんだ合金(本発明)とした。
(7) Analysis of the audition evaluation As described above, the analysis of the audition evaluation is a set of extracted six-component alloy alloys and multiple regressions for each of nine types of acoustic solder alloys having different contents. Analyze and do the same for 15 acoustic solder alloys with different compositional metals. The one with the highest multiple correlation in this multiple regression analysis was the acoustic solder alloy (invention) with the highest audition evaluation.
 以下の例は、エクセル(登録商標)で提供されている重回帰分析を分析ツールとして使用した。本例では、(Sn・Ag・Cu)からなる主成分と、これに添加する複数種(したがって3種)の金属元素をそれぞれ説明変数(独立変数)として、重回帰分析により導き出された重回帰式(重回帰モデル)が、どの程度試聴評価値(実測値である従属変数(目的変数)であって、最高値は5.0)を反映したものであるかを、説明変数を変えながら確認した。 In the following example, multiple regression analysis provided by Excel (registered trademark) was used as an analysis tool. In this example, multiple regressions derived by multiple regression analysis with the main component (Sn / Ag / Cu) and the plural (and therefore three) metal elements added to this as explanatory variables (independent variables), respectively. Check how much the expression (multiple regression model) reflects the audition evaluation value (the dependent variable (objective variable) that is the actual measurement value, the maximum value is 5.0) while changing the explanatory variables. did.
(八)音響用はんだ合金のグルーブ分けと重回帰分析の対応表との関係
重回帰分析をするに当たって、音響用はんだ合金を(表1)に示すようにグループ分けする。
(8) Relationship between the grouping of acoustic solder alloys and the correspondence table of multiple regression analysis In conducting multiple regression analysis, the acoustic solder alloys are grouped as shown in (Table 1).
(1)グループ1の音響用はんだ合金
 このグループの音響用はんだ合金組成は、
「グループ1の音響用はんだ合金:(Sn・Ag・Cu・In・Ni・Pb)」
である。
(1) Group 1 acoustic solder alloy The composition of acoustic solder alloy of this group is
"Group 1 acoustic solder alloys: (Sn, Ag, Cu, In, Ni, Pb)"
It is.
 この音響用はんだ合金を使用したときの重回帰分析の結果を示す対応表を、(表1)の組合せ例のうち、(表3~表5)および(表6~表8)として示す。(表3~表5)は本発明による音響用はんだ合金の重回帰分析結果を示す。
なお、データ7に示すはんだ合金は、概ね(Sn・3Ag・0.5Cu)からなる鉛フリーはんだとして代表的なはんだ合金であるため、このはんだ合金を基準にして評価を行なった。
Correspondence tables showing the results of the multiple regression analysis when using this acoustic solder alloy are shown as (Table 3 to Table 5) and (Table 6 to Table 8) in the combination examples of (Table 1). Tables 3 to 5 show the results of multiple regression analysis of the acoustic solder alloys according to the present invention.
Note that the solder alloy shown in data 7 is a typical solder alloy as a lead-free solder composed substantially of (Sn · 3Ag · 0.5Cu). Therefore, the evaluation was performed based on this solder alloy.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(表3)において、「本例1」および「本例2」は、この発明に係る音響用はんだ合金の組成元素と、含有量(質量%(Wt%))を示す。試聴評価値は従属変数つまり実測値であり、説明変数はAg,Cu,In,Ni,Pbの各含有量(添加量)となる。これらの含有量からなる音響用はんだ合金の重回帰分析結果は、(表4)および(表5)に示す通りである。 In (Table 3), “present example 1” and “present example 2” indicate the composition elements and contents (mass% (Wt%)) of the acoustic solder alloy according to the present invention. The trial listening evaluation value is a dependent variable, that is, an actual measurement value, and the explanatory variable is each content (addition amount) of Ag, Cu, In, Ni, and Pb. The results of the multiple regression analysis of the solder alloy for sound comprising these contents are as shown in (Table 4) and (Table 5).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (表3)と(表5)から、この場合の重回帰式は以下のようになる。予測値をyとする。 From (Table 3) and (Table 5), the multiple regression equation in this case is as follows. Let the predicted value be y.
      y=0.1104879Ag+0.072135Cu
        +376.93035In+4.651292Ni
        ―45.72814Pb+3.6386376
                       ・・・・・(1)
 ここに、Pbの重回帰係数がマイナスとなっているので、Pbの添加量はできるだけ少ない方が好ましいと言える。Pbは高純度のSn成分中にも含まれるものであるから、このPbによる影響をできるだけ少なくするためにInやNiが微量に添加されている。
y = 0.1104879Ag + 0.072135Cu
+ 376.93035In + 4.651292Ni
-45.72814Pb + 3.6386376
(1)
Here, since the multiple regression coefficient of Pb is negative, it can be said that the addition amount of Pb is preferably as small as possible. Since Pb is also contained in the high-purity Sn component, a small amount of In or Ni is added in order to minimize the influence of this Pb.
 (表4)に示す通り、重回帰式で予測される値yと実際の試聴評価値Yとの重相関係数Rは、「0.9814333」であるから、「1.0」に極めて近い値であり、両者には非常に強い相関があることが判る。 As shown in (Table 4), since the multiple correlation coefficient R between the value y predicted by the multiple regression equation and the actual trial listening evaluation value Y is “0.9814333”, it is very close to “1.0”. It can be seen that there is a very strong correlation between the two.
 重決定R2(決定係数R2乗)は「0.9632113」、補正R2(自由度修正済決定係数R2)も「0.9018968」であるので、この重回帰式yの当てはまり率(当てはまり精度)が非常によいことが判る。 Since the multiple determination R2 (determination coefficient R2) is “0.9632113” and the correction R2 (degree of freedom corrected determination coefficient R2) is also “0.9018968”, the application rate (applicability accuracy) of the multiple regression equation y is It turns out to be very good.
 さらに(表5)における分散分析表にあって、有意Fは「0.023169979」となるので、97.7%(=100%-2.3%)での確率で相関があることになるから、(表3)と(表5)の重回帰係数から算出された重回帰式yの信頼性は非常に高いと言える。 Furthermore, in the analysis of variance table in (Table 5), since the significant F is “0.023169799”, there is a correlation with a probability of 97.7% (= 100% −2.3%). It can be said that the reliability of the multiple regression equation y calculated from the multiple regression coefficients of (Table 3) and (Table 5) is very high.
 したがって(表3)に示した「本例1」および「本例2」の音響用はんだ合金における試聴評価の値Y「5.0」(最高評価値)は非常に信頼できる評価値と言える。このように「本例1」、「本例2」などに示される音響用はんだ合金の組成元素の組み合わせおよびその含有量(添加量)は、高音質で、しかも最も高い試聴評価値が得られる接合はんだとして好適であることが判る。 Therefore, it can be said that the test evaluation value Y “5.0” (maximum evaluation value) in the acoustic solder alloys of “this example 1” and “this example 2” shown in (Table 3) is a very reliable evaluation value. As described above, the combination of the composition elements and the content (addition amount) of the acoustic solder alloy shown in “this example 1”, “this example 2”, etc. have high sound quality and the highest audition evaluation value can be obtained. It turns out that it is suitable as a joining solder.
 (表3)では、適切な音響用はんだ合金の好ましい例として、「本例1」および「本例2」に示す範囲の音響用はんだ合金を例示した。 (Table 3) exemplifies acoustic solder alloys in the ranges shown in “Example 1” and “Example 2” as preferable examples of appropriate acoustic solder alloys.
 この音響用はんだ合金の含有量は、(Sn・Ag(1.0~1.01質量%)・Cu(0.71~0.72質量%)・In(0.003~0.0037質量%)・Ni(0.016~0.017質量%)・Pb(0.0025~0.0035質量%))である。 The content of the acoustic solder alloy is (Sn · Ag (1.0 to 1.01% by mass) · Cu (0.71 to 0.72% by mass) · In (0.003 to 0.0037% by mass). ) · Ni (0.016 to 0.017% by mass) · Pb (0.0025 to 0.0035% by mass)).
 この発明における音響用はんだ合金の含有量は、これらの範囲内に限られるものではなく、以下の範囲まで拡張可能である。 The content of the acoustic solder alloy in the present invention is not limited to these ranges, and can be expanded to the following ranges.
 (この発明における音響用はんだ合金の含有量の範囲)
 「Sn(残部)・Ag(0.8~1.20)・Cu(0.65~0.75)・In(0.002~0.004)・Ni(0.01~0.02)・Pb(≦0.005)」
 一方、比較例として示したデータ1~データ7における試聴評価値は(表3)の通りである。同じ組成元素で含有量を変えて試聴したときの重回帰分析結果を同じく(表4)および(表5)に示す。
(Range of content of acoustic solder alloy in this invention)
“Sn (remainder), Ag (0.8 to 1.20), Cu (0.65 to 0.75), In (0.002 to 0.004), Ni (0.01 to 0.02), Pb (≦ 0.005) ”
On the other hand, the trial listening evaluation values in data 1 to data 7 shown as comparative examples are as shown in (Table 3). Tables 4 and 5 show the results of multiple regression analysis when listening with the same compositional elements while changing the content.
 (表3)において、データ1~データ7のような含有量にした場合には、同じ組成金属を使用した音響用はんだ合金であっても、試聴評価値は最高値が「4.35」までであり、音響用はんだ合金としては「本例1」や「本例2」よりも劣ることが判る。
グループ1に属する(表6)~(表8)は、同じ組成元素からなる音響用はんだ合金で、含有量を変えた場合を示している。
In Table 3, when the contents are as shown in Data 1 to Data 7, even in the case of an acoustic solder alloy using the same composition metal, the maximum audition evaluation value is “4.35”. Thus, it can be seen that the acoustic solder alloy is inferior to “this example 1” and “this example 2”.
(Table 6) to (Table 8) belonging to Group 1 show acoustic solder alloys made of the same composition elements, and the contents are changed.
 (表6)のデータ1~6は、前記(表3)のデータ1~6と全く同じものであるが、(表6)のデータ8~10は新たに追加したデータである。(表3)のデータ7は上記のように基準としたはんだであることから、(表6)においては評価から除外した。
(表6)は、データ1からデータ6及びデータ8から10までの、試聴評価値Y(実測値としての従属変数)と説明変数の値を示し、(表7)および(表8)は重回帰分析結果を示す。
Data 1 to 6 in (Table 6) are exactly the same as data 1 to 6 in (Table 3), but data 8 to 10 in (Table 6) are newly added data. Since data 7 in (Table 3) is a solder based on the standard as described above, it was excluded from the evaluation in (Table 6).
(Table 6) shows the audition evaluation value Y (dependent variable as an actual measurement value) and explanatory variable values from Data 1 to Data 6 and Data 8 to 10, and (Table 7) and (Table 8) are weights. The regression analysis result is shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 詳細説明は割愛するも、この重回帰分析結果から同じ組成元素であっても、含有量を変えると、結果が大きく異なることが判る。 Even though the detailed explanation is omitted, it can be seen from the results of the multiple regression analysis that the results are greatly different if the content is changed even for the same composition element.
 因みに、重相関係数Rと決定係数R2の値は良好であるが、自由度修正済決定係数R2(補正R2)や、有意Fの値が悪いので、予測値yと試聴評価値Yとが十分相関が取れていないし、試聴評価値Yも最高値が「4.33」止まりである。したがって、最適な音響用はんだ合金とは言えない。 Incidentally, although the values of the multiple correlation coefficient R and the determination coefficient R2 are good, the degree of freedom corrected determination coefficient R2 (correction R2) and the value of the significant F are bad. The correlation is not sufficiently obtained, and the trial listening evaluation value Y is only “4.33” at the maximum value. Therefore, it cannot be said that it is an optimal acoustic solder alloy.
 なお、同じ組成元素からなる音響用はんだ合金は、12個のフィルタ回路NW(NW0~NW012)用の接合はんだとして使用されるので、フィルタ回路NW0は「本例1」に示した含有量の音響用はんだ合金が使用され、フィルタ回路NW0は「本例2」に示した含有量の音響用はんだ合金が使用される。同じようにして、フィルタ回路NW0~NW012では、データ1~データ10として示した音響用はんだ合金を使用して、音質や試聴が評価される(表1参照)。 Incidentally, audio solder alloy having the same composition elements, because they are used as 12 joining solder of the filter circuit NW (NW0 1 ~ NW0 12) for the filter circuit NW0 1 are shown in "this Example 1" contained audio solder alloy amount is used, the filter circuit NW0 2 is audio solder alloy content shown in "present embodiment 2" is used. Similarly, in the filter circuits NW0 3 to NW0 12 , the sound quality and the audition are evaluated using the acoustic solder alloys shown as data 1 to data 10 (see Table 1).
(九)その他のグループにおける音響用はんだ合金による試聴評価
 以下に示すグループ2~5の音響用はんだ合金は何れも「本例1」や「本例2」のような試聴評価が得られなかったデータであることを示している。以下のその結果を示す。
(9) Audition evaluation with acoustic solder alloys in other groups None of the following acoustic solder alloys of groups 2 to 5 were able to obtain the audition evaluation as in “Example 1” or “Example 2”. Indicates data. The results are shown below.
(2)グループ2の音響用はんだ合金
 このグループの音響用はんだ合金組成は、PbおよびSbを共通の添加金属とするものであって、(表1)に示す通り、「グループ2の音響用はんだ合金:(Sn・Ag・Cu・Sb・Pb)に(Bi・Fe・As・In・Ni)から1種を添加したもの」である。したがって音響用はんだ合金としては5種となる。
(2) Group 2 acoustic solder alloy This group of acoustic solder alloy compositions uses Pb and Sb as a common additive metal, as shown in (Table 1). Alloy: (Sn / Ag / Cu / Sb / Pb) with one kind added from (Bi / Fe / As / In / Ni). Therefore, there are five types of acoustic solder alloys.
 この音響用はんだ合金を使用したときの重回帰分析の結果を示す対応表は、(表9~表23)である。
(1)(表9~表11):(Sn・Ag・Cu・Sb・Bi・Pb)からなる音響用はんだ合金の分析結果
(2)(表12~表14):(Sn・Ag・Cu・Sb・Fe・Pb)からなる音響用はんだ合金の分析結果
(3)(表15~表17):(Sn・Ag・Cu・Sb・As・Pb)からなる音響用はんだ合金の分析結果
(4)(表18~表20):(Sn・Ag・Cu・Sb・In・Pb)からなる音響用はんだ合金の分析結果
(5)(表21~表23):(Sn・Ag・Cu・Sb・Ni・Pb)からなる音響用はんだ合金の分析結果
The correspondence tables showing the results of the multiple regression analysis when using this acoustic solder alloy are (Tables 9 to 23).
(1) (Tables 9 to 11): Results of analysis of an acoustic solder alloy comprising (Sn, Ag, Cu, Sb, Bi, Pb) (2) (Tables 12 to 14): (Sn, Ag, Cu) (3) (Table 15 to Table 17): Analysis result of acoustic solder alloy made of (Sn, Ag, Cu, Sb, As, Pb) (Sb, Fe, Pb) 4) (Tables 18 to 20): Analysis results of an acoustic solder alloy made of (Sn · Ag · Cu · Sb · In · Pb) (5) (Tables 21 to 23): (Sn · Ag · Cu · Analysis results of acoustic solder alloys made of Sb / Ni / Pb)
(a)(表9~表11):(Sn・Ag・Cu・Sb・Bi・Pb)からなる音響用はんだ合金の分析結果を以下に示す。 (A) (Tables 9 to 11): Analytical results of an acoustic solder alloy composed of (Sn, Ag, Cu, Sb, Bi, Pb) are shown below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (表9)~(表11)からも明らかなように、最適な音響用はんだ合金とは言い難い。 As is clear from (Table 9) to (Table 11), it is difficult to say that this is the optimal acoustic solder alloy.
(b)(表12~表14):(Sn・Ag・Cu・Sb・Fe・Pb)からなる音響用はんだ合金の分析結果を以下に示す。 (B) (Tables 12 to 14): The analysis results of the acoustic solder alloy comprising (Sn, Ag, Cu, Sb, Fe, Pb) are shown below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (表12)~(表14)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(c)(表15~表17):(Sn・Ag・Cu・Sb・As・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 12) to (Table 14), it is difficult to say that it is an optimal acoustic solder alloy.
(C) (Tables 15 to 17): The analysis results of the acoustic solder alloy comprising (Sn · Ag · Cu · Sb · As · Pb) are shown below.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 (表15)~(表17)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(d)(表18~表20):(Sn・Ag・Cu・Sb・In・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 15) to (Table 17), it is difficult to say that it is an optimal acoustic solder alloy.
(D) (Table 18 to Table 20): The analysis results of the acoustic solder alloy composed of (Sn · Ag · Cu · Sb · In · Pb) are shown below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 (表18)~(表20)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(e)(表21~表23):(Sn・Ag・Cu・Sb・Ni・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 18) to (Table 20), it is difficult to say that this is an optimal acoustic solder alloy.
(E) (Tables 21 to 23): Analytical results of the acoustic solder alloy made of (Sn, Ag, Cu, Sb, Ni, Pb) are shown below.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 (表21)~(表23)からも明らかなように、最適な音響用はんだ合金とは言い難い。 As is clear from (Table 21) to (Table 23), it is difficult to say that this is an optimal acoustic solder alloy.
(3)グループ3の音響用はんだ合金の試聴評価
 このグループの音響用はんだ合金組成は、(Sn・Ag・Cu)にPbおよびBiを共通の添加金属とするものであって、「グループ3の音響用はんだ合金:(Sn・Ag・Cu・Bi・Pb)に(Fe・As・In・Ni)から1種を添加したもの」である。したがって音響用はんだ合金としては4種となる。
(3) Audition evaluation of acoustic solder alloy of group 3 The composition of acoustic solder alloy of this group is such that Pb and Bi are added to (Sn · Ag · Cu) as a common additive metal. Acoustic solder alloy: (Sn / Ag / Cu / Bi / Pb) added with one kind from (Fe / As / In / Ni). Therefore, there are four types of acoustic solder alloys.
 この音響用はんだ合金を使用したときの重回帰分析の結果を示す対応表は、(表24~表35)である。
(1)(表24~表26):(Sn・Ag・Cu・Bi・Fe・Pb)からなる音響用はんだ合金の分析結果
(2)(表27~表29):(Sn・Ag・Cu・Bi・As・Pb)からなる音響用はんだ合金の分析結果
(3)(表30~表32):(Sn・Ag・Cu・Bi・In・Pb)からなる音響用はんだ合金の分析結果
(4)(表33~表35):(Sn・Ag・Cu・Bi・Ni・Pb)からなる音響用はんだ合金の分析結果
(a)(表24~表26):(Sn・Ag・Cu・Bi・Fe・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
The correspondence tables showing the results of multiple regression analysis when using this acoustic solder alloy are (Tables 24 to 35).
(1) (Tables 24 to 26): Analysis results of an acoustic solder alloy made of (Sn / Ag / Cu / Bi / Fe / Pb) (2) (Tables 27 to 29): (Sn / Ag / Cu) (3) (Tables 30 to 32): Analysis results of acoustic solder alloy consisting of (Sn, Ag, Cu, Bi, In, Pb) (Bi, As, Pb) 4) (Table 33 to Table 35): Analytical results of acoustic solder alloy composed of (Sn, Ag, Cu, Bi, Ni, Pb) (a) (Table 24 to Table 26): (Sn, Ag, Cu, The analysis results of the acoustic solder alloy made of (Bi · Fe · Pb) are shown below.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
(表24)~(表26)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(b)(表27~表29):(Sn・Ag・Cu・Bi・As・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 24) to (Table 26), it is difficult to say that it is an optimal acoustic solder alloy.
(B) (Tables 27 to 29): Analytical results of the acoustic solder alloy consisting of (Sn, Ag, Cu, Bi, As, Pb) are shown below.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 (表27)~(表29)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(c)(表30~表32):(Sn・Ag・Cu・Bi・In・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 27) to (Table 29), it is difficult to say that this is an optimal acoustic solder alloy.
(C) (Tables 30 to 32): The analysis results of the acoustic solder alloy comprising (Sn · Ag · Cu · Bi · In · Pb) are shown below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 (表30)~(表32)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(d)(表33~表35):(Sn・Ag・Cu・Bi・Ni・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 30) to (Table 32), it is difficult to say that this is an optimal acoustic solder alloy.
(D) (Table 33 to Table 35): Analytical results of the acoustic solder alloy composed of (Sn, Ag, Cu, Bi, Ni, Pb) are shown below.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 (表33)~(表35)からも明らかなように、最適な音響用はんだ合金とは言い難い。 As is clear from (Table 33) to (Table 35), it is difficult to say that this is the optimal acoustic solder alloy.
(4)グループ4の音響用はんだ合金の試聴評価
 このグループの音響用はんだ合金組成は、(Sn・Ag・Cu)にPbおよびFeを共通の添加金属とするものであって、「グループ4の音響用はんだ合金:(Sn・Ag・Cu・Fe・Pb)に(As・In・Ni)から1種を添加したもの」である。したがって音響用はんだ合金としては3種となる。
(4) Audition evaluation of acoustic solder alloy of group 4 The composition of acoustic solder alloy of this group is such that Pb and Fe are added to (Sn · Ag · Cu) as a common additive metal. Acoustic solder alloy: (Sn / Ag / Cu / Fe / Pb) added with one type from (As / In / Ni). Therefore, there are three types of acoustic solder alloys.
 この音響用はんだ合金を使用したときの重回帰分析の結果を示す対応表は、(表36~表44)である。
(1)(表36~表38):(Sn・Ag・Cu・Fe・As・Pb)からなる音響用はんだ合金の分析結果
(2)(表39~表41):(Sn・Ag・Cu・Fe・In・Pb)からなる音響用はんだ合金の分析結果
(3)(表42~表44):(Sn・Ag・Cu・Fe・Ni・Pb)からなる音響用はんだ合金の分析結果
(a)(表36~表38):(Sn・Ag・Cu・Fe・As・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
The correspondence tables showing the results of multiple regression analysis when using this acoustic solder alloy are (Table 36 to Table 44).
(1) (Tables 36 to 38): Analysis results of an acoustic solder alloy comprising (Sn · Ag · Cu · Fe · As · Pb) (2) (Tables 39 to 41): (Sn · Ag · Cu) (3) (Tables 42 to 44) Analysis result of an acoustic solder alloy made of (Sn, Ag, Cu, Fe, Ni, Pb) (Fe, In, Pb) a) (Table 36 to Table 38): The analysis results of the acoustic solder alloy comprising (Sn · Ag · Cu · Fe · As · Pb) are shown below.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 (表36)~(表38)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(b)(表39~表41):(Sn・Ag・Cu・Fe・In・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 36) to (Table 38), it is difficult to say that it is an optimal acoustic solder alloy.
(B) (Table 39 to Table 41): Analytical results of an acoustic solder alloy composed of (Sn · Ag · Cu · Fe · In · Pb) are shown below.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 (表39)~(表41)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(c)(表42~表44):(Sn・Ag・Cu・Fe・Ni・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 39) to (Table 41), it is difficult to say that it is an optimal acoustic solder alloy.
(C) (Tables 42 to 44): Analytical results of an acoustic solder alloy composed of (Sn, Ag, Cu, Fe, Ni, Pb) are shown below.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
(表42)~(表44)からも明らかなように、最適な音響用はんだ合金とは言い難い。 As is clear from (Table 42) to (Table 44), it is difficult to say that it is an optimal acoustic solder alloy.
(5)グループ5の音響用はんだ合金の試聴評価
 このグループの音響用はんだ合金組成は、(Sn・Ag・Cu)にPbおよびAsを共通の添加金属とするものであって、「グループ5の音響用はんだ合金:(Sn・Ag・Cu・As・Pb)に(In・Ni)から1種を添加したもの」である。したがって音響用はんだ合金としては2種となる。
(5) Audition evaluation of acoustic solder alloys of group 5 The composition of acoustic solder alloys of this group is such that Pb and As are added to (Sn · Ag · Cu) as a common additive metal. Solder alloy for acoustic: (Sn / Ag / Cu / As / Pb) added with one kind from (In / Ni). Accordingly, there are two types of acoustic solder alloys.
 この音響用はんだ合金を使用したときの重回帰分析の結果を示す対応表は、(表45~表50)である。
(1)(表45~表47):(Sn・Ag・Cu・As・In・Pb)からなる音響用はんだ合金の分析結果
(2)(表48~表50):(Sn・Ag・Cu・As・Ni・Pb)からなる音響用はんだ合金の分析結果
(a)(表45~表47):(Sn・Ag・Cu・As・In・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
The correspondence tables showing the results of multiple regression analysis when using this acoustic solder alloy are (Tables 45 to 50).
(1) (Table 45 to Table 47): Analytical results of acoustic solder alloy comprising (Sn · Ag · Cu · As · In · Pb) (2) (Table 48 to Table 50): (Sn · Ag · Cu (A) (Table 45 to Table 47): Analysis result of an acoustic solder alloy consisting of (Sn, Ag, Cu, As, In, Pb) It is shown below.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 (表45)~(表47)からも明らかなように、最適な音響用はんだ合金とは言い難い。
(b)(表48~表50):(Sn・Ag・Cu・As・Ni・Pb)からなる音響用はんだ合金の分析結果を以下に示す。
As is clear from (Table 45) to (Table 47), it is difficult to say that this is an optimal acoustic solder alloy.
(B) (Table 48 to Table 50): The analysis results of the acoustic solder alloy comprising (Sn · Ag · Cu · As · Ni · Pb) are shown below.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
(表48)~(表50)からも明らかなように、最適な音響用はんだ合金とは言い難い。 As is clear from (Table 48) to (Table 50), it is difficult to say that it is an optimal acoustic solder alloy.
 上述したグループ2~5は、(Sn・Ag・Cu・Sb・Pb)に(Bi・Fe・As・In・Ni)のうち(In,Ni)を除く任意の2種の金属を添加して得られる音響用はんだ合金の音質や試聴評価であるが、これらの組み合わせからなる6元の音響用はんだ合金では、(表9)~(表50)に示されるように、何れもすぐれた音質特性や、高い試聴評価値を得ることができなかった。 In the above-mentioned groups 2 to 5, any two kinds of metals except (In, Ni) are added to (Sn · Ag · Cu · Sb · Pb) except for (Bi · Fe · As · In · Ni). The sound quality and audition evaluation of the obtained acoustic solder alloy are as follows. As shown in (Table 9) to (Table 50), all of the 6-component acoustic solder alloys comprising these combinations have excellent sound quality characteristics. Also, a high audition evaluation value could not be obtained.
 以上のように、この発明ではディスクリート部品をプリント基板(回路基板)上にはんだ付けすることで、電子回路が構成されるフィルタ回路などに使用される接合はんだとして、グループ1に示されるような6元のはんだ合金(Sn・Ag・Cu・Sb・In・Ni・Pb)と、適切な含有量からなる高音質で高い試聴評価が得られる音響用はんだ合金を開発したものである。 As described above, according to the present invention, discrete components are soldered onto a printed circuit board (circuit board), so that the bonding solder used in a filter circuit or the like that constitutes an electronic circuit can be used as shown in Group 1. The original solder alloy (Sn / Ag / Cu / Sb / In / Ni / Pb) and a solder alloy for sound that has high sound quality and high audition evaluation with an appropriate content have been developed.
 図1に示す試聴評価装置10は一例であり、3ウエイ方式の試聴評価装置でも試聴評価できる。 1 is an example, and a three-way type audition evaluation device can also be used for audition evaluation.
 音響用はんだ合金としては、ヤニ入りはんだを使用したが、これに限定されず、はんだボール、はんだペーストなどでもよく、形態、形状は限定されない。また、はんだ付け方法においても、リフロー炉、噴流はんだ槽などの方法を用いても良い。さらには、電子部品としてディスクリート部品を用いて説明したが、チップ状の電子部品であっても良い。 As the acoustic solder alloy, solder containing solder was used, but it is not limited to this, and it may be a solder ball, a solder paste, or the like, and its form and shape are not limited. Moreover, also in the soldering method, you may use methods, such as a reflow furnace and a jet solder bath. Furthermore, although the description has been made using the discrete component as the electronic component, a chip-shaped electronic component may be used.
 また、上記した例では、電子部品を接合するはんだとしてフィルタ回路に適用したが、オーディオシステム全体を構成する電子部品接続用のはんだとして、この発明に係る音響用はんだ合金を適用できる。そうすることによって更なる音質の改善を期待できる。 Further, in the above-described example, the filter is applied to the filter circuit as solder for joining the electronic components, but the acoustic solder alloy according to the present invention can be applied as the solder for connecting the electronic components constituting the entire audio system. By doing so, further improvement in sound quality can be expected.
この発明に係る音響用はんだ合金は、オーディオシステムに使用される各種の電子部品をプリント基板(回路基板)上にはんだ付けするために使用される接合はんだに適用できる。 The acoustic solder alloy according to the present invention can be applied to bonding solder used for soldering various electronic components used in an audio system onto a printed circuit board (circuit board).
10・・・試聴評価装置
20・・・音源
30・・・出力アンプ
NW0~NW15・・・フィルタ回路
40・・・ローパスフィルタ
50・・・ハイパスフィルタ
WF、TW・・・スピーカ
DESCRIPTION OF SYMBOLS 10 ... Audition evaluation apparatus 20 ... Sound source 30 ... Output amplifier NW0-NW15 ... Filter circuit 40 ... Low pass filter 50 ... High pass filter WF, TW ... Speaker

Claims (2)

  1. Agが0.8~1.20質量%、Cuが0.65~0.75質量%、Inが0.002~0.004質量%、Niが0.01~0.02質量%、Pbが0.005質量%以下を含有し、残部がSnで構成されたことを特徴とする音響用はんだ合金。 Ag is 0.8 to 1.20 mass%, Cu is 0.65 to 0.75 mass%, In is 0.002 to 0.004 mass%, Ni is 0.01 to 0.02 mass%, and Pb is An acoustic solder alloy comprising 0.005% by mass or less and the balance being composed of Sn.
  2. Agが(1.0~1.01質量%)、Cuが(0.71~0.72質量%)、Inが(0.003~0.0037質量%)、Niが(0.016~0.017質量%)、Pbが(0.0025~0.0035質量%で、残部がSnであることを特徴とする請求項1記載の音響用はんだ合金。 Ag is (1.0 to 1.01% by mass), Cu is (0.71 to 0.72% by mass), In is (0.003 to 0.0037% by mass), and Ni is (0.016 to 0%). The solder alloy for sound according to claim 1, wherein Pb is (0.0025 to 0.0035% by mass) and the balance is Sn.
PCT/JP2012/062009 2012-05-10 2012-05-10 Solder alloy for acoustic device WO2013108421A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2012363597A AU2012363597B2 (en) 2012-05-10 2012-05-10 Audio solder alloy
PCT/JP2012/062009 WO2013108421A1 (en) 2012-05-10 2012-05-10 Solder alloy for acoustic device
KR1020137009324A KR101305801B1 (en) 2012-05-10 2012-05-10 Solder alloy for acoustic electronic parts
EP12858684.9A EP2644313B1 (en) 2012-05-10 2012-05-10 Solder alloy for acoustic device
CN201280003644.5A CN103402694B (en) 2012-05-10 2012-05-10 Solder alloy for acoustic device
US13/996,459 US20140186208A1 (en) 2012-05-10 2012-05-10 Audio solder alloy
JP2012547772A JP5186063B1 (en) 2012-05-10 2012-05-10 Acoustic solder alloy
MX2013009113A MX2013009113A (en) 2012-05-10 2012-05-10 Solder alloy for acoustic device.
TW102109974A TWI441926B (en) 2012-05-10 2013-03-21 Welded alloy for sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062009 WO2013108421A1 (en) 2012-05-10 2012-05-10 Solder alloy for acoustic device

Publications (1)

Publication Number Publication Date
WO2013108421A1 true WO2013108421A1 (en) 2013-07-25

Family

ID=48481421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062009 WO2013108421A1 (en) 2012-05-10 2012-05-10 Solder alloy for acoustic device

Country Status (9)

Country Link
US (1) US20140186208A1 (en)
EP (1) EP2644313B1 (en)
JP (1) JP5186063B1 (en)
KR (1) KR101305801B1 (en)
CN (1) CN103402694B (en)
AU (1) AU2012363597B2 (en)
MX (1) MX2013009113A (en)
TW (1) TWI441926B (en)
WO (1) WO2013108421A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240929A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder alloy, solder powder and solder joint
WO2020240927A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder alloy, solder powder and solder joint

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397079B1 (en) * 2017-04-07 2018-09-26 株式会社ケーヒン Solder material
US20210235190A1 (en) * 2018-07-20 2021-07-29 Kams Co., Ltd. Sound quality modification element, audio system, audio amplifier apparatus equipped with sound quality modification element, and speaker system equipped with sound quality modification element
WO2020241574A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder paste and flux for solder paste

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277290A (en) 1998-01-28 1999-10-12 Murata Mfg Co Ltd Lead free solder and soldered article
JP2000173253A (en) * 1998-09-30 2000-06-23 Matsushita Electric Ind Co Ltd Portable mini disk player
JP2001001180A (en) * 1999-06-21 2001-01-09 Tanaka Electronics Ind Co Ltd Solder and electronic part using the solder
JP2002096191A (en) * 2000-09-18 2002-04-02 Matsushita Electric Ind Co Ltd Soldering material and electric/electronic equipment using the same
JP2002239780A (en) 2001-02-09 2002-08-28 Nippon Steel Corp Solder alloy, solder ball and electronic member having solder bump
JP2003230980A (en) 2002-02-14 2003-08-19 Nippon Steel Corp Leadless solder alloy, solder ball and electronic member having solder bump
JP2005103645A (en) * 2004-10-29 2005-04-21 Hitachi Metals Ltd Solder ball and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838693A (en) * 1981-08-31 1983-03-07 Pioneer Electronic Corp Soldering method
TW369451B (en) * 1996-05-10 1999-09-11 Ford Motor Co Solder composition and method of using to interconnect electronic components to circuits on thermoplastic substrates
EP1889684B1 (en) * 2005-06-03 2016-03-30 Senju Metal Industry Co., Ltd. Lead-free solder alloy
CN1788918A (en) * 2005-12-20 2006-06-21 徐振五 Leadless environment-friendly soldering
TWI311087B (en) * 2006-01-16 2009-06-21 Hitachi Metals Ltd Solder alloy, solder-ball and solder joint with use of the same
KR20130073995A (en) * 2006-03-09 2013-07-03 신닛테츠스미킹 마테리알즈 가부시키가이샤 Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277290A (en) 1998-01-28 1999-10-12 Murata Mfg Co Ltd Lead free solder and soldered article
JP2000173253A (en) * 1998-09-30 2000-06-23 Matsushita Electric Ind Co Ltd Portable mini disk player
JP2001001180A (en) * 1999-06-21 2001-01-09 Tanaka Electronics Ind Co Ltd Solder and electronic part using the solder
JP2002096191A (en) * 2000-09-18 2002-04-02 Matsushita Electric Ind Co Ltd Soldering material and electric/electronic equipment using the same
JP2002239780A (en) 2001-02-09 2002-08-28 Nippon Steel Corp Solder alloy, solder ball and electronic member having solder bump
JP2003230980A (en) 2002-02-14 2003-08-19 Nippon Steel Corp Leadless solder alloy, solder ball and electronic member having solder bump
JP2005103645A (en) * 2004-10-29 2005-04-21 Hitachi Metals Ltd Solder ball and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240929A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder alloy, solder powder and solder joint
WO2020240927A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Solder alloy, solder powder and solder joint
US11583959B2 (en) 2019-05-27 2023-02-21 Senju Metal Industry Co., Ltd. Solder alloy, solder power, and solder joint

Also Published As

Publication number Publication date
US20140186208A1 (en) 2014-07-03
MX2013009113A (en) 2013-11-01
AU2012363597B2 (en) 2016-07-21
EP2644313B1 (en) 2016-03-09
EP2644313A4 (en) 2014-07-23
KR101305801B1 (en) 2013-09-06
TWI441926B (en) 2014-06-21
TW201402831A (en) 2014-01-16
JPWO2013108421A1 (en) 2015-05-11
EP2644313A1 (en) 2013-10-02
CN103402694B (en) 2015-03-25
CN103402694A (en) 2013-11-20
JP5186063B1 (en) 2013-04-17
AU2012363597A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5186063B1 (en) Acoustic solder alloy
US7123728B2 (en) Speaker equalization tool
US11418884B2 (en) Audio processing apparatus, audio crosstalk processing method and apparatus
Duncan High Performance Audio Power Amplifiers
Self The Design of Active Crossovers
US10701487B1 (en) Crossover for multi-driver loudspeakers
CN104103266B (en) Tone color selection device, musical instrument and tone color system of selection
Senior Recording secrets for the small studio
JP2021114669A (en) Sound quality modification element, audio system, audio amplifier device with sound quality modification element, and speaker system with sound quality modification element
US1912719A (en) Volume control
JP6945896B2 (en) Sound quality modification element, audio system, audio amplifier device with sound quality modification element, speaker system with sound quality modification element
JP4300273B2 (en) SOUND QUALITY ADJUSTING DEVICE, FILTER DEVICE USED FOR THE SAME, SOUND QUALITY ADJUSTING METHOD, AND FILTER DESIGNING METHOD
JP3960304B2 (en) Speaker system
WO2021210689A1 (en) Sound adjustment circuit and plug device using same
US11309857B2 (en) Audio playback device and method
Sontheimer Designing Audio Circuits
JPH10312641A (en) Equalizer for digital video disk
EP1149179A1 (en) A metal alloy for electrical connections with nul contact tension
Schaefer Fuzz Pedal Design Project
JP6474246B2 (en) Audio signal processing circuit, in-vehicle audio device, audio component device, electronic equipment
KR20190050970A (en) Improved balancer arm actuator assembly
JPS639397B2 (en)
Näsström Investigating Mastering Engineers' Usage of and Opinions on Linear Phase Equalizing in Digital Mastering
JPH0833094A (en) Multiway speaker system
JPS6312190A (en) Manufacture of multilayer interconnection board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012547772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137009324

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13996459

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012858684

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012363597

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/009113

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE