JP2002305213A - Solder foil, semiconductor device, and electronic device - Google Patents

Solder foil, semiconductor device, and electronic device

Info

Publication number
JP2002305213A
JP2002305213A JP2001385445A JP2001385445A JP2002305213A JP 2002305213 A JP2002305213 A JP 2002305213A JP 2001385445 A JP2001385445 A JP 2001385445A JP 2001385445 A JP2001385445 A JP 2001385445A JP 2002305213 A JP2002305213 A JP 2002305213A
Authority
JP
Japan
Prior art keywords
solder
particles
electronic device
metal
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001385445A
Other languages
Japanese (ja)
Inventor
Tasao Soga
太佐男 曽我
Hideyoshi Shimokawa
英恵 下川
Toshiharu Ishida
寿治 石田
Tetsuya Nakatsuka
哲也 中塚
Masahide Okamoto
正英 岡本
Kazuma Miura
一真 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001385445A priority Critical patent/JP2002305213A/en
Publication of JP2002305213A publication Critical patent/JP2002305213A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29201Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29211Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0134Quaternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new solder and its manufacturing method, and an electronic apparatus using the solder, and to provide its manufacturing method. SOLUTION: A solder foil which is made by rolling material containing particles of Cu or the like as metallic particles and particles of Sn as solder particles, and the electronic apparatus, where components are connected with one another by that solder foil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】はんだおよびはんだの製造方
法、またははんだ接続を用いる電子機器、電子装置およ
び電子機器、電子装置の製造方法に関する。特に、Sn-A
g-Cu系Pbフリーはんだ等に対する高温側の温度階層接続
を必要とするはんだ接続に適用して有効な技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder and a method for manufacturing a solder, or an electronic apparatus, an electronic apparatus, an electronic apparatus, and a method for manufacturing an electronic apparatus using a solder connection. In particular, Sn-A
The present invention relates to a technique which is effective when applied to a solder connection which requires a high-temperature side temperature hierarchical connection to g-Cu based Pb-free solder or the like.

【0002】[0002]

【従来の技術】Sn-Pb系はんだにおいては、高温系はん
だとしてPbリッチのPb-5Sn(融点:314〜310℃)、Pb-10S
n(融点:302〜275℃)等を330℃近傍の温度ではんだ付け
し、その後、このはんだ付け部を溶かさないで、低温系
はんだのSn-37Pb共晶(融点:183℃)で接続する温度階層
接続が可能であった。これらのはんだは、柔軟で変形性
に富み、このため破壊し易いSiチップ等を熱膨張係数の
異なる基板に接合することができた。このような温度階
層接続は、チップをダイボンドするタイプの半導体装置
や、チップをフリップチップ接続するBGA,CSPな
どの半導体装置などで適用されている。即ち、半導体装
置内部で使用するはんだと、半導体装置自身を基板に接
続するはんだとは温度階層接続されていることを意味す
る。
2. Description of the Related Art Pb-rich Pb-5Sn (melting point: 314 to 310 ° C.), Pb-10S
n (melting point: 302 to 275 ° C), etc., is soldered at a temperature of about 330 ° C. Then, without melting this soldered part, it is connected with a low-temperature solder Sn-37Pb eutectic (melting point: 183 ° C) Temperature hierarchy connection was possible. These solders were flexible and rich in deformability, so that easily breakable Si chips and the like could be bonded to substrates having different coefficients of thermal expansion. Such a temperature hierarchical connection is applied to a semiconductor device of a type in which a chip is die-bonded, or a semiconductor device such as a BGA or a CSP in which a chip is flip-chip connected. That is, it means that the solder used inside the semiconductor device and the solder connecting the semiconductor device itself to the substrate are connected in a temperature hierarchy.

【0003】[0003]

【発明が解決しようとする課題】現在、あらゆる分野に
おいて鉛フリー化が進んでいる。
At present, lead-free is being promoted in all fields.

【0004】Pbフリーはんだの主流はSn-Ag共晶系(融
点:221℃)、Sn-Ag-Cu共晶系(融点:221〜217℃)、Sn-C
u共晶系(融点:227℃)になるが、表面実装におけるはん
だ付け温度は部品の耐熱性から低いことが望ましいが、
信頼性確保のためぬれ性を確保する必要性から、均熱制
御に優れた炉を用いても、基板内の温度ばらつきを考慮
すると、一番低い温度で可能なSn-Ag-Cu共晶系で235〜2
45℃くらいが実情である。従って、このはんだ付け温度
に耐えられる階層用はんだとしては、融点が少なくても
250℃以上である必要がある。現状で、これらのはんだ
と組合せて使用できる高温側の温度階層用Pbフリーはん
だはない。最も可能性のある組成として、Sn-5Sb(融
点:240〜232℃)はあるが、溶けてしまうので温度階層
用にはならない。
[0004] Pb-free solder is mainly composed of Sn-Ag eutectic (melting point: 221 ° C), Sn-Ag-Cu eutectic (melting point: 221-217 ° C), Sn-C
u It becomes eutectic (melting point: 227 ° C), but it is desirable that the soldering temperature for surface mounting is low due to the heat resistance of components.
Because of the necessity of ensuring wettability to ensure reliability, even if a furnace with excellent soaking control is used, the Sn-Ag-Cu eutectic system that can be used at the lowest temperature is possible in consideration of temperature variations within the substrate. 235-2
The actual situation is around 45 ° C. Therefore, as a layer solder that can withstand this soldering temperature,
It must be 250 ° C or higher. At present, there is no Pb-free solder for the high temperature side that can be used in combination with these solders. The most probable composition is Sn-5Sb (melting point: 240-232 ° C), but it is not suitable for temperature classes because it melts.

【0005】また、高温系のはんだとしてAu-20Sn(融
点:280℃)は知られているが、硬く、コスト高のために
使用が狭い範囲に限定される。特に、熱膨張係数の異な
る材料へのSiチップの接続、大型チップの接続では、Au
-20Snはんだは硬いため、Siチップを破壊させる可能性
が高いため使用されていない。
Also, Au-20Sn (melting point: 280 ° C.) is known as a high-temperature solder, but its use is limited to a narrow range due to its high cost and high cost. In particular, when connecting a Si chip to a material with a different coefficient of thermal expansion or connecting a large chip, Au
-20Sn solder is not used because it is hard and has a high possibility of breaking the Si chip.

【0006】本発明の目的は、全く新規なはんだ接続に
よる電子機器(電子装置)および電子機器の製造方法を
提供することにある。また、電子機器の製造法において
必要となる温度階層接続におけるはんだ接続、特に高温
側のはんだ接続を提供することにある。また、本発明の
他の目的は、全く新規なはんだおよびその製造方法を提
供することにある。
An object of the present invention is to provide an electronic device (electronic device) and a method of manufacturing the electronic device by completely novel solder connection. Another object of the present invention is to provide a solder connection in a temperature hierarchical connection required in a method of manufacturing an electronic device, particularly a solder connection on a high temperature side. Another object of the present invention is to provide a completely novel solder and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本願において開示される発明のうち、代表的なもの
の概要を簡単に説明すれば、次の通りである。金属の粒
子とはんだの粒子を含むはんだ材料を圧延して形成した
はんだ箔である。Snなどのめっき層を有する金属の粒子
を含むはんだ材料を圧延して形成したはんだ箔である。
金属の粒子とはんだの粒子を含むはんだ材料を圧延する
はんだ箔の製造方法である。Snなどのめっき層を有する
金属の粒子を含むはんだ材料を圧延するはんだ箔の製造
方法である。第一の電子部品と、第二の電子部品と、第
三の電子部品を有する電子装置であって、該第一の電子
部品と該第二の電子部品は、金属の粒子とはんだの粒子
を含む材料を圧延して形成したはんだ箔である第一のは
んだを用いて接続され、該第二の電子部品と該第三の電
子部品は該第一のはんだと異なる融点を有する第二のは
んだを用いて接続されているものである。上記電子装置
であって、該第一の電子部品と該第二の電子部品の接続
部において、金属の粒子は該金属とはんだ粒子により形
成される化合物により結びついているものである。第一
の電子部品と第二の電子部品を有する電子装置であっ
て、該第一の電子部品と該第二の電子部品ははんだ接続
部により接続されており、該はんだ接続部は、金属の粒
子と該金属の粒子の間を埋めているSn部分を有するもの
である。上記記載の電子装置であって、前記金属の粒子
は該金属とSnにより形成される化合物により結びついて
いるものである。上記はんだ箔または電子装置であっ
て、例えば金属の粒子がCuの粒子であり、はんだの粒子
がSnの粒子であるものである。
Means for Solving the Problems In order to achieve the above object, among the inventions disclosed in the present application, typical ones will be briefly described as follows. This is a solder foil formed by rolling a solder material containing metal particles and solder particles. This is a solder foil formed by rolling a solder material containing metal particles having a plating layer such as Sn.
This is a method for producing a solder foil by rolling a solder material containing metal particles and solder particles. This is a method for producing a solder foil for rolling a solder material containing metal particles having a plating layer such as Sn. An electronic device having a first electronic component, a second electronic component, and a third electronic component, wherein the first electronic component and the second electronic component include metal particles and solder particles. The second electronic component and the third electronic component are connected using a first solder which is a solder foil formed by rolling a material containing the second solder, the second solder having a melting point different from that of the first solder. Are connected by using In the above electronic device, at a connecting portion between the first electronic component and the second electronic component, metal particles are linked by a compound formed by the metal and solder particles. An electronic device having a first electronic component and a second electronic component, wherein the first electronic component and the second electronic component are connected by a solder connection, and the solder connection is a metal connection. It has a Sn portion filling between the particles and the metal particles. In the electronic device described above, the metal particles are bonded to the metal by a compound formed by Sn. In the above-mentioned solder foil or electronic device, for example, the metal particles are Cu particles, and the solder particles are Sn particles.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。Cu等の金属ボールとSn系はんだボールとを
約50%づつ配合して圧延すると、Cu粒子同志が接触し、S
nはその隙間に入り込んだ複合はんだが得られる。この
箔をチップと基板間に挟んで加圧、リフローすると複合
はんだ部はCuボール間がCu-Sn化合物で連結され、該複
合はんだ部とチップ及び基板間はCuボールとチップ電極
との化合物、Cuボールと基板端子との化合物形成によ
り、280℃の高温でも接合強度を確保する鉛フリー化し
た温度階層構造となる。これにより、鉛フリーはんだに
おいて、温度階層を設けた接続方法を提供することがで
きる。温度階層接続を考えると、既に接続した高温側の
はんだは、一部が溶融しても、他の残りの部分が溶融し
なければ、後付けのはんだ接続時のプロセスにおいて耐
えられる強度を十分に確保できる。我々は、金属ボール
(Cu、Ag、Au、表面処理したAl、Zn-Al系はんだ等)とは
んだボールとを分散混入したはんだ材料について研究を
進めている。このはんだ材料により接続しておけば、例
えば、後付けのはんだ接続時のプロセスであるSn-Ag-Cu
系はんだによるリフロー炉(max 250℃)を通したとして
も、接続部分におけるSnの部分は溶けるが、Cuボール
間、Cuボールとチップ間、Cuボールと基板間は融点の高
い金属間化合物(Cu6Sn5)で接続されているため、リフロ
ー炉(max 250℃)の設定温度では接続は保たれ十分な接
続強度を確保することができる。すなわち、Sn-Ag-Cu系
はんだに対する温度階層接続を実現することが出来る。
なお、この金属間化合物形成の効果はCu-Snに限らず、N
i-Sn(Ni3Sn4)、Ag-Sn(Ag3Sn)等の化合物、Au-Snでも同
様である。また、はんだはSnの代わりにInでも同様であ
る。合金層成長速度の違いはあるが、拡散により形成さ
れた合金層の融点は高く、形成されれば280℃で溶ける
ものではない。
Embodiments of the present invention will be described below. When metal balls such as Cu and Sn-based solder balls are mixed and rolled at about 50%, Cu particles come into contact with each other,
For n, a composite solder that has entered the gap is obtained. When this foil is sandwiched between the chip and the substrate and pressurized and reflowed, the composite solder part is connected between the Cu balls with a Cu-Sn compound, and the compound between the composite solder part and the chip and the substrate is a compound of the Cu ball and the chip electrode, The formation of a compound between the Cu ball and the substrate terminal results in a lead-free temperature hierarchical structure that ensures bonding strength even at a high temperature of 280 ° C. Thereby, in the lead-free solder, a connection method having a temperature hierarchy can be provided. Considering the temperature hierarchy connection, the solder on the high-temperature side that has already been connected has sufficient strength to withstand the post-soldering process, even if part of the solder melts but the rest does not melt. it can. We are conducting research on solder materials in which metal balls (Cu, Ag, Au, surface-treated Al, Zn-Al based solder, etc.) and solder balls are dispersed and mixed. If connected by this solder material, for example, Sn-Ag-Cu
Even after passing through a reflow furnace (max 250 ° C) using a series of solders, the Sn portion in the connection portion is melted, but the intermetallic compound with a high melting point (Cu6Sn5) is used between Cu balls, between Cu balls and chips, and between Cu balls and substrates. ), The connection is maintained at the set temperature of the reflow furnace (max. 250 ° C.), and sufficient connection strength can be secured. That is, it is possible to realize the temperature hierarchical connection to the Sn-Ag-Cu solder.
The effect of this intermetallic compound formation is not limited to Cu-Sn,
The same applies to Au-Sn, a compound such as i-Sn (Ni3Sn4) and Ag-Sn (Ag3Sn). The same applies to solder instead of Sn. Although there is a difference in the alloy layer growth rate, the melting point of the alloy layer formed by diffusion is high, and once formed, it does not melt at 280 ° C.

【0009】このはんだ材料による接続は、完全にはCu
同志が拘束されていない状態なので、例えばダイボンド
接続に用いても上下、左右に対するある程度の自由度が
あり、Cuとはんだの中間段階の機械的特性が期待でき、
温度サイクル試験でもSnによる耐熱疲労性とCu粒子(ボ
ール)によるクラック進展防止による高信頼性が期待で
きる。
The connection by the solder material is completely made of Cu
Since the comrades are not restrained, even if used for die bond connection, for example, there is some degree of freedom in the up and down, left and right, mechanical properties in the intermediate stage between Cu and solder can be expected,
In the temperature cycle test, high reliability can be expected due to thermal fatigue resistance by Sn and prevention of crack growth by Cu particles (balls).

【0010】しかしながら、Cuボールとはんだボールと
を混合した複合ペーストでは、本来、Sn系はんだはCu上
にはぬれ拡がりが少ない性質を持つこと、かつ、Cuをぬ
らさなければならない部分が多く、Cuボールを完全にぬ
らせるとは限らないこと、更には、Cuとはんだボールと
が最初は架橋状態で拘束されているので、はんだが溶け
てもその部分が空間となって残るため、ボイドになる確
率が高いこと等が我々の研究が進むにつれて明らかとな
ってきた。このため、このペースト方式は必然的にボイ
ドが多くなるプロセスとなってしまい、接続用途によっ
ては不向きな材料となってしまう。電子部品を実装する
際にボイドが抜ければ良いが、例えばSiチップのダイボ
ンド、パワーモジュール接合などは面と面とを接続する
ような形態であるので構造的にボイドが抜けにくい。ボ
イドが残存すると、ボイドを原因とするクラックの発生
や、必要な熱拡散の阻害などの問題を引き起こしてしま
う。
However, in the composite paste in which the Cu ball and the solder ball are mixed, the Sn-based solder originally has a property that the wet spread is small on Cu, and there are many portions where Cu must be wetted, The ball is not necessarily completely wet, and furthermore, since Cu and the solder ball are initially restrained in a cross-linked state, even if the solder melts, that part remains as a space, so it becomes a void It is clear that the probability is high as our research progresses. For this reason, this paste method inevitably results in a process in which the number of voids increases, and is unsuitable for some connection applications. The void may be removed when the electronic component is mounted. However, for example, die bonding of a Si chip, power module bonding, or the like has a form in which the surfaces are connected to each other, so that the void is difficult to be structurally removed. The remaining voids cause problems such as generation of cracks due to the voids and inhibition of necessary heat diffusion.

【0011】そこで、我々は、このはんだ材料を予め圧
延し易い形状の型に入れて真空中、還元性雰囲気中もし
くは不活性雰囲気中で、全体を均一に圧縮し、Sn系はん
だボールを金属ボール間に塑性流動させ、隙間をはんだ
(塑性変形後のSn系はんだ)で充填した複合成型体と
し、これを圧延することで得られるはんだ箔を用いるこ
ととした。
Therefore, we put this solder material in a mold having a shape easily rollable in advance, and uniformly compressed the whole under vacuum, in a reducing atmosphere or in an inert atmosphere, and changed the Sn-based solder ball into a metal ball. A plastic molded body was formed by filling the gap with solder (Sn-based solder after plastic deformation), and then using a solder foil obtained by rolling this.

【0012】例えば、この複合成型体をSiチップなどの
ダイボンド用のはんだ箔に圧延して作製した場合、Cu-C
u等の金属ボール間は圧縮により接触しダイボンド時に
は金属ボール間は容易に金属間化合物を形成し、全体が
高融点の金属で有機的につながれ、280℃でも強度を確
保することを確認できた。当然のこととして、接続部分
において空隙は真空中で圧縮されて埋まっているので、
ボイドの少ない接続が可能である。窒素中での低温ホッ
トプレスを用いると、Cuボール及びSn系はんだボールの
粒径が大きい場合(約40μm)、Sn系はんだは97%以上の
空隙充填率を示すことを確認した。また、箔表面を適度
な膜厚のSnめっきを施すことで、酸化が著しい材料でも
酸化を防止することはできる。
For example, when this composite molded body is rolled into a die-bonding solder foil such as a Si chip, Cu-C
It was confirmed that the metal balls such as u contacted by compression and easily formed an intermetallic compound at the time of die bonding, the whole was organically connected with a high melting point metal, and the strength was secured even at 280 ° C. . As a matter of course, at the connection portion, the gap is compressed and buried in a vacuum,
Connection with few voids is possible. When using a low-temperature hot press in nitrogen, it was confirmed that when the particle size of the Cu ball and the Sn-based solder ball was large (about 40 μm), the Sn-based solder exhibited a void filling rate of 97% or more. In addition, by applying Sn plating of an appropriate film thickness on the foil surface, oxidation can be prevented even for a material that is significantly oxidized.

【0013】Cu箔リード同志をこのはんだで接合し、張
り合わせたラップ型継手を270℃で50mm/minの引張速度
で、せん断引張試験を行ったところ、約0.3kgf/mm2の値
が得られたことにより、高温での強度は十分確保してい
ることも確認した。
The Cu foil leads were joined together with this solder, and the lap joints bonded together were subjected to a shear tensile test at 270 ° C. at a tensile speed of 50 mm / min. As a result, a value of about 0.3 kgf / mm 2 was obtained. As a result, it was confirmed that the strength at a high temperature was sufficiently secured.

【0014】本方式ははんだ材料内部の空間を金属ボー
ルで予め埋めてしまう方式であり、その分、ボイドは少
なく、従来のはんだ箔の場合と同レベルまたはそれ以下
のボイド率となることが予想される(大きなボイドはで
き難い構造である。)。従って、本方式によるはんだで
は、大面積ゆえにボイドレス化が重要課題であった、例
えばSiのダイボンド、パワーモジュール接合等に対して
好適な鉛フリー材料(鉛を積極的に含んでいない)とな
る。すなわち、温度階層接続などに好適な高信頼の高温
鉛フリー材料を提供することが出来る。
This method is to fill the space inside the solder material with metal balls in advance, and accordingly, the void is small, and it is expected that the void ratio will be the same level as or less than that of the conventional solder foil. (Large voids are difficult to form.) Therefore, in the solder according to the present method, a lead-free material (does not actively contain lead) suitable for, for example, die bonding of silicon, power module bonding, etc., for which voiding was an important issue due to its large area, is obtained. That is, a high-reliability high-temperature lead-free material suitable for temperature hierarchical connection and the like can be provided.

【0015】更に、ペースト方式では酸化しやすいため
フラックスレス化が困難であったが、これにより解決す
ることもできる。すなわち、フラックス残さを嫌う分野
においては、ペースト方式で接続した後、フラックスの
洗浄が必要であったが、フラックスレス化により洗浄レ
ス化が可能になる。
Furthermore, in the paste method, it is difficult to achieve fluxlessness due to easy oxidation, but this can be solved. That is, in the field where the flux residue is disliked, it is necessary to wash the flux after the connection by the paste method.

【0016】この他、望ましい融点を持つ硬い、剛性の
強いはんだ、例えばAu-20Sn,Au-(50〜55)Sn(融点:309
〜370℃),Au-12Ge(融点:356℃)等の場合でも、これら
を金属ボールとして使用し、さらに軟らかい、弾性のあ
るゴム粒子をSn,In等の軟らかいはんだボールとともに
分散混入させることにより、金属ボールに使用するはん
だの固相線温度が約280℃以上をもつことで、高温での
接続強度を有し、変形に対しては粒子間にある軟らかい
SnもしくはInもしくはゴムが緩和することができ、これ
らのはんだの弱点を補完する新たな効果が期待できる。
In addition, a hard and strong solder having a desirable melting point, for example, Au-20Sn, Au- (50-55) Sn (melting point: 309)
370 ° C), Au-12Ge (melting point: 356 ° C), etc., by using these as metal balls and dispersing and mixing soft, elastic rubber particles together with soft solder balls such as Sn and In. Since the solidus temperature of the solder used for metal balls has a temperature of about 280 ° C or higher, it has a high-temperature connection strength and is soft between particles against deformation.
Sn, In or rubber can alleviate, and a new effect that complements the weak points of these solders can be expected.

【0017】以下、図面を参照して本発明の実施の形態
を詳細に説明する。なお、発明の実施の形態を説明する
ための全図において、同一機能を有するものは同一符号
を付け、その繰り返しの説明は省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for describing the embodiments of the present invention, components having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.

【0018】図1は複合ボール(金属ボール、はんだボ
ール)で作る複合体金属の製作工程の概略を示し、(a)
は真空ホットプレスのカーボン治具1中に金属ボールで
あるCuボール2と、はんだボールであるSnボール3を入
れた状態で、(b)は真空ホットプレス後のはんだが塑性
流動した後の複合ボール塊の断面形状モデルで、SnとCu
は「海島構造」に変形している。(c)はその複合ボール
塊を更にロール5で圧延し、はんだ箔を作製しているモ
デルである。
FIG. 1 shows an outline of a manufacturing process of a composite metal made of a composite ball (metal ball, solder ball).
Is a state in which a Cu ball 2 as a metal ball and a Sn ball 3 as a solder ball are placed in a carbon jig 1 of a vacuum hot press. Sn and Cu
Is transformed into a "sea-island structure." (c) is a model in which the composite ball mass is further rolled by the roll 5 to produce a solder foil.

【0019】図では、10〜40μmのCuボールと10〜40μm
のSnボールとを体積比でCuボールが50〜60%になるよう
に配合した。Cuボールに対しては更に微細粒を入れて、
最密充填配合(例えば、三輪茂雄;粉体工学通論、P39、
1981/2/5、日刊工業新聞社)することによりCuボール間
の接触を多くすることは可能である。最密充填ならば理
論上Cuの体積比率は約74%になり、はんだは26%になる。
また、10μm以下の微細粒にしても可能であり、合金層
のネットワークが細かくなり、高密度で、ファインな接
続に向いている。一例として3〜8μmのCu ボールと10〜
40μm のSnボールの場合、3〜10μmのCu ボールと10〜4
0μm のSnボールの場合、あるいは5〜15μmのCu ボール
と10〜40μm のSnボールの場合、箔のはんだ充填密度は
下がるが、接続は良好な結果が得られている。なお、Cu
ボールおよびSnボール等の径(大きさ)については、
必ずしもすべての粒子が開示された大きさに含まれると
いうものではなく、発明の効果に影響のない範囲におい
て、開示された大きさよりも、大きい又は小さいボール
が含まれていても良いことは言うまでもない.これらの
ボールは窒素中で混合され、図1(a)に示すカーボン
治具でできた圧力容器の中に入れる。真空引きした後、
時間をかけて周囲から均一に圧力をかけていくと、Snの
みが塑性変形しながらCuボール間の隙間を埋めていく。
Snの融点は232℃であるが、室温でも時間をかけること
で流動させることは可能である。室温で隅々まで流動さ
せることが出来ない場合、若干(100〜150℃)、温度を
上げることで、容易に可能となる。この工程ではCuとSn
とは反応しない程、界面での拘束がないので自由度が上
がりSnは変形(流動)し易くなる。そして、この真空ホ
ットプレス等で形成された複合ボール塊は、更にロール
5で圧延されはんだ箔を得る。圧延することで、よりCu
ボール間の隙間がなくなり、結果としてボイドの少ない
はんだ箔を形成することが出来る。なお、前述の複合ボ
ール塊は、この場合、150μm(±10μm)厚さのはんだ
箔作製を目的としているので、それに近い形状の型に予
めしておくことが圧延率を下げられることから望まし
い。圧延率を上げると、Cu同志の接触部が増えるので、
接触面積向上による拘束が増す。従って、温度サイクル
等の変形に対応する柔軟性を持たすことを考慮すると、
接触部を少なくすることが望ましく、最終的な圧延率は
20%以下が好ましい。さらに圧延率は15〜20%がより好
ましい。
In the figure, 10 to 40 μm Cu ball and 10 to 40 μm
And the Sn balls were blended such that the Cu balls accounted for 50 to 60% by volume. For Cu balls, add more fine particles,
Close-packed formulation (eg, Shigeo Miwa; Introduction to Powder Engineering, P39,
(1981/2/5, Nikkan Kogyo Shimbun), it is possible to increase the contact between Cu balls. With close packing, the theoretical volume ratio of Cu is about 74% and solder is 26%.
In addition, it is possible to make fine grains of 10 μm or less, and the network of the alloy layer becomes fine, and it is suitable for high density and fine connection. As an example, 3 ~ 8μm Cu ball and 10 ~
For 40 μm Sn balls, 3-10 μm Cu balls and 10-4
In the case of 0 μm Sn balls, or in the case of 5 to 15 μm Cu balls and 10 to 40 μm Sn balls, the solder filling density of the foil is reduced, but good connection is obtained. Note that Cu
For the diameter (size) of balls and Sn balls,
It is needless to say that not all the particles are included in the disclosed size, and a ball larger or smaller than the disclosed size may be included in a range that does not affect the effect of the invention. . These balls are mixed in nitrogen and placed in a pressure vessel made of a carbon jig as shown in FIG. After evacuating,
If pressure is applied uniformly from the surroundings over time, only Sn plastically deforms and fills the gap between the Cu balls.
Although the melting point of Sn is 232 ° C., it can be fluidized even at room temperature over time. When it is not possible to make the fluid flow to every corner at room temperature, it becomes possible easily by raising the temperature slightly (100 to 150 ° C.). In this process, Cu and Sn
The more the reaction does not occur, the more the degree of freedom is increased because there is no constraint at the interface, and Sn is more likely to deform (flow). Then, the composite ball lump formed by the vacuum hot press or the like is further rolled by the roll 5 to obtain a solder foil. By rolling, more Cu
There is no gap between the balls, and as a result, a solder foil with few voids can be formed. In this case, since the above-mentioned composite ball lump is intended for producing a solder foil having a thickness of 150 μm (± 10 μm), it is desirable that the composite ball lump is previously formed in a mold having a shape close thereto, since the rolling ratio can be reduced. Increasing the rolling ratio increases the contact area between Cu,
The constraint due to the increased contact area increases. Therefore, considering flexibility to respond to deformations such as temperature cycles,
It is desirable to reduce the contact area, and the final rolling rate is
20% or less is preferable. Further, the rolling ratio is more preferably 15 to 20%.

【0020】なお、形成したはんだ箔で、Cu等が露出し
ている場合は、更にSnを0.5〜2μmの厚さにめっきする
ことで、露出部のCuの酸化を防止することが好ましい。
In the case where Cu or the like is exposed in the formed solder foil, it is preferable to prevent the oxidation of Cu in the exposed portion by further plating Sn to a thickness of 0.5 to 2 μm.

【0021】作りやすさ、配合時に均一分散し易いこ
と、扱い易さ等の点ではCuボール及びはんだボールは球
状であることが好ましいが、必ずしも球状である必要は
ない。Cuボール表面の凹凸が激しいもの、棒状、針状、
繊維状、角状であるもの、樹枝状で合っても良く、ま
た、これらを組合せたものでも良く、接合後にCu同志が
絡み合えば良い。ただし、上記の圧縮によりCu同志で拘
束されすぎて自由度がきかなくなると、はんだ付け時に
クッション性なくなり、接続不良が生じ易くなるのであ
れば、ボール状よりもCuボールは表面に凹凸が激しいも
の、棒状、針状、繊維状、角状であるもの、樹枝状のも
の、またはこれらを組合せたものが好ましい。そして、
図2に示すように、Cu2、Sn3ボール以外に、耐熱性の
軟らかい弾性体であるメタライズした(無電解Niめっき-
Auめっき、もしくは無電解Niめっき-はんだめっき)プラ
スチックボール(ゴム)6を分散させ低ヤング率化してク
ッション性を確保することも出来る。図2(a)は圧延
前、(b)は圧延後を示す。樹脂ボール径は理想的には10
μm以下、望ましくは1μmレベルが良い。例えば0.5〜5
μmが望ましい。配合量としては体積で数%でも効果があ
る。本明細書において「金属」「はんだ」について「粒
子」「ボール」と2つの用語を用いているが、両者は、
上記説明からわかるようにほぼ同意義で用いている。強
いて区別をつけるとすれば、「粒子」は「ボール」を包
括したやや広い意味で用いている。
It is preferable that the Cu ball and the solder ball are spherical in terms of ease of production, easy dispersion at the time of blending, ease of handling, and the like, but they need not necessarily be spherical. Cu balls with severe irregularities on the surface, rods, needles,
It may be fibrous, angular, or dendritic, or a combination of these, as long as the Cus are intertwined after joining. However, if the degree of freedom is too low due to excessive restraint between Cu due to the above compression, cushioning will be lost at the time of soldering, and if connection failures are likely to occur, Cu balls have more irregularities on the surface than ball-shaped It is preferably a bar, a needle, a fiber, a square, a dendrite, or a combination thereof. And
As shown in FIG. 2, in addition to Cu2 and Sn3 balls, metallized heat-resistant soft elastic material (electroless Ni plating-
Au plating or electroless Ni plating-solder plating) Plastic balls (rubber) 6 can be dispersed to lower the Young's modulus to ensure cushioning. 2A shows the state before rolling, and FIG. 2B shows the state after rolling. Resin ball diameter is ideally 10
μm or less, preferably 1 μm level. For example, 0.5-5
μm is desirable. Even if the compounding amount is several percent by volume, it is effective. In the present specification, two terms of “particle” and “ball” are used for “metal” and “solder”.
As can be seen from the above description, they are used with almost the same meaning. To make a distinction, "particle" is used in a rather broad sense that encompasses "ball."

【0022】次に、他の金属ボールの例としてAlを使用
する場合を説明する。
Next, a case where Al is used as an example of another metal ball will be described.

【0023】高融点の金属は一般に硬いが、低コストで
柔らかい金属として純Alがある。純Al(99.99%)は柔らか
い(Hv17)が、通常はSnにぬれにくい。従って、Ni-Au
めっき、もしくはNi-Snめっき等を施すことが好まし
い。Al表面にスパッター等で薄くAuを被覆しても良い。
柔かい純Alの微細粒を作るのが爆発等の安全性の問題で
困難を伴うが、不活性雰囲気で製造し、即、表面にNi-A
uめっきを施すことで、大気中にAlを接触させないこと
で安全性を確保できる。なお、Al粒子は多少の酸化膜を
形成しても、めっき処理で除去できるので問題はない。
更には、圧延工程でもAlの酸化膜は破壊され易いのでAl
の新生面がでるので、接続にはそれほど影響されない。
なお、Al表面へのメタライズとしてこれらに限定される
ものでなく、はんだ箔を作製後、該はんだがCu、Ni等に
対してぬれて、高温で接合強度を確保することが必要で
ある。このため、Al粒子とNiめっきCu板間、及びAl粒子
とSiチップのNiめっき間でAl粒子上のメタライズとNi
とのSn化合物形成で連結することが必要である。
High melting point metals are generally hard, but pure Al is a low cost and soft metal. Pure Al (99.99%) is soft (Hv17), but usually hard to wet with Sn. Therefore, Ni-Au
Preferably, plating or Ni-Sn plating is performed. The Au surface may be thinly coated with Au by sputtering or the like.
It is difficult to make fine particles of soft pure Al due to safety issues such as explosion, but it is manufactured in an inert atmosphere and immediately Ni-A
By applying u plating, safety can be ensured by preventing Al from coming into contact with the atmosphere. It should be noted that the Al particles can be removed by plating even if a small amount of oxide film is formed, so there is no problem.
Furthermore, since the oxide film of Al is easily broken even in the rolling process,
Is not affected much by connection.
The metallization on the Al surface is not limited to these, but it is necessary that after the solder foil is produced, the solder is wetted with respect to Cu, Ni, etc., and the bonding strength is ensured at a high temperature. Therefore, metallization on Al particles between Ni particles between Al particles and Ni-plated Cu plate and between Al particles and Ni plating on Si chip
It is necessary to link with Sn compound formation.

【0024】複合ボール塊を得るに当たって、Alは真空
中であって特に高温で拡散し易いので、Ag入りのSnはん
だを使用する等でAlとの化合物を形成することができ
る。Ag以外にAlに反応し易いようにSnの中に微量のZn、
Cu、Ni、Sb等を入れてAl接続用のはんだとすることでも
良い。Snの中に微量のAg、Zn、Cu、Ni、Sb等を入れる場
合は、Al表面へのメタライズは不要であり、コスト上で
のメリットは大きい。
In obtaining a composite ball lump, Al is easily diffused in a vacuum and particularly at a high temperature. Therefore, a compound with Al can be formed by using a Sn solder containing Ag. In addition to Ag, a small amount of Zn in Sn to react easily with Al,
Alternatively, Cu, Ni, Sb, or the like may be added to form a solder for Al connection. When a small amount of Ag, Zn, Cu, Ni, Sb, etc. is put in Sn, metallization on the Al surface is unnecessary, and the merit in cost is great.

【0025】Al表面を完全にぬらす場合と、まだら状に
ぬらすこともできる。これはメタライズの領域と関係
し、まだらにメタライズを形成するか全体に形成するか
による。まだら状にすれば応力がかかった場合、変形時
に拘束が小さくなることから変形し易く、かつ、ぬれて
いない部分は摩擦損出としてエネルギーを吸収してくれ
るので、変形能に優れた材料となる。当然、接合強度は
確保する。
It is possible to wet the Al surface completely or in a mottled manner. This is related to the area of metallization and depends on whether the metallization is to be formed speckled or to be formed entirely. If it is mottled, it is easy to deform when stress is applied due to reduced restraint during deformation, and non-wet parts absorb energy as friction loss, making it a material with excellent deformability . Naturally, the bonding strength is secured.

【0026】Alをボール状にする代わりに、20〜40μm
位のAl線にSn、Ni-Sn、Au等のめっきを施し、切断して
粒状、棒状にしたものを使用することも可能である。な
お、ボール状のAl粒子は窒素中でアトマイズ法などで低
コストで多量に製造することが可能である。
Instead of making Al into a ball, 20 to 40 μm
It is also possible to apply a plating of Sn, Ni-Sn, Au, or the like to the Al wire of the order, and cut and cut it into a granular shape or a rod shape. In addition, ball-shaped Al particles can be mass-produced at low cost by an atomizing method or the like in nitrogen.

【0027】次にAuボールについて説明する。Next, the Au ball will be described.

【0028】複合ボール塊を得るに当たって、Auボール
についてはSn系はんだは容易にぬれるので短時間の接続
ならばメタライズの必要はない。但し、はんだ付け時間
が長いと、Snが顕著に拡散し、脆いAu-Sn化合物の形成
に不安が残る。このため、柔らかい構造とするにはAu拡
散の少ないInめっきなども有力であり、Ni、Ni-Au等をバ
リアにしても良い。バリア層は極力薄くすることで、Au
ボールが変形し易くなる。Auとの合金層成長が抑えられ
るメタライズ構成であれば、他の構成でも良い。圧延ま
では温度を抑えることで拡散を抑えられる。ダイボンド
で短時間で接合させる場合、粒界に生ずる合金層は薄い
ので、バリアを設けなくてもAuの柔軟性による効果は大
いに期待できる。AuボールとInはんだボールの組み合わ
せも可能である。
In obtaining a composite ball lump, the Sn-based solder is easily wetted with respect to the Au ball, so that there is no need for metallizing for a short-time connection. However, when the soldering time is long, Sn is remarkably diffused, and the formation of a brittle Au-Sn compound remains uneasy. For this reason, in order to obtain a soft structure, In plating with little Au diffusion is also effective, and Ni, Ni-Au or the like may be used as a barrier. By making the barrier layer as thin as possible, Au
The ball is easily deformed. Other structures may be used as long as the metallized structure can suppress the growth of the alloy layer with Au. By controlling the temperature until rolling, diffusion can be suppressed. When bonding is performed in a short time by die bonding, since the alloy layer formed at the grain boundary is thin, the effect of Au flexibility can be greatly expected without providing a barrier. A combination of Au balls and In solder balls is also possible.

【0029】次にAgボールについて説明する。Next, the Ag ball will be described.

【0030】Agボールについても、Cuボール同様である
が、Ag3Sn化合物の機械的性質は悪くはないので、通常
プロセスでAg粒子間を化合物で連結することも可能であ
る。Cu等の中に混ぜた使用も可能である。
The Ag ball is similar to the Cu ball, but the mechanical properties of the Ag3Sn compound are not bad, so that it is possible to connect the Ag particles with the compound by a normal process. It is also possible to use it mixed in Cu etc.

【0031】次に金属ボールとして合金材料を使用する
場合を説明する。
Next, a case where an alloy material is used as the metal ball will be described.

【0032】合金系の代表例としてZn-Al系、Au-Sn系等
がある。Zn-Al系はんだの融点は330〜370℃の範囲が主
で、Sn-Ag-Cu、Sn-Ag、Sn-Cu系はんだとの階層接続を行
うには適した温度域にあり、これらを金属ボールに使用
することが出来る。Zn-Al系の代表例として、Zn-Al-M
g、Zn-Al-Mg-Ga、Zn-Al-Ge、Zn-Al-Mg-Ge、更にはこれ
らにSn、In、Ag、Cu、Au、Ni等のいずれか一つ以上を含
有したものを含む。
Typical examples of the alloy system include a Zn-Al system and an Au-Sn system. The melting point of Zn-Al-based solder is mainly in the range of 330-370 ° C. Can be used for metal balls. As a typical example of Zn-Al system, Zn-Al-M
g, Zn-Al-Mg-Ga, Zn-Al-Ge, Zn-Al-Mg-Ge, and those containing any one or more of Sn, In, Ag, Cu, Au, Ni, etc. including.

【0033】しかしながら、Zn-Al系は酸化が激しいこ
と、はんだの剛性が高いこと等のため、Siを接合した場
合Siチップに割れを起こす恐れが指摘されており(清水
他:「タ゛イアタッチ向けPbフリーはんだ用Zn-Ai-Mg-Ga合金」Ma
te99,1999-2)、単に複合ボール塊の金属ボールとして
使用するとこれらの課題を解決しなければならない。
However, it has been pointed out that a Zn-Al-based material is highly oxidized and the rigidity of the solder is high, so that when Si is bonded, there is a possibility of cracking the Si chip (see Shimizu et al. Zn-Ai-Mg-Ga alloy for Pb-free solder "Ma
te99, 1999-2) These problems must be solved simply by using the composite ball as a metal ball.

【0034】そこで、これらの課題をクリアする必要か
ら、はんだの剛性を下げるために、Ni-はんだめっきも
しくはAuめっきを施した耐熱性のプラスチックボールを
SnボールとZn-Al系ボールとともに均一に分散させて、
ヤング率の低減を図った。Snボールは全体の10〜50%混
入すると、Zn-Al系はんだ間に溶融したSnが入り込む。
この場合、一部はZn-Alボール同志が接合されるが、他
の部分は主に析出した低温の柔らかいSn-Zn相や、溶解
しないSnが存在する。変形はこのSn、Sn-Zn相とプラス
チックボールのゴムが分担する。
Therefore, since it is necessary to solve these problems, in order to reduce the rigidity of the solder, a heat-resistant plastic ball plated with Ni-solder or Au is used.
Disperse uniformly with Sn ball and Zn-Al-based ball,
The Young's modulus was reduced. When 10 to 50% of the total Sn balls are mixed, molten Sn enters between Zn-Al based solders.
In this case, the Zn-Al balls are joined together in a part, but in the other part, a precipitated low-temperature soft Sn-Zn phase and insoluble Sn are present. The deformation is shared by the Sn, Sn-Zn phase and the rubber of the plastic ball.

【0035】実際にこのはんだ箔を用いて接続する場
合、例えばダイボンドした場合もその後に一部Sn層を残
すことにより、Snにより変形を吸収することができる。
プラスチックボールとSn層との複合作用により、更に剛
性を緩和することが期待できる。なお、この場合も、Zn
-Al系はんだの固相線温度は280℃以上を確保しているの
で、高温での強度上の問題はない。
When a connection is actually made using this solder foil, for example, even in the case of die bonding, the Sn can absorb deformation by leaving a part of the Sn layer thereafter.
The combined action of the plastic ball and the Sn layer can be expected to further reduce the rigidity. In this case, Zn
-Since the solidus temperature of the Al-based solder is 280 ° C or higher, there is no problem in strength at high temperatures.

【0036】プラスチックボールはZn-Al系ボールに比
べて径を小さくし、均一に分散させることが望ましい。
変形時に柔らかい弾性を有する1μmレベルのプラスチッ
クボールが変形すれば、熱衝撃緩和、機械的衝撃緩和の
効果は大きい。プラスチックボールとして市販品の耐熱
性のものがある。Zn-Al系はんだのボール間にプラスチ
ックボールがほぼ均一に入るので、接続時の短時間の溶
融ではこの分散は大きくくずれない。この耐熱樹脂は熱
分解温度が約300℃なので、更に耐熱性のある材料が望
ましいが、時間の短いダイボンドの場合は問題はない。
It is desirable that the diameter of the plastic ball is smaller than that of the Zn-Al-based ball and the plastic ball is uniformly dispersed.
If a plastic ball of 1 μm level having soft elasticity is deformed when deformed, the effect of thermal shock relaxation and mechanical shock relaxation is great. There is a commercially available heat-resistant plastic ball. Since the plastic balls enter almost uniformly between the balls of the Zn-Al-based solder, the dispersion does not significantly deteriorate by a short melting at the time of connection. Since this heat-resistant resin has a thermal decomposition temperature of about 300 ° C., a material having higher heat resistance is desirable, but there is no problem in the case of a die bond having a short time.

【0037】前述のように、真空中でホットプレスで成
型する場合、Snめっきしたプラスチックボール上のSnが
溶けない温度(Snの融点:232℃)で均等に圧縮させるこ
とで、塑性流動させる。このとき、Zn-Alボールは余り
変形しない。均一な圧縮により空間をプラスチックボー
ル、Sn等で均一に充填し、約150μmに圧延し、はんだ箔
を作製する。ダイボンドで使用するときは、ロールに巻
いて連続工程で供給することができる。
As described above, when molding by hot pressing in a vacuum, plastic flow is achieved by uniformly compressing at a temperature at which Sn on a Sn-plated plastic ball does not melt (melting point of Sn: 232 ° C.). At this time, the Zn-Al ball does not deform much. The space is uniformly filled with plastic balls, Sn, etc. by uniform compression and rolled to about 150 μm to produce a solder foil. When used in die bonding, it can be wound in a roll and supplied in a continuous process.

【0038】Zn-Alは酸化され易いので、保管時のこと
も考慮すると、表面にCu置換のSnめっきを施すことが望
ましい。このSn、Cuは例えばダイボンド時にZn-Al系は
んだに溶解する。Snが表面に存在することで、例えば、
Cu電極上のNi-Auめっき上への接続が容易となる。Siチ
ップ側も例えば、Ti-Ni-Auメタライズに対しても同様に
容易に接合できる。200℃以上の高温下においては、Ni
とSnとの合金層(Ni3Sn4)の成長速度はCu-Sn以上に大で
あることから、化合物形成が不十分のために接合ができ
ないようなことはない。
Since Zn-Al is easily oxidized, it is preferable to apply Cu-substituted Sn plating to the surface in consideration of storage. The Sn and Cu dissolve in the Zn-Al-based solder at the time of die bonding, for example. By the presence of Sn on the surface, for example,
Connection to Ni-Au plating on Cu electrodes becomes easy. The Si chip side can be similarly easily joined to, for example, Ti-Ni-Au metallization. At high temperatures above 200 ° C, Ni
Since the growth rate of the alloy layer of Ni and Sn (Ni3Sn4) is higher than that of Cu-Sn, there is no possibility that bonding cannot be performed due to insufficient compound formation.

【0039】場合によっては、Zn-Al系はんだボールと
プラスチックボールとで複合ボール塊を構成しても良
い。
In some cases, a composite ball block may be composed of a Zn—Al-based solder ball and a plastic ball.

【0040】なお、Zn-Al系はんだに、固相線温度が280
℃レベルを確保するレベルまで、Sn、In量を多く加える
階層接続は可能である。Sn、In等を多く入れると、一
部、Zn-Snの共晶等の低い相が部分的に生成されるが、
接合強度は骨格となっているZn-Al系の固相が担ってい
るので、高温での強度上の問題はない。
The solidus temperature of Zn-Al based solder was 280.
Hierarchical connection in which a large amount of Sn and In is added is possible up to a level that secures the ° C level. When a large amount of Sn, In, etc. is added, a low phase such as a eutectic of Zn-Sn is partially formed,
Since the bonding strength is borne by the Zn-Al-based solid phase serving as the skeleton, there is no problem in strength at high temperatures.

【0041】ところで、Zn-Al系はんだにCuで置換したS
nめっきを施すと、Zn-Al系はんだの液相線温度以上に温
度を上げることで、Snは容易にぬれ拡がり、薄いCuを固
溶しながらZn-Al系はんだに溶解する。Snは多い(5%以
上)とZn-Al の中には固溶できず、粒界に低温のSn-Zn相
を析出してくる。意図的にSn相を多数分散析出させるこ
とで、変形はSn-Zn相で、接合強度はZn-Al系の固相で分
担させることができる。従って、Zn-Al系はんだボール
にSnめっきを施し、ボールに固溶できないSn相を意図的
に残すことにより、変形をSn層で吸収させ、Zn-Alの剛
性を緩和させることもできる。すなわち、接続した部分
のはんだの剛性を緩和させることができ、接続不良が少
なくなる。
By the way, S in which Zn-Al based solder is replaced by Cu
When n-plating is performed, by raising the temperature to a temperature equal to or higher than the liquidus temperature of the Zn-Al-based solder, Sn easily spreads and spreads, and dissolves in the Zn-Al-based solder while forming a solid solution of thin Cu. If Sn is large (5% or more), it cannot be dissolved in Zn-Al and a low-temperature Sn-Zn phase precipitates at the grain boundaries. By intentionally dispersing and precipitating a large number of Sn phases, the deformation can be shared by the Sn-Zn phase and the bonding strength can be shared by the Zn-Al-based solid phase. Therefore, by subjecting the Zn-Al-based solder ball to Sn plating and intentionally leaving an Sn phase that cannot be dissolved in the ball, deformation can be absorbed by the Sn layer, and the rigidity of the Zn-Al can be reduced. That is, the rigidity of the solder at the connected portion can be reduced, and connection failures are reduced.

【0042】図3は前述のはんだ箔11を用いてAl2O3基
板13上のW-Cuめっきメタライズ(Niめっきでも良い)14に
Siチップ8をダイボンドする一例を示す。はんだ箔11の
代表例として、金属ボールがCuで、はんだがSnの組合
せがある。Cuは比較的に軟らかく、Snとの反応が活発
で、金属間化合物(Cu6Sn5)の機械的性質は優れているの
で、厚く成長しても脆さは出にくい。万一、化合物成長
が顕著でその弊害が現れる場合、Sn中にCu等を微量添加
して合金層成長速度を抑えることは可能である。または
Cu上にNi、Ni-Au等の薄いNiめっきを施すことで合金層
成長を抑えることは可能である。ここでは、短時間のは
んだ付け時にCuボール間を金属間化合物で確実に連結す
ることが重要であり、反応を活発にすることが望まれる
ので、成長過剰が問題になることはない。それよりも、
Snとチップ及びSnと基板との接続において、Snのぬれ
性、ぬれ拡がり性の向上が重要である。このため、Sn中
に微量のCu、Bi添加による流動性の向上、表面張力の低
減によるぬれ性改良の効果が期待できる。他方、界面と
の強度向上のため、Ni、Ag、Zn等の微量添加の効果も期
待できる。なお、Snの融点向上にはSnの代わりにSn-Sb
(5〜10%)にすることで、Cu-Sn化合物、Ni-Sn化合物形
成ではんだ中のSb濃度が増して、246℃にはんだの融点
を向上させることができる。
FIG. 3 shows a method of forming a metallized W-Cu plating (Al may be Ni plating) 14 on an Al 2 O 3 substrate 13 by using the above-mentioned solder foil 11.
An example of die bonding the Si chip 8 will be described. A typical example of the solder foil 11 is a combination of a metal ball of Cu and a solder of Sn. Cu is relatively soft, actively reacts with Sn, and the intermetallic compound (Cu6Sn5) has excellent mechanical properties. In the event that compound growth is remarkable and its adverse effects appear, it is possible to add a small amount of Cu or the like to Sn to suppress the alloy layer growth rate. Or
It is possible to suppress the alloy layer growth by applying a thin Ni plating such as Ni or Ni-Au on Cu. Here, it is important to reliably connect the Cu balls with an intermetallic compound at the time of short-time soldering, and it is desired to activate the reaction. Than that
In connection between Sn and the chip and between Sn and the substrate, it is important to improve the wettability and wet spreadability of Sn. For this reason, the effect of improving fluidity by adding trace amounts of Cu and Bi to Sn and improving wettability by reducing surface tension can be expected. On the other hand, the effect of adding a small amount of Ni, Ag, Zn or the like can be expected to improve the strength with the interface. In addition, Sn-Sb instead of Sn is used to improve the melting point of Sn.
By setting the content to (5 to 10%), the Sb concentration in the solder increases due to the formation of the Cu-Sn compound and the Ni-Sn compound, and the melting point of the solder can be improved to 246 ° C.

【0043】他の代表例として、Cuよりも更に軟らかい
純Alボールの場合、温度サイクルに対する変形能に優れ
る。課題はAlボールとチップ、基板のメタライズとの反
応である。Al表面にNiめっきもしくはNi-Auフラッシュ
めっきを施すことでAlボール間及びAlボールとNiめっき
のチップ間、Niめっきの基板間も同様にSnによる接合強
度は確保される。NiとSn間の金属間化合物は通常はNi3S
n4であり、200℃以上ではCu-Snの成長速度より速いので
反応不足の心配はない。CuとNiが同時に介在する個所で
は一部に(NiCu)3Sn4の混合した合金層が形成されるこ
ともある。Alボールにはんだが直接反応できるように、
Sn中にAg、Ni、Zn、Ti等を微量添加することにより、Al
ボール間の接続も接続条件しだいで可能である。
As another typical example, a pure Al ball that is softer than Cu has excellent deformability with respect to a temperature cycle. The challenge is the reaction between Al balls and metallization of chips and substrates. By applying Ni plating or Ni-Au flash plating on the Al surface, the bonding strength of Sn is similarly secured between Al balls, between Al balls and Ni-plated chips, and between Ni-plated substrates. The intermetallic compound between Ni and Sn is usually Ni3S
n4, which is faster than the growth rate of Cu-Sn at 200 ° C or higher, so there is no fear of insufficient reaction. Where Cu and Ni are simultaneously present, a mixed alloy layer of (NiCu) 3Sn4 may be formed partially. So that the solder can react directly to the Al ball
By adding a small amount of Ag, Ni, Zn, Ti, etc. into Sn, Al
Connection between the balls is also possible depending on the connection conditions.

【0044】Auのボールに対しても同様な対応が可能で
ある。Auは柔軟でSnとの化合物を形成し易いので、コス
トの面を除くと有力な組成である。但し、Snが多い系で
の化合物は融点が低いので、280℃以上の融点を持つた
めには、Snが55%以下の組成比であるAuSn、AuSn2の化合
物とする必要がある。このため、はんだ付け温度を高く
して、接合部はSnが少ない構成にすることが必要である
ことから、Siチップ側のメタライズに、例えば、Cr-Ni-
Snを設けることにより、Au-Sn、AuSnの形成が容易にな
る。Auボールにコスト低減等を考慮し、Cu、Al、Agボー
ル等を混ぜることも可能である。
The same can be applied to Au balls. Since Au is flexible and easily forms a compound with Sn, it is an effective composition except for cost. However, since a compound in a system containing a large amount of Sn has a low melting point, it is necessary to use a compound of AuSn and AuSn2 having a composition ratio of Sn of 55% or less in order to have a melting point of 280 ° C. or more. For this reason, it is necessary to increase the soldering temperature and reduce the Sn at the joints. For example, Cr-Ni-
By providing Sn, formation of Au-Sn and AuSn becomes easy. In consideration of cost reduction and the like, it is possible to mix Cu, Al, Ag balls and the like into the Au balls.

【0045】Agボールも同様に有力候補であり、高融点
のAg3Sn化合物の形成で280℃でも溶けない連結接続が可
能となる。
The Ag ball is also a promising candidate, and the formation of a high melting point Ag3Sn compound enables a connection connection that does not melt even at 280 ° C.

【0046】次に、硬くて、融点の低いZn-Al系ボール
への適用例を示す。Zn-Al系は融点と脆さの点で、一般
にAl:3〜5%の範囲に落ち着き、更に融点を下げるためM
g、Ge、Ga等を入れ、更にSn、Inの添加で主に固相線温
度を下げる。そして、ぬれ性、強度確保なため、Cu、A
g、Ni等を入れる場合もある。これらの融点は280〜360
℃レベルである。例えば、Zn-4Al-2Mg-1Ag-10Snの場
合、はんだボールとしてSnボールを混合すると、両者が
溶融してもSnはZn-Al系ボールに一部が固溶する程度
で、残りの大部分はSnのままである。また、この場合、
はんだに固溶できない余分なSn、In等を粒子の状態で良
く分散させてはんだ中に孤立分散させることができるの
で、同様な効果が期待できる。Zn-Al系ボールにSnめっ
きを厚く施すこともSnを孤立分散させる一つの解であ
る。
Next, an example of application to a hard Zn-Al-based ball having a low melting point will be described. In terms of melting point and brittleness, the Zn-Al system generally settles in the range of Al: 3 to 5%.
Add g, Ge, Ga, etc., and lower the solidus temperature mainly by adding Sn and In. And to ensure wettability and strength, Cu, A
In some cases, g, Ni, etc. may be added. Their melting points are 280-360
° C level. For example, in the case of Zn-4Al-2Mg-1Ag-10Sn, when Sn balls are mixed as solder balls, even if both are melted, Sn is partially dissolved in the Zn-Al-based balls, and most of the remaining Remains Sn. Also, in this case,
The same effect can be expected because extra Sn, In, etc. that cannot be dissolved in the solder can be well dispersed in the state of particles and isolated and dispersed in the solder. Thickening the Sn-plating on the Zn-Al-based ball is also one solution for isolating and dispersing Sn.

【0047】Zn-Al系ボールの場合、はんだ付け時に全
体が溶融するので、表面張力の作用などによる表面形状
が自然の形状になりやすい等の特徴がある。また、Zn-A
l系は表面酸化が激しいので、予熱過程を含めて酸化さ
せない工夫が必要になる。箔として使用する場合、表面
にCu(0〜0.2μm)-Sn(1μm)めっきを施すことで、酸化防
止の効果がある。なお、Zn-Al系ボール間にSnが存在す
ることで、温度サイクル時の変形に対し、Snが緩衝材の
役目を果たすが、それでも不充分の場合、微細なSnめっ
きプラスチックボールのゴムを分散混合することで更に
変形性、耐衝撃性を向上させることができ、ヤング率は
低下し、耐熱疲労性も向上させることができる。
In the case of a Zn-Al-based ball, since the whole is melted at the time of soldering, there is a feature that the surface shape easily becomes a natural shape due to the action of surface tension or the like. Also, Zn-A
Since the surface oxidation of the l-system is severe, it is necessary to take measures to prevent oxidation, including the preheating process. When used as a foil, the surface is plated with Cu (0 to 0.2 μm) -Sn (1 μm) to provide an effect of preventing oxidation. The presence of Sn between the Zn-Al-based balls allows Sn to act as a buffer against deformation during temperature cycling. By mixing, the deformability and impact resistance can be further improved, the Young's modulus decreases, and the thermal fatigue resistance can be improved.

【0048】同様に硬く、かつ融点の低い合金系とし
て、Au-Sn系等があるが、同様な対応が可能である。
As an alloy system which is similarly hard and has a low melting point, there is an Au-Sn system and the like, but the same correspondence is possible.

【0049】使用したAl2O3基板13にはW(焼結)-Cuめっ
き(3μm)38(もしくはW-Niめっき)を施した電極が形成さ
れている。セラミック基板として他にムライト、ガラス
セラミック、ALN等がある。接続時にフラックスを使用
する場合、もしくは予熱段階から不活性雰囲気、あるい
は還元雰囲気で使用できるならば、Cu電極のままで良
い。
On the used Al 2 O 3 substrate 13, an electrode which has been subjected to W (sintering) -Cu plating (3 μm) 38 (or W-Ni plating) is formed. Other examples of the ceramic substrate include mullite, glass ceramic, and ALN. If a flux is used at the time of connection, or if it can be used in an inert atmosphere or a reducing atmosphere from the preheating stage, the Cu electrode may be used as it is.

【0050】使用したSiチップ8のサイズは5mm□であ
り、はんだ箔11のサイズは4mm□×t(厚さ)0.15である
が、チップ寸法の制約はなく、大型チップでも可能であ
る。後工程の2次リフローに対して、化合物層が高温で
の強度を確保し、その後の熱疲労に対してはSn系はんだ
主に寄与し、一部、応力的に厳しい個所では部分的に弾
性結合した個所が最大限の効果を発揮し、(一部耐えれ
ないところは破壊するが、)弾性結合がない場合に比べ
寿命は向上する。従って、化合物層で強く拘束されたイ
メージはなく、はんだ中で一部の化合物がネットワーク
状に形成すれば良い。大きな歪、応力がかかるチップ周
辺部では接合界面で化合物を形成させることで、強固な
接続のため破壊が起こりにくくなる。他方、同じ周辺部
位置のはんだ箔中央はネットワーク結合が少ないと、最
外周部にかかる応力、歪ははんだ箔中央のSnにかかるこ
とで、上下の界面部にかかるストレスが緩和できる。
The size of the used Si chip 8 is 5 mm □, and the size of the solder foil 11 is 4 mm □ × t (thickness) 0.15. However, there is no restriction on chip size, and a large chip is also possible. The compound layer secures the strength at high temperature for the secondary reflow in the post-process and contributes mainly to the Sn-based solder for the subsequent thermal fatigue, and partially elastic at places where stress is severe. The joined parts provide the maximum effect, and the service life is improved compared to the case without the elastic joint (although some parts that can not withstand are broken). Therefore, there is no image that is strongly constrained by the compound layer, and some compounds may be formed in a network in the solder. By forming a compound at the bonding interface in the peripheral portion of the chip where a large strain or stress is applied, the connection is strong and the breakdown is less likely to occur. On the other hand, if the center of the solder foil at the same peripheral position has little network connection, the stress and strain applied to the outermost peripheral portion are applied to Sn at the center of the solder foil, so that the stress applied to the upper and lower interfaces can be reduced.

【0051】まず、Al2O3基板13は真空吸引により架台
に固定され、Siチップ8も真空吸引9により取付治具と
なる抵抗加熱体ツール7に保持される。そして、抵抗加
熱体ツール7を下降させるなどしてSiチップ8をはんだ
箔11を介してAl2O3基板13と接触させ、加熱(max 380
℃)、加圧(初期に2kgf)により5秒間保持する。な
お、温度測定用熱電対16はツールのチップが接触する近
くに埋め込んであり、温度コントロールができる構成と
なっている。
First, the Al 2 O 3 substrate 13 is fixed to a gantry by vacuum suction, and the Si chip 8 is also held by the resistance heating tool 7 as a mounting jig by vacuum suction 9. Then, the Si chip 8 is brought into contact with the Al2O3 substrate 13 via the solder foil 11 by lowering the resistance heating tool 7 or the like, and heating (max.
℃), pressurized (initial 2kgf) for 5 seconds. The thermocouple 16 for temperature measurement is embedded near the contact of the chip of the tool, and has a configuration capable of controlling the temperature.

【0052】また、はんだ箔11の温度はその融点に達す
ると、瞬時にはんだ箔のSnなどが溶け、金属ボール間接
合に圧力が加わり溶け始める。そこで、金属ボール間接
合のつぶれ防止のため、設定温度に達すると抵抗加熱体
ツール7をはんだ箔11を加圧した時の位置を起点とし、
その位置からはんだ箔厚さに対して約10%(max20%)以下
にし、チップからのはんだのはみ出し量を制御してい
る。はんだ箔の厚さは熱疲労寿命に影響するので、80〜
150μm位にするのが一般的である。この、はんだ厚さ
と、チップ寸法に対するはんだ箔の寸法で、つぶれ量を
制御することになる。しかし、本方式はCuが半分入っ
て、しかもネットワーク状に連結されているので熱伝導
に優れるので、200〜250μmでも熱的には従来より優れ
る。
When the temperature of the solder foil 11 reaches its melting point, Sn and the like of the solder foil are instantaneously melted, and pressure is applied to the joint between the metal balls, and the solder begins to melt. Therefore, in order to prevent crushing of the joining between the metal balls, when the set temperature is reached, the resistance heating tool 7 is used as a starting point when the solder foil 11 is pressed,
From that position, the amount of solder protruding from the chip is controlled by making it less than about 10% (max 20%) with respect to the solder foil thickness. Since the thickness of the solder foil affects the thermal fatigue life,
Generally, it is about 150 μm. The crushing amount is controlled by the solder thickness and the size of the solder foil relative to the chip size. However, this method is excellent in heat conduction because it contains half of Cu and is connected in a network, so that even at 200 to 250 μm, it is thermally superior to the conventional one.

【0053】Al2O3基板13の予熱15は約100℃とした。急
激な温度上昇、下降は継手に大きなストレスをかけるの
で、予熱は熱衝撃を緩和させる意味でも重要である。
The preheating 15 of the Al2O3 substrate 13 was set to about 100.degree. Preheating is also important in terms of reducing thermal shock, because a sudden rise or fall in temperature will cause a large stress on the joint.

【0054】抵抗加熱体によるダイボンドの場合、接続
時のはんだ箔11の酸化を防止するため、局所的に周囲か
ら窒素10を吹き付ける機構としている。また、Siチップ
8を吸着する抵抗加熱体ツール7の周囲にも窒素10を吹
き付け、常に接合部が50〜100ppmレベルの酸素純度に保
たれるようにするのが良い。
In the case of die bonding using a resistance heating element, a mechanism is provided in which nitrogen 10 is locally blown from the surroundings in order to prevent oxidation of the solder foil 11 during connection. Further, it is preferable that nitrogen 10 is also blown around the resistance heating tool 7 for adsorbing the Si chip 8 so that the junction is always kept at the oxygen purity of the level of 50 to 100 ppm.

【0055】このはんだ箔であれば、水素炉もしくは窒
素等の不活性雰囲気炉でmax270℃前後でSiチップ等のダ
イボンド、パワーモジュール等の接合も可能である。炉
を使用する場合、max温度はSnの場合260℃から350℃ま
でも可能であるが、化合物の形成状態を考慮した条件選
定が必要である。
With this solder foil, die bonding of a Si chip or the like or bonding of a power module or the like can be performed at around 270 ° C. in a hydrogen furnace or an inert atmosphere furnace such as nitrogen. When a furnace is used, the maximum temperature can be from 260 ° C. to 350 ° C. for Sn, but conditions must be selected in consideration of the state of compound formation.

【0056】図4は抵抗加熱体によるダイボンド、及び
水素炉もしくは窒素等の不活性雰囲気炉によるダイボン
ドした代表的な接合部の断面モデルを示す。このように
ダイボンドされたチップの上面からワイヤボンド等によ
り基板の端子に繋ぎ、キャップでチップを封止したり、
樹脂で封止して、さらには基板の周囲に小型のチップ部
品等を接続し(この場合の接続も端子に合った箔を、予
めチップ部品の電極等に仮付けしたものを基板に接続さ
せたり、または熱圧着したものを同時にリフロー炉で接
続することも可能である)、基板の裏面側等から外部接
続端子(通常はSn-3Ag-0.5Cu等のはんだで接合される)を
とることにより、モジュールが出来あがる。
FIG. 4 shows a cross-sectional model of a typical bonded portion formed by die bonding using a resistance heating element and die bonding using a hydrogen furnace or an inert atmosphere furnace such as nitrogen. The top surface of the die-bonded chip is connected to the terminal of the substrate by wire bonding or the like, and the chip is sealed with a cap,
Seal with resin, and then connect a small chip component etc. around the board. (In this case, also connect a foil suitable for the terminal to the board, etc. It is also possible to connect the thermo-compressed parts simultaneously with a reflow furnace), and take external connection terminals (usually joined with solder such as Sn-3Ag-0.5Cu) from the back side of the board etc. By this, a module is completed.

【0057】Cuボール2同志、Cuボールとチップ側のメ
タライズ44(例えばCr-Ni-Au;Auは大変薄いので実質はC
u-Sn-Ni間での合金層の形成)、Cuボールと基板側のメタ
ライズ42(例えばAg-Pd導体にNiめっき;Cu-Sn-Ni間で
の合金層の形成)、とはそれぞれ合金層がしっかり形成
され、連結状態を確保する。チップ側のメタライズの組
合せは多様であるが、はんだのSnと反応するのはCuかNi
が大部分である。表面層に主に酸化防止のためAuが使用
される場合があるが、0.1μmレベル以下でSnに固溶し、
合金層形成には関与しない。他方、基板側も同様に下地
は各種あるが、Snとの反応層はチップ同様NiもしくはCu
である。特殊な場合としてAg、Ag-Pt、Ag-Pd、Au-Pd等
の厚膜導体等もある。パワーもののダイボンドでは熱伝
導の面で、ボイドがあると特性に大きく影響を及ぼすた
め、ボイドレス化が最重要視される。はんだペーストの
場合はフラックスの反応、溶剤の揮発等によりガス量は
多いため、ガスが逃げ易い継手構造、例えば細長い端
子、小型のSiチップのダイボンド等に適用される。従っ
て、中、大型のSiチップのダイボンドでは、不活性雰囲
気で、フラックスレスではんだ箔を用いた抵抗加熱体に
よるダイボンド、もしくは水素炉もしくは窒素等の不活
性雰囲気炉によるダイボンドの使用が一般的である。な
お、本発明で作られたはんだ箔中に内蔵するボイドはCu
粒径が小さくなると多くなる傾向があるが、構造上粒径
以下に細かく分散するため、これまでの大きなボイドの
イメージはなく、特性への影響も少ないことが予想され
る。粒径が3〜8μmのCu粒子、Sn粒子を用いた場合、箔
でのはんだ充填率は約80%であった(ボイド率20%)。この
箔をSnめっきCu板に挟んで窒素雰囲気中でダイボンダー
で加圧接合すると、CuボールとCu板間はしっかりとCu6S
n5の金属間化合物が形成され、しかも、余分なSnははん
だ内部のミクロの空間部(ボイド)に吸収されて、良好な
接合部が得られることが分かった。断面観察結果でも、
接合前の箔の充填率に比べ、接合後の充填率は向上して
いることが確認された。これより、従来の課題であった
ボイドの問題は、本方式においてはそれほどの問題には
ならないことが分かった。なお、Cu粒子径を3μmレベル
もしくはそれ以下に微細化すると、はんだ付け温度が30
0℃以上の高い温度で接続したり、高温での保持時間が
長いとSnとの反応は活発のため、Cu粒子の形は崩れ、Cu
-Sn化合物の連結になることもありうるが、耐高温強度
等の特性自体は変わらない。特に反応を抑えたい場合は
化学Ni/Auめっき(高温でも化合物が厚く形成されにく
い)等を施したり、Ag粒子等を使用することも可能であ
る。Cu粒子が30μm レベルの粗大な場合、ボイド率は3%
以下であり、しかも分散したボイドであることから特性
には影響しないボイドと言える。
The Cu ball 2 and the Cu ball and the metallization 44 on the chip side (for example, Cr-Ni-Au; Au is very thin,
The formation of an alloy layer between u-Sn-Ni) and the metallized 42 on the Cu ball and the substrate side (eg, Ni plating on Ag-Pd conductor; formation of an alloy layer between Cu-Sn-Ni) The layers are firmly formed and ensure a connected state. There are various combinations of metallization on the chip side, but Cu or Ni reacts with solder Sn
Is the majority. Au may be used mainly for oxidation prevention in the surface layer, but it dissolves in Sn below 0.1 μm level,
It does not participate in alloy layer formation. On the other hand, the substrate side also has various bases similarly, but the reaction layer with Sn is Ni or Cu like the chip.
It is. As a special case, there is a thick film conductor such as Ag, Ag-Pt, Ag-Pd, and Au-Pd. In the case of power bonding, voids are of the utmost importance since the presence of voids greatly affects the characteristics of die bonding in terms of heat conduction. In the case of the solder paste, since the gas amount is large due to the reaction of the flux, the volatilization of the solvent, etc., the solder paste is applied to a joint structure in which the gas easily escapes, for example, a thin terminal, a die bond of a small Si chip, and the like. Therefore, in the die bonding of medium and large Si chips, it is common to use a die bonding by a resistance heating element using a solder foil without flux in an inert atmosphere, or a die bonding by an inert atmosphere furnace such as a hydrogen furnace or nitrogen. is there. The voids built into the solder foil made in the present invention are Cu
Although there is a tendency for the particle size to increase as the particle size decreases, the structure is finely dispersed below the particle size, so that there is no image of a large void so far, and it is expected that the influence on the characteristics is small. When Cu particles and Sn particles having a particle size of 3 to 8 μm were used, the solder filling rate in the foil was about 80% (void rate 20%). When this foil is sandwiched between Sn-plated Cu plates and pressure-bonded with a die bonder in a nitrogen atmosphere, Cu6S
It was found that the intermetallic compound of n5 was formed, and the excess Sn was absorbed into the micro space (void) inside the solder, and a good joint was obtained. Even in the cross-section observation results,
It was confirmed that the filling rate after joining was improved compared to the filling rate of the foil before joining. From this, it was found that the problem of voids, which was a conventional problem, does not become a significant problem in the present method. When the Cu particle diameter is reduced to the level of 3 μm or less, the soldering temperature becomes
If the connection is made at a high temperature of 0 ° C or higher, or if the holding time at a high temperature is long, the reaction with Sn is active, so the shape of the Cu particles collapses and Cu
-Sn compounds may be linked, but the properties such as high-temperature strength remain unchanged. Particularly when it is desired to suppress the reaction, chemical Ni / Au plating (the compound is difficult to be formed thick even at a high temperature) or the like can be applied, or Ag particles or the like can be used. When the Cu particles are coarse at the 30 μm level, the void fraction is 3%
It is the following, and since it is a dispersed void, it can be said that the void does not affect the characteristics.

【0058】ところで、上記実施例に示した工程で作製
したはんだ箔はリールに巻いて切断工程を含めて連続供
給できる。従って、温度階層を必要とする部品の封止
部、端子接続部の接続に使用する場合は、パンチング加
工、レーザ加工等でその形状に合わせたものを用いるこ
とができる。そして、その部品の封止部、端子接続部を
パルス方式の加圧型ヒートツールで窒素雰囲気下で加
熱、加圧することでフラックスレスで接続することがで
きる。予熱時の酸化防止、ぬれ性を確保するため、Snめ
っきされたはんだ箔が望ましい。ピッチが粗く、端子数
が少ない部品の接続などははんだ箔の載置、部品端子の
位置決め、パルス電流による抵抗加熱電極による加圧接
続などが容易でやり易い。
By the way, the solder foil produced in the steps shown in the above embodiment can be wound around a reel and continuously supplied including a cutting step. Therefore, when used for connection of a sealing portion and a terminal connection portion of a component requiring a temperature hierarchy, it is possible to use a material that matches the shape by punching, laser processing, or the like. Then, by heating and pressurizing the sealing portion and the terminal connection portion of the component under a nitrogen atmosphere with a pulse-type pressurizing heat tool, the connection can be performed without flux. In order to prevent oxidation during preheating and ensure wettability, a Sn-plated solder foil is preferable. For connection of components having a coarse pitch and a small number of terminals, placement of solder foil, positioning of component terminals, pressure connection by resistance heating electrodes by pulse current, and the like are easy and easy.

【0059】図5(a)はフラックスを用いないで、窒素
雰囲気中でパルス加熱による抵抗加熱体でチップ8と中
継基板36の間に、図5(c)に示すような前述したはんだ
箔39を載せてダイボンドした後、Au線のワイヤボンド
35で、チップ上の端子と中継基板36上の端子とを繋ぎ、
NiめっきしたAl等のキャップ23と中継基板36の間に箔を
載せ、窒素雰囲気中で抵抗加熱体でフラックスレスで封
止を行ったBGA、CSPタイプのチップキャリアの断面であ
る。はんだ箔は被接合体に仮固着して接合することもで
きる。なお、中継基板36は図示しないスルーホールに
より上下間の電気的接続、すなわちチップ8と外部接続
端子との電気的接続を確保している。本構造は、通常の
モジュール構造の代表例であり、図示はしてないが中継
基板36上には抵抗、コンデンサー等のチップ部品が搭
載されても良い。なお、高出力チップの場合、放熱の効
率から熱伝導性に優れるAlN中継基板を使用することが
好ましい。このモジュールの外部接続端子のはんだ組成
はSn-3Ag-0.5Cuで、端子ピッチが広い場合はボールで供
給され、ピッチが狭い場合はペーストで形成される。ま
た、Cu端子もしくはNi-Auめっき端子のままの場合もあ
る。モジュールはこの後、プリント基板上に搭載され、
Sn-3Ag-0.5Cuはんだ(融点:217〜221℃)ペーストで他の
部品と同時に、max240℃でリフロー接続されるが、前述
の通り、このリフロー温度でははんだ箔自体の接合は確
保されるので、高信頼にプリント基板上に接続すること
が出来る。すなわち、モジュール実装における接続とプ
リント基板上の接続とは温度階層接続を実現することが
出来る。外部接続端子の形態はさまざまであるが、いず
れにせよはんだ箔を用いることで外部接続端子とプリン
ト基板との接続に対して温度階層接続を実現することが
出来る。なお、本構造は、基板上に半導体チップをはん
だ箔よりダイボンド接続し、半導体チップの端子と基板
上の端子とをワイヤボンデングにより接続し、基板の裏
面に外部接続端子となるはんだボールを形成した、いわ
ゆるBGAタイプの半導体装置についても適用出来るこ
とは言うまでもない。この場合、チップの搭載面には樹
脂モールドが施される。なお、接続部の外周部のぬれ性
をより良くするため、パルス加熱による抵抗加熱体で接
続後、更に窒素炉もしくは水素炉等でリフローをするこ
とで良好な継手が形成できる。
FIG. 5A shows a state in which the solder foil 39 as shown in FIG. 5C is provided between the chip 8 and the relay substrate 36 by a resistance heating body by pulse heating in a nitrogen atmosphere without using a flux. And then die bond, then Au wire wire bond
At 35, connect the terminal on the chip and the terminal on the relay board 36,
This is a cross section of a BGA / CSP type chip carrier in which a foil is placed between a cap 23 made of Ni-plated Al or the like and a relay substrate 36 and sealed without flux with a resistance heating element in a nitrogen atmosphere. The solder foil can also be temporarily fixed to the object to be joined and joined. The relay board 36 secures an electrical connection between the upper and lower sides, that is, an electrical connection between the chip 8 and an external connection terminal by a through hole (not shown). This structure is a typical example of a normal module structure. Although not shown, chip parts such as a resistor and a capacitor may be mounted on the relay board 36. In the case of a high-output chip, it is preferable to use an AlN relay substrate having excellent thermal conductivity in terms of heat radiation efficiency. The solder composition of the external connection terminals of this module is Sn-3Ag-0.5Cu. When the terminal pitch is wide, it is supplied by a ball, and when the pitch is narrow, it is formed by a paste. In some cases, the Cu terminal or the Ni-Au plated terminal may remain. The module is then mounted on a printed circuit board,
It is reflow-connected at a maximum temperature of 240 ° C with Sn-3Ag-0.5Cu solder (melting point: 217-221 ° C) paste at the same time as other components. It can be connected on a printed circuit board with high reliability. That is, the connection in the module mounting and the connection on the printed board can realize a temperature hierarchical connection. Although the form of the external connection terminal is various, in any case, the use of the solder foil can realize the temperature hierarchical connection for the connection between the external connection terminal and the printed circuit board. In this structure, the semiconductor chip is die-bonded on the board from the solder foil, the terminals of the semiconductor chip and the terminals on the board are connected by wire bonding, and solder balls are formed on the back of the board as external connection terminals. Needless to say, the present invention can be applied to a so-called BGA type semiconductor device. In this case, a resin mold is applied to the chip mounting surface. In order to further improve the wettability of the outer peripheral portion of the connection portion, a good joint can be formed by performing reflow in a nitrogen furnace or a hydrogen furnace after connecting with a resistance heating body by pulse heating.

【0060】図5(b)は、図5(a)に示した構造におい
て窒素雰囲気中でNiめっきしたAlフィン23を、中継基板
43に箔を載せ、抵抗加熱体でフラックスレスで封止を行
った例である。
FIG. 5 (b) shows the structure of FIG. 5 (a) in which a Ni-plated Al fin 23 in a nitrogen atmosphere is connected to a relay substrate.
This is an example in which foil is placed on 43 and fluxless sealing is performed with a resistance heating element.

【0061】図5(b)左はCuボール,Snボールで作ってパ
ンチングで切り抜いたはんだ箔24で、図5(b)右は窒
素雰囲気中でパルス加熱による抵抗加圧体41で、はんだ
箔40(左図のB-B′断面)とNiめっきしたAlフィン23を加
熱して中継基板上の端子部(Ni-Auフラシュ42)に封止す
るモデルの断面である。図5(b)右の状態で接続した後
は図5(a)の接合部24の形状になる。このはんだ箔も前
述同様、図5(C)にしめすようなものを用いた。
FIG. 5 (b) left shows a solder foil 24 made of Cu balls and Sn balls and cut out by punching, and FIG. 5 (b) right shows a resistance pressing body 41 by pulse heating in a nitrogen atmosphere. 40 is a cross-section of a model in which a 40 (BB ′ cross-section in the left figure) and a Ni-plated Al fin 23 are heated and sealed in a terminal portion (Ni-Au flash 42) on the relay board. After connection in the right state in FIG. 5B, the shape of the joint 24 in FIG. 5A is obtained. As shown in FIG. 5 (C), the solder foil used was the same as described above.

【0062】なお、水素等の還元雰囲気炉でのフラック
スレスのリフロー接続も可能である。また、長期間の絶
縁性を確保できるロジンベースのフラックスの場合、腐
食の問題はないので洗浄レスのリフロー接続も製品によ
っては使用が可能である。
A fluxless reflow connection in a furnace for reducing hydrogen or the like is also possible. In addition, in the case of a rosin-based flux that can ensure long-term insulation, there is no problem of corrosion, so that reflow connection without washing can be used depending on the product.

【0063】ところで、リフローの課題は高融点の金属
ボールを用いる場合、はんだ箔の両面で拡散接続をし易
くするため、はんだ箔と接続される側とが接触している
状態を作ることがポイントであり、加圧して接触させる
ことが好ましいこととなる。従って、仮り付け工程もし
くは加圧工程があるプロセスを採用することが好まし
い。例えば、リード、部品の電極部に予め圧接等で固着
して供給しておくことと良い。なお、Zn-Al系の場合は
全てが溶けるタイプなので、その不安はない。
By the way, the problem of reflow is that when using a metal ball having a high melting point, in order to facilitate diffusion connection on both sides of the solder foil, it is important to make a state where the solder foil is in contact with the side to be connected. Therefore, it is preferable that the contact be made under pressure. Therefore, it is preferable to adopt a process having a tacking step or a pressing step. For example, it is preferable to fix and supply the lead and the electrode of the component in advance by pressing or the like. In the case of the Zn-Al system, there is no need to worry because it is a type in which everything melts.

【0064】図6はパワーモジュール接続に適用した例
である。Siチップ8は10mm□レベルの寸法を対象にする
場合が多い。このため、従来は軟らかいPbリッチ系高温
系はんだが使われてきた。Pbフリー化になるとSn-3.5Ag
(221℃)、Sn-0.7Cu(227℃)もしくはSn-5Sb(235℃)があ
る。Sbは環境に対する負荷の問題が有ることを考える
と、Sn-3.5Ag、 Sn-0.7Cu以外はないのが実情である。Z
n-Al系は硬いので、そのままではSiチップ割れを起こす
可能性が大である。
FIG. 6 shows an example applied to a power module connection. In many cases, the size of the Si chip 8 is of the order of 10 mm □. For this reason, soft Pb-rich high-temperature solder has conventionally been used. Sn-3.5Ag when Pb-free
(221 ° C), Sn-0.7Cu (227 ° C) or Sn-5Sb (235 ° C). Considering that there is a problem of environmental load on Sb, there is no actual situation other than Sn-3.5Ag and Sn-0.7Cu. Z
Since the n-Al system is hard, there is a high possibility that the Si chip will be cracked as it is.

【0065】この場合のはんだは階層接続用高温はんだ
と言うよりは、高発熱のため、従来のSn-5Sb等でも信頼
性を確保できないため、Pb-5Sn系を使ってきた経緯があ
る。高Pbはんだに代わるPbフリーのソフトソルダーはな
いので、本案がその代替となる。車では230℃レベルに
達する状態はまれに起こる程度が、要求仕様として示さ
れている。更には、260℃のリフローに耐えられること
も要求されている。この複合はんだは260℃のリフロー
時にSnは溶けるが金属間化合物がネットワークで連結さ
れているため、高温での強度は確保されている。なお、
220℃レベルの高温に曝す機会がある車等において、高
温での瞬時部分溶融防止にはSn系はんだとしてSn-(5〜
7)%Sbはんだ(融点:236〜243℃)ボールを使用すること
で、SnとCuボール間の反応、Snと基板端子(Cu,Ni)との
反応でSb濃度が10%以上になり、下限温度をSn(232℃)以
上の245℃レベルに上昇させることができる。このた
め、220℃になっても部分溶融の心配はなくなる。な
お、280℃での本方式のせん断強度は1N/mm2(0.1kgf
/mm2)以上を確保している。他方、Sn-Ag-Cu系はんだは
Sn-Pb共晶と異なり、強度が高く剛性が強く変形性に劣
ることにより、素子、部品等への悪影響が言われてい
る。このため、柔軟性のあるSn-In系、Sn-Cu-In系、Sn-
(0〜1)Ag-Cu、Sn-(0〜1)Ag-Cu-In系等のはんだを用いる
ことで、はんだの融点は200℃レベルに多少下がって
も、はんだ自体が変形に対応してくれるので、耐衝撃性
が要求される携帯用機器等の実装用の階層はんだとして
の応用が期待できる。当然ながら、2次のはんだ付け時
に必要な強度はネットワーク状に発達したCuとの化合物
連結で高温強度を確保し、特に、最大応力、歪がかかる
チップ、部品等の最外周部では基板の界面部ではCuボー
ルとの化合物形成で、界面近傍での破壊を阻止し、はん
だ内部で破壊するようなネットワーク形成が望ましい構
成である。
In this case, the Pb-5Sn-based solder has been used since the reliability of even the conventional Sn-5Sb or the like cannot be ensured due to high heat generation rather than high-temperature solder for hierarchical connection. Since there is no Pb-free soft solder that can replace high Pb solder, the present invention is an alternative. The condition where the temperature reaches 230 ° C rarely occurs in cars, but it is specified as a required specification. Furthermore, it is also required to withstand 260 ° C. reflow. This composite solder dissolves Sn during reflow at 260 ° C., but has high-temperature strength because the intermetallic compound is connected by a network. In addition,
In vehicles where there is a chance to be exposed to high temperatures of 220 ° C, Sn- (5 ~
7) By using% Sb solder (melting point: 236-243 ° C) ball, the reaction between Sn and Cu ball, the reaction between Sn and substrate terminal (Cu, Ni), the Sb concentration becomes 10% or more, The minimum temperature can be raised to a 245 ° C level above Sn (232 ° C). Therefore, there is no need to worry about partial melting even at 220 ° C. The shear strength of this method at 280 ° C is 1 N / mm2 (0.1 kgf
/ Mm 2 ) or more. On the other hand, Sn-Ag-Cu solder
Unlike Sn-Pb eutectic, it is said that it has high strength, high rigidity, and poor deformability, which has an adverse effect on elements, components, and the like. For this reason, flexible Sn-In, Sn-Cu-In, Sn-
By using (0-1) Ag-Cu, Sn- (0-1) Ag-Cu-In type solder, even if the melting point of the solder falls slightly to the 200 ° C level, the solder itself can respond to deformation. Therefore, it can be expected to be applied as a hierarchical solder for mounting of portable equipment and the like that require impact resistance. Naturally, the strength required at the time of secondary soldering ensures high-temperature strength through compound connection with Cu that has developed in a network, especially at the outermost periphery of chips and components that are subjected to maximum stress and strain. In the part, it is desirable to form a network in which formation of a compound with the Cu ball prevents breakage near the interface and breaks inside the solder.

【0066】そこで、ここではCuボールとSnボールのは
んだ箔を使用する。10〜30μmの軟Cuボールと10〜30μm
のSnボールを重量比で約1:1に混合して、真空中もし
くは還元雰囲気中でSnをCuボール間に塑性流動させ、更
に圧延してはんだ箔を作製する。または、3〜8μmの軟C
uボールと3〜8μmのSnボールを重量比で約1:1に混合
して、真空中もしくは還元雰囲気中でSnをCuボール間に
塑性流動させ、更に圧延してはんだ箔を作製してもよ
い。この箔を必要な寸法に切りだし、NiめっきしたCuリ
ード51とSiチップとの間、Siチップ8とNiめっき46を施
したCuデイスク板(もしくはMoデイスク板)48との間、Cuデ
イスク板48とWメタライズ上にNiめっき49を施したアルミ
ナ絶縁基板50との間、及び同上のアルミナ絶縁基板50と
電気Niめっき46を施したCuベース板49間に、該はんだ箔
を搭載し、280℃の水素炉で一括してリフロー接続し
た。これにより、Cuボール間、CuボールとCuリード間、
Cuボールとチップ間、CuボールとNiめっきCu板間、Cuボ
ールとNiめっきアルミナ絶縁基板間、CuボールとNiめっ
きCuベース間等のCuとNi金属間化合物による接合がなさ
れる。これで接続したものは、既に、耐高温の金属間化
合物(Cuの場合はCu6Sn5、Niの場合はNi3Sn4)で連結され
るので、260℃(260℃〜280℃でも可)で強度を保持
し、後工程のリフローで問題になることはない。この継
手を温度サイクル試験、パワーサイクル試験にかけて
も、これまでの高Pb入りはんだと同等な寿命を有するこ
とを確認できた。
Therefore, here, a solder foil of Cu ball and Sn ball is used. 10-30μm soft Cu ball and 10-30μm
Are mixed in a weight ratio of about 1: 1 and Sn is plastically flowed between Cu balls in a vacuum or a reducing atmosphere, and further rolled to produce a solder foil. Or 3 ~ 8μm soft C
Even if u ball and 3-8 μm Sn ball are mixed at a weight ratio of about 1: 1 and Sn is plastically flowed between Cu balls in a vacuum or reducing atmosphere, and further rolled to produce a solder foil, Good. The foil is cut to the required size, and between the Ni-plated Cu lead 51 and the Si chip, between the Si chip 8 and the Ni-plated Cu disk (or Mo disk) 48, the Cu disk The solder foil was mounted between 48 and the alumina insulating substrate 50 on which the Ni plating 49 was applied on the W metallization, and between the alumina insulating substrate 50 and the Cu base plate 49 on which the electric Ni plating 46 was applied. A reflow connection was made in a lump in a hydrogen furnace at ℃. Thereby, between Cu balls, between Cu balls and Cu leads,
Bonding between Cu and Ni intermetallic compounds such as between Cu balls and chips, between Cu balls and Ni-plated Cu plates, between Cu balls and Ni-plated alumina insulating substrates, and between Cu balls and Ni-plated Cu bases. Connections made with this are already connected by a high-temperature resistant intermetallic compound (Cu6Sn5 for Cu, Ni3Sn4 for Ni), so the strength is maintained at 260 ° C (260 ° C to 280 ° C is possible). There is no problem in the reflow in the post-process. The joint was subjected to a temperature cycle test and a power cycle test, and it was confirmed that the joint had a life equivalent to that of the conventional high-Pb solder.

【0067】更に、Snめっきされたプラスチックボール
のゴムを分散させることで低ヤング率化により、より耐
熱衝撃性を向上させることができ、より大型Siチップ
の接合を可能にする。なお、パルス加熱方式のダイボン
ダーで窒素を吹き付け、max350℃、5秒間(5〜10秒間
でも可)で加圧接合する方式でも実装が可能である。ま
た、パルス加熱方式で仮付けし、界面での接触を確実に
した後、水素炉で一括してリフローすることで、外周部
のぬれ確保、接合界面の接続を確実にすることが可能で
ある。なお、チップ周辺部はスムーズなフィレットを形
成することが望ましいので、はんだ箔の外周部にSnだけ
の層を設けることも可能である。
Further, by dispersing the rubber of the Sn-plated plastic ball, the Young's modulus can be reduced, so that the thermal shock resistance can be further improved and a larger Si chip can be joined. In addition, mounting can also be carried out by a method in which nitrogen is blown by a pulse heating type die bonder and pressure bonding is performed at a maximum temperature of 350 ° C. for 5 seconds (5 to 10 seconds is also possible). In addition, it is possible to secure the wetness of the outer peripheral portion and secure the connection of the bonding interface by temporarily attaching by the pulse heating method and ensuring the contact at the interface, and then reflowing at once in a hydrogen furnace. . Since it is desirable to form a smooth fillet in the peripheral portion of the chip, it is also possible to provide a layer of only Sn on the peripheral portion of the solder foil.

【0068】Cuボールの代わりに、Zn-Al系(Zn-Al-Mg、
Zn-Al-Ge、Zn-Al-Mg-Ge、Zn-Al-Mg-Ga等)はんだボール
にSn、In等のボール、更にはSnめっきされたプラスチッ
クボールのゴムを分散混入した圧延箔を用いた結果、同
様に耐温度サイクル性、耐衝撃性を緩和し、高信頼性を
確保することができる。Zn-Al系はんだのみでは硬く(約
Hv120〜160)、剛性が高いので大型Siチップは、容易に
破壊する恐れがある。そこで、一部、ボール周辺に軟ら
かい低温のSnの層、Inの層が存在することにより、ま
た、ゴムがボールの周囲に分散することにより、変形さ
せる効果がでて剛性を低下させ、信頼性を向上させるこ
とができる。
Instead of the Cu ball, a Zn-Al system (Zn-Al-Mg,
(Sn-Al-Ge, Zn-Al-Mg-Ge, Zn-Al-Mg-Ga, etc.) As a result of the use, similarly, the temperature cycle resistance and the impact resistance can be reduced, and high reliability can be ensured. Only Zn-Al solder is hard (about
Hv120-160), the rigidity is high, so large Si chips may be easily broken. Therefore, the presence of a soft low-temperature Sn layer and an In layer partially around the ball, and the dispersion of rubber around the ball have the effect of deforming, lowering rigidity and reducing reliability. Can be improved.

【0069】また、低熱膨張フィラー(SiO2、AlN、イン
バー等)にNiめっき、Ni-Auめっきした粒子を混入するこ
とで、Si等に熱膨張係数が近づき、作用する応力が小さ
くなり長寿命化が期待できる。
Also, by mixing Ni-plated or Ni-Au-plated particles into low thermal expansion fillers (SiO2, AlN, Invar, etc.), the thermal expansion coefficient approaches that of Si, etc., and the acting stress is reduced, resulting in a longer life. Can be expected.

【0070】図7は携帯電話等に使用される信号処理用
に使われる高周波用RF(RadioFrequency)モジュールを
プリント基板に実装した例を示す。
FIG. 7 shows an example in which a high-frequency RF (Radio Frequency) module used for signal processing used in a cellular phone or the like is mounted on a printed circuit board.

【0071】この種の形態は熱伝導性に優れた中継基板
に素子裏面をダイボンドし、ワイヤボンドで中継基板の
端子部にひきまわされる方式が一般的である。数個のチ
ップと周囲にR,C等のチップ部品を配し、MCM(マ
ルチ・チップ・モジュール)化している例が多い。従来
のHIC(Hybrid IC)、パワーMOSIC等は代表例で
ある。モジュール基板材料としてSi薄膜基板、低熱膨張
係数で高熱伝導のAlN基板、低熱膨張係数のガラスセラ
ミック基板、熱膨張係数がGaAsに近いAl2O3基板、高耐
熱性で熱伝導を向上させたインバー等のメタルコア有機
基板等がある。
In this type of form, a method is generally used in which the back surface of the element is die-bonded to a relay substrate having excellent thermal conductivity, and the wire is spread over the terminal portion of the relay substrate by wire bonding. In many cases, chip parts such as R, C, etc. are arranged around several chips to form an MCM (multi-chip module). Conventional HICs (Hybrid ICs) and power MOSICs are typical examples. Metal core such as Si thin film substrate, AlN substrate with low thermal expansion coefficient and high thermal conductivity, glass ceramic substrate with low thermal expansion coefficient, Al2O3 substrate with thermal expansion coefficient close to GaAs, Invar with high heat resistance and improved thermal conductivity as module substrate material There are organic substrates and the like.

【0072】図7(a)はSiのモジュール基板29 上にSiチ
ップ8を実装した例である。Siのモジュール基板29上で
はR、C等は薄膜で形成できるのでより高密度実装が可能
であり、主にSiチップ8のみフリップチップ実装され
る。プリント基板22への実装はQFP-LSI型で柔らかいCu
系リード20を介して行う。リード20とSi基板29との接続
は本案の切断したはんだ箔17を用いて、加圧、加熱して
行う。その後、シリコーン等の柔らかい樹脂19で最後に
保護、補強を行う。Siチップのはんだバンプ18 をSn-3A
g(融点:221℃)で構成し中継基板29に接続する。プリン
ト基板22へはSn-Ag-Cu系Pbフリーはんだ21により接続す
る。はんだバンプ18は、Sn-Ag-Cu系Pbフリーはんだ21の
リフロー時に再溶融してもプリント基板22への実装にお
けるSiチップ8の自重により変化することは殆どなく、
かつSi-Siの接続のため応力的負担はなく、信頼性上問
題はない。プリント基板22への実装が終わった後で、Si
チップ8上には保護のためシリコンゲル12等をコートす
ることも可能である。
FIG. 7A shows an example in which a Si chip 8 is mounted on a Si module substrate 29. Since R, C, and the like can be formed on the Si module substrate 29 by a thin film, higher-density mounting is possible. Only the Si chip 8 is mainly flip-chip mounted. Mounting on printed circuit board 22 is QFP-LSI type and soft Cu
This is performed via the system lead 20. The connection between the lead 20 and the Si substrate 29 is performed by pressing and heating using the cut solder foil 17 of the present invention. Thereafter, protection and reinforcement are finally performed with a soft resin 19 such as silicone. Sn-3A solder bump 18 of Si chip
g (melting point: 221 ° C.) and connected to the relay board 29. The printed circuit board 22 is connected by Sn-Ag-Cu-based Pb-free solder 21. Even if the solder bumps 18 are re-melted during reflow of the Sn-Ag-Cu-based Pb-free solder 21, the solder bumps 18 hardly change due to the weight of the Si chip 8 in mounting on the printed circuit board 22.
In addition, there is no stress load due to the Si-Si connection, and there is no problem in reliability. After the mounting on the printed circuit board 22, the Si
The chip 8 can be coated with a silicone gel 12 or the like for protection.

【0073】また、他の方法としてSiチップ8のはんだ
バンプ18をAuのボールバンプにして、中継基板29上に形
成する端子にSnめっきを施すと、熱圧着によりAu-Sn接
合を得ることができ、プリント基板22への実装における
250℃のリフロー温度では溶けることはなく、従って、
温度階層接続が可能であり、リフローに十分耐えられる
接合となる。
As another method, when the solder bumps 18 of the Si chip 8 are made of Au ball bumps and the terminals formed on the relay board 29 are plated with Sn, an Au-Sn bond can be obtained by thermocompression bonding. Can be mounted on the printed circuit board 22
It does not melt at a reflow temperature of 250 ° C, so
A temperature hierarchy connection is possible, and the junction is sufficiently resistant to reflow.

【0074】はんだ箔17による接続は、前述の如く、Cu
などの金属ボール間に形成される金属間化合物により接
合が保たれており、プリント基板22への実装における25
0℃のリフロー温度においても強度を確保することが出
来る。これによって今までの大きな課題であった温度階
層をつけた鉛フリー接続を実現することが出来る。
The connection by the solder foil 17 is made of Cu, as described above.
Bonding is maintained by an intermetallic compound formed between metal balls such as
Strength can be ensured even at a reflow temperature of 0 ° C. This makes it possible to realize a lead-free connection with a temperature hierarchy, which has been a major issue so far.

【0075】なお、Si基板に代えて、AlN基板、ガラス
セラミック基板、Al2O3基板等の厚膜基板を用いた場
合、R、C等のチップ部品の搭載は機能素子を作る上で必
要である。他方、厚膜ペーストでレーザートリミングに
よるR、C形成方法もある。厚膜ペーストによるR、Cの場
合、上記Si基板と同様な実装方式が可能である。
When a thick film substrate such as an AlN substrate, a glass ceramic substrate, or an Al2O3 substrate is used in place of the Si substrate, mounting of chip components such as R and C is necessary for producing a functional element. On the other hand, there is a method of forming R and C by laser trimming with a thick film paste. In the case of R and C using a thick film paste, a mounting method similar to that of the above-mentioned Si substrate is possible.

【0076】図7(b)はGaAsチップ8を熱伝導性、機械的
特性に優れるAl2O3モジュール基板29を用いたモジュー
ルをAlフィン23のケースで絶縁封止した場合である。 G
aAsとAl2O3とは熱膨張係数が近いのでフリップチップ実
装は信頼性上問題はない。これらのチップ部品の端子接
続は端子面積が□0.6mm以上であれば、はんだ厚t;0.05
〜0.10の箔とし端子数の少ない素子、チップ部品に仮付
けして、あるいは基板側の端子に仮付けして、個別に抵
抗加熱体で窒素雰囲気の加圧接続で、あるいは還元雰囲
気もしくは不活性雰囲気のリフローでの接続が可能であ
る。また、はんだ厚t;0.15〜0.25の箔を用いることも
可能である。高出力対応には、ここでは示してないが、
チップ搭載法としては本案の箔を用い(チップ裏面8)、
ダイボンドし、端子はワイヤボンドする方法が一般的で
ある。
FIG. 7B shows a case where a GaAs chip 8 is insulated and sealed with a module using an Al 2 O 3 module substrate 29 having excellent thermal conductivity and mechanical properties in a case of Al fins 23. G
Since aAs and Al2O3 have similar thermal expansion coefficients, there is no problem in flip chip mounting in reliability. If the terminal area of these chip parts is 0.6 mm or more, solder thickness t: 0.05
Temporarily attached to an element or chip component with a small number of terminals as a foil of ~ 0.10, or temporarily attached to the terminal on the substrate side, individually by pressure connection in a nitrogen atmosphere with a resistance heating element, or in a reducing atmosphere or inert Connection by atmosphere reflow is possible. It is also possible to use a foil having a solder thickness t of 0.15 to 0.25. Although not shown here for high output,
As the chip mounting method, use the foil of the present invention (chip back surface 8),
In general, a die bonding method and a terminal wire bonding method are used.

【0077】Alフィン接続の場合はフィンの周囲を取り
巻く形状の箔を用い、窒素雰囲気で抵抗加熱体で加圧接
続する。図7(c)は左側が端子接続の例で、右側はAlフ
ィン23の例であり、共に該はんだ箔27をモジュール基板
の端子28とフィン接続部の端子間に挟んで接合する。こ
の時、はんだ箔は予め基板かフィンのどちらかに仮付け
しておくと良い。Alの場合は端子部はNiめっき等が施さ
れている。
In the case of Al fin connection, a foil having a shape surrounding the fin is used, and pressure connection is performed with a resistance heating element in a nitrogen atmosphere. FIG. 7 (c) shows an example of terminal connection on the left side and an example of Al fin 23 on the right side. At this time, the solder foil may be temporarily attached to either the substrate or the fin in advance. In the case of Al, the terminal portion is plated with Ni or the like.

【0078】図7(d)はインバー等のCの有機基板32に実
装する段取りのモデルである。発熱チップは低熱膨張で
耐熱性に優れるメタルコアのポリイミド等の有機基板、
高密度実装に対応したビルドアップ基板等を使用すれ
ば、GaAsチップを直接に搭載することが可能である。高
発熱チップの場合、ダミーの端子を設け、直接熱がメタ
ルに伝導させることも可能である。
FIG. 7D shows a model of a setup to be mounted on a C organic substrate 32 such as Invar. The heat-generating chip is an organic substrate made of metal core polyimide, etc.
If a build-up board or the like that supports high-density mounting is used, it is possible to directly mount a GaAs chip. In the case of a high heat generation chip, a dummy terminal can be provided to directly conduct heat to the metal.

【0079】なお、本案の素子への実施例として、RF
モジュールを取り上げたが、各種移動体通信機用のバン
ドパスフィルタとして使用されているSAW(弾性表面
波)素子構造、PA(高周波電力増幅器)モジュール、他
のモジュール、素子等に対しても同様に応用できる。ま
た、製品分野としては、携帯電話、ノートパソコン等に
限らずデジタル化時代を迎え、新たな家電品等に使用で
きるモジュール実装品を含む。
As an embodiment for the device of the present invention, RF
Although the module was taken up, the same applies to SAW (surface acoustic wave) element structure, PA (high frequency power amplifier) module, other modules and elements used as bandpass filters for various mobile communication devices. Can be applied. The product field is not limited to mobile phones and notebook computers, but includes a module mounted product that can be used for new home appliances and the like in the digital age.

【0080】図8はRFモジュール実装への応用を更に具
体化したものである。図8(a)はモジュールの断面図で
あり、図8(b)は上面に部材23を透かしてみた平面図の
モデルである。実際の構造は、電波を発生する約□2mm
チップ8のMOSFET素子がマルチバンド化に対応するた
め、数個フェースアップ接続で搭載されており、更に周
辺には効率良く電波を発生させる高周波回路がR,Cチッ
プ部品52等で形成されている。チップ部品も小型化さ
れ、1005等が使用されていて、モジュールの縦横寸法も
7×14程度で高密度実装されている。ここでは、はん
だの機能面のみを考慮し、代表して素子を1個、チップ
部品を1個搭載したモデルの例で示す。なお、後述する
ようにチップ8、チップ部品52はAl2O3基板13にはんだ接
続されている。チップ8の端子はAl2O3基板13の有する電
極にワイヤボンデングにより接続され、さらにスルーホ
ール59、厚膜導体61を介して基板裏面の外部接続部とな
る厚膜電極60と電気的に接続される。チップ部品52は基
板13の有する電極と半田接続され、さらにスルーホール
59、配線61を介して基板裏面の外部接続部となる厚膜電
極60と電気的に接続される。図示はしていないが、チッ
プやチップ部品と接続する基板の有する電極62とスルー
ホール59とは配線により電気的に接続されている。モジ
ュール全体を覆う部材(Alフィン)23とAl2O3基板13と
は、かしめなどにより接合される。また、本モジュール
は、プリント基板などに対して外部接続部となる厚膜電
極60とのはんだ接続により実装されるものであり、温度
階層接続が必要となるものである。
FIG. 8 shows a more specific application to RF module mounting. FIG. 8A is a cross-sectional view of the module, and FIG. 8B is a plan view model in which the member 23 is seen through the upper surface. The actual structure is about □ 2mm that generates radio waves
Several MOSFET elements of chip 8 are mounted face-up in order to support multi-band, and high frequency circuits that efficiently generate radio waves are formed by R, C chip parts 52 etc. in the periphery . Chip components have also been miniaturized, 1005 and the like have been used, and the modules have a vertical and horizontal dimension of about 7 × 14 and are mounted at high density. Here, only the functional aspect of solder is taken into consideration, and an example of a model in which one element and one chip component are mounted is shown as a representative. Note that the chip 8 and the chip component 52 are soldered to the Al2O3 substrate 13 as described later. The terminals of the chip 8 are connected to the electrodes of the Al2O3 substrate 13 by wire bonding, and are further electrically connected to the thick-film electrodes 60 serving as external connection portions on the back surface of the substrate via the through-holes 59 and the thick-film conductors 61. . The chip component 52 is connected to the electrode of the substrate 13 by soldering,
59, it is electrically connected to the thick film electrode 60 serving as an external connection portion on the back surface of the substrate via the wiring 61. Although not shown, the electrode 62 of the substrate connected to the chip or chip component and the through hole 59 are electrically connected by wiring. The member (Al fin) 23 that covers the entire module and the Al2O3 substrate 13 are joined by caulking or the like. In addition, this module is mounted on a printed circuit board or the like by solder connection with a thick film electrode 60 serving as an external connection portion, and requires temperature hierarchical connection.

【0081】図9は図8に示す構造においてはんだ箔を
使用したSi(もしくはGaAs)チップのダイボンドを前提と
した4つのプロセスを示すフローチャート図である。
(1)、(2)のプロセスは1005等の小型のR、Cチップ部品に
対して、作業性から従来のAgペーストを選択する方式
で、(1)は基板表面が清浄な状態でフラックスレスで窒
素雰囲気で短時間ではんだ箔を用いてダイボンドした
後、ワイヤボンドし、その後、Agペーストでチップ部品
を接続する方式である。(2)は先にAgペーストでチップ
部品を接続する方式であり、樹脂硬化のために炉を用い
ると基板表面が汚れ、後工程のワイヤボンドに影響を及
ぼす恐れがあるので、その場合は洗浄してワイヤボンド
することになる。(3)は、同じく高温側の温度階層性を
確保するため、接合原理ははんだ箔と同様であるが、小
型のチップ部品に対しては作業性に優れる金属ボールと
はんだボールとの混合ペーストで供給する方式であり、
印刷でも、デイスペンサーでも可能である。リフロー後
洗浄し、高出力Siチップには極力ボイドレス化が要求さ
れるので、ボイドレス化に適しているはんだ箔のダイボ
ンドを行い、最後にワイヤボンドを行う。なお、(3)の
工程で先にダイボンド、ワイヤボンドを行えば、フラッ
クスの洗浄工程を省くことも可能である。(4)は先にダ
イボンド、ワイヤボンドする方式で、後工程で二つの考
え方がある。一つは、後工程で、チップ部品を一個づつ
窒素雰囲気でフラックスレスで接続する方式である。こ
の方式は時間がかかる欠点がある。そこで、もう一つ
は、(4)に示したプロセスで、チップ部品に対して、フ
ラックスを用いて仮付け程度にし、後でリフローで一括
接続する方式である。具体的には、ダイボンド、ワイヤ
ボンドした後、例えばCuボールとSnボールで構成され、
表面に約1μmのSnめっきを施した複合はんだ箔(予めチ
ップ部品にはNiめっきされている場合がほとんどで、そ
の場合はSnめっきは不要である)を、ほぼ電極寸法に切
断し、部品の電極部に加圧加熱(フラックスを用いても
良い)により仮固着させ、仮固着した該部品をAl2O3基板
上のW-Ni-Auめっき電極部に熱圧着ではんだが塑性変形
する程度に仮固着させることが好ましい。なお、個々の
部品を一個づつ、窒素雰囲気下でパルスの抵抗加熱体で
300〜350℃で5秒間押しつければ、確実に金属間化合物
が形成され、連結されて、260℃以上の高温でも強度を
保つことは言うまでもない。そして、リフロー炉(max27
0〜320℃)に通せば、圧着している部分はCu、Niともに
合金層の連結で繋がれる。この連結は完全である必要は
なく、どこかで繋がれていれば、強度は小さくても高温
時に問題になることはない。
FIG. 9 is a flowchart showing four processes on the assumption of die bonding of a Si (or GaAs) chip using a solder foil in the structure shown in FIG.
Processes (1) and (2) use a conventional Ag paste for workability of small R and C chip components such as 1005, and (1) is fluxless with a clean substrate surface. This is a method in which die bonding is performed using a solder foil in a short time in a nitrogen atmosphere, followed by wire bonding, and thereafter, chip components are connected with an Ag paste. (2) is a method of connecting chip components with Ag paste first.If a furnace is used to cure the resin, the surface of the substrate may be stained, which may affect wire bonding in the subsequent process. Wire bonding. In (3), the bonding principle is the same as that of the solder foil in order to secure the temperature hierarchy on the high-temperature side as well, but for small chip components, a mixed paste of metal balls and solder balls, which has excellent workability, is used. Supply method,
It can be printed or dispensed. After reflow cleaning, high output Si chips are required to be voided as much as possible. Die bonding of solder foil suitable for voiding is performed, and finally wire bonding is performed. In addition, if die bonding and wire bonding are performed first in the step (3), the flux cleaning step can be omitted. (4) is a method in which die bonding and wire bonding are performed first, and there are two concepts in a later process. One is a method of connecting chip components one by one in a post-process without flux in a nitrogen atmosphere. This method has the disadvantage of being time consuming. Therefore, the other is a method shown in (4), in which a chip component is temporarily attached to a chip component by using a flux, and later connected collectively by reflow. Specifically, after die bonding and wire bonding, for example, it is composed of Cu ball and Sn ball,
Cut the composite solder foil with approximately 1μm of Sn plating on the surface (in most cases, chip components are pre-coated with Ni plating, in which case Sn plating is unnecessary) to approximately the electrode dimensions. Temporarily fixed to the electrode part by pressurizing and heating (or flux may be used), and temporarily fix the temporarily fixed part to the W-Ni-Au plating electrode part on the Al2O3 substrate to the extent that the solder is plastically deformed by thermocompression bonding Preferably. In addition, each individual part is pulsed under a nitrogen atmosphere with a resistance heater.
When pressed at 300 to 350 ° C. for 5 seconds, the intermetallic compound is surely formed and connected, and it is needless to say that the strength is maintained even at a high temperature of 260 ° C. or higher. And reflow furnace (max27
(0-320 ° C.), the pressed portions are connected by the connection of the alloy layers for both Cu and Ni. This connection need not be perfect, and if connected somewhere, there is no problem at high temperatures, even if the strength is low.

【0082】小型チップ部品は、素子ほどは高温になら
ないが、長期に使用した場合、Agペーストの劣化が問題
になる場合には、本発明の構成要素のはんだを用いるこ
とにより、高信頼性を確保できる。課題は小型のチップ
部品に対して、1個づつ確実に熱圧着で固着すると手間
がかかることである。
Although the small chip component does not become as high in temperature as the element, if it is used for a long time and the Ag paste deteriorates, the reliability of the component of the present invention is improved by using the solder of the present invention. Can be secured. The problem is that it takes time to securely fix each small chip component by thermocompression bonding.

【0083】図8(C)は、前述のモジュールをプリン
ト基板22にはんだ接続した例であり、モジュールのほ
か、電子部品52やBGAタイプの半導体装置が半田接続
されている。半導体装置は、半導体チップ8を中継基板4
3上に前述のはんだ箔によりフェースアップの状態で接
続し、半導体チップ8の端子と中継基板43の有する端子
とをワイヤボンデイング35により接続したものであり、
その周りはレジン58により樹脂封止されている。また中
継基板43の下側にははんだボールバンプ21が形成されて
いる。はんだボールバンプ21には、例えばSn-2.5Ag-0.5
Cuのはんだが用いられる。なお、はんだボール30とし
ては、Sn-(1〜2.5)Ag-0.5Cuが望ましく、例えばSn-1.0A
g-0.5Cuを用いても良い。また、その裏面にも電子部品
が半田接続されており、いわゆる両面実装の例となって
いる。
FIG. 8C shows an example in which the above-described module is connected to the printed circuit board 22 by soldering. In addition to the module, an electronic component 52 and a BGA type semiconductor device are connected by soldering. In the semiconductor device, the semiconductor chip 8 is connected to the relay substrate 4
3 is connected in a face-up state by the aforementioned solder foil, and the terminals of the semiconductor chip 8 and the terminals of the relay board 43 are connected by wire bonding 35,
The periphery thereof is resin-sealed with a resin 58. The solder ball bumps 21 are formed below the relay board 43. For example, Sn-2.5Ag-0.5
Cu solder is used. The solder ball 30 is preferably Sn- (1 to 2.5) Ag-0.5Cu, for example, Sn-1.0A
g-0.5Cu may be used. An electronic component is also soldered to the back surface, which is an example of so-called double-sided mounting.

【0084】実装の形態としては、まず、プリント基板
上の電極部分に、例えばSn-3Ag-0.5Cuはんだ(融点:217
〜221℃)ペーストを印刷する。そして、まず、電子部品
54の搭載面側から半田接続を行うために、電子部品54を
搭載し、max240℃でリフロー接続することで実現する。
次に、電子部品、モジュール、半導体装置を搭載し、ma
x240℃でリフロー接続することで両面実装を実現する。
このように、先に耐熱性のある軽い部品をリフローし、
後で、耐熱性のない、重い部品を接続するのが一般的で
ある。後でリフロー接続する場合、最初に接続した側の
はんだを再溶融させないことが理想である。
As a mode of mounting, first, for example, Sn-3Ag-0.5Cu solder (melting point: 217
Print the paste. And first, electronic components
In order to perform solder connection from the mounting surface side of 54, this is realized by mounting the electronic component 54 and performing reflow connection at a maximum of 240 ° C.
Next, electronic components, modules, and semiconductor devices are mounted, and ma
Realizes double-sided mounting by reflow connection at x240 ° C.
In this way, reflow the light parts with heat resistance first,
It is common to later connect heavy parts that do not have heat resistance. When reflow connection is performed later, it is ideal that the solder on the first connection side is not melted again.

【0085】前述の通り、この場合もプリント基板への
実装時のリフロー温度では、モジュール内の接続に用い
たはんだ箔自体の接合は確保されるので、モジュールや
半導体装置を高信頼にプリント基板上に接続することが
出来る。すなわち、半導体装置やモジュー内の接続とプ
リント基板上の接続との温度階層接続を実現することが
出来る。なお、プリント基板の両面を同一のはんだによ
り接続したが、電子部品54として1005等の重量のない小
型部品においては、電子部品、モジュール、半導体装置
のリフロー接続においてはんだが溶融したとしても、そ
れ自体が軽いため重力よりも表面張力の作用が勝り、落
下することはない。従って、最悪のケースを考えた場
合、基板の端子との金属間化合物はできずに単にSnで接
合されただけでも問題は起きない。なお、モジュール内
において実装した小型部品に対しては、Cu,Snを混合し
たはんだ箔を仮固着する方式より、Cu,Snを混合したは
んだペーストを使用する組合せが生産性を考慮すると望
ましい。
As described above, also in this case, the bonding of the solder foil itself used for connection in the module is secured at the reflow temperature during mounting on the printed circuit board, so that the module or the semiconductor device can be mounted on the printed circuit board with high reliability. Can be connected. That is, the temperature hierarchical connection between the connection in the semiconductor device or the module and the connection on the printed board can be realized. Although both sides of the printed circuit board were connected by the same solder, small-sized electronic parts such as 1005 as the electronic parts 54, even when the solder was melted in the reflow connection of the electronic parts, modules, and semiconductor devices, did not change. Because of its light weight, the action of surface tension is greater than gravity, and it does not fall. Therefore, when the worst case is considered, no problem occurs even if the intermetallic compound with the terminal of the substrate is not formed and the connection is made only by Sn. For a small component mounted in a module, a combination using a solder paste containing a mixture of Cu and Sn is more desirable than a method of temporarily fixing a solder foil containing a mixture of Cu and Sn in consideration of productivity.

【0086】次に、モータドライバーIC等の高出力チッ
プの樹脂パッケージへの適用例を示す。図10(a)はリ
ードフレーム65と熱拡散板64とを張り合わせてかしめた
平面図で、かしめ個所63は2個所である。図10(b)は
パッケージの断面図であり、図10(c)はその一部の拡
大である。3Wレベルの発熱チップ8からの熱ははんだ47
を介してヘッダの熱拡散板(Cu系の低膨張複合材)64に伝
わる。リード材は例えば42Alloy系の材料で構成する。
Next, an example of application of a high-output chip such as a motor driver IC to a resin package will be described. FIG. 10A is a plan view in which the lead frame 65 and the heat diffusion plate 64 are adhered and caulked, and there are two caulking points 63. FIG. 10B is a sectional view of the package, and FIG. 10C is an enlarged view of a part thereof. Heat from 3W level heating chip 8 is solder 47
Through the heat diffusion plate (Cu-based low expansion composite material) 64 of the header. The lead material is made of, for example, a 42Alloy-based material.

【0087】図11はパッケージの工程図を示す。ま
ず、リードフレームと熱拡散板(ヒートシンク)をかし
め接合する。そして、かしめ接合された熱拡散板64上
にはんだ(箔)47を介して半導体チップ8をダイボンド
接続する。ダイボンド接続された半導体チップ8は、さ
らに図示するように、リード56と金線35などにより
ワイヤボンデングされる。その後、樹脂モールト゛され、ダ
ム57切断後、Sn系はんだめっきが施される。そして、リ
ード切断成形され、熱拡散板の切断が行われ完成する。
Siチップ8の裏面の電極は、Cr-Ni-Au、Cr-Cu-Au、Ti-Pt
-Au、Ti-Ni-Au等の一般に使用されるメタライズであれ
ば可能である。Auが多い場合も、Au-Snの融点の高いAu
リッチ側の化合物が形成されれば良い。チップのダイボ
ンドは窒素を吹き付けて、パルスの抵抗加熱体で、初期
加圧2kgf、350℃で5秒間で行った。はんだ厚の制御は初
期加圧時の位置(70μm膜厚)から10μm下がったところで
セットされ、耐熱疲労性向上のため、機構上、膜厚を確
保するシステムになっている。上記以外に、初期加圧1
kgf、350℃で5〜10秒間で行った。はんだ厚の制御は初
期加圧時の位置(150μm膜厚) から10μm下がったところ
でセットされても同様であった。高出力チップのため、
ボイド率低減が重要であり、目標の5%以下を達成でき
た。該はんだはCuボールが均一に分散された状態で入っ
ているため、構造的に大きなボイドが発生し難くなって
いる。厳しい熱疲労に対しても、Sn、Sn系はんだ自体の
耐熱疲労性は優れており、かつ変形性にも優れている。
更には、Cu粒子間、Cu粒子と電極間でネットワーク上に
金属間化合物が形成されるので、260℃以上の高温でも
強度を確保する。Cu粒子間等が強く結合し過ぎると(Cu
粒子間等で合金層形成面が多い)、拘束され自由度がな
くなり、強い弾性体結合になるので、素子等に対して良
くはない。適度の結合が存在する。特に、チップ周辺部
において、従来はんだでは応力集中する接合界面近傍で
破壊して、はんだ内部では破壊が起こり難い状況であっ
た。本方式では接合界面はCuボールとの反応で界面破壊
が起こり難く、はんだ内部で破壊できるネットワーク形
成にすることが可能である。ダイボンド、ワイヤボンド
後、樹脂モールドされ、ダム57切断され、リードにはSn
-Bi、Sn-Ag、Sn-Cu系のPbフリーはんだめっきが2〜8μm
施される。更に、リード切断成形され、不要な部分の熱
拡散板を切断して完成する。
FIG. 11 shows a process chart of the package. First, a lead frame and a heat diffusion plate (heat sink) are caulked and joined. Then, the semiconductor chip 8 is die-bonded via the solder (foil) 47 onto the caulked and bonded heat diffusion plate 64. The semiconductor chip 8 connected by die bonding is wire-bonded with the lead 56 and the gold wire 35 as shown in the figure. Then, it is resin-molded, and after cutting the dam 57, Sn-based solder plating is performed. Then, lead cutting and molding are performed, and the thermal diffusion plate is cut to complete.
The electrodes on the back of the Si chip 8 are Cr-Ni-Au, Cr-Cu-Au, Ti-Pt
Any commonly used metallization such as -Au, Ti-Ni-Au can be used. Au with high melting point of Au-Sn
It suffices if a compound on the rich side is formed. Die bonding of the chip was performed by blowing nitrogen and using a pulsed resistance heater at an initial pressure of 2 kgf at 350 ° C. for 5 seconds. The solder thickness control is set at a position 10 μm below the initial pressurization position (70 μm film thickness), and the system is mechanically secured to improve the thermal fatigue resistance. In addition to the above, initial pressure 1
Kgf was performed at 350 ° C. for 5 to 10 seconds. The control of the solder thickness was the same even if it was set at a position 10 μm below the position at the time of the initial pressurization (150 μm film thickness). Because of high output chip,
It is important to reduce the void fraction, and the target of 5% or less was achieved. Since the solder contains Cu balls in a state of being uniformly dispersed, structurally large voids are hardly generated. Even with severe thermal fatigue, the Sn, Sn-based solder itself has excellent thermal fatigue resistance and excellent deformability.
Further, since an intermetallic compound is formed on the network between the Cu particles and between the Cu particles and the electrode, the strength is secured even at a high temperature of 260 ° C. or higher. If the Cu particles are too strongly bonded (Cu
(There are many alloy layer formation surfaces between particles and the like), and there is no degree of freedom due to restraint, and a strong elastic body bond is formed, which is not good for elements and the like. There is a modest binding. In particular, in the peripheral portion of the chip, the conventional solder breaks down near the joint interface where stress is concentrated, and hardly breaks down inside the solder. In this method, the interface between the bonding interface and the Cu ball hardly undergoes interface destruction, and it is possible to form a network that can be destroyed inside the solder. After die bonding and wire bonding, resin molding was performed, dam 57 was cut, and the lead was Sn
-Bi, Sn-Ag, Sn-Cu based Pb-free solder plating 2 ~ 8μm
Will be applied. Further, lead cutting is performed, and unnecessary portions of the heat diffusion plate are cut to complete.

【0088】図12は一般的なプラスチックパッケージ
に適用した例である。Siチップ裏面が42Alloyのタブ66
上にはんだ箔67(導電ペースト67)でを介して接着され
ている。素子はワイヤボンド35を通してリード56に繋が
れ、樹脂58でモールドされる。その後、リードにはPbフ
リー化に対応したSn-Bi系のめっきが施される。従来は
プリント基板実装に対して、融点;183℃のSn-37Pb共晶
はんだが使用できたので、max220℃でリフロー接続がで
きた。Pbフリー化になるとSn-3Ag-0.5Cu(融点;217〜22
1℃)でリフロー接続を行うことになるので、max240℃と
なり、最高温度が約20℃高くなる。このため、Siチップ
8と42Alloyのタブ66の接続に、従来の耐熱性の導電ペー
ストもしくは接着剤を使用すると高温での接着力は低下
し、その後の信頼性に影響することが予想される。そこ
で、導電ペーストの代わりに該はんだ箔を使用すること
で、max270〜350℃での高温での強度を確保するので、P
bフリーはんだによる階層接続が可能となる。このプラ
スチックパッケージへの応用は、Siチップとタブとを接
続するプラスチックパッケージ構造すべてに適用でき
る。構造上、Gull Wingタイプ、Flatタイプ、J-Leadタ
イプ、Butt-Leedタイプ。Leadlessタイプがある。
FIG. 12 shows an example applied to a general plastic package. Tab 66 with 42Alloy backside Si chip
It is adhered on the upper side with solder foil 67 (conductive paste 67). The element is connected to a lead 56 through a wire bond 35 and molded with a resin 58. Thereafter, the lead is plated with Sn-Bi based plating corresponding to the Pb-free. In the past, Sn-37Pb eutectic solder with a melting point of 183 ° C could be used for mounting on a printed circuit board, so reflow connection was possible at a maximum of 220 ° C. When it becomes Pb-free, Sn-3Ag-0.5Cu (melting point: 217-22
(1 ° C), the reflow connection will be performed, so the maximum temperature will be 240 ° C and the maximum temperature will be about 20 ° C higher. For this reason, Si chips
If a conventional heat-resistant conductive paste or adhesive is used to connect the 8 and 42Alloy tabs 66, it is expected that the adhesive strength at high temperatures will be reduced and affect the reliability thereafter. Therefore, by using the solder foil instead of the conductive paste, the strength at a high temperature of max 270 to 350 ° C is ensured.
b Hierarchical connection with free solder is possible. This plastic package application can be applied to any plastic package structure that connects a Si chip and a tab. Gull Wing type, Flat type, J-Lead type, Butt-Leed type in structure. There is a Leadless type.

【0089】図13は複合はんだ箔にする前段階のモデ
ル構造の一例である。3〜15μmレベルのSnめっきしたCu
などの金属繊維69(高い温度での成型、圧延する場合はC
uとSnとの反応を抑えるためNi/Au等の表面処理を施して
も良い)を一列に敷いて、その上にSnなどのはんだボー
ル及びSnめっきしたCuなどの金属ボールとを適切な配合
(約50%)に混ぜたものを、成型、圧延して150〜250μmレ
ベルに加工した箔を作る。この中に、更に低ヤング率化
のためSnめっきした耐熱性のプラスチックボール、もし
くは金属ボールの一部としてCu/Snめっきされた低熱膨
張のシリカ、インバー等を加えても良い。成型、圧延し
た段階では、柔かいはんだボールは金属ボール、金属繊
維の隙間に入り『海島構造』の海の形を形成する。金属
繊維径は上記3〜15μmにこだわるものでなく、箔の中央
部で核になり、被接合体との接合界面では金属ボールが
主要な役目を果たす。連続圧延等において金属繊維をそ
の方向に向けることで、作業はやり易くなる。 なお、
金属繊維の代わりに細線化、低膨張化が可能なカーボン
繊維にCu(もしくはCu/はんだ)めっきしたもの、他にセ
ラミック、ガラス、インバー等の繊維にNi/Au、Ni/はん
だ、Cu(もしくはCu/はんだ)めっき等も可能である。
FIG. 13 shows an example of a model structure before a composite solder foil is formed. 3 ~ 15μm level Sn plated Cu
Metal fiber 69 (for high temperature molding and rolling, C
(Surface treatment such as Ni / Au may be applied to suppress the reaction between u and Sn) .Lay them in a row and mix solder balls such as Sn and metal balls such as Sn-plated Cu appropriately.
(Approximately 50%) is mixed, molded and rolled to produce a foil processed to a level of 150 to 250 μm. Heat-resistant plastic balls plated with Sn for further lowering the Young's modulus, or low thermal expansion silica or invar plated with Cu / Sn as a part of the metal balls may be added. At the stage of molding and rolling, the soft solder balls enter the gaps between the metal balls and the metal fibers to form a "sea-island structure" sea shape. The metal fiber diameter is not limited to the above-mentioned 3 to 15 μm, but becomes a nucleus at the center of the foil, and the metal ball plays a major role at the joint interface with the object to be joined. By directing the metal fibers in that direction in continuous rolling or the like, work becomes easier. In addition,
Instead of metal fibers, thinner wires, copper (or Cu / solder) plated carbon fibers that can be reduced in expansion, other ceramic, glass, invar, etc., Ni / Au, Ni / solder, Cu (or Cu / solder) plating is also possible.

【0090】図13は箔の核となる金属繊維を一列に並
べた例であるが、図14はクロスに並べたもの(角度は
自由)で安定した構造になる。クロスの隙間にSnなどの
はんだボール及びSnめっきしたCuなどの金属ボールとを
適切な配合(約50%)に混ぜたものを入れ込んだものであ
り、応用は図13と同様に可能である。
FIG. 13 shows an example in which metal fibers serving as the core of the foil are arranged in a line. FIG. 14 shows an example in which the metal fibers are arranged in a cloth (the angle is free) and the structure is stable. A mixture of solder balls such as Sn and metal balls such as Sn-plated Cu in an appropriate mixture (about 50%) is inserted into the gap of the cloth, and the application is possible as in FIG. .

【0091】図15は金網状の繊維71を用いた場合の箔
の断面であり、奥行き方向に伸びた金網断面を×印70で
示した。図15(a)は金網とはんだで構成された箔であ
る。金網のメッシュを細かくするには限界があり、現状
の市販品の最小メッシュは325で、通過する粒径は44μm
と大きく、網を形成する線径も太いので、接合界面での
接触部面積が小さい(化合物形成域)ので、高温での強度
確保に課題がある。そこで金網70,71の隙間に、Snなど
のはんだボール及びSnめっきしたCuなどの金属ボール2
とを適切な配合(約50%)に混ぜたものを充填して作製し
た箔の断面を図15(b)に示す。はんだ72は隙間に入り
込んだ構造になる。高温時の強度確保が必要な場合はCu
ボールを多目に配合し、被接合体との界面での化合物形
成に重点をおき、継手の熱疲労を重視する場合ははんだ
を多目に配合することで、はんだの耐熱疲労性に重点を
おく制御が可能である。なお、充填する金属ボールはボ
ールに限定するものでなく、後述の繊維等は有力であ
る。金属ボールとはんだとの配合比率も、金属の形状、
接触状態等にも関係し、大きく異なる可能性がある。
FIG. 15 is a cross section of the foil when the wire mesh fiber 71 is used, and the cross section of the wire mesh extending in the depth direction is indicated by a cross 70. FIG. 15A shows a foil formed of a wire mesh and solder. There is a limit to the fineness of the wire mesh, the current minimum mesh size of commercial products is 325, and the particle size passing through is 44 μm
Therefore, since the diameter of the wire forming the net is large, the contact area at the bonding interface is small (compound formation area), and there is a problem in securing strength at high temperatures. Therefore, solder balls such as Sn and metal balls 2 such as Sn-plated Cu are provided between the wire meshes 70 and 71.
Fig. 15 (b) shows a cross section of a foil produced by filling a mixture obtained by mixing (1) and (2) in an appropriate composition (about 50%). The solder 72 has a structure in which it enters the gap. If high temperature strength is required, use Cu
Add a large amount of balls, focus on compound formation at the interface with the workpiece, and if the thermal fatigue of the joint is important, add a large amount of solder to emphasize the thermal fatigue resistance of the solder. Control is possible. The metal balls to be filled are not limited to balls, but fibers and the like described below are effective. The mixing ratio of the metal ball and the solder also depends on the shape of the metal,
There is a possibility that it greatly differs depending on the contact state and the like.

【0092】図16は紙を作るように細長い金属繊維73
をランダムに平坦化して、骨組を作り両側にSnなどのは
んだボール68及びSnめっきしたCuなどの金属ボール2と
を適切な配合(約50%)に混ぜたものを充填した状態のモ
デルである。図16(a)は平面図で、図16(b)は断面図
である。
FIG. 16 shows an elongated metal fiber 73 to make paper.
Is a model in which a mixture of a solder ball 68 such as Sn and a metal ball 2 such as Sn-plated Cu in an appropriate combination (about 50%) is formed on both sides by flattening randomly. . FIG. 16A is a plan view, and FIG. 16B is a cross-sectional view.

【0093】図17は金属ボールの代わりに短冊金属繊
維、あるいは低膨張化が可能なカーボン繊維にCu(もし
くはCu/はんだ)めっきしたもの、他にセラミック、ガラ
ス、インバー等の繊維にNi/Au、Ni/はんだ、Cu(もしく
はCu/はんだ)めっき短冊繊維等が可能である。短冊繊維
にすることではんだの配合量を大幅に増やすことができ
る。また、隙間に金属ボールを混ぜて化合物形成による
ネットワークを強化することも可能である。金属ボール
だけでは拘束され、剛体構造になるが、このように短冊
状繊維を分散することで変形性と弾力性に富む構造が期
待でき、ダイボンド時、あるいは熱疲労に対しても良い
性能が得られるものと考える。短冊の長さは、箔の厚さ
を200μmとすれば1/10以下が望ましい。一例として、
径;1〜5μm、長さ;5〜15μmレベルの範囲にあること
が望ましい。以上本発明者によってなされた発明を実施
形態に基づき具体的に説明したが、本発明は上記実施形
態に限定されるものではなく、その要旨を逸脱しない範
囲で種々変更可能であることはいうまでもない。また、
上記実施例において開示した観点の代表的なものは次の
通りである。金属の粒子とはんだの粒子を含むはんだ材
料を圧延して形成したはんだ箔である。Snなどのめっき
層を有する金属の粒子を含むはんだ材料を圧延して形成
したはんだ箔である。金属の粒子とはんだの粒子を含む
はんだ材料を圧延するはんだ箔の製造方法である。Snな
どのめっき層を有する金属の粒子を含むはんだ材料を圧
延するはんだ箔の製造方法である。上記はんだ箔であっ
て、例えば金属の粒子がCuの粒子であり、はんだの粒子
がSnの粒子であるものである。CuとSnを有するをはんだ
に圧力を加えて形成したはんだ箔であって、Cuは粒子の
状態であり、Snは該Cu粒子の間を埋める状態であるもの
である。前記はんだ箔であって、該はんだ箔をリフロー
させるとCu粒子の表面の少なくとも一部はCu6Sn5によ
り覆われるものである。前記はんだ箔であって、Cu粒子
と塑性変形後のSnは該はんだ箔をリフローさせるとCu6
Sn5を含む化合物により結合されるものである。前記は
んだ箔であって、Cu粒子の粒径は10〜40μmである
ものである。前記はんだ箔であって、Cu粒子の粒径は3
〜10μmであるものである。前記はんだ箔であって、
前記Cu粒子の表面にNiめっきもしくはNi/Auめっき層を
有するものである。前記はんだ箔であって、該箔の少な
くともCuが露出している部分をSnめっきするものであ
る。前記はんだ箔であって、該はんだ箔の厚さが80μ
mから150μmであるものである。前記はんだ箔であっ
て、該はんだ箔の厚さが150μmから250μmである
ものである。前記はんだ箔であって、プラスチック粒子
を有するものである。前記はんだ箔であって、前記Cuよ
りも熱膨張係数が小さい他の粒子を有するものである。
前記はんだ箔であって、前記Cuよりも熱膨張係数が小さ
い他の粒子はインバー系、シリカ、アルミナ、AlN(窒化
アルミニウム)、SiCの粒子であるものである。なお、イ
ンバー(合金)とは、Fe(鉄)にNi(ニッケル)を34〜36%合金
したもので、線膨張係数が小さい。前記はんだ箔であっ
て、さらにInの粒子を含むものである。前記はんだ箔で
あって、Cu粒子とSn粒子を真空中、還元性雰囲気中もし
くは不活性雰囲気中で混合し、その後圧力をかけること
により箔状にしたものである。前記はんだ箔であって、
圧延率が15%から20%であるものである。前記はん
だ箔であって、金属繊維とはんだ粒子を含む材料を圧延
して形成したものである。Cuの金属繊維とSnの粒子を含
むはんだ材料を圧延して形成したはんだ箔である。前記
はんだ箔であって、該はんだ材料のうち、該Cuの金属繊
維は短冊状であるものである。Al、Au、Agのいずれかの
粒子とSnの粒子を含むはんだ材料を圧延して形成したは
んだ箔である。Zn−Al系合金、Au−Sn系合金の粒子とSn
の粒子を含むはんだ材料を圧延して形成したはんだ箔で
ある。また、はんだにぬれる単体金属、合金、化合物も
しくはこれらの混合物を含む金属ボールと、Sn、Inのど
ちらか一つ以上を含むはんだボールとを混合して、隙間
を埋めて圧入充填後、圧延したことを特徴とするはんだ
箔である。また、はんだにぬれる単体金属、合金、化合
物もしくはこれらの混合物を含む金属ボールと、Sn、In
のどちらか一つ以上を含むはんだボールとを混合して、
均等圧がかけられる予め圧延し易い型に入れ、隙間のな
いように均等に圧入させて埋め込んだ後、該複合体を圧
延して作製したはんだ箔である。また、前記記載のはん
だ箔であって、該はんだは、Sn、In以外にAg、Bi、Cu、
Zn、Ni、Pd、Au、Sb等のいずれか一つ以上を含むもので
ある。また、前記記載のはんだ箔であって、前記金属ボ
ールがCu、Cu合金、Cu6Sn5化合物、Ag、Ag-Sn化合物、A
u、Au-Sn化合物、Al、Al-Ag化合物、Al-Au化合物、Zn-
Al系はんだ、もしくはこれらの混合物を含むボールであ
るものである。また、前記記載のはんだ箔であって、該
圧延箔、もしくははんだ複合材にSnめっき、もしくはSn
にBi、In、Ag、Au、Cu、Ni、Pdのいずれか一つ以上を含
有しためっきを施したものである。また、前記記載のは
んだ箔であって、該単体金属、合金、化合物もしくはこ
れらの混合物を含む金属ボールがぬれない場合は、表面
をNi、Ni-Au、Cu、Ag、Sn、Au等のめっき、もしくはこ
れらの複合めっき、もしくはこれらに更にSn系のめっき
等のはんだにぬれるメタライズを施したものである。ま
た、前記記載のはんだ箔であって、該単体金属、合金、
化合物もしくはこれらの混合物を含む金属ボールの最密
充填を考慮した粒度分布であるはんだ箔である。また、
前記記載のはんだ箔であって、複合はんだの剛性低減の
ため、表面にはんだがぬれるメタライズを施したプラス
チックボールを分散させたものである。また、前記記載
のはんだ箔であって、複合はんだの熱膨張係数低減のた
め、単体金属、合金、化合物もしくはこれらの混合物を
含む金属よりも低熱膨張係数を有する粒子であり、表面
にはんだをぬらすためのメタライズ、もしくはその上に
Sn、In等のはんだめっきを施して、分散させたものであ
る。また、前記記載のはんだ箔であって、低熱膨張係数
を有する粒子として、インバー系、シリカ、アルミナ、
AlN、SiC等であるものである。また、前記記載のはんだ
箔であって、該プラスチックボール素材として、ポリイ
ミド系樹脂、耐熱エポキシ系樹脂、シリコーン系樹脂、
各種ポリマービーズもしくはこれらを変成したもの、も
しくはこれらを混合したものである。また、前記記載の
はんだ箔であって、帯、線、ボール、塊状であるもので
ある。また、前記記載のはんだ箔であって、前記金属ボ
ールの代わりに金属繊維もしくは銅めっきしたカーボ
ン、ガラス、セラミック等の繊維を用いたもの、もしく
は該金属繊維の中に該金属ボールを分散混合したものを
用いたものである。また、前記記載のはんだ箔であっ
て、前記金属ボールの代わりに金属繊維もしくは銅めっ
きしたカーボン、ガラス、セラミック等の繊維をクロス
に重ねたこと、もしくは該クロスの繊維と該金属ボール
を分散したものを用いたものである。また、前記記載の
はんだ箔であって、前記金属ボールの代わりに金属繊維
もしくは銅めっきしたカーボン、ガラス、セラミック等
の繊維を網状にしたものを用いたもの、もしくは該網に
該金属ボールを分散したものである。また、前記記載の
はんだ箔であって、該繊維の径として1〜20μm、望
ましくは3〜15μmであるものである。また、前記記
載のはんだ箔であって、該金属ボールの代わりに金属短
繊維もしくは銅めっきしたカーボン、ガラス、セラミッ
ク等の短繊維を用いたこと、もしくは該短繊維に該金属
ボールを分散したものを用いたものである。また、前記
記載のはんだ箔であって、該短繊維の径として1〜10
μm、望ましくは1〜5μm、アスペクト比(長さ/径):
2〜5であるものである。第一の電子装置と、第二の電
子装置と、第三の電子装置を有する電子装置であって、
該第一の電子装置と該第二電子装置は、前記はんだ箔に
より接続され、該第二の電子装置と該第三の電子装置は
該第一のはんだと異なるはんだにより接続されているも
のである。半導体チップと、該半導体チップが配置され
るタブと、外部との接続端子となるリードとを備え、該
半導体チップの有する電極と該リードとがワイヤボンデ
ングにより接続された半導体装置であって、該半導体チ
ップと該タブは前記はんだ箔により接続されているもの
である。第一の電子部品と、第二の電子部品と、第三の
電子部品を有する電子装置であって、該第一の電子部品
と該第二の電子部品は、金属の粒子とはんだの粒子を含
む材料を圧延して形成したはんだ箔である第一のはんだ
を用いて接続され、該第二の電子部品と該第三の電子部
品は該第一のはんだと異なる融点を有する第二のはんだ
を用いて接続されているものである。第一の電子部品
と、第二の電子部品と、第三の電子部品を有する電子装
置であって、該第一の電子部品と該第二の電子部品は、
金属の粒子とはんだの粒子を有するをはんだ材料に圧力
を加えることにより、該金属は粒子の状態で、該はんだ
粒子は該金属の粒子の間を埋めた状態となる第一のはん
だを用いて接続され、該第二の電子部品と該第三の電子
部品は該第一のはんだと異なる融点を有する第二のはん
だを用いて接続されているものである。前記電子装置で
あって、前記第一のはんだにおけるはんだの粒子はSnで
あるものである。第一の電子装置と、第二の電子装置
と、第三の電子装置を有する電子装置であって、該第一
の電子装置と該第二の電子装置は、Snめっき層を有する
金属の粒子を含むはんだ材料を圧延して形成したはんだ
箔である第一のはんだを用いて接続され、該第二の電子
部品と該第三の電子部品は該第一のはんだと異なる融点
を有する第二のはんだを用いて接続されているものであ
る。第一の電子部品と、第二の電子部品と、第三の電子
部品を有する電子装置であって、該第一の電子部品と該
第二の電子部品は、Snめっき層を有する金属の粒子に圧
力を加えることにより、該金属は粒子の状態であり、該
Snは該金属の粒子の間を埋めた状態となる第一のはんだ
を用いて接続され、該第二の電子部品と該第三の電子部
品は該第一のはんだと異なる融点を有する第二のはんだ
を用いて接続されているものである。前記電子装置であ
って、前記第一のはんだにおける金属の粒子はCuである
ものである。前記電子装置であって、前記第一のはんだ
における金属の粒子はAl、Au、Agのいずれかの粒子であ
るものである。前記電子装置であって、前記第二のはん
だの融点は前記第一のはんだの金属の粒子の融点よりも
低いものである。前記電子装置であって、前記第一のは
んだに含まれるSnが融解すると、前記Cu粒子は該Snと反
応し、該Cu粒子はCu6Sn5を含む化合物により結合され
るものである。前記電子装置であって、前記金属の粒子
の径は10〜40μmであるものである。前記電子装置
であって、該第一のはんだの厚さが80μmから150
μmであるものである。前記電子装置であって、さらに
前記第一のはんだはプラスチック粒子を有するものであ
る。前記電子装置であって、さらに前記第一のはんだは
前記金属の粒子より熱膨張係数が小さい他の粒子を有す
るものである。前記電子装置であって、前記第二のはん
だはSn−Ag−Cu系鉛フリーはんだであるものである。第
一の電子部品と第二の電子部品を有する電子装置であっ
て、該第一の電子部品と該第二の電子部品ははんだ接続
部により接続されており、該はんだ接続部は、金属の粒
子と該金属の粒子の間を埋めているSn部分を有するもの
である。前記電子装置であって、前記金属の粒子は該金
属とSnにより形成される化合物により結びついているも
のである。半導体チップと、該半導体チップが配置され
るタブと、外部との接続端子となるリードとを備え、該
半導体チップの有する電極と該リードとがワイヤボンデ
ングにより接続された半導体装置であって、該半導体チ
ップと該タブは金属の粒子とはんだの粒子とを混合した
はんだ箔を用いて接続されてものである。半導体チップ
と、該半導体チップが配置されるタブと、外部との接続
端子となるリードとを備え、該半導体チップの有する電
極と該リードとがワイヤボンデングにより接続された半
導体装置であって、該半導体チップと該タブは金属の粒
子とはんだの粒子を有するをはんだ材料に圧力を加える
ことにより、該金属は粒子の状態で、該はんだ粒子は該
金属の粒子の間を埋めた状態となる第一のはんだを用い
て接続されているものである。半導体チップと、該半導
体チップが配置されるタブと、外部との接続端子となる
リードとを備え、該半導体チップの有する電極と該リー
ドとがワイヤボンデングにより接続された半導体装置で
あって、該半導体チップと該タブは金属の粒子と該金属
の粒子の間を埋めているSn部分を有する接続部により接
続されているものである。前記半導体装置であって、前
記金属の粒子は該金属とSnにより形成される化合物によ
り結びついているものである。基板と該基板に実装され
ている受動部品および半導体チップを有するモジュール
であって、該半導体チップの電極と該基板の電極はワイ
ヤにより接続され、ワイヤボンディング接続されない該
半導体チップの面と該基板は金属の粒子と該金属の粒子
の間を埋めているSn部分を有する接続部により接続され
ているものである。前記モジュールであって、前記受動
部品と前記基板も金属の粒子と該金属の粒子の間を埋め
ているSn部分を有する接続部により接続されているもの
である。前記モジュールであって、前記基板は前記半導
体チップが実装される部分にスルーホールを有し、該ス
ルーホールの内部も金属の粒子と該金属の粒子の間を埋
めているはんだにより充填されているものである。
FIG. 17 shows a strip metal fiber instead of a metal ball, or a carbon fiber which can be reduced in expansion, plated with Cu (or Cu / solder). , Ni / solder, Cu (or Cu / solder) plated strip fiber, etc. are possible. By using strip fibers, the amount of the solder can be greatly increased. It is also possible to mix a metal ball in the gap to reinforce the network by compound formation. Although it is constrained by the metal ball alone, it has a rigid structure, but by dispersing the strip-shaped fibers in this way, a structure with high deformability and elasticity can be expected, and good performance against die bonding or thermal fatigue can be obtained. I think it can be done. The length of the strip is desirably 1/10 or less if the thickness of the foil is 200 μm. As an example,
The diameter is preferably in the range of 1 to 5 μm and the length is in the range of 5 to 15 μm. Although the invention made by the inventor has been specifically described based on the embodiment, the present invention is not limited to the above embodiment, and various changes can be made without departing from the gist of the invention. Nor. Also,
Representative aspects disclosed in the above embodiment are as follows. This is a solder foil formed by rolling a solder material containing metal particles and solder particles. This is a solder foil formed by rolling a solder material containing metal particles having a plating layer such as Sn. This is a method for producing a solder foil by rolling a solder material containing metal particles and solder particles. This is a method for producing a solder foil for rolling a solder material containing metal particles having a plating layer such as Sn. In the above solder foil, for example, the metal particles are Cu particles, and the solder particles are Sn particles. A solder foil formed by applying pressure to a solder having Cu and Sn, wherein Cu is in a state of particles and Sn is in a state of filling between the Cu particles. When the solder foil is reflowed, at least a part of the surface of the Cu particles is covered with Cu6Sn5. The solder foil, wherein Cu particles and Sn after plastic deformation are Cu6 when the solder foil is reflowed.
It is bound by a compound containing Sn5. The solder foil, wherein the particle size of the Cu particles is 10 to 40 μm. The solder foil, wherein the particle size of the Cu particles is 3
〜1010 μm. The solder foil,
The Cu particles have a Ni plating or Ni / Au plating layer on the surface. In the solder foil, at least a portion of the foil where Cu is exposed is subjected to Sn plating. The solder foil, wherein the thickness of the solder foil is 80 μm.
m to 150 μm. The solder foil, wherein the thickness of the solder foil is from 150 μm to 250 μm. The solder foil has plastic particles. The solder foil has another particle having a smaller coefficient of thermal expansion than the Cu.
The other particles of the solder foil having a smaller coefficient of thermal expansion than the Cu are particles of Invar, silica, alumina, AlN (aluminum nitride), and SiC. Invar (alloy) is obtained by alloying 34% to 36% of Ni (nickel) with Fe (iron) and has a small linear expansion coefficient. The solder foil further includes In particles. The solder foil is obtained by mixing Cu particles and Sn particles in a vacuum, a reducing atmosphere, or an inert atmosphere, and then applying pressure to form a foil. The solder foil,
The rolling ratio is 15% to 20%. The solder foil is formed by rolling a material containing metal fibers and solder particles. This is a solder foil formed by rolling a solder material containing Cu metal fibers and Sn particles. The solder foil, wherein the Cu metal fibers are strip-shaped in the solder material. This is a solder foil formed by rolling a solder material containing any of Al, Au, and Ag particles and Sn particles. Zn-Al alloy, Au-Sn alloy particles and Sn
This is a solder foil formed by rolling a solder material containing particles of the above. In addition, a single metal, an alloy, a metal ball containing a compound or a mixture of these, and a solder ball containing at least one of Sn and In were mixed with a solder ball to be wetted with solder, and the gap was filled and press-filled, followed by rolling. It is a solder foil characterized by the above. In addition, a metal ball containing a single metal, alloy, compound or a mixture thereof which is wettable by solder, and Sn, In
Mixed with a solder ball containing at least one of
This is a solder foil produced by placing in a mold that is easy to be rolled in advance to which uniform pressure is applied, press-fitting evenly without any gaps and embedding, and then rolling the composite. Further, in the solder foil described above, the solder, other than Sn, In, Ag, Bi, Cu,
It contains any one or more of Zn, Ni, Pd, Au, Sb and the like. Further, in the solder foil described above, the metal ball is Cu, Cu alloy, Cu6Sn5 compound, Ag, Ag-Sn compound, A
u, Au-Sn compound, Al, Al-Ag compound, Al-Au compound, Zn-
It is a ball containing an Al-based solder or a mixture thereof. Further, the solder foil according to the above, wherein the rolled foil, or the solder composite material is Sn-plated, or Sn-plated.
Is plated with at least one of Bi, In, Ag, Au, Cu, Ni, and Pd. Further, in the solder foil described above, if the metal ball containing the single metal, alloy, compound or a mixture thereof is not wet, the surface is plated with Ni, Ni-Au, Cu, Ag, Sn, Au, etc. Or a composite plating thereof, or a metallization that is wettable to solder such as a Sn-based plating. Further, the solder foil according to the above, wherein the single metal, alloy,
A solder foil having a particle size distribution in consideration of close packing of metal balls containing a compound or a mixture thereof. Also,
The solder foil according to the above, wherein metallized plastic balls whose surfaces are wetted with solder are dispersed in order to reduce the rigidity of the composite solder. Further, in the solder foil described above, in order to reduce the thermal expansion coefficient of the composite solder, a particle having a lower thermal expansion coefficient than a single metal, an alloy, a compound or a metal containing a mixture thereof, and wets the solder to the surface Metallization for or on top of
It is obtained by applying a solder plating such as Sn or In and dispersing it. Further, in the solder foil described above, as particles having a low coefficient of thermal expansion, invar, silica, alumina,
AlN, SiC and the like. Further, in the solder foil described above, as the plastic ball material, polyimide resin, heat-resistant epoxy resin, silicone resin,
Various polymer beads, denatured ones thereof, or a mixture thereof. Further, the solder foil described above is a band, a wire, a ball, or a lump. Further, in the solder foil described above, instead of the metal ball, a metal fiber or copper plated carbon, glass, using a fiber such as ceramic, or the metal ball dispersed and mixed in the metal fiber It is a thing using a thing. Further, in the solder foil described above, metal fibers or copper-plated carbon, glass, ceramic, or other fibers are stacked on the cloth instead of the metal balls, or the fibers of the cloth and the metal balls are dispersed. It is a thing using a thing. Further, the solder foil according to the above, wherein a metal fiber or a copper-plated carbon, glass, ceramic or other fiber formed into a net is used instead of the metal ball, or the metal ball is dispersed in the net. It was done. The solder foil as described above, wherein the fiber has a diameter of 1 to 20 μm, preferably 3 to 15 μm. Further, the solder foil described above, wherein a metal short fiber or a short fiber such as copper plated carbon, glass, or ceramic is used instead of the metal ball, or the metal ball is dispersed in the short fiber. Is used. Further, in the solder foil described above, the short fiber has a diameter of 1 to 10
μm, desirably 1 to 5 μm, aspect ratio (length / diameter):
2 to 5. An electronic device having a first electronic device, a second electronic device, and a third electronic device,
The first electronic device and the second electronic device are connected by the solder foil, and the second electronic device and the third electronic device are connected by a solder different from the first solder. is there. A semiconductor device comprising a semiconductor chip, a tab on which the semiconductor chip is arranged, and a lead serving as a connection terminal with the outside, wherein an electrode of the semiconductor chip and the lead are connected by wire bonding, The semiconductor chip and the tab are connected by the solder foil. An electronic device having a first electronic component, a second electronic component, and a third electronic component, wherein the first electronic component and the second electronic component include metal particles and solder particles. The second electronic component and the third electronic component are connected using a first solder which is a solder foil formed by rolling a material containing the second solder, the second solder having a melting point different from that of the first solder. Are connected by using A first electronic component, a second electronic component, an electronic device having a third electronic component, wherein the first electronic component and the second electronic component,
By applying pressure to a solder material having metal particles and solder particles, the metal is in a particle state, and the solder particles are filled with particles of the metal using a first solder. The second electronic component and the third electronic component are connected using a second solder having a melting point different from that of the first solder. In the electronic device, solder particles in the first solder are Sn. A first electronic device, a second electronic device, and an electronic device having a third electronic device, wherein the first electronic device and the second electronic device are metal particles having a Sn plating layer. Are connected using a first solder, which is a solder foil formed by rolling a solder material containing, the second electronic component and the third electronic component have a different melting point from the first solder. Are connected by using the solder of FIG. A first electronic component, a second electronic component, and an electronic device having a third electronic component, wherein the first electronic component and the second electronic component are metal particles having a Sn plating layer. By applying pressure to the metal, the metal is in the form of particles,
Sn is connected using a first solder that fills the metal particles, and the second electronic component and the third electronic component have a second melting point different from that of the first solder. Are connected by using the solder of FIG. In the electronic device, the metal particles in the first solder are Cu. In the electronic device, the metal particles in the first solder are particles of any of Al, Au, and Ag. In the electronic device, a melting point of the second solder is lower than a melting point of metal particles of the first solder. In the electronic device, when Sn contained in the first solder is melted, the Cu particles react with the Sn, and the Cu particles are bound by a compound containing Cu6Sn5. In the electronic device, the diameter of the metal particles is 10 to 40 μm. The electronic device, wherein the thickness of the first solder is from 80 μm to 150 μm.
μm. The electronic device, wherein the first solder further includes plastic particles. In the electronic device, the first solder further includes other particles having a smaller coefficient of thermal expansion than the particles of the metal. In the electronic device, the second solder is a Sn-Ag-Cu-based lead-free solder. An electronic device having a first electronic component and a second electronic component, wherein the first electronic component and the second electronic component are connected by a solder connection, and the solder connection is a metal connection. It has a Sn portion filling between the particles and the metal particles. In the electronic device, the metal particles are bonded to the metal by a compound formed by Sn. A semiconductor device comprising a semiconductor chip, a tab on which the semiconductor chip is arranged, and a lead serving as a connection terminal with the outside, wherein an electrode of the semiconductor chip and the lead are connected by wire bonding, The semiconductor chip and the tab are connected by using a solder foil in which metal particles and solder particles are mixed. A semiconductor device comprising a semiconductor chip, a tab on which the semiconductor chip is arranged, and a lead serving as a connection terminal with the outside, wherein an electrode of the semiconductor chip and the lead are connected by wire bonding, The semiconductor chip and the tab have metal particles and solder particles. By applying pressure to the solder material, the metal is in a state of particles, and the solder particles are in a state of filling between the particles of the metal. They are connected using the first solder. A semiconductor device comprising a semiconductor chip, a tab on which the semiconductor chip is arranged, and a lead serving as a connection terminal with the outside, wherein an electrode of the semiconductor chip and the lead are connected by wire bonding, The semiconductor chip and the tab are connected by a connecting portion having a Sn portion filling between metal particles. In the semiconductor device, the metal particles are bonded to the metal by a compound formed by Sn. A module comprising a substrate, a passive component mounted on the substrate, and a semiconductor chip, wherein the electrodes of the semiconductor chip and the electrodes of the substrate are connected by wires, and the surface of the semiconductor chip and the substrate which are not wire-bonded are connected to each other. The metal particles are connected by a connecting portion having a Sn portion filling the metal particles. In the module, the passive component and the substrate are also connected by a connection portion having a metal particle and a Sn portion filling a space between the metal particle. In the module, the substrate has a through-hole in a portion where the semiconductor chip is mounted, and the inside of the through-hole is also filled with metal particles and a solder filling between the metal particles. Things.

【0094】[0094]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。 (1)全く新規なはんだ接続による電子機器および電子
機器の製造方法を提供することができる。 (2)電子機器の製造方法において必要となる温度階層
接続におけるはんだ接続、特に高温側のはんだ接続を提
供することができる。 (3)全く新規なはんだおよびその製造方法を提供する
ことができる。
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows. (1) It is possible to provide an electronic device and a method for manufacturing the electronic device by completely novel solder connection. (2) It is possible to provide a solder connection in a temperature hierarchical connection required in a method of manufacturing an electronic device, particularly a solder connection on a high temperature side. (3) A completely new solder and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 複合ボールで作る複合体金属の製作工程の図FIG. 1 is a diagram of a manufacturing process of a composite metal made with a composite ball.

【図2】 弾性体のプラスチックボールを分散させた状
態の圧延前、後の断面モデルの図
FIG. 2 is a diagram of a cross-sectional model before and after rolling in a state in which elastic plastic balls are dispersed.

【図3】 ダイボンドプロセスの一例を示す断面モデル
の図
FIG. 3 is a cross-sectional model diagram showing an example of a die bonding process.

【図4】 Cu、Sn配合はんだ箔によるダイボンド接続部
の断面モデルの図
FIG. 4 is a diagram of a cross-sectional model of a die-bond connection portion using a Cu and Sn-containing solder foil.

【図5】 LSI、キャップを基板に接続する断面モデル
の図
FIG. 5 is a diagram of a cross-sectional model for connecting an LSI and a cap to a substrate.

【図6】 パワーモジュールの断面モデルの図FIG. 6 is a diagram of a cross-sectional model of a power module.

【図7】 モジュールをプリント基板に実装した断面モ
デルの図
FIG. 7 is a diagram of a cross-sectional model in which a module is mounted on a printed circuit board.

【図8】 RFモジュール実装の断面のモデル図FIG. 8 is a model diagram of a cross section of an RF module mounted.

【図9】 RFモジュール実装のプロセスを示すフローチ
ャート図
FIG. 9 is a flowchart showing a process of mounting an RF module.

【図10】 高出力樹脂パッケージの平面、断面モデル
FIG. 10 is a plan view and a cross-sectional model view of a high-output resin package.

【図11】 高出力樹脂パッケージのプロセスを示すフ
ローチャート図
FIG. 11 is a flowchart showing a process of a high-output resin package.

【図12】 プラスチックパッケージの断面モデル図FIG. 12 is a cross-sectional model diagram of a plastic package.

【図13】 金属繊維を用いて配合したモデルの平面
図、断面図
FIG. 13 is a plan view and a cross-sectional view of a model blended using metal fibers.

【図14】 クロス金属繊維を用いたモデルの平面図FIG. 14 is a plan view of a model using crossed metal fibers.

【図15】 金網繊維を用いたモデルの断面図FIG. 15 is a cross-sectional view of a model using a wire mesh fiber.

【図16】 細長い金属繊維をランダムに置いて平坦化
した平面図、断面図
FIG. 16 is a plan view and a cross-sectional view in which elongated metal fibers are randomly placed and flattened.

【図17】 短冊金属、非金属繊維を用いたモデルの断
FIG. 17 is a cross section of a model using strip metal and non-metal fiber.

【符号の説明】[Explanation of symbols]

1.カーボン治具 2.Cuボール 3.Snボール 4.Sn 5.ロール 6.プラスチックボー
ル 7.抵抗加熱体ツール 8.Siチップ 9.真空吸引穴 10.窒素 11.はんだ箔 12.シリコーンゲル 13.Al2O3基板 14.W(焼結)-Cuめっき
電極 15.予熱用ヒータ 16.窒素 17.Cu,Sn混合箔 18.バンプ 19.軟らかい樹脂 20.リード 21.はんだボールバンプ 22.プリント基板
23.Alフィン 24.フィンとの接合部 25.リードとの接合部 26.リード 27.はんだ箔 28.基板の端子 29.モジュール基板 30.端子 31.Cu 32.有機基板 33.Cuスルーホール導体 34.Ag-Pd導体 35.ワイヤボンド 36.AlN中継基板 37.接続端子 38.Cr-Cu-Au 39.ダイボンド 40.はんだ箔 41.加圧体 42.Ni-Auめっきメタ
ライズ 43.中継基板 44.Cr-Ni-Auメタライ
ズ 45.化学Niめっき 46.電気Niめっき 47.はんだ 48.Cuデイスク 49.Cuベース 50. Al2O3絶縁基板 51.Cuリード 52.チップ部品 53.Cuパッド 54.TQFP-LSI 55.Sn-Ag-Cu系はんだ 56.リード 57.ダム切断部 58.樹脂 59.スルーホール 60.W-Ni-Au厚膜電極 61.W-Ni(もしくはAg-
Pd、Ag)厚膜導体 62.Auめっき電極 63.かしめ部分 64.熱拡散板(ヘッダ) 65.リードフレーム 66.タブ 67.導電ペースト 68.はんだ 69.繊維 70.Cu網(横断面) 71.Cu網(長手断面) 72.はんだ(海) 73.細長い繊維 74.短冊繊維
1. Carbon jig 2. Cu ball 3. Sn ball 4. Sn 5. Roll 6. Plastic ball 7. Resistance heating tool 8. Si chip 9. Vacuum suction hole 10. Nitrogen 11. Solder foil 12. Silicone gel 13 .Al2O3 substrate 14.W (sintered) -Cu plating electrode 15.Preheating heater 16.Nitrogen 17.Cu, Sn mixed foil 18.Bump 19.Soft resin 20.Lead 21.Solder ball bump 22.Printed circuit board
23. Al fin 24. Joint with fin 25. Joint with lead 26. Lead 27. Solder foil 28. Board terminal 29. Module board 30. Terminal 31. Cu 32. Organic board 33. Cu through-hole conductor 34.Ag-Pd conductor 35.Wire bond 36.AlN relay board 37.Connection terminal 38.Cr-Cu-Au 39.Die bond 40.Solder foil 41.Pressing body 42.Ni-Au plating metallization 43.Relay board 44 .Cr-Ni-Au metallization 45.Chemical Ni plating 46.Electric Ni plating 47.Solder 48.Cu disk 49.Cu base 50.Al2O3 insulating board 51.Cu lead 52.Chip parts 53.Cu pad 54.TQFP-LSI 55.Sn-Ag-Cu solder 56.Lead 57.Dam cut 58.Resin 59.Through hole 60.W-Ni-Au thick film electrode 61.W-Ni (or Ag-
Pd, Ag) Thick film conductor 62. Au plating electrode 63. Caulked portion 64. Heat diffusion plate (header) 65. Lead frame 66. Tab 67. Conductive paste 68. Solder 69. Fiber 70. Cu net (cross section) 71 .Cu net (longitudinal section) 72.Solder (sea) 73.Elongated fiber 74.Strip fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 25/00 H01L 25/00 B H05K 3/34 512 H05K 3/34 512C (72)発明者 石田 寿治 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 中塚 哲也 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 岡本 正英 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 三浦 一真 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所モノづくり技術事業部 内 Fターム(参考) 5E319 AA03 AB01 AB05 AC01 BB01 CC33 GG20 5F047 AA00 AA03 AA11 AA14 BA05 BA17 BA19 BB03 BC00 CA02 FA52 FA62 5F067 AB03 BB12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 25/00 H01L 25/00 B H05K 3/34 512 H05K 3/34 512C (72) Inventor Toshiharu Ishida Kanagawa 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Japan Inside Hitachi, Ltd.Production Technology Research Institute (72) Inventor Tetsuya Nakatsuka 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Hitachi, Ltd.Production Technology Research Laboratory (72) Inventor Okamoto Masahide 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside Hitachi, Ltd. Production Technology Research Laboratories (72) Inventor Kazuma Miura 4-6, Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. Manufacturing Technology Division, F-term (Reference) 5E319 AA03 AB01 AB05 AC01 BB01 CC33 GG20 5F047 AA00 AA03 AA11 AA14 BA05 BA17 BA19 BB0 3 BC00 CA02 FA52 FA62 5F067 AB03 BB12

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】第一の電子部品と、第二の電子部品と、第
三の電子部品を有する電子装置であって、該第一の電子
部品と該第二の電子部品は、金属の粒子とはんだの粒子
を含む材料を圧延して形成したはんだ箔である第一のは
んだを用いて接続され、該第二の電子部品と該第三の電
子部品は該第一のはんだと異なる融点を有する第二のは
んだを用いて接続されていることを特徴とする電子装
置。
1. An electronic device having a first electronic component, a second electronic component, and a third electronic component, wherein the first electronic component and the second electronic component are metal particles. Are connected using a first solder, which is a solder foil formed by rolling a material containing solder particles, and the second electronic component and the third electronic component have different melting points from the first solder. An electronic device, wherein the electronic device is connected using a second solder.
【請求項2】第一の電子部品と、第二の電子部品と、第
三の電子部品を有する電子装置であって、該第一の電子
部品と該第二の電子部品は、金属の粒子とはんだの粒子
を有するをはんだ材料に圧力を加えることにより、該金
属は粒子の状態で、該はんだ粒子は該金属の粒子の間を
埋めた状態となる第一のはんだを用いて接続され、該第
二の電子部品と該第三の電子部品は該第一のはんだと異
なる融点を有する第二のはんだを用いて接続されている
ことを特徴とする電子装置。
2. An electronic device having a first electronic component, a second electronic component, and a third electronic component, wherein the first electronic component and the second electronic component are metal particles. By applying pressure to the solder material having solder particles, the metal is in the state of particles, and the solder particles are connected using the first solder that fills the space between the particles of the metal, An electronic device, wherein the second electronic component and the third electronic component are connected using a second solder having a melting point different from that of the first solder.
【請求項3】請求項1または2に記載の電子装置であっ
て、前記第一のはんだにおけるはんだの粒子はSnである
ことを特徴とする電子装置。
3. The electronic device according to claim 1, wherein the solder particles in the first solder are Sn.
【請求項4】第一の電子装置と、第二の電子装置と、第
三の電子装置を有する電子装置であって、該第一の電子
装置と該第二の電子装置は、Snめっき層を有する金属の
粒子を含むはんだ材料を圧延して形成したはんだ箔であ
る第一のはんだを用いて接続され、該第二の電子部品と
該第三の電子部品は該第一のはんだと異なる融点を有す
る第二のはんだを用いて接続されていることを特徴とす
る電子装置。
4. An electronic device having a first electronic device, a second electronic device, and a third electronic device, wherein the first electronic device and the second electronic device are formed of a Sn plating layer. Are connected using a first solder which is a solder foil formed by rolling a solder material containing metal particles having the second electronic component and the third electronic component are different from the first solder An electronic device connected by using a second solder having a melting point.
【請求項5】第一の電子部品と、第二の電子部品と、第
三の電子部品を有する電子装置であって、該第一の電子
部品と該第二の電子部品は、Snめっき層を有する金属の
粒子に圧力を加えることにより、該金属は粒子の状態で
あり、該Snは該金属の粒子の間を埋めた状態となる第一
のはんだを用いて接続され、該第二の電子部品と該第三
の電子部品は該第一のはんだと異なる融点を有する第二
のはんだを用いて接続されていることを特徴とする電子
装置。
5. An electronic device having a first electronic component, a second electronic component, and a third electronic component, wherein the first electronic component and the second electronic component are formed of an Sn plating layer. By applying pressure to the metal particles having the following formula, the metal is in a particle state, and the Sn is connected using a first solder that fills the space between the metal particles; and An electronic device, wherein the electronic component and the third electronic component are connected using a second solder having a melting point different from that of the first solder.
【請求項6】請求項1から5のいずれか1項に記載の電
子装置であって、前記第一のはんだにおける金属の粒子
はCuであることを特徴とする電子装置。
6. The electronic device according to claim 1, wherein metal particles in the first solder are Cu.
【請求項7】請求項1から5のいずれか1項に記載の電
子装置であって、前記第一のはんだにおける金属の粒子
はAl、Au、Agのいずれかの粒子であることを特徴とする
電子装置。
7. The electronic device according to claim 1, wherein the metal particles in the first solder are Al, Au, or Ag particles. Electronic device.
【請求項8】請求項1から5のいずれか1項に記載の電
子装置であって、前記第二のはんだの融点は前記第一の
はんだの金属の粒子の融点よりも低いことを特徴とする
電子装置。
8. The electronic device according to claim 1, wherein a melting point of said second solder is lower than a melting point of metal particles of said first solder. Electronic device.
【請求項9】請求項6に記載の電子装置であって、前記
第一のはんだに含まれるSnが融解すると、前記Cu粒子は
該Snと反応し、該Cu粒子はCu6Sn5を含む化合物により
結合されることを特徴とする電子装置。
9. The electronic device according to claim 6, wherein when Sn contained in the first solder is melted, the Cu particles react with the Sn, and the Cu particles are bound by a compound containing Cu6Sn5. An electronic device characterized by being performed.
【請求項10】請求項1から5のいずれか1項に記載の
電子装置であって、前記金属の粒子の径は10〜40μ
mであることを特徴とする電子装置。
10. The electronic device according to claim 1, wherein said metal particles have a diameter of 10 to 40 μm.
An electronic device, wherein the electronic device is m.
【請求項11】請求項1から5のいずれか1項に記載の
電子装置であって、該第一のはんだの厚さが80μmか
ら150μmであることを特徴とする電子装置。
11. The electronic device according to claim 1, wherein said first solder has a thickness of 80 μm to 150 μm.
【請求項12】請求項1から5のいずれか1項に記載の
電子装置であって、さらに前記第一のはんだはプラスチ
ック粒子を有することを特徴とする電子装置。
12. The electronic device according to claim 1, wherein said first solder further comprises plastic particles.
【請求項13】請求項1から5のいずれか1項に記載の
電子装置であって、さらに前記第一のはんだは前記金属
の粒子より熱膨張係数が小さい他の粒子を有することを
特徴とする電子装置。
13. The electronic device according to claim 1, wherein said first solder has another particle having a smaller coefficient of thermal expansion than said metal particle. Electronic device.
【請求項14】請求項1から13のいずれか1項に記載
の電子装置であって、前記第二のはんだはSn−Ag−Cu系
鉛フリーはんだであることを特徴とする電子装置。
14. The electronic device according to claim 1, wherein the second solder is a Sn—Ag—Cu-based lead-free solder.
【請求項15】第一の電子部品と第二の電子部品を有す
る電子装置であって、該第一の電子部品と該第二の電子
部品ははんだ接続部により接続されており、該はんだ接
続部は、金属の粒子と該金属の粒子の間を埋めているSn
部分を有することを特徴とする電子装置。
15. An electronic device having a first electronic component and a second electronic component, wherein the first electronic component and the second electronic component are connected by a solder connection. The portion is Sn particles filling between the metal particles
An electronic device having a portion.
【請求項16】請求項15に記載の電子装置であって、
前記金属の粒子は該金属とSnにより形成される化合物に
より結びついていることを特徴とする電子装置。
16. The electronic device according to claim 15, wherein:
The electronic device according to claim 1, wherein the metal particles are linked to the metal by a compound formed by Sn.
【請求項17】半導体チップと、該半導体チップが配置
されるタブと、外部との接続端子となるリードとを備
え、該半導体チップの有する電極と該リードとがワイヤ
ボンデングにより接続された半導体装置であって、該半
導体チップと該タブは金属の粒子とはんだの粒子とを混
合したはんだ箔を用いて接続されていることを特徴とす
る半導体装置。
17. A semiconductor comprising a semiconductor chip, a tab on which the semiconductor chip is arranged, and a lead serving as a connection terminal with the outside, wherein an electrode of the semiconductor chip and the lead are connected by wire bonding. A semiconductor device, wherein the semiconductor chip and the tab are connected by using a solder foil in which metal particles and solder particles are mixed.
【請求項18】半導体チップと、該半導体チップが配置
されるタブと、外部との接続端子となるリードとを備
え、該半導体チップの有する電極と該リードとがワイヤ
ボンデングにより接続された半導体装置であって、該半
導体チップと該タブは金属の粒子とはんだの粒子を有す
るをはんだ材料に圧力を加えることにより、該金属は粒
子の状態で、該はんだ粒子は該金属の粒子の間を埋めた
状態となる第一のはんだを用いて接続されていることを
特徴とする半導体装置。
18. A semiconductor comprising a semiconductor chip, a tab on which the semiconductor chip is arranged, and a lead serving as a connection terminal with the outside, wherein an electrode of the semiconductor chip and the lead are connected by wire bonding. An apparatus, wherein the semiconductor chip and the tab have metal particles and solder particles, and by applying pressure to a solder material, the metal is in a state of particles, and the solder particles are interposed between the particles of the metal. A semiconductor device, wherein the semiconductor device is connected using a first solder in a buried state.
【請求項19】半導体チップと、該半導体チップが配置
されるタブと、外部との接続端子となるリードとを備
え、該半導体チップの有する電極と該リードとがワイヤ
ボンデングにより接続された半導体装置であって、該半
導体チップと該タブは金属の粒子と該金属の粒子の間を
埋めているSn部分を有する接続部により接続されている
ことを特徴とする半導体装置。
19. A semiconductor comprising a semiconductor chip, a tab on which the semiconductor chip is arranged, and a lead serving as a connection terminal with the outside, wherein an electrode of the semiconductor chip and the lead are connected by wire bonding. The semiconductor device, wherein the semiconductor chip and the tab are connected by a connection having a metal particle and a Sn portion filling between the metal particles.
【請求項20】請求項19に記載の半導体装置であっ
て、前記金属の粒子は該金属とSnにより形成される化合
物により結びついていることを特徴とする半導体装置。
20. The semiconductor device according to claim 19, wherein said metal particles are linked to said metal by a compound formed by Sn.
【請求項21】基板と該基板に実装されている受動部品
および半導体チップを有するモジュールであって、該半
導体チップの電極と該基板の電極はワイヤにより接続さ
れ、ワイヤボンディング接続されない該半導体チップの
面と該基板は金属の粒子と該金属の粒子の間を埋めてい
るSn部分を有する接続部により接続されていることを特
徴とするモジュール。
21. A module comprising a substrate, a passive component mounted on the substrate, and a semiconductor chip, wherein the electrodes of the semiconductor chip and the electrodes of the substrate are connected by wires, and are not connected by wire bonding. The module is characterized in that the surface and the substrate are connected by a connecting portion having a Sn portion filling between the metal particles.
【請求項22】請求項21に記載のモジュールであっ
て、前記受動部品と前記基板も金属の粒子と該金属の粒
子の間を埋めているSn部分を有する接続部により接続さ
れていることを特徴とするモジュール。
22. The module according to claim 21, wherein the passive component and the substrate are also connected by a connection portion having metal particles and a Sn portion filling between the metal particles. Features module.
【請求項23】請求項21または22に記載のモジュー
ルであって、前記基板は前記半導体チップが実装される
部分にスルーホールを有し、該スルーホールの内部も金
属の粒子と該金属の粒子の間を埋めているはんだにより
充填されているされていることを特徴とするモジュー
ル。
23. The module according to claim 21, wherein the substrate has a through hole in a portion where the semiconductor chip is mounted, and the inside of the through hole also includes metal particles and metal particles. A module filled with solder filling between the modules.
【請求項24】請求項21に記載のはんだ箔であって、
該接続部はCuにSn層をめっき形成した粒子を含むはんだ
材料を圧延して形成したはんだ箔を用いたことを特徴と
するはんだ箔。
24. The solder foil according to claim 21, wherein:
A solder foil, wherein the connection portion uses a solder foil formed by rolling a solder material containing particles formed by plating a Sn layer on Cu.
JP2001385445A 2000-12-21 2001-12-19 Solder foil, semiconductor device, and electronic device Pending JP2002305213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385445A JP2002305213A (en) 2000-12-21 2001-12-19 Solder foil, semiconductor device, and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000393267 2000-12-21
JP2000-393267 2000-12-21
JP2001385445A JP2002305213A (en) 2000-12-21 2001-12-19 Solder foil, semiconductor device, and electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004063398A Division JP4432541B2 (en) 2000-12-21 2004-03-08 Electronics

Publications (1)

Publication Number Publication Date
JP2002305213A true JP2002305213A (en) 2002-10-18

Family

ID=26606559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385445A Pending JP2002305213A (en) 2000-12-21 2001-12-19 Solder foil, semiconductor device, and electronic device

Country Status (1)

Country Link
JP (1) JP2002305213A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307187A (en) * 2001-02-09 2002-10-22 Taiho Kogyo Co Ltd Lead-free solder and solder joint
WO2004088725A2 (en) * 2003-04-01 2004-10-14 Infineon Technologies Ag Method for the multi-stage production of diffusion soldered connections for power components comprising semiconductor chips
WO2005002780A1 (en) * 2003-07-07 2005-01-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Brazing filler metal sheet and method for production thereof
JP2005252029A (en) * 2004-03-04 2005-09-15 Renesas Technology Corp Semiconductor device and its manufacturing method, electronic device and mounting structure
JP2005252030A (en) * 2004-03-04 2005-09-15 Hitachi Metals Ltd Lead free solder material and manufacturing method of solder material
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
JP2006049456A (en) * 2004-08-03 2006-02-16 Fuji Electric Holdings Co Ltd Method of manufacturing semiconductor device
JP2007067158A (en) * 2005-08-31 2007-03-15 Hitachi Ltd Semiconductor device and its manufacturing method
WO2007032429A1 (en) * 2005-09-15 2007-03-22 Senju Metal Industry Co., Ltd. Formed solder and process for producing the same
JP2008235898A (en) * 2007-03-19 2008-10-02 Infineon Technologies Ag Power semiconductor module, method for producing power semiconductor module, and semiconductor chip
JP2010226115A (en) * 2010-03-29 2010-10-07 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP2010539683A (en) * 2007-09-11 2010-12-16 ダウ コーニング コーポレーション Composite materials, heat dissipation materials containing the composite materials, and methods for their preparation and use
JP2011086768A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Power semiconductor device and manufacturing method therefor
JP2011138968A (en) * 2009-12-28 2011-07-14 Senju Metal Ind Co Ltd Method for soldering surface-mount component, and surface-mount component
JP2011159544A (en) * 2010-02-02 2011-08-18 Nec Corp Power feeding structure
JP2014123745A (en) * 2014-01-06 2014-07-03 Hitachi Power Semiconductor Device Ltd Power module for automobile
US8790472B2 (en) 2004-06-08 2014-07-29 Senju Metal Industry Co., Ltd. Process for producing a solder preform having high-melting metal particles dispersed therein
JP2016219479A (en) * 2015-05-15 2016-12-22 トヨタ自動車株式会社 Manufacturing method for semiconductor device, and semiconductor device
JP2017107925A (en) * 2015-12-08 2017-06-15 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
US10081852B2 (en) 2005-09-15 2018-09-25 Senju Metal Industry Co., Ltd. Solder preform and a process for its manufacture
CN113399770A (en) * 2021-06-23 2021-09-17 丁军燕 Foamed aluminum welding device based on induction heating
KR20220136182A (en) * 2021-03-31 2022-10-07 센주긴조쿠고교 가부시키가이샤 Preform solder and method of manufacturing the same, and method of manufacturing solder joint
WO2024047959A1 (en) * 2022-08-30 2024-03-07 学校法人早稲田大学 Semiconductor device and bonding method

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307187A (en) * 2001-02-09 2002-10-22 Taiho Kogyo Co Ltd Lead-free solder and solder joint
WO2004088725A2 (en) * 2003-04-01 2004-10-14 Infineon Technologies Ag Method for the multi-stage production of diffusion soldered connections for power components comprising semiconductor chips
WO2004088725A3 (en) * 2003-04-01 2004-12-16 Infineon Technologies Ag Method for the multi-stage production of diffusion soldered connections for power components comprising semiconductor chips
US7851910B2 (en) 2003-04-01 2010-12-14 Infineon Technologies Ag Diffusion soldered semiconductor device
US7387230B2 (en) 2003-07-07 2008-06-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Brazing filter metal sheet and method for production thereof
WO2005002780A1 (en) * 2003-07-07 2005-01-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Brazing filler metal sheet and method for production thereof
AU2003296160B2 (en) * 2003-07-07 2007-08-30 Ishikawajima-Harima Heavy Industries Co., Ltd. Brazing filler metal sheet and method for production thereof
JP2005252029A (en) * 2004-03-04 2005-09-15 Renesas Technology Corp Semiconductor device and its manufacturing method, electronic device and mounting structure
JP2005252030A (en) * 2004-03-04 2005-09-15 Hitachi Metals Ltd Lead free solder material and manufacturing method of solder material
JP4639607B2 (en) * 2004-03-04 2011-02-23 日立金属株式会社 Method for producing lead-free solder material and Pb-free solder material
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
US8790472B2 (en) 2004-06-08 2014-07-29 Senju Metal Industry Co., Ltd. Process for producing a solder preform having high-melting metal particles dispersed therein
JP2006049456A (en) * 2004-08-03 2006-02-16 Fuji Electric Holdings Co Ltd Method of manufacturing semiconductor device
JP4599929B2 (en) * 2004-08-03 2010-12-15 富士電機システムズ株式会社 Method for manufacturing power semiconductor device
JP2007067158A (en) * 2005-08-31 2007-03-15 Hitachi Ltd Semiconductor device and its manufacturing method
US8421232B2 (en) 2005-08-31 2013-04-16 Hitachi, Ltd. Semiconductor device and automotive ac generator
JP4569423B2 (en) * 2005-08-31 2010-10-27 株式会社日立製作所 Manufacturing method of semiconductor device
US7964492B2 (en) 2005-08-31 2011-06-21 Hitachi, Ltd. Semiconductor device and automotive AC generator
JP2013099789A (en) * 2005-09-15 2013-05-23 Senju Metal Ind Co Ltd Formed solder
JP5245410B2 (en) * 2005-09-15 2013-07-24 千住金属工業株式会社 Foam solder and its manufacturing method
WO2007032429A1 (en) * 2005-09-15 2007-03-22 Senju Metal Industry Co., Ltd. Formed solder and process for producing the same
US10081852B2 (en) 2005-09-15 2018-09-25 Senju Metal Industry Co., Ltd. Solder preform and a process for its manufacture
US7793820B2 (en) 2005-09-15 2010-09-14 Senju Metal Industry Co., Ltd. Solder preform and a process for its manufacture
JP2008235898A (en) * 2007-03-19 2008-10-02 Infineon Technologies Ag Power semiconductor module, method for producing power semiconductor module, and semiconductor chip
JP2010539683A (en) * 2007-09-11 2010-12-16 ダウ コーニング コーポレーション Composite materials, heat dissipation materials containing the composite materials, and methods for their preparation and use
JP2013243404A (en) * 2007-09-11 2013-12-05 Dow Corning Corp Composite material, heat radiation material including composite material, and preparation method and use of composite material and heat radiation material
JP2011086768A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Power semiconductor device and manufacturing method therefor
JP2011138968A (en) * 2009-12-28 2011-07-14 Senju Metal Ind Co Ltd Method for soldering surface-mount component, and surface-mount component
CN102714921A (en) * 2009-12-28 2012-10-03 千住金属工业株式会社 Method for soldering surface-mount component and surface-mount component
US10354944B2 (en) 2009-12-28 2019-07-16 Senju Metal Industry Co., Ltd. Method for soldering surface-mount component and surface-mount component
US10297539B2 (en) 2009-12-28 2019-05-21 Senju Metal Industry Co., Ltd. Electronic device including soldered surface-mount component
JP2011159544A (en) * 2010-02-02 2011-08-18 Nec Corp Power feeding structure
JP2010226115A (en) * 2010-03-29 2010-10-07 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP2014123745A (en) * 2014-01-06 2014-07-03 Hitachi Power Semiconductor Device Ltd Power module for automobile
JP2016219479A (en) * 2015-05-15 2016-12-22 トヨタ自動車株式会社 Manufacturing method for semiconductor device, and semiconductor device
JP2017107925A (en) * 2015-12-08 2017-06-15 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
KR20220136182A (en) * 2021-03-31 2022-10-07 센주긴조쿠고교 가부시키가이샤 Preform solder and method of manufacturing the same, and method of manufacturing solder joint
US11628520B2 (en) 2021-03-31 2023-04-18 Senju Metal Industry Co., Ltd. Preform solder and method of manufacturing the same, and method of manufacturing solder joint
KR102536556B1 (en) * 2021-03-31 2023-05-26 센주긴조쿠고교 가부시키가이샤 Preform solder and method of manufacturing the same, and method of manufacturing solder joint
US11772204B2 (en) 2021-03-31 2023-10-03 Senju Metal Industry Co., Ltd. Preform solder and method of manufacturing the same, and method of manufacturing solder joint
CN113399770A (en) * 2021-06-23 2021-09-17 丁军燕 Foamed aluminum welding device based on induction heating
CN113399770B (en) * 2021-06-23 2023-11-24 丁军燕 Foam aluminum welding device based on induction heating
WO2024047959A1 (en) * 2022-08-30 2024-03-07 学校法人早稲田大学 Semiconductor device and bonding method

Similar Documents

Publication Publication Date Title
JP3736452B2 (en) Solder foil
KR100548114B1 (en) Solder foil and semiconductor device and electronic device
JP3800977B2 (en) Products using Zn-Al solder
JP2002305213A (en) Solder foil, semiconductor device, and electronic device
TWI233684B (en) Electronic device
JP3757881B2 (en) Solder
JP3558063B2 (en) Solder
EP1760783B1 (en) Semiconductor device
JP2004174522A (en) Composite solder, production method therefor, and electronic equipment
JP4096992B2 (en) Manufacturing method of semiconductor module
JP2002314241A (en) Electronic device
JP2002261104A (en) Semiconductor device and electronic equipment
JP4432541B2 (en) Electronics
JP4339723B2 (en) Semiconductor device and manufacturing method thereof, electronic device and mounting structure
JP4639607B2 (en) Method for producing lead-free solder material and Pb-free solder material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051220

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427