JP2005072173A - Electronic component and solder paste - Google Patents

Electronic component and solder paste Download PDF

Info

Publication number
JP2005072173A
JP2005072173A JP2003298352A JP2003298352A JP2005072173A JP 2005072173 A JP2005072173 A JP 2005072173A JP 2003298352 A JP2003298352 A JP 2003298352A JP 2003298352 A JP2003298352 A JP 2003298352A JP 2005072173 A JP2005072173 A JP 2005072173A
Authority
JP
Japan
Prior art keywords
temperature
solder
soldering
soldered
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003298352A
Other languages
Japanese (ja)
Inventor
Kimisuke Nakano
公介 中野
Hidekiyo Takaoka
英清 高岡
Kunihiko Hamada
邦彦 浜田
Minoru Uejima
稔 上島
Akiko Takagi
晶子 高木
Masafumi Kiyono
雅文 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Senju Metal Industry Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Senju Metal Industry Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003298352A priority Critical patent/JP2005072173A/en
Publication of JP2005072173A publication Critical patent/JP2005072173A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component wherein a soldering portion does not easily exfoliate even if a shock is applied from the outside, and solder paste suitable for forming the electronic component. <P>SOLUTION: The main component of middle temperature lead-free solder is Sn, so that a liquidus line temperature becomes nearly 220°C. As a result, the electronic component is subjected to soldering wherein at least one part of constituent components is at least a solidus line temperature 260°C, with Bi of at most the liquidus line temperature 360°C or high temperature solder having Bi as a main component, and the soldering portion is reinforced with a flux residue having an adhesive agent, for brittleness reinforcement. The solder paste is composed of high temperature solder powder and flux containing the adhesive agent. The high temperature solder powder is high temperature solder having Bi or Bi as a main component. The solidus line temperature of the high temperature solder having Bi as a main component is at least 260°C and the liquidus line temperature is not higher than 360°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、構成部品の少なくとも一部を高温の鉛フリーはんだではんだ付けした電子部品および該電子部品を作製するに適したソルダペーストに関する。   The present invention relates to an electronic component in which at least a part of a component is soldered with a high-temperature lead-free solder, and a solder paste suitable for producing the electronic component.

従来、電子部品のはんだ付けに用いられていたはんだは、PbとSnの合金であった。Pb-Sn合金のうち、Pb-63Sn合金(共晶はんだ)は融点が固相線温度と液相線温度が同じの183℃であるため、電子部品やプリント基板に熱損傷を与えない比較的低い温度ではんだ付けが行える。一般に、共晶はんだを用いる場合のはんだ付け温度は、はんだの液相線温度+20〜50℃が適当といわれ、共晶はんだのはんだ付けでは、はんだ付け温度が200〜230℃となる。この200〜230℃という温度は、電子部品やプリント基板に熱影響を与えない温度である。また該共晶はんだは、はんだ付け性に優れているため、はんだ付け部に未はんだやボイドの発生が少ないという優れた特性を有している。従って、Pb-Snの共晶はんだは、古来より多くの電子部品のはんだ付けに用いられてきたものである。   Conventionally, the solder used for soldering electronic components was an alloy of Pb and Sn. Among Pb-Sn alloys, Pb-63Sn alloy (eutectic solder) has a melting point of 183 ° C, which is the same as the solidus temperature and liquidus temperature. Can be soldered at low temperatures. In general, it is said that the soldering temperature in the case of using eutectic solder is appropriate to the liquidus temperature of the solder +20 to 50 ° C. In the soldering of the eutectic solder, the soldering temperature is 200 to 230 ° C. The temperature of 200 to 230 ° C. is a temperature that does not affect the electronic components and the printed circuit board. Further, since the eutectic solder is excellent in solderability, the eutectic solder has an excellent characteristic that there is little generation of unsolder and voids in the soldered portion. Therefore, the eutectic solder of Pb-Sn has been used for soldering many electronic parts since ancient times.

ところで電子機器や電子部品のはんだ付けでは、融点の低い共晶はんだばかりでなく、融点の高い高温はんだを用いることがある。電子機器で高温はんだを用いる場合は、電子機器の使用時にはんだ付け部周辺が高温となるようなところ、例えばパワートランジスターやトランスのように電気を通したときに発熱するようなところのはんだ付けに高温はんだを用いる。つまり電子機器の使用時に高温となるところに融点の低い共晶はんだを用いたのでは、はんだ付け部が高温となったときにはんだが溶融してしまったり、或いは溶融しないまでも共晶はんだの融点近くまで昇温すると接合強度が極端に低下して、少しの振動や衝撃ではんだ付け部が剥離してしまったりする。そこで電子機器の使用時に高温となる箇所には高温はんだを用いる。   By the way, not only eutectic solder having a low melting point but also high-temperature solder having a high melting point may be used for soldering electronic devices and electronic parts. When using high-temperature solder in electronic equipment, it is recommended that soldering be performed in a place where the periphery of the soldering part becomes hot when the electronic equipment is used, for example, where heat is generated when electricity is passed, such as a power transistor or transformer. Use high-temperature solder. In other words, if eutectic solder with a low melting point is used at a high temperature when using electronic equipment, the melting point of the eutectic solder will melt even if the soldered part becomes hot or the solder does not melt. When the temperature is raised to near, the bonding strength is extremely reduced, and the soldered part is peeled off by a slight vibration or impact. Therefore, high-temperature solder is used in places where the temperature is high during use of electronic equipment.

その他、高温はんだを用いる場合としては、例えばリード線やリード端子をはんだ付けする電子部品がある。電子部品はプリント基板にはんだ付けして実装するものであるが、その電子部品を構成する部品を共晶はんだではんだ付けした場合、電子部品を同じ共晶はんだでプリント基板にはんだ付けするという二度目のはんだ付けを行うときに、はんだ付け温度が共晶はんだの融点よりも高くなるため、電子部品を構成する部品のはんだ付け部が溶融してしまう。このように構成部品のはんだ付け部が溶融してしまうと、はんだ付け部が剥離して電子部品としての機能を果たさなくなってしまうことがある。そこで電子部品を構成するはんだ付けと電子部品の実装というはんだ付けを二度行うような電子部品では、構成部品のはんだ付け部に共晶はんだよりも融点の高い高温はんだを用いる。   In addition, as a case where high-temperature solder is used, for example, there are electronic components for soldering lead wires and lead terminals. Electronic components are mounted by soldering to a printed circuit board. When the components that make up the electronic component are soldered with eutectic solder, the electronic components are soldered to the printed circuit board with the same eutectic solder. When soldering for the second time, the soldering temperature becomes higher than the melting point of the eutectic solder, so that the soldering part of the component constituting the electronic component is melted. If the soldering part of the component is thus melted, the soldering part may be peeled off and the electronic part may no longer function. Therefore, in an electronic component in which the soldering that constitutes the electronic component and the soldering that mounts the electronic component are performed twice, high-temperature solder having a higher melting point than eutectic solder is used for the soldering portion of the component.

従来の高温はんだは、Pbを主成分としたPb-5Sn合金(固相線温度:300℃、液相線温度:314℃)、Pb-10Sn合金(固相線温度:268℃、液相線温度:301℃)、Pb-5Ag(固相線温度:304℃、液相線温度:365℃)等であった。   Conventional high-temperature solder is Pb-5Sn alloy (solidus temperature: 300 ° C, liquidus temperature: 314 ° C), Pb-10Sn alloy (solidus temperature: 268 ° C, liquidus) Temperature: 301 ° C.), Pb-5Ag (solidus temperature: 304 ° C., liquidus temperature: 365 ° C.) and the like.

このように従来の電子機器では、電子部品とプリント基板のはんだ付にはPb-Sn共晶はんだを用い、また使用時に高温雰囲気となる箇所や電子部品構成部品のはんだ付け部にはPb主成分の高温はんだを用いていた。   In this way, in conventional electronic devices, Pb-Sn eutectic solder is used for soldering electronic components and printed circuit boards, and the Pb main component is used in places where there is a high temperature atmosphere during use and in soldering parts of electronic component components. High-temperature solder was used.

ところで電子機器が故障したり機能が劣化したりした場合には、電子機器は修理や機能アップ等をせず、廃棄処分していた。廃棄処分する電子機器は、ケースの樹脂、フレームの金属、ディスプレーのガラス等は回収して再使用されるが、はんだ付けされたプリント基板や電子部品は、はんだの回収が困難なことから地中に埋め立て処分となっていた。   By the way, when an electronic device breaks down or its function deteriorates, the electronic device is disposed of without being repaired or upgraded. Electronic equipment to be disposed of can be recovered and reused for case resin, frame metal, display glass, etc., but soldered printed circuit boards and electronic components are difficult to collect because they are difficult to collect. Had been landfilled.

地中に埋め立て処分されたプリント基板や電子部品、即ちPb-Sn共晶はんだやPb主成分の高温はんだではんだ付けされたプリント基板や電子部品に酸度の高い酸性雨が接触すると、はんだ中のPb成分が溶出して、それが地下水に混入する場合があるという問題を有していた。そこで最近では、Pbの使用が規制されるようになってきており、Pbを全く含まない鉛フリーはんだが使用されるようになってきた。   When acid rain with high acidity comes into contact with printed circuit boards and electronic components disposed of underground, that is, printed circuit boards and electronic components soldered with Pb-Sn eutectic solder or Pb-based high-temperature solder, There was a problem that the Pb component might be eluted and mixed into groundwater. Therefore, recently, the use of Pb has been regulated, and lead-free solder containing no Pb has been used.

一般に鉛フリーはんだとは、Snを主成分とし、これにAg、Cu、Sb、Zn、Bi、In等を適宜添加したものであり、現在、多く使用されている鉛フリーはんだは、Sn-3Ag-0.5Cu(固相線温度:217℃、液相線温度:220℃)、Sn-3.5Ag(固相線温度、液相線温度:220℃)、Sn-0.75Cu(固相線温度、液相線温度:227℃)等の中温のはんだである。これら中温の鉛フリーはんだをはんだ付けするときの温度は、Pb-Sn共晶はんだのように液相線温度+20〜50℃で行うと、もともと液相線温度がPb-Sn共晶はんだよりも高い中温の鉛フリーはんだでは、はんだ付け温度がさらに高くなって、電子部品やプリント基板に熱影響を与えてしまう。そこで中温の鉛フリーはんだを用いる場合のはんだ付け温度は、液相線温度+20〜40℃が適当とされている。従って、これらの中温の鉛フリーはんだと併用する高温鉛フリーはんだは、固相線温度が中温はんだのはんだ付け温度よりも高い260℃以上のものでなければならない。   In general, lead-free solder contains Sn as the main component, and Ag, Cu, Sb, Zn, Bi, In, etc. are added as appropriate. Lead-free solder, which is widely used at present, is Sn-3Ag -0.5Cu (solidus temperature: 217 ° C, liquidus temperature: 220 ° C), Sn-3.5Ag (solidus temperature, liquidus temperature: 220 ° C), Sn-0.75Cu (solidus temperature, Liquid temperature: 227 ° C). When soldering these medium-temperature lead-free solders at a liquidus temperature of + 20-50 ° C like Pb-Sn eutectic solder, the liquidus temperature was originally higher than that of Pb-Sn eutectic solder. A high intermediate temperature lead-free solder further increases the soldering temperature and affects the electronic components and the printed circuit board. Therefore, the liquidus temperature +20 to 40 ° C. is appropriate as the soldering temperature when using the medium temperature lead-free solder. Therefore, the high-temperature lead-free solder used in combination with these medium-temperature lead-free solders must have a solidus temperature of 260 ° C. or higher, which is higher than the soldering temperature of the medium-temperature solder.

電子機器や電子部品の構成部品のはんだ付けに用いる高温はんだとしては、前述のように固相線温度は260℃以上が必要であるが、最も耐熱性のある電子部品やプリント基板でも400℃以上に加熱されると、熱損傷をおこしてしまうことがあるため、はんだ付け温度は400℃が限度である。このように、はんだ付け温度が400℃までとなることから、高温はんだの液相線温度は360℃以下であることが望ましい。   As mentioned above, the high-temperature solder used for soldering components of electronic equipment and electronic components requires a solidus temperature of 260 ° C or higher, but even the most heat-resistant electronic components and printed circuit boards have a temperature of 400 ° C or higher. Heating may cause thermal damage, so the soldering temperature is limited to 400 ° C. As described above, since the soldering temperature is up to 400 ° C., the liquidus temperature of the high-temperature solder is desirably 360 ° C. or lower.

Sn主成分で高温はんだを作ろうとすると、Sn主成分に高融点のAgやCu等を少し多めに添加すれば液相線温度をいくらでも高くすることはできるが、固相線温度が必ず220℃近辺に現れてしまう。従って、Snが含有された鉛フリーはんだでは固相線温度が260℃以上の高温はんだを作ることができなかった。   When making high-temperature solder with Sn as the main component, the liquidus temperature can be increased as much as possible by adding a little higher amount of high melting point Ag, Cu, etc. to the Sn main component, but the solidus temperature must be 220 ° C. Appears in the vicinity. Therefore, a lead-free solder containing Sn could not produce a high-temperature solder having a solidus temperature of 260 ° C. or higher.

ところで本願出願人の一人は、脆いガラス基板の導体にはんだ付けしても、該基板を損傷させず、しかも耐熱性に優れた鉛フリーはんだとしてBi主成分のはんだを提案している(特許文献1)。この特許文献1のはんだは、Biと共晶し得るAg、Cu、Znのいずれかと合金にしたもので、その条件としてはガラスを損傷させないために凝固膨張すること、そして耐熱性のために固相線温度が200℃以上であること、となっている。   By the way, one of the applicants of the present application has proposed a Bi-based solder as a lead-free solder that does not damage the substrate even when soldered to a conductor of a fragile glass substrate and has excellent heat resistance (Patent Literature). 1). The solder of this Patent Document 1 is alloyed with any one of Ag, Cu, and Zn that can be eutectic with Bi, and the conditions are that it solidifies and expands so as not to damage the glass, and is solid for heat resistance. The phase line temperature is 200 ° C or higher.

また本願出願人の一人は、円筒貫通型セラミックコンデンサの貫通端子はんだ付け用としてBi主成分のはんだを用いることも提案している(特許文献2)。ここでのBi主成分のはんだを用いる理由は、コンデンサの内面電極と貫通端子とをはんだ付けしたときに、内面電極がコンデンサの構造体の内壁から剥離したり構造体にクラックが入ったりするのを防ぐためである。つまりコンデンサの貫通端子と内面電極とをはんだ付けして、はんだが凝固したときに、一般のはんだでは凝固収縮してしまうため、構造体の内壁から剥離したり構造体にクラックが入ったりする。そこで特許文献2では凝固時に凝固収縮しない材料としてBi主成分にAg、Au、In、Sn、Sb、Zn等を添加したものを用いている。
特開平13-353590号公報 特開平13-205477号公報
One of the applicants of the present application has also proposed using Bi-based solder for soldering through terminals of a cylindrical through-type ceramic capacitor (Patent Document 2). The reason for using the Bi-based solder here is that when the inner electrode of the capacitor and the through terminal are soldered, the inner electrode peels off from the inner wall of the capacitor structure or the structure is cracked. Is to prevent. That is, when the penetration terminal of the capacitor and the inner surface electrode are soldered and the solder is solidified, the general solder is solidified and contracted, so that it peels off from the inner wall of the structure or cracks in the structure. Therefore, in Patent Document 2, a material in which Ag, Au, In, Sn, Sb, Zn or the like is added to a Bi main component is used as a material that does not shrink during solidification.
Japanese Patent Laid-Open No. 13-353590 Japanese Patent Laid-Open No. 13-205477

特許文献1の表1に記載された鉛フリーはんだは、固相線温度が260℃前後にあるため、二度付け電子部品用の高温はんだとして使用できるものもある。しかしながら特許文献1の鉛フリーはんだを用いて電子部品の構成部品をはんだ付けし、該電子部品を電子機器に用いた場合、電子機器を落としたり乱暴に扱ったりすると、電子部品の構成部品のはんだ付け箇所が剥離してしまって、電子機器の故障の原因となることがあった。つまりBi主成分のはんだは、非常に脆い性質を有しているため、衝撃や振動などにより、はんだそのものにクラックが入ったりはんだ付け部が剥離したりしてしまうものである。   Since the lead-free solder described in Table 1 of Patent Document 1 has a solidus temperature around 260 ° C., there are some that can be used as a high-temperature solder for double-attached electronic components. However, when a component part of an electronic component is soldered using the lead-free solder of Patent Document 1 and the electronic component is used in an electronic device, if the electronic device is dropped or handled roughly, soldering of the component of the electronic component is performed. In some cases, the attachment point peeled off, resulting in failure of the electronic device. That is, the Bi-based solder has a very fragile property, and therefore, the solder itself is cracked or the soldered portion is peeled off due to impact or vibration.

特許文献2のBi主成分のはんだは、多種多様の固相線温度と液相線温度のもがある。そこで特許文献2に記載されているBi-0.01Snはんだ(固相線温度:200℃、液相線温度:270℃)を用いて貫通端子がはんだ付けされた貫通型セラミックコンデンサを作製し、該コンデンサをSn-3Ag-0.5Cu(固相線温度:217℃、液相線温度:220℃)鉛フリーはんだからなるソルダペーストでプリント基板上にはんだ付けをすると、はんだ付け時に貫通端子をはんだ付けしたBi-0.01Snはんだが溶融してコンデンサとしての機能が果たせなくなってしまう。また特許文献2に記載されているBi-5Agはんだ(固相線温度:262℃、液相線温度298℃)を用いて同様に貫通型セラミックコンデンサを作製し、該コンデンサをSn-3Ag-0.5Cu(固相線温度:217℃、液相線温度:220℃)鉛フリーはんだからなるソルダペーストでプリント基板上にはんだ付けをした場合、貫通端子をはんだ付けしたBi-5Agはんだは溶融するようなことはない。しかしながら、Bi-5Agはんだで作製された貫通型コンデンサは、外部から衝撃が加わると、はんだ付け部が簡単に剥離してしまうことがあった。   The Bi-based solder of Patent Document 2 has various solidus temperature and liquidus temperature. Therefore, a penetrating ceramic capacitor in which penetrating terminals are soldered using Bi-0.01Sn solder (solidus temperature: 200 ° C., liquidus temperature: 270 ° C.) described in Patent Document 2 is manufactured. When a capacitor is soldered onto a printed circuit board with a solder paste made of Sn-3Ag-0.5Cu (solid phase temperature: 217 ° C, liquidus temperature: 220 ° C) lead-free solder, the through terminals are soldered during soldering The Bi-0.01Sn solder melts and cannot function as a capacitor. A through-type ceramic capacitor was similarly produced using Bi-5Ag solder (solidus temperature: 262 ° C., liquidus temperature 298 ° C.) described in Patent Document 2, and this capacitor was Sn-3Ag-0.5 Cu (solidus temperature: 217 ° C, liquidus temperature: 220 ° C) When soldering on a printed circuit board with solder paste made of lead-free solder, Bi-5Ag solder with soldered through terminals will melt There is nothing wrong. However, in the feedthrough capacitor made of Bi-5Ag solder, the soldered part may be easily peeled off when an impact is applied from the outside.

本発明は、構成部品の少なくとも一部が高温の鉛フリーはんだではんだ付けされた電子部品を中温の鉛フリーはんだでプリント基板にはんだ付けしたときに、電子部品のはんだ付け部が溶融せず、しかも脆性のあるBiまたはBi主成分の鉛フリーはんだを用いているにもかかわらず、外部から衝撃が加わっても、はんだ付け部が容易に剥離しないという電子部品および該電子部品を作製するに適したソルダペーストを提供することにある。   In the present invention, when an electronic component in which at least a part of the component is soldered with a high-temperature lead-free solder is soldered to a printed circuit board with a medium-temperature lead-free solder, the soldered portion of the electronic component does not melt, Moreover, it is suitable for manufacturing electronic parts and electronic parts in which the soldered part does not easily peel off even when impact is applied from the outside even though brittle Bi or Bi-based lead-free solder is used. It is to provide a solder paste.

本発明者らは、Bi主成分の合金の中には、固相線温度が260℃以上で、液相線温度が360℃以下のものが存在しており、これらは高温の鉛フリーはんだとして使用できること、しかしながらBi主成分の合金は脆性があるため、これをはんだとして用いた場合、はんだ付けしただけでは、はんだ付け部に少しの衝撃や振動が加わっただけで、はんだ付け部が剥離してしまうことから、該はんだ付け部の強度を上げるようにすれば、剥離や振動に耐えられるようになること、等に着目して本発明を完成させた。   The inventors of the present invention have some Bi-based alloys having a solidus temperature of 260 ° C or higher and a liquidus temperature of 360 ° C or lower. These are high-temperature lead-free solders. However, the Bi-based alloy is brittle, so when used as solder, the soldered part peels off with only a small impact or vibration applied to the soldered part. Therefore, the present invention has been completed by paying attention to the fact that, if the strength of the soldering portion is increased, it becomes possible to withstand peeling and vibration.

本発明の電子部品はプリント基板に搭載して中温の鉛フリーはんだではんだ付けしたときに、電子部品の構成部品のはんだ付け部が溶融せず、しかも脆性のあるBiやBi主成分のはんだを用いているにもかかわらず、はんだ付け部がフラックス残渣中の接着剤で補強されているため、電子部品に衝撃や振動が加わっても、はんだ付け部が容易に剥離しないという信頼性に優れている。また本発明のソルダペーストは、BiやBi主成分の高温はんだと接着剤を含有するフラックスとからなるため、高温の鉛フリーはんだとして適した固相線温度と液相線温度を有し、さらに脆性のあるBiやBi主成分の高温はんだではんだ付けされた後、ソルダペースト中に存在していた接着剤がフラックス残渣中にも残っていて、はんだ付け部を補強して接着強度を向上させるものである。   When the electronic component of the present invention is mounted on a printed circuit board and soldered with a medium temperature lead-free solder, the soldered portion of the component of the electronic component does not melt, and brittle Bi or Bi-based solder is used. Despite the use, the soldered part is reinforced with adhesive in the flux residue, so even if impact or vibration is applied to the electronic components, the soldered part does not peel easily and has excellent reliability. Yes. Further, the solder paste of the present invention comprises a high-temperature solder containing Bi or Bi as a main component and a flux containing an adhesive, and thus has a solidus temperature and a liquidus temperature suitable as a high-temperature lead-free solder, After soldering with brittle Bi or high-temperature solder of Bi main component, the adhesive that was present in the solder paste is also left in the flux residue, reinforcing the soldering part and improving the adhesive strength Is.

本発明は、構成部品の少なくとも一部がBiまたは固相線温度が260℃以上で、しかも液相線温度が360℃以下であるBi主成分の高温はんだではんだ付けしてあるとともに、該はんだ付け部を熱硬化性の接着剤が含有されたフラックス残渣で補強してあることを特徴とする電子部品である。   According to the present invention, at least a part of the component parts is soldered with a Bi-based high temperature solder having a Bi or solidus temperature of 260 ° C. or higher and a liquidus temperature of 360 ° C. or lower. The electronic part is characterized in that the attaching portion is reinforced with a flux residue containing a thermosetting adhesive.

またもう一つの本発明は、Bi粉末または固相線温度が260℃以上で、しかも液相線温度が360℃以下であるBi主成分の高温はんだ粉末と、熱硬化性の接着剤が含有されたフラックスとからなることを特徴とするソルダペーストである。   Another embodiment of the present invention contains Bi powder or a high-temperature solder powder of a main component of Bi having a solidus temperature of 260 ° C or higher and a liquidus temperature of 360 ° C or lower, and a thermosetting adhesive. It is a solder paste characterized by comprising a flux.

本発明の対象となる電子部品とは、構成部品の少なくとも一部がはんだ付けされ、且つプリント基板等にさらにはんだで実装されるものであり、はんだ付けを二度行う電子部品である。例えば、IC素子をダイパッドにダイボンディングするような半導体電子部品、素子表面に形成された外部電極にリード端子をはんだ付けするセラミック電子部品、内外面に電極が形成され、内面電極に貫通端子がはんだ接合された貫通型コンデンサ、配線基板等に電子部品素子をはんだ付けした基板部品等であり、要は、はんだ付けを二度行わなけらばならないため、先にはんだ付けされる構成部品の少なくとも一部に高温はんだを使用する電子部品である。   The electronic component that is the subject of the present invention is an electronic component in which at least a part of the component is soldered and further mounted on a printed circuit board or the like with solder, and soldering is performed twice. For example, semiconductor electronic parts such as die bonding IC elements to die pads, ceramic electronic parts soldering lead terminals to external electrodes formed on the element surface, electrodes formed on the inner and outer surfaces, and through terminals soldered to the inner surface electrodes Bonded feed-through capacitors, circuit board components, etc., in which electronic component elements are soldered to a wiring board, etc. Essentially, since soldering must be performed twice, at least one of the components to be soldered first is required. It is an electronic component that uses high-temperature solder for the part.

本発明の電子部品は、電子部品の構成部品の少なくとも一部を高温はんだではんだ付けしたものであり、該はんだ付けには接着剤が含有されたフラックスを使用する。はんだ付け時には、フラックスがはんだ付け部に広がり、はんだ付け後には広がったフラックスがフラックス残渣としてはんだ付け部に付着する。しかしながら、フラックスには接着剤が含有されているため、はんだ付け後のはんだ付け部に付着するフラックス残渣は接着作用を有し、接着剤がはんだ付け部を補強するようになる。従って、本発明の電子部品は、構成部品をはんだ付けしたはんだが脆いものであったり、接着強度の弱いものであったりしても、充分な接着強度を保つようになる。   The electronic component of the present invention is obtained by soldering at least a part of the components of the electronic component with high-temperature solder, and a flux containing an adhesive is used for the soldering. At the time of soldering, the flux spreads to the soldering portion, and after the soldering, the spread flux adheres to the soldering portion as a flux residue. However, since the flux contains an adhesive, the flux residue adhering to the soldered portion after soldering has an adhesive action, and the adhesive reinforces the soldered portion. Therefore, the electronic component of the present invention maintains sufficient adhesive strength even if the solder to which the component is soldered is fragile or has weak adhesive strength.

本発明に使用する高温はんだは、固相線温度が260℃以上であり、しかも液相線温度が360℃以下の条件を備えていなければならない。高温はんだの固相線温度が260℃以上でなければならない理由は、前述のように一般に多く使用されている中温の鉛フリーはんだは液相線温度が220℃近辺にあるからである。つまり該中温の鉛フリーはんだのはんだ付け温度を液相線温度+20〜40℃にすると、最高のはんだ付け温度は、220℃+40℃の260℃となる。従って、電子部品の構成部品のはんだ付けに用いる高温はんだは、二度目のはんだ付け温度である260℃で溶融しないためには、固相線温度が少なくとも260℃以上でなければならない。   The high-temperature solder used in the present invention must have a solidus temperature of 260 ° C. or higher and a liquidus temperature of 360 ° C. or lower. The reason why the solidus temperature of the high-temperature solder must be 260 ° C. or higher is that, as described above, the medium-temperature lead-free solder generally used has a liquidus temperature of around 220 ° C. That is, when the soldering temperature of the medium temperature lead-free solder is set to the liquidus temperature +20 to 40 ° C., the highest soldering temperature is 220 ° C. + 40 ° C., 260 ° C. Therefore, the high-temperature solder used for soldering the components of the electronic component must have a solidus temperature of at least 260 ° C. in order not to melt at the second soldering temperature of 260 ° C.

また本発明に使用する高温はんだの液相線温度を360℃以下とするのは、高温はんだのはんだ付け温度を液相線温度+20〜40℃としたときに、はんだ付け温度が最高となる400℃を超えると、如何に耐熱性のある電子部品やセラミック製の基板であっても熱により損傷してしまうからである。そのため、高温はんだでのはんだ付け温度を400℃までに抑えようとすると、高温はんだの液相線温度は360℃以下となる。   In addition, the liquidus temperature of the high-temperature solder used in the present invention is set to 360 ° C. or lower when the soldering temperature of the high-temperature solder is set to the liquidus temperature +20 to 40 ° C. This is because when the temperature exceeds ℃, even heat-resistant electronic parts and ceramic substrates are damaged by heat. Therefore, if the soldering temperature with high-temperature solder is controlled to 400 ° C, the liquidus temperature of the high-temperature solder will be 360 ° C or lower.

本発明で使用するBi主成分の高温はんだとしては、Bi-Ag系、Bi-Cu系、Bi-Sb系、Bi-Zn系等である。これらの合金のうち固相線温度が260℃以上で液相線温度が360℃以下となる組成は、Bi-Ag系ではAgが0.01〜12質量%、Bi-Cu系ではCuが0.01〜0.8質量%、Bi-Sb系ではSbが0.01〜13質量%、Bi-Zn系ではZnが0.01〜0.1質量%である。ここにおける「系」とは、上記二元合金に限らず、二元合金に他の元素を添加したものも含まれる。しかしながらBi主成分の二元合金に他の添加元素を添加したときに、本発明が目的とする所定の溶融温度を超えてはならない。添加元素としては、金属に限らずPのような非金属でもよい。Pは、表面酸化を防いではんだ付け性を向上させる効果がある。また本発明ではBi主成分の合金ばかりでなく、融点が271℃のBi単体も使用可能である。   The Bi-based high-temperature solder used in the present invention includes Bi-Ag, Bi-Cu, Bi-Sb, and Bi-Zn. Among these alloys, the composition in which the solidus temperature is 260 ° C. or more and the liquidus temperature is 360 ° C. or less is 0.01 to 12% by mass in the Bi-Ag system and 0.01 to 0.8 in the Bi-Cu system. In the Bi-Sb system, Sb is 0.01 to 13 mass%, and in the Bi-Zn system, Zn is 0.01 to 0.1 mass%. The “system” here is not limited to the binary alloy, but also includes those obtained by adding other elements to the binary alloy. However, when other additive elements are added to the Bi-based binary alloy, the predetermined melting temperature intended by the present invention must not be exceeded. The additive element is not limited to a metal but may be a non-metal such as P. P has the effect of preventing surface oxidation and improving solderability. In the present invention, not only Bi-based alloys but also Bi alone having a melting point of 271 ° C. can be used.

Bi単体では、はんだ付け性があまりよくないが、BiにAgを添加すると、はんだ付け性を向上させるばかりでなく、Bi特有の脆性を改善することができる。Agの添加量が0.01質量%よりも少ないと、はんだ付け性の向上や脆性の改善効果が現れない。しかるにBi中にAgが12質量%を超えると液相線温度が360℃を超えてしまい、はんだ付け温度が高くなりすぎて電子部品やプリント基板を熱損傷させてしまう。   Bi alone has poor solderability, but adding Ag to Bi not only improves solderability but also improves Bi-specific brittleness. If the added amount of Ag is less than 0.01% by mass, solderability improvement and brittleness improvement effects do not appear. However, if Ag exceeds 12% by mass in Bi, the liquidus temperature exceeds 360 ° C, the soldering temperature becomes too high, and the electronic parts and the printed circuit board are thermally damaged.

CuはBi合金の機械的強度を向上させる効果がある。Cuの添加量が0.01質量%よりも少ないと機械的強度向上効果が現れず、しかるに0.8質量%よりも多く添加されると液相線温度が360℃を超えるようになる。   Cu has the effect of improving the mechanical strength of the Bi alloy. When the amount of Cu added is less than 0.01% by mass, the effect of improving the mechanical strength does not appear. However, when the amount added is more than 0.8% by mass, the liquidus temperature exceeds 360 ° C.

Sbも機械的強度を改善するものであり、0.01質量%よりも少ないと、その効果が現れず、13質量%よりも多くなると、やはり液相線温度が360℃を超えてしまう。   Sb also improves the mechanical strength. When the amount is less than 0.01% by mass, the effect does not appear. When the amount exceeds 13% by mass, the liquidus temperature also exceeds 360 ° C.

ZnはBiの融点を下げて、本発明が目的とする溶融温度範囲内で、なるべく低い融点を得ることができる。Znの添加量が0.01質量%よりも少ないと、固相線温度低下の効果が現れずしかるにZnの添加量が0.1質量%を超えると、固相線温度が260℃よりもさらに下がってしまう。   Zn can lower the melting point of Bi and obtain a melting point as low as possible within the melting temperature range intended by the present invention. If the added amount of Zn is less than 0.01% by mass, the effect of lowering the solidus temperature does not appear. However, if the added amount of Zn exceeds 0.1% by mass, the solidus temperature further decreases below 260 ° C.

ここでBi、Bi主成分の高温はんだを表1に示す。No.1〜14は本発明に使用可能な高温はんだの例であり、No.15~18は本発明に使用不可能な高温はんだの例である。   Here, Bi and Bi-based high-temperature solder are shown in Table 1. Nos. 1 to 14 are examples of high-temperature solder that can be used in the present invention, and Nos. 15 to 18 are examples of high-temperature solder that cannot be used in the present invention.

Figure 2005072173
Figure 2005072173

本発明のソルダペーストは、Bi或いはBi主成分の合金粉末と熱硬化性接着剤が含有されたフラックスを混練したものである。そして本発明のソルダペーストに用いるフラックスは、従来のソルダペースト用フラックスに熱硬化性接着剤(熱硬化樹脂、硬化剤)を含有させたものである。   The solder paste of the present invention is obtained by kneading a flux containing Bi or Bi-based alloy powder and a thermosetting adhesive. And the flux used for the solder paste of this invention is made to contain the thermosetting adhesive (thermosetting resin, hardening | curing agent) in the flux for conventional solder paste.

一般にソルダペースト用フラックスとは、松脂、チキソ剤、活性剤等の固体成分を液状の溶剤で溶解してペースト状にしたものである。松脂には、重合ロジン、WWロジン、水添ロジン等があり、チキソ剤には硬化ヒマシ油や有機カルボン酸の誘導体等があり、活性剤には有機酸やアミンのハロゲン化水素酸塩等があり、そして溶剤としては前述固形成分をよく溶解し毒性の少ないエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等がある。   In general, the flux for solder paste is a paste obtained by dissolving solid components such as pine resin, thixotropic agent and activator with a liquid solvent. The pine resin includes polymerized rosin, WW rosin, hydrogenated rosin, etc., the thixotropic agent includes hardened castor oil and organic carboxylic acid derivatives, etc. The activator includes organic acid and amine hydrohalide. Examples of the solvent include ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether and the like which dissolve the above-mentioned solid components well and have low toxicity.

本発明のソルダペーストに用いるフラックスは従来のソルダペーストに用いられていたフラックスに熱硬化性接着剤を含有させたものである。熱硬化性接着剤とは、加熱することにより硬化して接着作用を有するものであり、本発明に使用して好適なものとしてはエポキシ樹脂がある。エポキシ樹脂だけでも熱硬化作用を有するが、さらに硬化剤を同時に含有させると、熱硬化接着剤としての効果がより強く発揮される。以下に本発明ソルダペーストの実施例と比較例を示す。   The flux used in the solder paste of the present invention is a flux that is used in a conventional solder paste and contains a thermosetting adhesive. The thermosetting adhesive is one that is cured by heating and has an adhesive action, and one suitable for use in the present invention is an epoxy resin. An epoxy resin alone has a thermosetting action, but if a curing agent is further contained at the same time, the effect as a thermosetting adhesive is more strongly exhibited. Examples and comparative examples of the solder paste of the present invention are shown below.

実施例1のソルダペースト
○高温はんだ粉:75質量%
Bi-0.15Cu(固相線温度:270℃、液相線温度:270℃)
○熱硬化性接着剤含有フラックス :25質量%
熱硬化樹脂 40質量%
硬化剤 30質量%
ソルダペースト用フラックス 30質量%
Solder paste of Example 1 High-temperature solder powder: 75% by mass
Bi-0.15Cu (solidus temperature: 270 ° C, liquidus temperature: 270 ° C)
○ Flux containing thermosetting adhesive: 25% by mass
Thermosetting resin 40% by mass
Curing agent 30% by mass
Solder paste flux 30% by mass

比較例1のソルダペースト
○高温はんだ粉:75質量%
Bi-5Sn(固相線温度:139℃、液相線温度:255℃)
○ソルダペースト用フラックス :25質量%
Solder paste of Comparative Example 1 High-temperature solder powder: 75% by mass
Bi-5Sn (solidus temperature: 139 ° C, liquidus temperature: 255 ° C)
○ Solder paste flux: 25% by mass

比較例2のソルダペースト
○高温はんだ粉:75質量%
Bi-0.15Cu(固相線温度:270℃、液相線温度:270℃)
○ソルダペースト用フラックス :25質量%
Solder paste of Comparative Example 2 High-temperature solder powder: 75% by mass
Bi-0.15Cu (solidus temperature: 270 ° C, liquidus temperature: 270 ° C)
○ Solder paste flux: 25% by mass

上記実施例と比較例のソルダペーストを用いて溶融試験、落下試験、接着シェア試験を行った。   Using the solder pastes of the above examples and comparative examples, a melting test, a drop test, and an adhesion shear test were performed.

・溶融試験
実施例1のソルダペーストと比較例1のソルダペーストを用い、貫通型セラミックコンデンサの構成部品のはんだ付けを行って試験試料とした。該構成部品のはんだ付けは、円筒状構造体の内面電極と貫通端子とをソルダペーストではんだ付けした。
Melting test Using the solder paste of Example 1 and the solder paste of Comparative Example 1, the components of the feedthrough ceramic capacitor were soldered to obtain a test sample. The component parts were soldered by soldering the inner surface electrode and the through terminal of the cylindrical structure with a solder paste.

実施例1のソルダペーストを用いてはんだ付けした貫通型コンデンサのはんだ付け構造を図1に示す。はんだ付け構造1は、孔2aを備える円筒状のセラミック2と、孔2aの内壁に形成された内面電極3と、孔2a内に挿入された貫通端子5と、内面電極3と貫通端子5とを電気的かつ機械的に接合させるために孔2a内に充填されたはんだ6とからなり、さらにはんだ付け部が熱硬化性の接着剤を含有したフラックス残渣6で補強されている。   The soldering structure of the feedthrough capacitor soldered with the solder paste of Example 1 is shown in FIG. The soldering structure 1 includes a cylindrical ceramic 2 having a hole 2a, an inner surface electrode 3 formed on the inner wall of the hole 2a, a through terminal 5 inserted into the hole 2a, an inner surface electrode 3 and the through terminal 5 In order to join them electrically and mechanically, the solder 6 is filled in the hole 2a, and the soldering part is reinforced with a flux residue 6 containing a thermosetting adhesive.

実施例1のソルダペーストと比較例1のソルダペーストで貫通端子と内面電極がはんだ付けされた貫通型セラミックコンデンサを10個ずつ作製して溶融試験の試験試料とした。恒温槽内で、貫通端子を垂直にして貫通型セラミックコンデンサの本体(セラミック)を保持し、下方の貫通端子の先端に10gの重りを吊す。そして恒温槽内の温度をSn-3Ag-0.5Cu鉛フリーはんだのはんだ付け温度である250℃まで上げた。250℃になった恒温槽中で貫通型セラミックコンデンサから貫通端子が抜けるか、否か、を観察した。   Ten through-type ceramic capacitors in which the through terminals and the inner surface electrodes were soldered with the solder paste of Example 1 and the solder paste of Comparative Example 1 were produced as test samples for the melting test. In the thermostat, hold the main body (ceramic) of the penetrating ceramic capacitor with the penetrating terminal vertical, and suspend a 10g weight on the tip of the lower penetrating terminal. And the temperature in a thermostat was raised to 250 degreeC which is the soldering temperature of Sn-3Ag-0.5Cu lead free solder. It was observed whether or not the through terminal could come out of the through type ceramic capacitor in a constant temperature bath at 250 ° C.

溶融試験の結果、実施例1のソルダペーストで貫通端子と内面電極をはんだ付けした全ての貫通型セラミックコンデンサは、貫通端子が抜け落ちることはなかった。一方、比較例1のソルダペーストで貫通端子と内面電極をはんだ付けした全ての貫通型セラミックコンデンサは、はんだ付け部のはんだが溶融して貫通端子が抜け落ちていた。   As a result of the melting test, in all the through-type ceramic capacitors in which the through terminals and the inner surface electrodes were soldered with the solder paste of Example 1, the through terminals did not fall out. On the other hand, in all the through-type ceramic capacitors in which the through terminals and the inner surface electrodes were soldered with the solder paste of Comparative Example 1, the solder in the soldered portion was melted and the through terminals dropped out.

・落下衝撃試験
50mm×50mm×0.3tの銅板上に別途用意した両端部に外部電極が形成された6.4mm×3.2mmのチップ抵抗を実施例1のソルダペーストと比較例2のソルダペーストで10個はんだ付けして落下衝撃試験の試験試料とした。試験片に100gの重りを付けて1mの高さから複数回自然落下させ、各落下回数でのチップ抵抗の剥離個数を測定した。表2、3にその結果を示す。
落下試験の結果、実施例1のソルダペーストではんだ付けしたチップ抵抗は、10回の落下でも剥離は見られなかった。一方、比較例2のソルダペーストではんだ付けしたチップ抵抗は1〜2回の落下で剥離が起こり、5回前後の落下で銅板上の全てのチップ抵抗が剥離した。
・ Drop impact test
Solder 10 6.4mm x 3.2mm chip resistors with external electrodes formed on both ends separately prepared on a 50mm x 50mm x 0.3t copper plate with the solder paste of Example 1 and the solder paste of Comparative Example 2. This was used as a test sample for the drop impact test. A 100 g weight was attached to the test piece, and the sample was naturally dropped several times from a height of 1 m, and the number of peeled chip resistors at each number of drops was measured. Tables 2 and 3 show the results.
As a result of the drop test, the chip resistor soldered with the solder paste of Example 1 showed no peeling even after 10 drops. On the other hand, the chip resistance soldered with the solder paste of Comparative Example 2 was peeled off by dropping once or twice, and all the chip resistances on the copper plate were peeled off by dropping around 5 times.

Figure 2005072173
Figure 2005072173

Figure 2005072173
Figure 2005072173

・接着シェア試験
実施例1と比較例2のソルダペーストを用い、3.2mm×1.6mmのチップコンデンサ8個を32mm×16mm×0.3tの銅板にはんだ付けして接着シェア試験試料とした。試料のn数を2とし、はんだ付けしたチップコンデンサ計16個の接着シェア強度をプッシュプルゲージを用いて測定した。測定の結果、実施例1のソルダペーストでは平均接着シェア強度が80.2Nであり、比較例2のソルダペーストでは平均接着シェア強度が44.0Nであった。
-Adhesion shear test Using the solder pastes of Example 1 and Comparative Example 2, eight 3.2 mm x 1.6 mm chip capacitors were soldered to a 32 mm x 16 mm x 0.3 t copper plate to form an adhesion shear test sample. The number of samples was set to 2 and the adhesive shear strength of 16 soldered chip capacitors was measured using a push-pull gauge. As a result of the measurement, the average paste shear strength of the solder paste of Example 1 was 80.2N, and the average paste shear strength of the solder paste of Comparative Example 2 was 44.0N.

溶融試験の結果から、本発明の電子部品は、二度付けのはんだ付け温度においても電子部品の構成部品のはんだ付け部が溶融して分離せず安定していることが判明した。また落下衝撃試験と接着シェア試験の結果から本発明のソルダペーストではんだ付けした電子部品は比較例のソルダペーストではんだ付けしたものよりも耐衝撃性・はんだ付け強度に優れていることが判明した。   From the result of the melting test, it was found that the electronic component of the present invention is stable without melting and separating the soldered portions of the components of the electronic component even at the second soldering temperature. In addition, the results of the drop impact test and the adhesion shear test revealed that the electronic parts soldered with the solder paste of the present invention were superior in impact resistance and soldering strength to those soldered with the solder paste of the comparative example. .

本発明のソルダペーストは、二度のはんだ付けを行うような電子部品の構成部品のはんだ付けに限らず、電子機器の使用時に発熱により高温となる部分のはんだ付けにも適用できるものである。   The solder paste of the present invention can be applied not only to the soldering of the component parts of the electronic parts that are soldered twice, but also to the soldering of the part that becomes high temperature due to heat generation when the electronic device is used.

本発明の電子部品の一例を示す貫通型コンデンサの正面断面図である。It is front sectional drawing of the feedthrough capacitor which shows an example of the electronic component of this invention.

符号の説明Explanation of symbols

1 貫通型コンデンサ
2 セラミック
3 内面電極
4 表面電極
5 貫通端子
6 高温はんだ
6 熱硬化性接着剤含有フラックス残渣

DESCRIPTION OF SYMBOLS 1 Through-type capacitor 2 Ceramic 3 Inner surface electrode 4 Front surface electrode 5 Through terminal 6 High-temperature solder 6 Thermosetting adhesive containing flux residue

Claims (4)

構成部品の少なくと一部がBiまたは固相線温度が260℃以上で、しかも液相線温度が360℃以下であるBi主成分の高温はんだではんだ付けしてあるとともに、該はんだ付け部を熱硬化性の接着剤が含有されたフラックス残渣で補強してあることを特徴とする電子部品。 At least a part of the component parts is soldered with a high-temperature Bi-based solder whose Bi or solidus temperature is 260 ° C or higher and whose liquidus temperature is 360 ° C or lower. An electronic component reinforced with a flux residue containing a thermosetting adhesive. 前記Bi主成分の高温はんだは、Bi-Ag系、Bi-Cu系、Bi-Sb系、Bi-Zn系のいずれかであることを特徴とする請求項1記載の電子部品。 2. The electronic component according to claim 1, wherein the Bi-based high-temperature solder is any one of a Bi-Ag system, a Bi-Cu system, a Bi-Sb system, and a Bi-Zn system. Bi粉末または固相線温度が260℃以上で、しかも液相線温度が360℃以下であるBi主成分の高温はんだ粉末と、熱硬化性の接着剤が含有されたフラックスとからなることを特徴とするソルダペースト。 Bi powder or a solid phase temperature of 260 ° C or higher, and a liquidus temperature of 360 ° C or lower, a Bi-based high-temperature solder powder, and a flux containing a thermosetting adhesive Solder paste. 前記Bi主成分の高温はんだ粉末は、Bi-Ag系、Bi-Cu系、Bi-Sb系、Bi-Zn系合金粉末のいずれかであることを特徴とする請求項3記載のソルダペースト。















4. The solder paste according to claim 3, wherein the Bi-based high-temperature solder powder is any one of Bi-Ag, Bi-Cu, Bi-Sb, and Bi-Zn alloy powders.















JP2003298352A 2003-08-22 2003-08-22 Electronic component and solder paste Pending JP2005072173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298352A JP2005072173A (en) 2003-08-22 2003-08-22 Electronic component and solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298352A JP2005072173A (en) 2003-08-22 2003-08-22 Electronic component and solder paste

Publications (1)

Publication Number Publication Date
JP2005072173A true JP2005072173A (en) 2005-03-17

Family

ID=34403872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298352A Pending JP2005072173A (en) 2003-08-22 2003-08-22 Electronic component and solder paste

Country Status (1)

Country Link
JP (1) JP2005072173A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018288A1 (en) 2005-08-11 2007-02-15 Senju Metal Industry Co., Ltd. Lead free solder paste and application thereof
WO2007055308A1 (en) 2005-11-11 2007-05-18 Senju Metal Industry Co., Ltd. Soldering paste and solder joints
DE112008001023T5 (en) 2007-04-17 2010-05-20 Tohoku University, Sendai-shi Power semiconductor module
JP2012024803A (en) * 2010-07-23 2012-02-09 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY HAVING EXCELLENT STRESS RELAXATION PROPERTY
WO2012115268A1 (en) 2011-02-25 2012-08-30 千住金属工業株式会社 Solder alloy for power device and soldered joint of high current density
JP2013000359A (en) * 2011-06-16 2013-01-07 Toshiba Corp Endoscope apparatus and electronic apparatus
US20130094991A1 (en) * 2010-06-28 2013-04-18 Sumitomo Metal Mining Co., Ltd. Pb-FREE SOLDER ALLOY
US20130121874A1 (en) * 2010-06-30 2013-05-16 Minoru Ueshima Bi-Sn Based High-Temperature Solder Alloy
JP2013128778A (en) * 2013-01-29 2013-07-04 Toshiba Corp Endoscope apparatus and electronic device
JP2018511482A (en) * 2015-03-10 2018-04-26 インディウム コーポレーション Hybrid alloy solder paste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982751A (en) * 1995-09-12 1997-03-28 Sharp Corp Mounting structure for device
JPH1133775A (en) * 1997-07-17 1999-02-09 Matsushita Electric Ind Co Ltd Tin-containing lead free solder alloy, its cream solder, and manufacture
JP2001170797A (en) * 1999-10-05 2001-06-26 Tdk Corp Flux for soldering, solder paste, electronic part device, electronic circuit module, electronic circuit device and soldering method
JP2001205477A (en) * 2000-01-25 2001-07-31 Murata Mfg Co Ltd Soldering structure and feed-through ceramic capacitor
JP2001353590A (en) * 2000-06-12 2001-12-25 Murata Mfg Co Ltd Composition of solder and soldered article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982751A (en) * 1995-09-12 1997-03-28 Sharp Corp Mounting structure for device
JPH1133775A (en) * 1997-07-17 1999-02-09 Matsushita Electric Ind Co Ltd Tin-containing lead free solder alloy, its cream solder, and manufacture
JP2001170797A (en) * 1999-10-05 2001-06-26 Tdk Corp Flux for soldering, solder paste, electronic part device, electronic circuit module, electronic circuit device and soldering method
JP2001205477A (en) * 2000-01-25 2001-07-31 Murata Mfg Co Ltd Soldering structure and feed-through ceramic capacitor
JP2001353590A (en) * 2000-06-12 2001-12-25 Murata Mfg Co Ltd Composition of solder and soldered article

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914035A1 (en) * 2005-08-11 2008-04-23 Senju Metal Industry Co., Ltd. Lead free solder paste and application thereof
EP1914035A4 (en) * 2005-08-11 2009-09-09 Senju Metal Industry Co Lead free solder paste and application thereof
WO2007018288A1 (en) 2005-08-11 2007-02-15 Senju Metal Industry Co., Ltd. Lead free solder paste and application thereof
JP4894758B2 (en) * 2005-08-11 2012-03-14 千住金属工業株式会社 Lead-free solder paste and its application
US8227536B2 (en) 2005-08-11 2012-07-24 Senju Metal Industry Co., Ltd. Lead-free solder paste and its use
WO2007055308A1 (en) 2005-11-11 2007-05-18 Senju Metal Industry Co., Ltd. Soldering paste and solder joints
US9162324B2 (en) 2005-11-11 2015-10-20 Senju Metal Industry Co., Ltd. Solder paste and solder joint
DE112008001023T5 (en) 2007-04-17 2010-05-20 Tohoku University, Sendai-shi Power semiconductor module
US20130094991A1 (en) * 2010-06-28 2013-04-18 Sumitomo Metal Mining Co., Ltd. Pb-FREE SOLDER ALLOY
US9199339B2 (en) * 2010-06-28 2015-12-01 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
US9205513B2 (en) 2010-06-30 2015-12-08 Senju Metal Industry Co., Ltd. Bi—Sn based high-temperature solder alloy
US20130121874A1 (en) * 2010-06-30 2013-05-16 Minoru Ueshima Bi-Sn Based High-Temperature Solder Alloy
JP2012024803A (en) * 2010-07-23 2012-02-09 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY HAVING EXCELLENT STRESS RELAXATION PROPERTY
WO2012115268A1 (en) 2011-02-25 2012-08-30 千住金属工業株式会社 Solder alloy for power device and soldered joint of high current density
KR20160086964A (en) 2011-02-25 2016-07-20 센주긴조쿠고교 가부시키가이샤 Solder alloy for power device and soldered joint of high current density
KR20160101209A (en) 2011-02-25 2016-08-24 센주긴조쿠고교 가부시키가이샤 Solder alloy for power device and soldered joint of high current density
US11331759B2 (en) 2011-02-25 2022-05-17 Senju Metal Industry Co., Ltd. Solder alloy for power devices and solder joint having a high current density
JP2013000359A (en) * 2011-06-16 2013-01-07 Toshiba Corp Endoscope apparatus and electronic apparatus
JP2013128778A (en) * 2013-01-29 2013-07-04 Toshiba Corp Endoscope apparatus and electronic device
JP2018511482A (en) * 2015-03-10 2018-04-26 インディウム コーポレーション Hybrid alloy solder paste

Similar Documents

Publication Publication Date Title
EP1914035B1 (en) Lead free solder paste and application thereof
JP4144415B2 (en) Lead-free solder
JP4438974B2 (en) Solder paste
JP5045673B2 (en) Functional component lid and manufacturing method thereof
EP0655961B1 (en) Tin-bismuth solder paste and method of use
US5221038A (en) Method for forming tin-indium or tin-bismuth solder connection having increased melting temperature
JP5278616B2 (en) Bi-Sn high temperature solder alloy
JP5724411B2 (en) Solder, soldering method and semiconductor device
JP3827322B2 (en) Lead-free solder alloy
JP2004141910A (en) Lead-free solder alloy
JP5849421B2 (en) Solder, semiconductor device using solder, and soldering method
JP2005072173A (en) Electronic component and solder paste
JP2003311469A (en) Solder paste, electronic parts and step soldering method
JP2005026393A (en) REFLOW SOLDERING METHOD EMPLOYING Pb-FREE SOLDER ALLOY, REFLOW SOLDERING METHOD, MIXED MOUNTING METHOD AND MIXED MOUNTED STRUCTURE
JP4337326B2 (en) Lead-free solder and soldered articles
KR20150111403A (en) A Pb FREE SOLDERING FLUX AND PASTE FOR ELECTRONIC COMPONENT, AND A SOLDERING METHOD USING THE SAME MATERIALS
JP2002185130A (en) Electronic circuit device and electronic part
JP2005297011A (en) Solder paste and soldering article
JP6370458B1 (en) Lead-free solder alloy and electronic circuit board
WO2000075940A1 (en) Electronic component, and electronic apparatus in which the electronic component is mounted and its manufacturing method
JP4471824B2 (en) High temperature solder and cream solder
JP2011198777A (en) Solder bonding method and solder joint
JP2003174254A (en) Connecting method of electronic component to circuit substrate employing lead-free solder
JP2005305472A (en) Solder material and soldered component
JP2005288529A (en) Solder material and soldered article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090105