KR100904658B1 - Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same - Google Patents

Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same Download PDF

Info

Publication number
KR100904658B1
KR100904658B1 KR1020070015638A KR20070015638A KR100904658B1 KR 100904658 B1 KR100904658 B1 KR 100904658B1 KR 1020070015638 A KR1020070015638 A KR 1020070015638A KR 20070015638 A KR20070015638 A KR 20070015638A KR 100904658 B1 KR100904658 B1 KR 100904658B1
Authority
KR
South Korea
Prior art keywords
weight
lead
wave
soldering
free solder
Prior art date
Application number
KR1020070015638A
Other languages
Korean (ko)
Other versions
KR20070082058A (en
Inventor
고명완
박상복
송명규
박윤수
이광열
Original Assignee
주식회사 에코조인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코조인 filed Critical 주식회사 에코조인
Publication of KR20070082058A publication Critical patent/KR20070082058A/en
Application granted granted Critical
Publication of KR100904658B1 publication Critical patent/KR100904658B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process

Abstract

본 발명은 종래의 무연 솔더 합금에 의한 솔더링 시, 용융솔더가 산소와 결합하여 산화물이 형성되어 솔더링 작업성이 저하되고, 접합부의 기계적 특성이 저하되는 문제점을 해결하기 위한 것으로서, 주석(Sn), 동(Cu), 니켈(Ni), 실리콘(Si), 인(P), 및 코발트(Co)를 포함한 웨이브 및 디핑용 무연 솔더 조성물에 관한 것이고, 보다 구체적으로는 상기 동 0.1~2중량%, 니켈 0.001~1.0중량%, 실리콘 0.001~0.05 미만 중량%, 코발트 0.001~0.01 미만 중량%, 인 0.001~0.2중량%, 및 주석을 잔부로 포함하는 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기에 관한 것이다.The present invention is to solve the problem that, when soldering by the conventional lead-free solder alloy, the molten solder is combined with oxygen to form an oxide, the soldering workability is lowered, the mechanical properties of the joint is reduced, Tin (Sn), The present invention relates to a lead-free solder composition for wave and dipping including copper (Cu), nickel (Ni), silicon (Si), phosphorus (P), and cobalt (Co), and more specifically, 0.1 to 2% by weight of copper, Lead-free solder composition for wave and dipping comprising 0.001 to 1.0% by weight of nickel, less than 0.001 to 0.05% of silicon, less than 0.001 to 0.01% by weight of cobalt, 0.001 to 0.2% by weight of phosphorus, and tin, and electronic devices using the same It relates to a printed circuit.

따라서 본 발명에 의하면 용융솔더의 산화를 지속적이고 효과적으로 방지할 뿐만 아니라, 초미량의 실리콘 및 코발트 원소를 첨가함에도 불구하고, 종래의 무연솔더링 온도 및 젖음성을 유지함과 동시에 솔더링 후 변색방지 및 인쇄회로기판의 동패드 침식방지 등 솔더링 접합성을 향상시킬 수 있는 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기판을 제공하는 효과를 갖는다.Therefore, the present invention not only continuously and effectively prevents the oxidation of the molten solder, but also maintains the conventional lead-free soldering temperature and wettability while adding a very small amount of silicon and cobalt elements, and prevents discoloration after soldering and printed circuit boards. It has an effect of providing a lead-free solder composition for wave and dipping and an electronic device and a printed circuit board using the same, which can improve soldering bonding properties such as copper pad erosion prevention.

프리 납, 웨이브 및 디핑용 무연 솔더 조성물, 납땜합금. Lead free solder compositions for pre-lead, wave and dipping, solder alloys.

Description

웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기판{Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same}Pb free solder composition for wave and deeping, electronic equipment and PCB with the same}

도1은 본 발명에 따른 무연솔더 조성물의 산화물 발생량 억제원리를 개략적으로 나타낸 모식도.1 is a schematic diagram showing the principle of the amount of oxide suppression of the lead-free solder composition according to the present invention.

도2는 도1의 모식도에 대한 초기상태의 원소분석결과도 및 결과표.FIG. 2 is an element analysis result diagram and a result table of an initial state with respect to the schematic diagram of FIG.

도3은 도1의 모식도에 대한 3시간 드로스(dross) 실험후의 원소분석결과도 및 결과표.FIG. 3 is an element analysis result diagram and a result table after a 3-hour dross experiment for the schematic diagram of FIG. 1. FIG.

도4는 도1의 모식도에 대한 아우거(Auger) Si 측정피크(peak).FIG. 4 is an Auger Si measurement peak for the schematic diagram of FIG. 1. FIG.

도5는 도1의 모식도에 대한 Auger SiO2 측정 peak.FIG. 5 is a peak of Auger SiO 2 measurement for the schematic diagram of FIG. 1. FIG.

본 발명은 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기에 관한 것이다. 보다 구체적으로 본 발명은 인체에 유해한 납을 포함하지 않고, 주석(Sn), 동(Cu), 니켈(Ni), 및 인(P)으로 이루어진 4원계 조성물에 실리콘(Si) 및 코발트(Co)를 함유시킴으로써, 상기 실리콘에 의해 산화물 발생이 지속적으로 억제되어 솔더링의 작업효율이 향상되고, 소량의 첨가에 의하여 종래의 무연 솔더링 온도 및 젖음성을 유지함과 동시에 변색이 방지되며, 젖음성이 향상되고, 코발트(Co)를 실리콘과 함께 소량으로 함유시킴에 따라 산화물 발생방지, 동침식방지 및 접합파단하중이 월등히 향상되는 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기판에 관한 것이다.The present invention relates to a lead-free solder composition for wave and dipping, and an electronic device and a printed circuit using the same. More specifically, the present invention contains silicon (Si) and cobalt (Co) in a ternary composition consisting of tin (Sn), copper (Cu), nickel (Ni), and phosphorus (P) without containing lead that is harmful to the human body. By containing, the generation of oxide is continuously suppressed by the silicon to improve the soldering work efficiency, the addition of a small amount to maintain the conventional lead-free soldering temperature and wettability while preventing discoloration, the wettability is improved, cobalt The present invention relates to a lead-free solder composition for wave and dipping in which (O) is contained in a small amount together with silicon, and thus an oxide generation prevention, copper erosion prevention, and bond breaking load are greatly improved, and an electronic device and a printed circuit board using the same.

종래의 경우 납이 포함된 합금은 오래전부터 다양하게 사용되어 왔고, 이중에서 주석-납계 유연솔더는 오랜기간동안 인쇄회로기판의 부품실장시 접합재로 사용되어 왔다. 보다 구체적으로 솔더링(soldering)은 납땜을 이용한 접합기술로서, 특히 인쇄회로기판(PCB)에 반도체칩이나 저항칩과 같은 소형 전자부품을 실장하기 위한 접합재로 이용되고 있다. 이러한 납땜을 이용한 접합기술로서, 특히 인쇄회로기판에 반도체칩이나 저항칩과 같은 소형 전자부품을 실장하기 위한 접합재로 이용되고있다. In the conventional case, lead-containing alloys have been used for a long time, and tin-lead-based flexible solders have been used as bonding materials in component mounting of printed circuit boards for a long time. More specifically, soldering is a bonding technique using soldering, and in particular, it is used as a bonding material for mounting small electronic components such as semiconductor chips and resistance chips on a printed circuit board (PCB). As a joining technique using such soldering, it is used as a bonding material for mounting small electronic components such as semiconductor chips and resistor chips, in particular on printed circuit boards.

이러한 납땜을 이용한 접합기술은 최근 전자제품의 소형경량화와 고기능화에 따라 부품장착의 고밀도화가 요구되므로 한층 더 고도화된 수준이 요구되고 있다. 한편, 이와 같은 솔더링 재료로서 주석(Sn), 납(Pb)으로 이루어진 2원계공정합금을 주로 사용하여 왔으나, 이를 폐기할 경우 납이 유출되어 환경오염의 원인이 되고, 이에 따라 납 사용을 규제하기에 이르렀다. 이는 납에 의해 환경오염에 이어 인체에도 치명적인 악영향을 미치기 때문이다. Joining technology using such a solder is required to be more advanced because of the high density of component mounting in accordance with the recent miniaturization and high functionality of electronic products. On the other hand, as a soldering material, binary process alloys composed of tin (Sn) and lead (Pb) have been mainly used. However, when this is disposed of, lead is leaked, which causes environmental pollution. Reached. This is because lead has a fatal adverse effect on the human body following environmental pollution.

따라서 최근에는 솔더합금의 제조시 납사용을 규제하거나 배제함으로써 환경 친화적인 웨이브 및 디핑용 무연 솔더 조성물은 다양하게 개발되고 시도되어 왔다. 그러나, 종래기술에 따른 웨이브 및 디핑용 무연 솔더 조성물은 유연솔더에 비하여 융점이 높고, 젖음성이 떨어질 뿐만 아니라, 솔더링시 용융솔더의 산화가 심하게 발생되어 솔더링 작업성이 떨어지고, 솔더링에 의한 PCB Assay의 품질과 신뢰성이 저하되는 문제점을 지니고 있다. Therefore, in recent years, various environmentally friendly lead-free and lead-free solder compositions have been developed and attempted by regulating or excluding lead in the manufacture of solder alloys. However, the lead-free solder composition for wave and dipping according to the prior art has a higher melting point and lower wettability as compared to the flexible solder, and also causes severe oxidation of the molten solder during soldering, resulting in poor solderability. It has a problem of deterioration in quality and reliability.

또한, 종래기술에 따른 무연솔더는 젖음성등 솔더링 접합성을 만족시키면서 종래의 유연솔더(Sn37Pb)의 융점 183℃에 근접한 개발품이 없는 상태로, Reflow Oven의 교체등 솔더링 공정 개선에 의존해서 사용되고 있다. 이는 Cu, Ag, Zn, Bi, In 등 극히 수적으로 제한된 저융점 금속만이 융점강하 첨가 원소로 대상이 되기 때문이다. In addition, the lead-free solder according to the prior art is used in accordance with the improvement of the soldering process, such as replacement of the reflow oven without the development of near the melting point of 183 ℃ of the conventional solder (Sn37Pb) while satisfying the soldering bonding properties such as wettability. This is because only a very limited number of low melting point metals such as Cu, Ag, Zn, Bi, In, etc. are targeted as the melting point drop addition element.

또한, 종래기술에 따른 무연솔더는 젖음성, 내식성 등의 솔더링 접합성을 만족하면서 종래의 유연솔더(Sn37Pb)의 융점 183℃를 만족할 수 없다. 그리고 이는 대부분의 무연솔더는 Sn에 Cu, Ag, Zn, Bi, In 등 저융점 금속을 소량첨가하여 융점강하를 구현하고 있으나, 이에 따른 융점강하(저융점화)된 무연솔더의 개발은 더 이상의 진전되지 않고, 한계에 도달된 실정이다. In addition, the lead-free solder according to the prior art does not satisfy the melting point of 183 ° C of the conventional solder (Sn37Pb) while satisfying the soldering bonding properties such as wettability, corrosion resistance. And most lead-free solders have a small melting point by adding a small amount of low melting point metals such as Cu, Ag, Zn, Bi, In to Sn, but the development of lead-free solders with low melting point (low melting point) is no longer possible. No progress has been made and the limit has been reached.

따라서, 현재에는 융점 220℃ 내지 230℃의 SnAgCu의 Ag계통 및 SnCu의 비Ag 계통합금이 주류를 이루고 있다. 이와 같이, 솔더의 융점강하 측면에서는 개량에 한계에 도달되어, 주로 솔더링의 특성향상, 작업성 향상, 품질 및 신뢰성 향상에 대하여 개발이 집중되어있다. Therefore, the Ag system of SnAgCu and the non-Ag system alloy of SnCu of melting | fusing point 220 degreeC-230 degreeC are the mainstream now. As described above, in terms of lowering the melting point of the solder, improvement has reached a limit, and development is mainly focused on improving soldering characteristics, improving workability, and improving quality and reliability.

그리고, 무연솔더는 융점이 높다는것 외에 고가 원재료의 사용 및 솔더링 산화에 따른 드로스가 유연솔더 보다 많이 발생되어, 생산비용이 증가할 뿐아니라 용융솔더에 혼재된 산화물이 PCB Assey의 솔더링 필렛(솔더링부)에 혼입되어 솔더링 조립의 품질 및 신뢰성의 저하에 주 원인이 되고 있다. In addition, lead-free solder has a higher melting point, more expensive dross due to the use of expensive raw materials and soldering oxidation, resulting in higher production costs, and increased oxides in the solder solder fillet of PCB Assey. ), The main cause of the deterioration of the quality and reliability of soldering assembly.

상기의 문제점을 해결하기 위하여, KR 10-0327767, JP 3622788, JP 3296289에 기재된 바와 같이, SnAgCu 및 SnCu 계의 모함금 솔더에 P, Ni, Ge, Ga 등 산화방지용 원소를 첨가한 솔더합금이 개발되어 있다. 그러나, 첨가원소인 Ge, Ga, Ni의 경우, 융점이 상승되고, 경화로 인하여 열 가공 및 열피로에 노출될 경우, 솔더부에 크랙이 발생하는 등 신뢰성을 저하시킬 우려가 되어 제한적으로 사용되고 있다.In order to solve the above problems, as described in KR 10-0327767, JP 3622788, and JP 3296289, a solder alloy in which an anti-oxidation element such as P, Ni, Ge, and Ga is added to SnAgCu and SnCu-based mother alloy solders has been developed. It is. However, in the case of Ge, Ga, and Ni, which are additional elements, the melting point is increased, and when exposed to thermal processing and thermal fatigue due to hardening, there is a concern that the reliability may be degraded, such as cracks in the solder portion, and thus it is used in a limited manner. .

특히, P의 경우 다량으로 첨가될 경우, 솔더함금의 경화로 인해 솔더링부가 브리틀해지는 역효과가 발생된다. 또한, 용융시 P이 솔더링 용탕표면에 부상하여 용융솔더의 산화가 방지되나, P은 휘발성이 강하여 260℃ 전후의 솔더링 온도에서 Dross(산화물) 발생이 일시적으로 방지되는 효과는 있으나, 웨이브 솔더링(Wave soldering) 및 딥 솔더링(Dip soldering)의 경우, 수백 ㎏의 솔더를 용탕에 충진한 후, 소량의 소모량만 보충하는 방식으로 수개월 동안 연속적으로 사용하는 경우가 대부분이고, 이와 같은 조건에서 P 첨가 원소는 단순히 단시간의 드로스 방지효과만을 나타내고 지속적 산화방지는 기대할 수 없는 문제점을 지니고 있다. In particular, when P is added in a large amount, the adverse effect of bridging the soldering portion due to hardening of the solder alloy occurs. In addition, P melts on the soldering surface to prevent oxidation of the molten solder. However, P has a high volatility to temporarily prevent generation of oxides at soldering temperatures around 260 ° C. However, wave soldering (Wave) In the case of soldering and dip soldering, hundreds of kilograms of solder are filled in the molten metal, followed by continuous use for several months by replenishing only a small amount of consumption. It only shows a short dross prevention effect and continuous oxidation has an unexpected problem.

따라서, 본 발명은 상기의 제반 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 Sn-Pb 및 Sn-Cu-P-Ni 솔더에 필적할 수 있는 기계적 특성 및 작업성을 갖고, Pb을 포함하지 않으면서도 주석(Sn), 동(Cu), 니켈(Ni), 및 인(P)으로 이루어진 4원계 조성물에 실리콘(Si) 및 코발트(Co)를 함유시킴으로써, 용융솔더의 산화를 지속적이고 효과적으로 방지할 뿐만 아니라, 초미량의 원소를 첨가함에도 불구하고, 종래의 무연솔더링 온도 및 젖음성을 유지함과 동시에 솔더링 후 변색방지, 인쇄회로기판의 동패드 침식방지 등 솔더링 접합성을 향상시킬 수 있는 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기판을 제공하기 위한 것이다.Accordingly, the present invention is to solve the above problems, the object of the present invention has a mechanical property and workability comparable to Sn-Pb and Sn-Cu-P-Ni solder, and does not include Pb By containing silicon (Si) and cobalt (Co) in a quaternary composition consisting of tin (Sn), copper (Cu), nickel (Ni), and phosphorus (P), the oxidation of the molten solder can be prevented continuously and effectively. In addition, despite the addition of a very small amount of elements, lead-free soldering temperature and wettability while maintaining the conventional lead-free soldering, lead-free for wave and dipping that can improve the solderability of bonding, such as preventing discoloration after soldering, copper pad erosion of the printed circuit board It is to provide a solder composition and an electronic device and a printed circuit board using the same.

본 발명은 동 0.1~2중량%, 니켈 0.001~1.0중량%, 실리콘 0.001~0.05 미만 중량%, 코발트 0.001~0.01 미만 중량%, 인 0.001~0.2중량%, 및 주석을 잔부로 포함하는 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기판을 제공한다.The present invention is a wave and di containing a balance of 0.1 to 2% by weight of copper, 0.001 to 1.0% by weight of nickel, less than 0.001 to 0.05% by weight of silicon, less than 0.001 to 0.01% by weight of cobalt, 0.001 to 0.2% by weight of phosphorus and tin. Provided is a lead-free solder composition for ping, and an electronic device and a printed circuit board using the same.

도1은 본 발명에 따른 무연솔더 조성물의 산화물 발생량 억제원리를 개략적으로 나타낸 모식도이다.1 is a schematic diagram showing the principle of suppressing the amount of oxide generation of the lead-free solder composition according to the present invention.

도면에 나타낸 바와 같이, SnAgCu 모합금에 산화물 발생억제를 위하여 P 및 Si 원소를 첨가한 솔더 합금을 사용하여 웨이브 솔더링(Wave Soldering)을 할 경우, 우선, 미량 첨가된 P 및 Si 원소량의 일부는 용융 솔더 모합금의 탈산에 소모된 후 일부 용융 솔더 모합금에 고용되나, P 및 Si은 용융 Sn에 거의 고용되지 않는 원소로써, 첨가된 P 및 Si 원소의 대부분은 비중차에 의해서 표면에 부상하게 된다. 그리고, 상기 인산화물 및 실리콘산화물 피막은 대기중의 산소와 용융 솔더 를 차단하여 무연솔더의 산화물 발생을 억제한다. As shown in the figure, in the case of wave soldering using a solder alloy containing P and Si elements to suppress oxide generation in the SnAgCu master alloy, first, a part of the amount of the added P and Si elements is After being consumed in the deoxidation of the molten solder master alloy, it is dissolved in some molten solder master alloy, but P and Si are hardly dissolved in the molten Sn, and most of the added P and Si elements float on the surface due to the specific gravity difference. do. In addition, the phosphate and silicon oxide film blocks oxygen and molten solder in the atmosphere to suppress oxide generation of the lead-free solder.

그러나, P의 경우 표면에 부상된 일부는 산화막을 형성시키나 상당 부분은 대기중으로 휘발되어, 용융솔더 표면의 산화물 발생의 지속적인 억제 효과가 떨어진다. 반면, Si의 경우 대기중으로 휘발되지 않아 용융 솔더 표면에 지속적으로 실리콘 산화물을 형성시켜, 산화물 발생억제 효과가 지속된다. 이에 대한 실험데이터는 도2 및 도3을 통해 확인할 수 있다.However, in the case of P, a portion of the surface floating on the surface forms an oxide film, but a large portion of the surface is volatilized to the atmosphere, thereby degrading the continuous suppression of oxide generation on the surface of the molten solder. On the other hand, Si does not volatilize to the atmosphere and continuously forms silicon oxide on the surface of the molten solder, thereby suppressing the oxide generation effect. Experimental data on this can be seen through FIGS. 2 and 3.

도2는 도1의 모식도에 대한 실지 측정 Data로써 용해,주조하여 소정의 Ingot를 제조한 후, 상하 방향으로 절단,연마하여 솔더 합금 단면의 Auger 원소 분석 결과이다. 도3은 동일 방법으로 제작한 Ingot를 260℃에서 3시간 Dross 실험(산화실험)를 한 경우의 Auger 원소 분석 결과이다. 도2에 나타낸 바와 같이, 초기상태에는 Ingot 표면에 인이 부상되어 상부에 1.86질량%로 대부분 농축되어 있으며, P의 하부로 Si이 분포되어 있고, 이는 1,2,3의

Figure 112007013891407-pat00001
지점별 성분 데이터를 통해 확인할 수 있다. FIG. 2 is a result of Auger element analysis of a solder alloy cross section by melting and casting a predetermined ingot by melting and casting as actual measurement data of the schematic diagram of FIG. Figure 3 is an Auger element analysis result when the Ingot produced by the same method for 3 hours Dross experiment (oxidation experiment) at 260 ℃. As shown in Fig. 2, in the initial state, phosphorus is floated on the surface of the ingot, and is mostly concentrated at 1.86% by mass at the top, and Si is distributed at the lower part of P.
Figure 112007013891407-pat00001
This can be confirmed by point-specific component data.

그리고, 도3에 나타낸 바와 같이, 260℃에서 3시간 동안 Dross 실험한 경우는, 상부에는 P이 0.06질량%, Si이 0.08질량%로 Si이 상대적으로 P보다 더 잔존하고 있으며, 하부 방향의 2

Figure 112007013891407-pat00002
지점에서도 P 보다는 Si이 더 잔존하고 있음을 알 수 있다. 또한, Auger의 Peak치를 보면, 상부에는 SiO2로 간주되는 실리콘 산화물이 형성되어 있는 반면, 하부 방향 2, 3
Figure 112007013891407-pat00003
지점에는 도4에서 알 수 있듯이 SiO2 Peak치가 아닌 Si Peak가 나타나고 있다. As shown in Fig. 3, in the case of the dross experiment at 260 ° C. for 3 hours, P is 0.06% by mass and Si is 0.08% by mass, and Si remains relatively higher than P.
Figure 112007013891407-pat00002
It can be seen that Si remains more than P at the point. In addition, the peak value of Auger shows that silicon oxide, which is regarded as SiO 2 , is formed on the upper side, while the lower directions 2 and 3
Figure 112007013891407-pat00003
As shown in FIG. 4, the Si peak is shown, not the SiO 2 peak value.

이상의 결과로부터 용융 초기의 용융 솔더 표면에는 P과 Si가 용융 솔더로부터 비중차에 의하여 P. Si 순으로 부상된후, P는 상당부분 휘발되며 연속적인 공기와의 접촉에 의하여 일부만이 산화막을 형성하는 한편, Si의 경우는 대부분의 첨가량이 SiO2 등 산화실리콘막을 형성하여 용융솔더의 산화를 억제한다고 사료된다. From the above results, after P and Si were floated in the order of P. Si due to the specific gravity difference from the molten solder on the surface of the molten solder in the initial stage of melting, P was volatilized to a large extent and only a portion of the oxide film was formed by continuous contact with air. On the other hand, in the case of Si, most of the addition amount forms a silicon oxide film such as SiO 2 to suppress oxidation of the molten solder.

본 발명에 따른 무연 솔더조성물의 성분조성별 성질 및 용도를 살펴보면 다음과 같다.Looking at the properties and uses of the composition of the lead-free solder composition according to the invention as follows.

상기 주석(Sn)은 무연 솔더의 필수성분으로서 베이스 메탈로 사용된다. The tin (Sn) is used as the base metal as an essential component of the lead-free solder.

Cu(동)은 약간의 융점을 강하시키며, 접합체의 접합강도를 향상시키고, 0.1중량% 미만으로 첨가할 경우, 상기 효과가 적고 2중량%을 초과하여 첨가는 융점이 상승되므로, 0.1~2중량% 범위의 첨가가 바람직하다. Cu (copper) lowers the melting point slightly, improves the bonding strength of the bonded body, when added in less than 0.1% by weight, the effect is small and the addition of more than 2% by weight, the melting point is increased, 0.1 to 2% Addition in the% range is preferred.

Ni(니켈)은 동 패드침식을 방지 및 접합강도 향상을 위한 첨가원소로서, 0.001 중량% 미만의 첨가는 효과가 없으며, 1.0 중량% 초과의 첨가는 급격한 융점 상승과, 과경화가 발생하므로, 0.001~1.0중량% 로 포함되는 것이 바람직하다. Ni (nickel) is an additive element for preventing copper pad erosion and improving bonding strength. The addition of less than 0.001% by weight is not effective, and the addition of more than 1.0% by weight causes rapid melting point increase and overhardening, and thus, 0.001 ~. It is preferably included in 1.0% by weight.

상기 인은 솔더링 시 산화물의 생성을 억제하여 솔더링의 작업을 향상시키기 위한 것으로서, 0.001 중량% 미만으로 첨가될 경우, 상기 효과가 발생되지 않고, 0.2중량%를 초과하여 첨가될 경우, 융점이 상승되어, 최적함유량은 0.001~0.2중량% 이다.The phosphorus is for suppressing the formation of oxide during soldering to improve the work of soldering. When added to less than 0.001% by weight, the effect does not occur, and when added to more than 0.2% by weight, the melting point is increased. The optimum content is 0.001 to 0.2% by weight.

Si(실리콘)은 본 발명의 주 첨가 원소로써 부상성 및 비휘발성을 지니고 있어, Sn-Cu-Ni-P의 솔더 모합금에 소량 첨가함으로써 산화물 발생을 억제하면서도 인(P)과 달리 장시간이 경과해도 그 효과가 지속되며, 솔더링 후 솔더링 부위의 변색을 방지에 뛰어난 효과를 나타낼 뿐만 아니라, 동침식 방지 효과도 향상시킨다. Si (silicon) is a main additive element of the present invention, floating and non-volatile, a small amount added to the solder master alloy of Sn-Cu-Ni-P, while suppressing the generation of oxide, unlike the phosphorus (P) for a long time Even if the effect persists, not only does it show an excellent effect in preventing discoloration of the soldering part after soldering, but also improves the anti-corrosion effect.

Co(코발트)는 부상성은 없으나, Si와 함께 첨가함으로써 소량의 첨가로 솔더링시 산화물의 생성이 억제되고, 변색 및 침식(erosion)이 방지되는등 솔더링 특성 및 작업성을 더욱 향상시킨다. Co (cobalt) is not floating, but addition with Si further suppresses the formation of oxides during soldering with a small amount of addition, and further improves soldering properties and workability such as discoloration and erosion prevention.

이하, 본 발명에 따른 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기판의 바람직한 구체예에 대하여 실험데이터를 통한 성분조성범위에 따른 기능 및 효과에 대하여 상세하게 설명한다.Hereinafter, the function and effect of the composition composition range through the experimental data for a preferred embodiment of the lead-free solder composition for wave and dipping and the electronic device and the printed circuit board using the same will be described in detail.

본 발명에 따른 웨이브 및 디핑용 무연 솔더 조성물은 주석(Sn), 동(Cu),인(P), 니켈(Ni), 실리콘(Si), 및 코발트(Co)를 포함하여 이루어진다.The lead-free solder composition for wave and dipping according to the present invention comprises tin (Sn), copper (Cu), phosphorus (P), nickel (Ni), silicon (Si), and cobalt (Co).

이하, 그래프 1을 통하여 실리콘 및 코발트의 성분조성범위에 따른 산화방지효과에 대하여 자세히 기술한다.Hereinafter, the antioxidant effect according to the composition range of the silicon and cobalt through the graph 1 will be described in detail.

하기의 그래프 1은 산화물 발생량의 실험데이터로서, 주석-구리 및 주석-구리-인 모합금에 실리콘 및 코발트를 함류량에 따라 선택적으로 각각 또는 동시에 용해하여 솔더링 조성물을 형성하고, 상기 솔더링 조성물을 직경 160㎜ SUS 도가니에서 핫플레이트를 사용하여 260℃로 가열하였다. 그리고, 결과물을 직경 140㎜의 교반자를 이용하여 60rpm의 회전속도로 1시간, 2시간, 3시간 동안 각각 교반한 후 시간대별로 산화물을 채취하여 무게를 측정하는 방식으로 산화량을 측정하였다. The graph 1 below is experimental data of the amount of oxides generated, and selectively or simultaneously dissolves silicon and cobalt in a tin-copper and tin-copper-phosphorus master alloy to form a soldering composition, and the soldering composition has a diameter Heated to 260 ° C. using a hotplate in a 160 mm SUS crucible. Then, the resultant was stirred for 1 hour, 2 hours, and 3 hours at a rotational speed of 60 rpm using a stirrer having a diameter of 140 mm, and the amount of oxidation was measured by measuring the weight of oxides by time.

그래프 1. Graph 1.

Figure 112007013891407-pat00004
Figure 112007013891407-pat00004

그래프 1.에 나타낸 바와 같이, Cu 0.5 중량%, Ni 0.06 중량%, P 0.005 중량% 및 Sn을 잔부로 포함하는 Sn0.5Cu0.06Ni0.005P은 산화물 발생량이 1시간 경과 후 134(g), 2시간 경과 후 2686(g), 3시간 경과 후 384(g)로 총 786(g)이 발생되었고, 이와 비교하여, Sn0.5Cu의 산화물 발생량이 1시간 경과 후 371(g), 2시간 경과 후 395(g), 3시간 경과 후 460(g)로 총 1,226(g)이 발생되었고, Cu 0.5 중량%, P 0.005 중량%, 및 Sn을 잔부로 포함하는 Sn0.5Cu0.005P은 산화물 발생량이 1시간 경과 후 251(g), 2시간 경과 후 356(g), 3시간 경과 후 440(g)로 총 1,047(g)이 발생되었다. Sn0.5Cu0.06Ni0.005P이 Sn0.5Cu0.005P 및 Sn0.5Cu 보다 산화물 발생량이 적은 이유는 Ni, P이 산화량을 감소시키는 역할을 하기 때문이다. As shown in Graph 1., Sn0.5Cu0.06Ni0.005P containing 0.5% by weight of Cu, 0.06% by weight of Ni, 0.005% by weight of P, and Sn was 134 (g), 2 after an hour of oxide generation. 2786 (g) after 3 hours and 384 (g) after 3 hours, total 786 (g) was generated, compared with 371 (g) after 2 hours, and 371 (g) after 2 hours 395 (g), 460 (g) after 3 hours, total 1,226 (g) was generated, and Sn0.5Cu0.005P containing 0.5% Cu, 0.005% P, and Sn by residual amount of oxide was 1 A total of 1,047 (g) was generated after lapse of 251 (g), after 2 hours of 356 (g), and after 3 hours of 440 (g). The reason why Sn0.5Cu0.06Ni0.005P has less oxide generation than Sn0.5Cu0.005P and Sn0.5Cu is because Ni and P play a role of reducing the amount of oxidation.

그리고, 상기 Sn0.5Cu0.06Ni0.005P에 Si 0.005 중량 %를 포함시킬 경우, 산화물 발생량이 1시간 경과 후 110(g), 2시간 경과 후 132(g), 3시간 경과 후 155(g)로 총 397(g)이 발생되었고, Sn0.5Cu, Sn0.5Cu0.005P 및 Sn0.5Cu0.06Ni0.005P에 비하여 산화물 발생량이 감소됨을 확인할 수 있다. In the case of including 0.005% by weight of Si in the Sn0.5Cu0.06Ni0.005P, the amount of oxide generated is 110 (g) after 1 hour, 132 (g) after 2 hours, and 155 (g) after 3 hours. A total of 397 (g) was generated, and the amount of oxide generated was reduced compared to Sn0.5Cu, Sn0.5Cu0.005P and Sn0.5Cu0.06Ni0.005P.

상기 결과로부터 P를 0.005중량%를 첨가한 경우, 3시간대에 Dross 발생이 급격히 증가하는 한편 Si를 0.005중량% 첨가한 경우는 2시간대와 유사한 산화 속도를 나타냄으로써 Si 첨가의 경우가 P의 첨가 보다 지속적인 산화 방지 효과가 있다고 할 수 있다. From the above results, when 0.005% by weight of P was added, the occurrence of dross increased rapidly in the 3 hours, while when 0.005% by weight of Si was added, the oxidation rate was similar to that of 2 hours. It can be said to have a continuous antioxidant effect.

그리고, Si 0.05 중량%를 포함할 경우, 산화물 발생량은 더욱 감소됨을 확인할 수 있다.And, when it contains 0.05% by weight of Si, it can be seen that the oxide generation is further reduced.

또한, 상기 Sn0.5Cu0.005P0.06Ni0.05Si에 Co 0.01 중량 %를 포함시킬 경우, 산화물 발생량은 1시간 경과 후 86(g), 2시간 경과 후 103(g), 3시간 경과 후 119(g)로 총 308(g)이 발생되었고, 상기 Sn0.5Cu0.005P 및 Sn0.5Cu0.06Ni0.005P0.005Si에 비하여 산화물 발생량이 감소됨을 확인할 수 있다.In addition, when 0.01 wt% of Co is included in Sn0.5Cu0.005P0.06Ni0.05Si, the amount of oxide generated is 86 (g) after 1 hour, 103 (g) after 2 hours, and 119 (g after 3 hours). A total of 308 (g) was generated, it can be seen that the amount of oxide generation is reduced compared to the Sn0.5Cu0.005P and Sn0.5Cu0.06Ni0.005P0.005Si.

상기 Sn0.75Cu0.005P0.1Ni0.005Si에 Co 0.005 중량 %를 포함시킬 경우, 비교재에 비해서 Si 및 Co의 소량 첨가에 의해 산화물 발생량이 감소됨을 확인할 수 있다. When the Sn 0.75Cu0.005P0.1Ni0.005Si is included 0.005% by weight of Co, it can be seen that the amount of oxide generated by the addition of a small amount of Si and Co compared to the comparative material.

따라서, Sn-Cu-P-Ni 모합금에 Si이 소량으로 첨가될 경우, 종래의 P이 첨가된 솔더링 조성물에 비하여, 산화물 발생량이 지속적으로 방지됨을 확인할 수 있고, Si 및 Co가 동시에 소량으로 첨가될 경우, 보다 지속적이고 효과적으로 방지됨을 확인할 수 있다. Therefore, when a small amount of Si is added to the Sn-Cu-P-Ni master alloy, it can be confirmed that the amount of oxide generation is continuously prevented, compared to the conventional P-added soldering composition, and a small amount of Si and Co are simultaneously added. If it is, it can be confirmed that it is prevented more continuously and effectively.

이하, 그래프 2를 통하여 실리콘 및 코발트의 성분조성범위에 따른 젖음성에 대하여 자세히 기술한다.Hereinafter, the wettability according to the component composition range of silicon and cobalt will be described in detail through Graph 2.

하기의 그래프 2는 젖음성에 대한 실험데이터로서, 솔더링 조성물의 젖음 시간을 측정하기 위하여 MalCom사 SP2 Wetting Tester를 사용하여 260℃로 솔더를 용융하여 1mm로 침지하여 5초간 유지후의 젖음시간을 측정하였다. Graph 2 below is an experimental data on the wettability. In order to measure the wetting time of the soldering composition, the melting time after melting for 5 seconds was measured by melting the solder at 260 ° C. using a MalCom SP2 Wetting Tester.

그래프 2.Graph 2.

Figure 112007013891407-pat00005
Figure 112007013891407-pat00005

그래프 2.에 나타낸 바와 같이, Cu 0.5 중량%, Ni 0.06 중량%, P 0.005 중량% 및 Sn을 잔부로 포함하는 Sn0.5Cu0.06Ni0.005P의 젖음성은 2.07sec이고, 이와 비교하여, Cu 0.5 중량%, P 0.005 중량% 및 Sn을 잔부로 포함하는 Sn0.5Cu0.005P의 젖음시간은 1.88 sec이고, 이와 비교하여, Cu 0.5 중량% 및 Sn을 잔부로 포함하 는 Sn0.5Cu의 젖음시간은 1.67 sec이다. As shown in Graph 2., the wettability of Sn0.5Cu0.06Ni0.005P containing 0.5% by weight of Cu, 0.06% by weight of Ni, 0.005% by weight of P and Sn by balance is 2.07 sec, and compared with 0.5 weight of Cu. Wetting time of Sn0.5Cu0.005P containing%, P 0.005% by weight and Sn as remainder is 1.88 sec, compared to that of Sn0.5Cu containing 0.5% by weight of Cu and Sn as remainder is 1.67 sec. sec.

그리고, 상기 Sn0.5Cu0.06Ni0.005P에 Si 0.005 중량 %를 포함시킬 경우, 젖음시간은 1.85sec 이고, Si 0.05 중량 %를 포함시킬 경우, 젖음시간은 2.09sec로 Sn0.5Cu0.06Ni0.005P의 젖음시간에 비하여 증가됨이 확인 되었다. In addition, when the Sn0.5Cu0.06Ni0.005P contains 0.005% by weight of Si, the wetting time is 1.85 sec, and when the 0.05% by weight Si is included, the wet time is 2.09 sec. It was confirmed that the increase compared to the wet time.

또한, Sn0.5Cu0.06Ni0.005P0.05Si에 Co 0.01 중량 %를 포함시킬 경우, 젖음시간은 2.18sec 이고, Sn0.75Cu0.1Ni0.005P0.005Si에 Co 0.005 중량 %를 포함시킬 경우, 젖음시간은 1.92sec 이다.In addition, in the case of including 0.01 wt% of Co in Sn0.5Cu0.06Ni0.005P0.05Si, the wetting time is 2.18sec, and in the case of including Sn 0.005 wt% Co in Sn0.75Cu0.1Ni0.005P0.005Si, the wet time is 1.92 sec.

따라서, Sn-Cu-N-P 모합금에 Si이 0.005중량%가 첨가될 경우는 젖음성이 다소 향상되나 0.05중량% 이상이 되면 젖음성이 떨어지는 것을 확인 할 수 있다. 이는 0.005중량% 초소량의 Si를 첨가하면, 용융 모합금 솔더 (SnAgCu) 내의 산소등을 제거하여 청정시키므로써 젖음성이 다소 향상되나, 0.05중량% 이상 첨가되면, 융점 상승과 더불어 과잉 Si에 의하여 용융 솔더의 젖음성이 떨어진다고 사료된다. 또한, Si 및 Co가 동시에 소량으로 첨가될 경우, 젖음성이 보다 향상되나, Co 가 다량으로 예를들어 0.01 중량% 이상으로 첨가될 경우, 오히려 젖음성은 저하된다.Therefore, when 0.005% by weight of Si is added to the Sn-Cu-N-P master alloy, the wettability is slightly improved, but when the weight is 0.05% by weight or more, the wettability can be confirmed. The wettability is slightly improved by removing oxygen in the molten master alloy solder (SnAgCu) by adding a very small amount of Si to 0.005% by weight, but when added by 0.05% by weight or more, it is melted by excess Si with an increase in melting point. It is considered that the wettability of solder is poor. In addition, when Si and Co are added in small amounts simultaneously, the wettability is further improved, but when Co is added in a large amount, for example, 0.01 wt% or more, the wettability is lowered.

이하, 그래프 3을 통하여 실리콘 및 코발트의 성분조성범위에 따른 동침식량에 대하여 자세히 기술한다.Hereinafter, the copper erosion according to the composition range of the silicon and cobalt through the graph 3 will be described in detail.

하기의 그래프 3은 동침식량에 대한 실험데이터로서, 동침식량을 측정하기 위해 솔더를 용융시켜 260℃로 유지시키고, 직경 0.8mm의 동선을 용융솔더에 30mm 깊이로 침지하여 60초간 유지시킨 후, 상기 동선을 꺼내여 침지 전후의 무게를 측정하여 침식율(%)을 구하였으며, 5개 샘플의 평균값을 산출하였다. The following graph 3 is experimental data on copper erosion amount, in order to measure copper erosion amount, the solder is melted and maintained at 260 ° C., and copper wire having a diameter of 0.8 mm is immersed in a molten solder at a depth of 30 mm for 60 seconds, and then The copper wire was taken out and the weight before and after dipping was measured to obtain the erosion rate (%), and the average value of five samples was calculated.

그래프 3. Graph 3.

Figure 112007013891407-pat00006
Figure 112007013891407-pat00006

그래프 3에 나타낸 바와 같이, Sn0.5Cu0.06Ni0.005P의 동침식량은 47.1%이고, 이와 비교하여, Sn0.5Cu의 동침식량은 53.6%이고, Sn0.5Cu0.005P의 동침식량은 52.7%이다.As shown in Graph 3, the copper erosion amount of Sn0.5Cu0.06Ni0.005P is 47.1%, in comparison, the copper erosion amount of Sn0.5Cu is 53.6%, and the copper erosion amount of Sn0.5Cu0.005P is 52.7%.

그리고, 상기 Sn0.5Cu0.06Ni0.005P에 Si 0.005 중량 %를 포함시킬 경우, 동침식량은 45%이고, Si 0.05 중량 %를 포함시킬 경우, 동침식량은 44.7%로서, Sn0.5Cu, Sn0.5Cu0.005P 및 Sn0.5Cu0.06Ni0.005P의 침식량에 비하여 감소되었음을 확인할 수 있다. And, when the Sn0.5Cu0.06Ni0.005P contains 0.005% by weight of Si, the copper erosion amount is 45%, when containing 0.05% by weight of Si, copper erosion amount is 44.7%, Sn0.5Cu, Sn0.5Cu0 It can be seen that the erosion amount of .005P and Sn0.5Cu0.06Ni0.005P was reduced.

또한, Sn0.5Cu0.06Ni0.005P0.05Si에 Co 0.01 중량 %를 포함시킬 경우, 동침식량은 11.8%로 월등히 감소되었음을 확인할 수 있다. In addition, when the Sn 0.5 Cu 0.06 Ni 0.005 P 0.05 Si is included 0.01% by weight of Co, it can be seen that the copper erosion was significantly reduced to 11.8%.

따라서, Sn-Cu-P-Ni 모합금에 Si이 소량으로 첨가될 경우, 동침식량이 감소 됨을 확인할 수 있고, Si 및 Co가 동시에 소량으로 첨가될 경우, 동침심량은 월등히 감소된다. Therefore, when a small amount of Si is added to the Sn-Cu-P-Ni master alloy, it is confirmed that copper erosion amount is reduced, and when Si and Co are added in small amounts at the same time, the amount of copper erosion is greatly reduced.

이하, 표 1을 참고로 실리콘 및 코발트의 성분조성범위에 따른 산화물 발생량, 융점, 변색, 젖음시간, 동침식율, 접합강도에 대하여 자세히 기술하고, 이를 통하여 Sn-Cu-P-Ni 모합금에 포함되는 실리콘 및 코발트의 최적 함유량에 대하여 기술한다. Hereinafter, referring to Table 1, the amount of oxide generation, melting point, discoloration, wetting time, copper erosion rate, and bonding strength according to the composition range of silicon and cobalt are described in detail, and thus included in the Sn-Cu-P-Ni mother alloy. The optimum content of silicon and cobalt to be described is described.

표 1은 상술된 그래프 1,2 및 3을 데이터를 포함하고, 융점, 변색 및 접합강도의 시험데이터를 추가한 실리콘 및 코발트의 성분조성범위별 종합실험데이터이다.Table 1 is a comprehensive experimental data for each composition range of silicon and cobalt including the above-described graphs 1,2 and 3, and adding test data of melting point, discoloration and bonding strength.

표 1.Table 1.

Figure 112007013891407-pat00007
Figure 112007013891407-pat00007

우선, 표 1의 융점데이터에 나타낸 바와 같이, Sn0.5Cu0.06Ni0.005P의 융점 은 233℃이고, Cu 0.5 중량%, P 0.005 중량% 및 Sn을 잔부로 포함하는 Sn0.5Cu0.005P의 융점은 231℃이고, 이와 비교하여 Cu 0.5 중량%, P 0.005 중량% 및 Sn을 잔부로 포함하는 Sn0.5Cu의 융점은 230℃이다. First, as shown in the melting point data of Table 1, the melting point of Sn0.5Cu0.06Ni0.005P is 233 ° C, and the melting point of Sn0.5Cu0.005P containing 0.5% by weight of Cu, 0.005% by weight of P and Sn as the remainder is The melting point of Sn 0.5 Cu, which is 231 ° C. and 0.5% by weight of Cu, 0.005% by weight of P, and Sn, is 230 ° C.

그리고, 상기 Sn0.5Cu0.06Ni0.005P에 Si 0.1중량%를 포함시킬 경우 융점은 237℃로 다소 상승한다. In addition, the melting point of the Sn 0.5 Cu 0.06 Ni 0.005P 0.1% by weight of Si rises slightly to 237 ℃.

또한, Sn0.5Cu0.06Ni0.005P0.05Si에 Co 0.01중량%를 포함시킬 경우 236℃로 융점이 다소 상승하였다. 상기 결과로부터 통상적으로 금속 합금 상태도상 저융점 Sn 합금에 1400℃ 이상 고융점인 Si을 소량 첨가하면 그 융점이 급격히 상승되나 Si 첨가량에 비하여 융점 상승이 미미한 것으로 보아 전술한 바와 같이 용융 Si의 대부분은 용융 솔더 표면에 부상한 것에 기인 된다고 사료된다. In addition, the melting point slightly increased to 236 ° C. when 0.01 wt% of Co was included in Sn 0.5 Cu 0.06 Ni 0.005 P 0.05 Si. From the above results, when a small amount of Si having a high melting point of 1400 ° C. or higher is added to the low melting point Sn alloy in the state of metal alloy state, the melting point increases rapidly, but the melting point rise is insignificant compared to the amount of Si added. This is probably due to the surface of the molten solder.

다음으로, 표 1의 변색데이터는 합금 조성물의 변색도를 측정하기 위하여 25X31X0.3mm의 무산소동(99.99%)을 420℃에서 3초간 침적하여 시편을 만든후, 이 시편을 250℃에서 10분간 가열후 변색 정도를 미놀타사 CM3700B 모델의 색수차계를 사용하여 노란색의 변색 정도를 나타내는 수치값을 측정하였다. Next, in order to measure the discoloration of the alloy composition, the color change data of Table 1 was made by depositing an oxygen-free copper (99.99%) of 25X31X0.3mm at 420 ° C for 3 seconds to make a specimen, and then heating the specimen at 250 ° C for 10 minutes. The degree of discoloration was measured using a chromatic aberration meter of the Minolta CM3700B model.

표 1에 나타낸 바와 같이, Sn0.5Cu0.006Ni0.005P의 변색도는 13.5이고, 이와 비교하여 Sn0.5Cu0.005P의 변색도는 14.71이고, Sn0.5Cu의 변색도는 15.81이다.As shown in Table 1, the discoloration degree of Sn0.5Cu0.006Ni0.005P is 13.5, in comparison, the discoloration degree of Sn0.5Cu0.005P is 14.71, and the discoloration degree of Sn0.5Cu is 15.81.

그리고, 상기 Sn0.5Cu0.006Ni0.005P에 Si 0.005 중량 %를 포함시킬 경우, 변색도은 12.7이고, Si 0.05 중량 %를 포함시킬 경우, 변색도은 11.3로 월등히 감소되었으며, Sn0.5Cu 및 Sn0.5Cu0.005P의 변색도에 비하여 감소되었음 확인할 수 있다. And, when the Sn0.5Cu0.006Ni0.005P containing 0.005% by weight of Si, the discoloration degree is 12.7, when including 0.05% by weight of Si, the discoloration is significantly reduced to 11.3, Sn0.5Cu and Sn0.5Cu0. It can be seen that the decrease compared to the degree of discoloration of 005P.

또한, Sn0.5Cu0.006Ni0.005P0.005Si에 Co 0.005 중량 %를 포함시킬 경우, 변색도는 8.33로, Sn0.5Cu0.006Ni0.005P0.05Si에 Co 0.01 중량 %를 포함시킬 경우, 변색도는 4로 월등히 감소되었음을 확인할 수 있다. In the case of including 0.005% by weight of Co in Sn0.5Cu0.006Ni0.005P0.005Si, the degree of discoloration is 8.33, and the degree of discoloration is 4 when Sn0.5Cu0.006Ni0.005P0.05Si is included in 0.01% by weight of Co. It can be seen that the decrease significantly.

따라서, Sn-Cu-P-Ni 모합금에 Si이 소량으로 첨가될 경우, 변색도는 감소됨은 확인할 수 있고, Si 및 Co가 동시에 소량으로 첨가될 경우, 변색도는 월등히 감소된다. Therefore, when a small amount of Si is added to the Sn-Cu-P-Ni master alloy, it is confirmed that the discoloration is reduced, and when the Si and Co are added in small amounts at the same time, the discoloration is greatly reduced.

다음으로, 표 1의 접합파단하중(kgf)데이터는 접합파단하중을 측정하기 위하여 PCB 기판의 홀에 주석-비스무스로 도금된 직경 2mm의 와이어를 수직삽입 후 웨이브 솔더링하여 시편을 만든 후 인장시험기를 사용하여 접합파단하중(kgf)을 측정하였다.Next, the bond breaking load (kgf) data of Table 1 is a tensile tester after making a specimen by vertically inserting a wire of 2mm diameter plated with tin-bismuth into the hole of the PCB substrate to measure the bond breaking load. The bond breaking load (kgf) was measured.

표 1에 나타낸 바와 같이, Sn0.5Cu0.006Ni0.005P의 접합파단하중은 85kgf이고, 이와 비교하여, Sn0.5Cu0.005P의 접합파단하중은 87kgf이고, Sn0.5Cu의 접합파단하중은 83kgf이다. As shown in Table 1, Sn0.5Cu0.006Ni0.005P has a bond breaking load of 85kgf, compared with Sn0.5Cu0.005P, a bond breaking load of 87kgf and Sn0.5Cu of a bond breaking load of 83kgf.

그리고, 상기 Sn0.5Cu0.006Ni0.005P에 Si 0.005 중량 %를 포함시킬 경우, 접합파단하중은 90kgf이고, Si 0.05 중량 %를 포함시킬 경우, 접합파단하중 96kgf로 월등히 향상되었으며, Sn0.5Cu 및 Sn0.5Cu0.005P의 접합파단하중에 비하여 향상되었음 확인할 수 있다. In addition, when the Sn0.5Cu0.006Ni0.005P contains 0.005% by weight of Si, the bond breaking load is 90kgf, and when Si 0.05% by weight, the Sn0.5Cu0.006Ni0.005P is significantly improved to 96kgf, the Sn0.5Cu and Sn0 It can be seen that it is improved compared to the junction break load of .5Cu0.005P.

또한, Sn0.5Cu0.006Ni0.005P0.005Si에 Co 0.005 중량 %를 포함시킬 경우, 접합파단하중은 93kgf로, Sn0.5Cu0.006Ni0.005P0.05Si에 Co 0.01 중량 %를 포함시킬 경우, 접합파단하중은 99kgf로 월등히 향상되었음을 확인할 수 있다. In addition, in case of including 0.005% by weight of Co in Sn0.5Cu0.006Ni0.005P0.005Si, the bond breaking load is 93kgf. It can be seen that the significantly improved to 99kgf.

따라서, Sn-Cu-P-Ni 모합금에 Si이 소량으로 첨가될 경우, 접합파단하중은 향상됨은 확인할 수 있고, Si 및 Co가 동시에 소량으로 첨가될 경우, 접합파단강도는 월등히 향상된다. Therefore, when a small amount of Si is added to the Sn-Cu-P-Ni master alloy, it can be confirmed that the bond breaking load is improved. When Si and Co are added in small amounts at the same time, the bond breaking strength is significantly improved.

상술된 바와 같이, 본 발명에 따른 웨이브 및 디핑용 무연 솔더 조성물은Sn-Cu-P-Ni 모합금에 소량의 Si를 첨가하는 것에 의해 종래의 무연 솔더링 온도 및 젖음성을 유지하며, 산화물발생량이 지속적으로 감소되고, 동침식량이 감소되고, 변색도가 감소되며, 접합파단강도가 증가된다.As described above, the lead-free solder composition for wave and dipping according to the present invention maintains the conventional lead-free soldering temperature and wettability by adding a small amount of Si to the Sn-Cu-P-Ni master alloy, and the amount of oxide generation is continuously maintained. Decreases, copper erosion decreases, discoloration decreases, and bond breaking strength increases.

또한, 상기 Si를 소량 포함하는 Sn-Cu-P-Ni 모합금에 Co이 극소량으로 첨가되어 Si 단독으로 포함될 경우에 비하여, 산화물발생량이 지속적으로 월등히 감소되고, 동침식량이 감소되고, 변색도가 감소되며, 접합파단하중이 증가된다. In addition, when a small amount of Co is added to the Sn-Cu-P-Ni master alloy containing a small amount of Si, the amount of oxides is continuously reduced, copper erosion is reduced and discoloration degree is reduced. Reduced, and the junction break load is increased.

그러나, Si을 다량으로 함유할 경우, 즉 0.05 중량% 이상으로 함유할 경우, 융점이 다소 증가되고, 피접합물에 대한 젖음성이 떨어지는 점을 고려하여, Si의 함유량 최적치는 0.001~0.05 미만 중량%이다. However, in the case of containing a large amount of Si, that is, containing 0.05% by weight or more, the melting point is slightly increased, and considering the inferior wettability to the joined object, the optimum content of Si is less than 0.001 to 0.05% by weight. to be.

또한, Co를 다량으로 함유할 경우, 즉, 0.01 중량% 이상으로 함유할 경우, 젖음성이 떨어진다. 그리고, 0.05중량%의 소량의 Si와 더불어 초소량 첨가로도 각각의 월등한 효과를 나타내고 있는 바, Co의 함유량 최적치는 0.001~0.01 미만 중량%이다. In addition, when Co is contained in a large amount, that is, when it is contained in 0.01 weight% or more, wettability is inferior. In addition, with a small amount of 0.05% by weight of Si, even when the addition of a very small amount shows excellent effects, the optimum content of Co is 0.001 to less than 0.01% by weight.

또한, Sn-Cu-P-Ni 모합금에서 Cu(동)은 약간의 융점을 강하시키며, 접합체의 접합강도를 향상시키고, 0.1중량% 미만 첨가는 상기 효과가 적고 2중량% 초과 첨가는 융점이 상승되므로, 동의 최적함유량은 0.1~2중량%이고, 상기 니켈은 합금화 되 면서 솔더 자체의 강도와 인성을 증가시키며, 침식을 방지할 뿐만 아니라 산화물 발생을 억제하고, 접합면에 금속간 화합물성장을 억제하며, 이를 위한 최적함유량은 0.001~1.0중량% 이다. 이는 니켈의 함유량이 증가할수록 융점이 증가되고, 젖음성 및 퍼짐율이 저하되기 때문이다. 상기 인은 솔더링 시 산화물의 생성을 억제하여 솔더링의 작업을 향상시키기 위한 것으로서, 최적함유량으로 0.001~0.2중량%를 갖는다. Sn(주석)은 무연 솔더의 필수성분으로서 베이스 메탈로 사용된다. In addition, Cu (copper) in the Sn-Cu-P-Ni master alloy lowers the melting point slightly, improves the bonding strength of the bonded body, the addition of less than 0.1% by weight is less effective and the addition of more than 2% by weight As it is raised, the optimum content of copper is 0.1 to 2% by weight, and the nickel is alloyed to increase the strength and toughness of the solder itself, not only to prevent erosion, but also to suppress oxide generation and to promote intermetallic compound growth on the joint surface. The optimum content for this is 0.001 to 1.0% by weight. This is because the melting point increases as the nickel content increases, and the wettability and spreading rate decrease. The phosphorus is for improving the work of soldering by suppressing the formation of oxide during soldering, and has an optimum content of 0.001 to 0.2% by weight. Sn (tin) is used as the base metal as an essential component of lead-free solders.

또한, 본 발명에 따른 웨이브 및 디핑용 무연 솔더 조성물은 Bar, Wire 형태로 사용될 수 있으며, 무연 솔더 합금에 의해 고착되는 다수개의 전자부품을 포함하는 전자기기로 구현된다. 그리고 상기 전자기기는 컴퓨터, 디지털 비디오 캠코더, 디지털 텔레비젼, 디지털 카메라, 이동통신단말기 등 다양한 제품에 적용된다.In addition, the lead-free solder composition for wave and dipping according to the present invention can be used in the form of Bar, Wire, and is implemented as an electronic device including a plurality of electronic components are fixed by the lead-free solder alloy. The electronic device is applied to various products such as a computer, a digital video camcorder, a digital television, a digital camera, a mobile communication terminal, and the like.

또한, 본 발명은 무연 솔더 합금에 의해 고착되는 인쇄회로기판으로서, 동 0.1~2중량%, 니켈 0.001~1.0중량%, 실리콘 0.001~0.05 미만 중량%, 코발트 0.001~0.01 미만 중량%, 인 0.001~0.2중량%, 및 주석을 잔부로 포함하는 인쇄회로기판으로 구현된다.In addition, the present invention is a printed circuit board bonded by a lead-free solder alloy, copper 0.1 ~ 2% by weight, nickel 0.001 ~ 1.0% by weight, silicon 0.001 ~ less than 0.05% by weight, cobalt 0.001 ~ less than 0.01% by weight, phosphorus 0.001 ~ It is implemented as a printed circuit board containing 0.2% by weight, and tin as the remainder.

이상에서 설명한 본 발명은 전술한 실시예에 의하여 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiments, and various permutations, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be obvious to him.

상술된 바와 같이, 본 발명에 의하면 Sn-Pb 및 Sn-Cu-P-Ni 솔더에 필적할 수 있는 기계적 특성 및 작업성을 갖고, Pb을 포함하지 않으면서도 주석(Sn), 동(Cu), 및 니켈(Ni)로 이루어진 3원계 조성물에 실리콘(Si) 및 코발트(Co)를 함유시킴으로써, 용융솔더의 산화를 지속적이고 효과적으로 방지할 뿐만 아니라, 초미량의 원소를 첨가함에도 불구하고, 종래의 무연솔더링 온도 및 젖음성을 유지함과 동시에 솔더링 후 변색방지 및 젖음성 향상 및 인쇄회로기판의 동패드 침식방지 등 솔더링 접합성을 향상시킬 수 있는 웨이브 및 디핑용 무연 솔더 조성물과 이를 이용한 전자기기 및 인쇄회로기판을 제공하는 효과를 갖는다.As described above, the present invention has mechanical properties and workability comparable to those of Sn-Pb and Sn-Cu-P-Ni solders, and does not include Pb, but also include tin (Sn), copper (Cu), And by containing silicon (Si) and cobalt (Co) in a ternary composition made of nickel (Ni), it is possible to continuously and effectively prevent oxidation of the molten solder, and in spite of adding an extremely small amount of element, Provides lead-free solder compositions for wave and dipping that can improve solderability, such as preventing discoloration and wettability after soldering, and preventing copper pad erosion of printed circuit boards while maintaining soldering temperature and wettability, and electronic devices and printed circuit boards using the same. Has the effect.

Claims (7)

동 0.5~2중량%, 니켈 0.001~1.0중량%, 실리콘 0.001~0.05 미만 중량% 인 0.001~0.2중량%, 코발트 0.001~0.01 미만 중량% 및 주석을 잔부로 포함하는 웨이브 및 디핑용 무연 솔더 조성물.Lead-free solder composition for wave and dipping comprising 0.5 to 2% by weight of copper, 0.001 to 1.0% by weight of nickel, 0.001 to 0.2% by weight of less than 0.001 to 0.05% of silicon, 0.001 to 0.01% by weight of cobalt and tin. 삭제delete 웨이브 및 디핑용 무연 솔더 조성물에 의해 고착되는 다수개의 전자부품을 포함하는 전자기기로서, An electronic device comprising a plurality of electronic components fixed by a lead-free solder composition for wave and dipping, 상기 웨이브 및 디핑용 무연 솔더 조성물은 동 0.5~2중량%, 니켈 0.001~1.0중량%, 실리콘 0.001~0.05 미만 중량%, 인 0.001~0.2중량%, 코발트 0.001~0.01 미만 중량% 및 주석을 잔부로 포함하는The lead-free solder composition for wave and dipping is copper 0.5-2% by weight, nickel 0.001-1.0% by weight, silicon 0.001-0.05% by weight, phosphorus 0.001-0.2% by weight, cobalt 0.001-0.01% by weight and tin Containing 전자기기.Electronics. 삭제delete 제3항에 있어서, The method of claim 3, 상기 전자기기는 컴퓨터, 디지털 비디오 캠코더, 디지털 텔레비젼, 디지털 카메라, 이동통신단말기 중 하나가 선택되는 The electronic device is one of a computer, a digital video camcorder, a digital television, a digital camera, and a mobile communication terminal. 전자기기.Electronics. 웨이브 및 디핑용 무연 솔더 조성물에 의해 고착되는 인쇄회로기판으로서, A printed circuit board fixed by a lead-free solder composition for wave and dipping, 상기 웨이브 및 디핑용 무연 솔더 조성물은 동 0.5~2중량%, 니켈 0.001~1.0중량%, 실리콘 0.001~0.05 미만 중량%, 인 0.001~0.2중량%, 코발트 0.001~0.01 미만 중량% 및 주석을 잔부로 포함하는The lead-free solder composition for wave and dipping is copper 0.5-2% by weight, nickel 0.001-1.0% by weight, silicon 0.001-0.05% by weight, phosphorus 0.001-0.2% by weight, cobalt 0.001-0.01% by weight and tin Containing 인쇄회로기판.Printed circuit board. 삭제delete
KR1020070015638A 2006-02-14 2007-02-14 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same KR100904658B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060014293 2006-02-14
KR1020060014293 2006-02-14

Publications (2)

Publication Number Publication Date
KR20070082058A KR20070082058A (en) 2007-08-20
KR100904658B1 true KR100904658B1 (en) 2009-06-25

Family

ID=38611793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070015638A KR100904658B1 (en) 2006-02-14 2007-02-14 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same

Country Status (1)

Country Link
KR (1) KR100904658B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848787B (en) * 2007-08-14 2013-10-23 株式会社爱科草英 Pb-free solder compositions and PCB and electronic device using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261863A (en) * 2003-01-07 2004-09-24 Senju Metal Ind Co Ltd Lead-free solder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261863A (en) * 2003-01-07 2004-09-24 Senju Metal Ind Co Ltd Lead-free solder

Also Published As

Publication number Publication date
KR20070082058A (en) 2007-08-20

Similar Documents

Publication Publication Date Title
KR102522501B1 (en) Lead-free, silver-free solder alloys
US9221131B2 (en) Solder alloy
KR100999331B1 (en) Lead-free solder alloy
US6474537B1 (en) Soldering method using a Cu-containing lead-free alloy
JP4453473B2 (en) Lead-free solder alloys, solder materials and solder joints using them
KR100904651B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904652B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904656B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100887358B1 (en) Diluent Pb free solder Composition, electronic equipment and PCB with the same
KR100904658B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904653B1 (en) Pb free solder composition for wave and deeping, electronic equipment and PCB with the same
KR100814977B1 (en) Pb free solder Composition for high temperature system, electronic equipment and PCB with the same
KR100904657B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100844200B1 (en) Diluent Pb free solder Composition, electronic equipment and PCB with the same
KR100904654B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
JP2008221330A (en) Solder alloy
KR100887357B1 (en) Pb free solder Composition for high temperature system, electronic equipment and PCB with the same
JP5825265B2 (en) Soldering method for printed circuit boards
JP3254901B2 (en) Solder alloy
KR100903026B1 (en) Leed-free alloy for soldering
TW202309305A (en) Solder alloy and solder joint
JP3685202B2 (en) Solder and soldered articles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130605

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170710

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181017

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190618

Year of fee payment: 11