JP2004251856A - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP2004251856A
JP2004251856A JP2003045027A JP2003045027A JP2004251856A JP 2004251856 A JP2004251856 A JP 2004251856A JP 2003045027 A JP2003045027 A JP 2003045027A JP 2003045027 A JP2003045027 A JP 2003045027A JP 2004251856 A JP2004251856 A JP 2004251856A
Authority
JP
Japan
Prior art keywords
circuit
analog
voltage
capacitor
peak hold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003045027A
Other languages
English (en)
Inventor
Michiya Kusaka
美智哉 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2003045027A priority Critical patent/JP2004251856A/ja
Publication of JP2004251856A publication Critical patent/JP2004251856A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】電子部品などのサンプル12からのアナログ入力データをアナログ/デジタル変換器18にてデジタルデータに変換し、測定を行う測定装置11において、前記サンプル12の高速な挙動を、低コストに検出する。
【解決手段】前記アナログ/デジタル変換器18の前段側に、前記アナログ入力データのピーク値を検出し、保持するピークホールド回路15,16および読出し用サンプルホールド回路17を介在する。したがって、A/D変換器18のサンプリングタイミング間で、電子部品の短絡などのように、アナログ入力データが瞬時に変化し、復帰するような変化が生じても、その変化を検出し、保持することができ、こうしてA/D変換器18のサンプリング速度を上回る高速な挙動を検出することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品の試験などに好適に用いられ、測定対象にストレスを与えて、異常の発生の有無などを測定するための装置に関する。
【0002】
【従来の技術】
集積回路やそれを搭載した基板およびトランジスタやコンデンサ等の素子などの前記電子部品には、その信頼性を確保するために、温度や湿度等の環境に対する試験や振動などの機械的な試験、および通電試験などの各種のストレスを与えた試験が行われる。しかも、それらの試験は、個々の部品に対して行われる必要があり、また信頼性を評価する場合などでは、過大なストレスを与える加速試験が行われるけれども、それでも100時間から1000時間に亘る長時間を要する場合もある。一方、測定装置は、個々の部品に対して設けることはできず、時分割でデータを取込むことになる。
【0003】
図5は、典型的な従来技術の測定装置1の電気的構成を示すブロック図である。前記電子部品などのサンプル2には、ストレス印加回路3から、前記振動や通電などによってストレスが印加されている。前記サンプル2の測定端に現れる電圧や電流などの電気的物理量は、入力バッファ4を介して、アナログ電圧としてアナログ/デジタル変換器5に入力される。前記入力バッファ4は、高入力インピーダンスのアンプであり、前記電圧や電流を前記測定端から取出すことによる影響を、サンプル2に与えないように介在されている。前記アナログ/デジタル変換器5は、予め定めるサンプリングタイミング毎に前記入力バッファ4からの出力電圧をデジタル変換する。
【0004】
前記アナログ/デジタル変換器5での変換結果は、マイクロコンピュータ等で実現される処理回路6を介して、半導体メモリ等で実現される記憶装置7に入力され、予め定めるサンプル数が順次更新されて格納されている。前記処理回路6は、記憶装置7に格納されているデータを比較演算して、サンプル2に異常が発生していないかを監視し、異常が発生すると、その異常発生時のデータや発生タイミングなどを記憶する。また、異常が発生すると、前記処理回路6は、出力回路8を介して前記ストレス印加回路3によるストレス印加を停止させ、サンプル2に異常発生時の状態を保持させる。
【0005】
【発明が解決しようとする課題】
上述のような従来技術では、電子部品の短絡などのように、アナログ入力データが瞬時に変化し、復帰するような変化がサンプル2に生じた場合、その変化がアナログ/デジタル変換器5のサンプリングタイミング間で起これば、その変化を検出できないという問題がある。このため、サンプル2に予想される挙動を検出可能な短いサンプリング周期でサンプリングを行う必要があるけれども、一般的にアナログ/デジタル変換器5のサンプリング周期としては、数m〜数十msecが限界であり、前記サンプル2に生じる挙動を確実に検出することができない。特に、電子部品の試験のように、入力チャネル数が数百〜数千チャネルにも及び、それらの入力を時分割で切換えてアナログ/デジタル変換器5を共用するような場合には、前記サンプリング周期が長くなり、前記問題が一層顕著である。
【0006】
ここで、前記電子部品の試験の代表として、イオンマイグレーション試験では、材料中のイオン化した原子(主に金属イオン)が、電界に沿って移動して細い針状に析出し、端子や回路間を短絡した瞬間に、印加電圧のエネルギによって蒸発してしまう。この現象を、たとえば端子間の抵抗値で見ると、絶縁状態(無限大)であったのが、一瞬0近くに低下し、再び絶縁状態に復帰する。
【0007】
同様に、電解コンデンサを組立てた後、絶縁膜を生成するために通電を行うエージング(成膜)工程では、前記絶縁膜に不良箇所があると、コンデンサに充電された電荷がその不良箇所に瞬間的に流れ、その不良箇所は焼き切れてしまい、以後は良品のように見えてしまう。また、コネクタの瞬断や半田クラックの評価試験では、接合部に定電流を流して振動や衝撃を与え、その接合部間の電圧変化から接合抵抗の変化を検出しており、通常は瞬間的な抵抗値の変化が現れ、直ぐに元の抵抗値に復帰してしまう。
【0008】
したがって、このようなサンプル2に生じる瞬間的な挙動を検出できないと、不良を見逃してしまうことになる。一方、DSP(デジタル・シグナル・プロセッサ)等のような専用の集積回路を用いることで、サンプリング周波数などで要求される性能を満足することができるけれども、コストが嵩み、実現は困難である。
【0009】
本発明の目的は、測定対象の高速な挙動を、低コストに検出することができる測定装置を提供することである。
【0010】
【課題を解決するための手段】
本発明の測定装置は、アナログ入力データをアナログ/デジタル変換器にてデジタルデータに変換し、そのデジタルデータを用いて測定を行う装置において、前記アナログ/デジタル変換器の前段側に、前記アナログ入力データのピーク値を検出して保持するピークホールド手段を介在することを特徴とする。
【0011】
上記の構成によれば、アナログ/デジタル変換器のサンプリングタイミング間で、電子部品の短絡などのように、アナログ入力データが瞬時に変化し、復帰するような変化が生じても、その変化はピークホールド手段で検出され、保持されているので、前記アナログ/デジタル変換器のサンプリング速度を上回る高速な挙動を検出することができる。
【0012】
また、前記サンプリング速度が遅くても異常を判定することができるので、アナログ/デジタル変換結果から異常を判定するにあたって、判定に使用するための該アナログ/デジタル変換結果を格納するメモリの容量も抑えることができる。さらにまた、専用の集積回路を作成したりする必要はなく、ピークホールド回路などの汎用の部品から成るピークホールド手段を設けることで、低コストに実現することができる。
【0013】
また、本発明の測定装置では、前記アナログ入力は多チャネルであること特徴とする。
【0014】
上記の構成によれば、入力チャネル数が多くなる程、前記アナログ/デジタル変換器のサンプリングタイミングの間隔が長くなるので、本発明が特に好適である。
【0015】
さらにまた、本発明の測定装置では、前記ピークホールド手段は、前記アナログ入力データの最大値および最小値をそれぞれ検出して保持する上限ピークホールド回路および下限ピークホールド回路と、前記上限ピークホールド回路および下限ピークホールド回路のデータを入力して保持し、前記アナログ/デジタル変換器のサンプリングタイミングで前記アナログ/デジタル変換器へ出力する読出し用サンプルホ−ルド回路とを備えて構成されることを特徴とする。
【0016】
上記の構成によれば、アナログ/デジタル変換後のデータの差分を求めることで、測定対象の異常などを正確に検出することができる。
【0017】
また、本発明の測定装置では、前記ピークホールド手段は、アナログ入力電圧で充電されるホールド用のコンデンサと、前記アナログ入力電圧を前記コンデンサに与える逆流防止用のダイオードと、前記ダイオードと並列に設けられ、前記ダイオードの端子間を短絡することで前記コンデンサの充電電圧を前記アナログ入力電圧に等しくしてリセットさせるリセット用の短絡スイッチとを備えて構成されることを特徴とする。
【0018】
上記の構成によれば、たとえばアナログ入力からコンデンサに向かって、ダイオードが順方向に挿入されている場合、アナログ入力電圧が上昇するとコンデンサの充電電圧も上昇し、前記アナログ入力電圧が降下しても、前記ダイオードの働きによって、その充電電圧は維持され、こうしてピークホールド動作が行われる。一方、短絡スイッチが導通している期間だけ、コンデンサの充電電圧は前記アナログ入力電圧に等しくなってリセットされる。こうして、前記ピークホールド手段を具体的に構成することができる。
【0019】
さらにまた、本発明の測定装置では、前記ピークホールド手段は、アナログ入力電圧で充電されるホールド用のコンデンサと、前記アナログ入力電圧を前記コンデンサに与える逆流防止用のダイオードと、前記ダイオードと並列に設けられ、前記ダイオードの端子間を短絡することで前記コンデンサの充電電圧を前記アナログ入力電圧に等しくしてリセットさせるリセット用の短絡スイッチと、前記コンデンサのホールド電圧を出力するスイッチとを備える系統を複数系統備えて構成され、何れか1つの系統が前記短絡スイッチが遮断してピークホールド動作に使用され、残余の系統が前記短絡スイッチが導通して前記アナログ入力電圧にリセットされることを特徴とする。
【0020】
上記の構成によれば、何れか1つの系統が順次前述のようなピークホールド動作を行うことで、連続したピークの監視・検出を行うことができるとともに、ホールド電圧のリセットを要求されるサンプリング期間内に終了させる必要はなく、リセットする時間を充分に確保することができる。
【0021】
また、本発明の測定装置は、ストレス印加手段によって測定対象にストレスを印加しつつ、その測定対象からの入力データを規定のサンプリングタイミングで読込んで測定を行う装置において、前記入力データを予め定める基準値と比較し、基準値を超えると、前記ストレス印加手段によるストレス印加を解除させる比較手段を含むことを特徴とする。
【0022】
上記の構成によれば、測定装置が読込んだデータから異常発生を判断し、ストレスの印加を解除させるのでは、最大でサンプリング周期分の遅れが生じるのに対して、別途に、常時入力データを監視し、速やかに異常の発生を検出する比較手段を設けることで、測定対象の高速な挙動を検出することができる。また、前記比較手段は、異常が生じた時点で速やかにストレスの印加を解除させるので、異常発生時における測定対象の状態をより適切に保持し、異常原因の解析などに寄与することができる。
【0023】
さらにまた、前記異常原因の解析などのために、アナログ/デジタル変換結果を格納しておくようにしても、比較手段が速やかに異常の発生を検出するので、その時点で格納(更新)を停止することで、メモリなどの格納手段の容量も抑えることができる。
【0024】
【発明の実施の形態】
本発明の実施の一形態について、図1〜図3に基づいて説明すれば、以下のとおりである。
【0025】
図1は、本発明の実施の一形態の測定装置11の電気的構成を示すブロック図である。前記図5で示す測定装置1と同様に、電子部品などのサンプル12には、ストレス印加回路13から、前記振動や通電などによるストレスが印加されている。前記サンプル12の測定端に現れる電圧や電流などの電気的物理量は、入力バッファ14を介して、アナログ電圧としてアナログ/デジタル変換器18に入力される。
【0026】
注目すべきは、本発明では、前記入力バッファ14からの出力は、上限ピークホールド回路15および下限ピークホールド回路16に共通に入力され、アナログ入力データの最大値および最小値がそれぞれ検出され、読出し用サンプルホールド回路17で保持されていることである。前記読出し用サンプルホールド回路17でのホールド値は、アナログ/デジタル変換器18のサンプリングタイミングで読出され、アナログ/デジタル変換される。
【0027】
前記アナログ/デジタル変換器18での変換結果は、マイクロコンピュータ等で実現される処理回路19に入力される。この処理回路19は、予め定める周期毎に、読出し制御回路20を介して、前記上限ピークホールド回路15および下限ピークホールド回路16の格納データを読出し用サンプルホールド回路17に格納させ、格納が終了すると、これらの上限ピークホールド回路15および下限ピークホールド回路16を入力バッファ14の出力でリセットさせる。次に、読出し用サンプルホールド回路17に格納されているデータを、アナログ/デジタル変換器18によってデジタルデータに変換させて取込む。必要に応じて、この処理回路19に関連して、取込んだデータを必要なサンプル数だけ記憶する記憶装置を設けてもよい。
【0028】
一方、また本発明では、前記サンプル12に異常が発生していないかを監視し、異常が発生すると、前記ストレス印加回路13によるストレス印加を停止させるために、差分回路21、可変基準値回路22および比較・ラッチ回路23が設けられている。差分回路21は、前記上限ピークホールド回路15および下限ピークホールド回路16にそれぞれ格納されているデータを常時取込んで、それらの差分(変化量)を求めている。前記差分は、比較・ラッチ回路23において、前記可変基準値回路22に設定されている基準値と比較演算され、基準値以上となって異常発生が検出されると、該比較・ラッチ回路23は、前記のようにストレス印加回路13によるストレス印加を停止させる。
【0029】
また、前記比較・ラッチ回路23からの出力は、読出し用ラッチ回路24を介して前記処理回路19に入力されており、前記読出し用サンプルホールド回路17からのデータの取込み時に、合わせて格納される。したがって、異常原因の解析などの際は、この比較・ラッチ回路23からの出力を参照することで、異常発生タイミングでのアナログ/デジタル変換データを特定することができる。
【0030】
図2は、図1の一部を詳細に示すブロック図である。前記入力バッファ14は、高入力インピーダンスのアンプであり、前記電圧や電流を前記測定端から取出すことによる影響を、サンプル12に与えないように介在されている。この入力バッファ14は、演算増幅器A1から成り、アナログ入力電圧のレベルと、後段側の前記上限ピークホールド回路15および下限ピークホールド回路16のダイナミックレンジとに応じて、適宜ゲインが設定される。
【0031】
前記上限ピークホールド回路15は、前記入力バッファ14の演算増幅器A1からの出力電圧が入力される演算増幅器A11と、前記演算増幅器A11からの出力に介在される逆流防止用のダイオードD1と、前記ダイオードD1と並列に設けられるリセット用の短絡スイッチS11と、前記ダイオードD1を介する演算増幅器A11からの出力電流で充電されるホールド用のコンデンサC11と、前記コンデンサC11の充電電圧を維持して出力するボルテージホロワ用の演算増幅器A12とを備えて構成されている。
【0032】
ピーク値を更新してゆく場合は、前記短絡スイッチS11はOFFしており、コンデンサC11の充電電圧が0Vとすると、ゲイン1の演算増幅器A12の出力電圧も0Vとなり、演算増幅器A11の反転入力端も0Vとなっている。この状態で、前記演算増幅器A1から演算増幅器A11の非反転入力端に正の電圧が入力されると、該演算増幅器A11の出力電圧も正方向に上昇し、ダイオードD1を介してコンデンサC11が充電され、充電電圧も上昇してゆく。コンデンサC11の充電電圧は、前述のようにゲイン1の演算増幅器A12を介して演算増幅器A11の反転入力端に与えられており、したがって演算増幅器A1からの入力電圧とコンデンサC11の充電電圧とが等しくなるまで、上述の充電動作を繰返す。
【0033】
一方、演算増幅器A1からの入力電圧が低下し、演算増幅器A11の出力電圧が前記コンデンサC11の充電電圧にダイオードD1の順方向電圧を加えた電圧より低くなっても、ダイオードD1によってその電荷の流出が防止されており、こうしてコンデンサC11の充電電圧は、演算増幅器A1からの入力電圧の最大値に更新されてゆく。
【0034】
演算増幅器A12の出力電圧が前記読出し用サンプルホールド回路17に取込まれ、前記読出し制御回路20を介して、前記処理回路19によって短絡スイッチS11がONされると、コンデンサC11の充電電圧は、演算増幅器A11の出力電圧と等しくなり、リセットされる。
【0035】
同様に、下限ピークホールド回路16は、前記上限ピークホールド回路15の演算増幅器A11、ダイオードD1、短絡スイッチS11、コンデンサC11および演算増幅器A12にそれぞれ対応する演算増幅器A21、ダイオードD2、短絡スイッチS21、コンデンサC21および演算増幅器A22を備えて構成されるけれども、ダイオードD2の向きが、前記ダイオードD1とは逆になっている。
【0036】
したがって、前記短絡スイッチS21がOFFしており、コンデンサC21の充電電圧が0V、演算増幅器A22の出力電圧も0V、演算増幅器A21の反転入力端も0Vの状態で、演算増幅器A21の反転入力端に負の電圧が入力されると、該演算増幅器A21の出力電圧も負方向に降下し、ダイオードD2を介してコンデンサC21に負の電荷が蓄積され、充電電圧は降下してゆく。その後、演算増幅器A1からの入力電圧とコンデンサC21の充電電圧とが等しくなるまで、上述の動作を繰返す。一方、演算増幅器A1からの入力電圧が上昇し、演算増幅器A21の出力電圧が前記コンデンサC21の充電電圧にダイオードD2の順方向電圧を加えた電圧より高くなっても、ダイオードD2によってその電荷の流れが防止されており、こうしてコンデンサC21の充電電圧は、演算増幅器A1からの入力電圧の最小値に更新されている。
【0037】
前記読出し制御回路20を介して、前記処理回路19によって短絡スイッチS21がONされると、コンデンサC21の充電電圧は、演算増幅器A21の出力電圧と等しくなり、リセットされる。
【0038】
また、前記読出し用サンプルホールド回路17は、前記2つのピークホールド回路15,16に対応して、2つの入力スイッチS12,S22と、それらの入力スイッチS12,S22を介する前記演算増幅器A12,A22からの出力電圧でそれぞれ充電されるホールド用のコンデンサC12,C22と、前記コンデンサC12,C22の充電電圧を維持して出力するボルテージホロワ用の演算増幅器A13,A23と、前記演算増幅器A13,A23からの出力に介在される出力スイッチS13,S23とを備えて構成されている。
【0039】
したがって、入力スイッチS12,S22がONすると、コンデンサC12,C22の充電電圧、すなわち演算増幅器A13,A23の出力電圧は、前記演算増幅器A12,A22の出力電圧、すなわちコンデンサC11,C21の充電電圧に等しくなり、入力スイッチS12,S22がOFFしても、その出力電圧が維持される。出力スイッチS13,S23は、前記読出し制御回路20を介して、前記処理回路19によって、アナログ/デジタル変換器18の取込みタイミングにONされる。
【0040】
なお、前記入力スイッチS12,S22をONして、上限ピークホールド回路15および下限ピークホールド回路16のホールド電圧を読出し用サンプルホールド回路17に転送している間に、これらのピークホールド回路15,16のホールド電圧が変化しても、その電圧はそのまま転送される。
【0041】
転送が終了すると、前記入力スイッチS12,S22がOFFされると同時に前記短絡スイッチS11,S21が一瞬ONされ、上述のように該ピークホールド回路15,16のホールド電圧が略入力バッファ14の演算増幅器A1からの出力電圧にリセットされる。このリセットのために短絡スイッチS11,S21をONする期間は、要求されるサンプリング期間よりも短く設定される。これによって、リセット中に新たに発生したピーク電圧を捉えることができ、連続したピークの監視・検出を行うことができる。
【0042】
しかしながら、サンプリング周波数が高く、サンプリング期間にピークホールド回路15,16のホールド電圧をリセットできない場合は、たとえば上限ピークホールド回路の場合で、図3で示す上限ピークホールド回路25のように構成すればよい。すなわち、演算増幅器A11a、ダイオードD1a、短絡スイッチS11a、コンデンサC11a、演算増幅器A12aおよび入力スイッチS12aから成る第1の系統と、演算増幅器A11b、ダイオードD1b、短絡スイッチS11b、コンデンサC11b、演算増幅器A12bおよび入力スイッチS12bから成る第2の系統との2つの系統を設け、交互に切換えて読出しおよびリセットを行うようにすればよい。
【0043】
第1の系統でピークホールド動作を行い、第2の系統をリセットする場合には、短絡スイッチS11aがOFFされており、読出し用サンプルホールド回路17への転送タイミングとなると、入力スイッチS12aがONされ、第1の系統のホールド電圧が転送された後、前記入力スイッチS12aがOFFされる。また、短絡スイッチS11bはONされており、第2の系統はリセットされる。
【0044】
これに対して、第2の系統でピークホールド動作を行い、第1の系統をリセットする場合には、前記第1の系統でピークホールド動作を終了する入力スイッチS12aのOFFタイミングで、同時に短絡スイッチS11aがONされ、第1の系統のリセットが開始されるとともに、短絡スイッチS11bがOFFされる。そして、読出し用サンプルホールド回路17への転送タイミングとなると、入力スイッチS12bがONされ、第2の系統のホールド電圧が転送された後、前記入力スイッチS12bがOFFされる。同時に短絡スイッチS11bがONされ、第2の系統のリセットが開始される。こうして、連続したピークの監視・検出を行いつつ、ホールド電圧をリセットする時間を充分に確保することができる。
【0045】
前記ピークホールドの系統数は、2に限らず、要求されるサンプリング期間と、リセットに要する時間とに対応して定められればよい。
【0046】
前記差分回路21は、演算増幅器A3と、その入力抵抗R11,R21と、帰還抵抗R12,R22とを備えて構成されている。前記演算増幅器A3の非反転入力端には、前記上限ピークホールド回路15側の演算増幅器A12からの出力電圧が入力され、反転入力端には、前記下限ピークホールド回路16側の演算増幅器A22からの出力電圧が入力される。またこの演算増幅器A3の反転入力端は、前記帰還抵抗R22を介して出力端と接続されており、非反転入力端は、前記帰還抵抗R12を介して接地されている。
【0047】
したがって、この演算増幅器A3は、上限ピークホールド回路15の出力電圧Vpと下限ピークホールド回路16の出力電圧Vnとの差の電圧を出力し、その電圧Voは、
Figure 2004251856
で表される。したがって、
{R12/(R11+R12)}・(1+R22/R21)=(R22/R21)
となるように各抵抗R11,R12,R21,R22の抵抗値を設定することによって、前記のように上限ピークホールド回路15側の出力電圧Vpと下限ピークホールド回路16の出力電圧Vnとの差の電圧を求められることが理解される。
【0048】
前記可変基準値回路22は、デジタル/アナログ変換器22aから成り、前記処理回路19からデジタルデータで設定される基準値データに対応したアナログ電圧を出力する。
【0049】
前記比較・ラッチ回路23は、前記差分回路21からの出力電圧と前記可変基準値回路22からの基準値電圧とを比較する演算増幅器A4と、前記演算増幅器A4の比較結果に応答して前記ストレス印加回路13へ制御出力を導出するRSフリップフロップFFとを備えて構成されている。前記演算増幅器A4の非反転入力端には前記差分回路21からの出力電圧が与えられており、反転入力端には前記可変基準値回路22からの基準値電圧が与えられている。したがって、この演算増幅器A4は、差分回路21からの出力電圧が基準値電圧以上となると、RSフリップフロップFFをリセットする。RSフリップフロップFFは、測定開始時に、前記処理回路19によってセットされており、またこのRSフリップフロップFFの出力によって制御されるストレス印加回路13は、ローアクティブである。したがって、測定開始時にRSフリップフロップFFの出力はローレベルとなってストレスの印加が行われ、差分回路21からの出力電圧が基準値電圧以上となって演算増幅器A4の出力がハイレベルとなると、RSフリップフロップFFの出力はハイレベルとなってストレスの印加が解除される。
【0050】
上述のように構成することによって、アナログ/デジタル変換器18のサンプリングタイミング間で、電子部品の短絡などのように、アナログ入力データが瞬時に変化し、復帰するような変化が生じても、その変化はピークホールド回路15,16で検出され、読出し用サンプルホールド回路17で保持されているので、前記アナログ/デジタル変換器18のサンプリング速度を上回る高速な挙動を検出することができる。
【0051】
また、前記サンプリング速度が遅くても異常を判定することができるので、アナログ/デジタル変換結果から異常を判定するにあたって、判定に使用するための該アナログ/デジタル変換結果を格納するメモリの容量も抑えることができる。さらにまた、専用の集積回路を作成したりする必要はなく、ピークホールド回路15,16などの汎用の部品を設けることで、低コストに実現することができる。
【0052】
また、上限ピークホールド回路15と下限ピークホールド回路16とを設けるので、アナログ/デジタル変換後のデータの差分を求めることで、サンプル12の異常などを正確に検出することができる。
【0053】
さらにまた、処理回路19が読込んだデータから異常発生を判断し、ストレスの印加を解除させるのでは、最大でサンプリング周期分の遅れが生じるのに対して、前記処理回路19による測定とは別途に、差分回路21において前記ピークホールド回路15,16のホールド値の差分を求め、比較・ラッチ回路23が、可変基準値回路22で作成した基準値電圧と比較し、該基準値電圧以上となると、ストレス印加回路13を制御してストレスの印加を解除させるので、速やかに異常の発生を検出し、ストレスの印加を解除することができる。これによって、異常発生時におけるサンプル12の状態をより適切に保持し、異常原因の解析などに寄与することができる。
【0054】
本発明の実施の他の形態について、図4に基づいて説明すれば、以下のとおりである。
【0055】
図4は、本発明の実施の他の形態の測定装置110の電気的構成を示すブロック図である。注目すべきは、この測定装置110では、アナログ入力を多チャネルとしていることである。このため、各部の構成において、各チャネル毎に設けられる構成は、前述の図1の測定装置11の構成の参照符号に、チャネル番号(1,2,…,N)を付して示し、各チャネル間で共通の構成には、測定装置11の構成の参照符号に0を付して示している。そして、多チャネルとなっただけで、前記測定装置11と同様の機能を行う構成については、その説明を省略する。
【0056】
この測定装置110では、参照符170で示す読出し用サンプルホールド回路は、前記読出し用サンプルホールド回路17における2つの演算増幅器A13,A23およびそれに対応したホールド用のコンデンサC12,C22ならびに出力スイッチS13,S23を備えて構成されており、前記入力スイッチS12,S22は、各チャネル毎に設けられ、参照符S121〜S12N;S221〜S22Nとなっている。
【0057】
また、図4では、可変基準値回路220は、総てのチャネルで共通に用いられているけれども、個別の基準値が用いられてもよく、また各チャネルがグループ分けされて、グループ毎に共通の基準値が用いられてもよい。さらにまた、読出し用ラッチ回路240に関連して、各比較・ラッチ回路231〜23Nからの出力を時分割して該読出し用ラッチ回路240に取込むために、読出しスイッチS31〜S3Nが設けられている。読出し制御回路200は、各チャネルのピークホールド回路151〜15N;161〜16Nのホールド動作およびリセット動作、読出しのための入力スイッチS121〜S12N;S221〜S22Nの切換え動作、ストレス印加制御のための比較・ラッチ回路231〜23Nの動作等の制御を行う。
【0058】
したがって、各チャネルのピークホールド回路151〜15N;161〜16Nからの出力は、時分割で、順次読出し用サンプルホールド回路170に取込まれ、アナログ/デジタル変換器180に与えられることになり、該アナログ/デジタル変換器180を時分割で使用することになる。これによって、該アナログ/デジタル変換器180を総てのチャネル間で共用することができる。このように多くのチャネルで前記アナログ/デジタル変換器180を共用すると、該アナログ/デジタル変換器180のサンプリングタイミングの間隔が長くなるけれども、ピークホールド回路151〜15N;161〜16Nの動作によって、サンプリング速度を上回る高速な挙動を検出し、異常を判定することができる。
【0059】
また、異常原因の解析などのために異常発生時のデータを保持しておくようにするにあたって、従来の計測装置1では、記憶装置7は異常が発生してからもデータが更新されてゆくので、実際に異常が発生してから、前記処理回路6が異常と判定するまでの間のデータは保持しておく必要がある。したがって、たとえば入力を1000チャネル、サンプリング周期を1msec、保持しておくべき時間を1secとすると、100万個のデータを保持する必要があり、記憶装置7のコストが嵩む。これに対して、本発明では、直ちにストレスの印加を停止するので、サンプリングまでの時間と、デジタル的な基準値との比較判定処理に要する時間とを削減し、記憶装置は、解析に必要となる期間のデータ数を格納すればよく、該記憶装置の容量を抑えることもできる。
【0060】
【発明の効果】
本発明の測定装置は、以上のように、アナログ入力データをアナログ/デジタル変換器にてデジタルデータに変換し、そのデジタルデータを用いて測定を行う装置において、アナログ/デジタル変換器のサンプリングタイミング間で、電子部品の短絡などのように、アナログ入力データが瞬時に変化し、復帰するような変化が生じても、その変化をピークホールド手段で検出し、保持する。
【0061】
それゆえ、前記アナログ/デジタル変換器のサンプリング速度を上回る高速な挙動を検出することができる。また、前記サンプリング速度が遅くても異常を判定することができるので、アナログ/デジタル変換結果から異常を判定するにあたって、判定に使用するための該アナログ/デジタル変換結果を格納するメモリの容量も抑えることができる。さらにまた、専用の集積回路を作成したりする必要はなく、ピークホールド回路などの汎用の部品から成るピークホールド手段を設けることで、低コストに実現することができる。
【0062】
また、本発明の測定装置は、以上のように、前記アナログ入力を多チャネルとする。
【0063】
それゆえ、入力チャネル数が多くなる程、前記アナログ/デジタル変換器のサンプリングタイミングの間隔が長くなるので、本発明が特に好適である。
【0064】
さらにまた、本発明の測定装置は、以上のように、前記ピークホールド手段を、前記アナログ入力データの最大値および最小値をそれぞれ検出し、保持する上限ピークホールド回路および下限ピークホールド回路と、前記上限ピークホールド回路および下限ピークホールド回路のデータを入力して保持し、前記アナログ/デジタル変換器のサンプリングタイミングで前記アナログ/デジタル変換器へ出力する読出し用サンプルホ−ルド回路とを備えて構成する。
【0065】
それゆえ、アナログ/デジタル変換後のデータの差分を求めるので、測定対象の異常などを正確に検出することができる。
【0066】
また、本発明の測定装置は、以上のように、前記ピークホールド手段を、アナログ入力電圧で充電されるホールド用のコンデンサと、前記アナログ入力電圧を前記コンデンサに与える逆流防止用のダイオードと、前記ダイオードと並列に設けられ、前記ダイオードの端子間を短絡することで前記コンデンサの充電電圧を前記アナログ入力電圧に等しくしてリセットさせるリセット用の短絡スイッチとを備えて構成する。
【0067】
それゆえ、前記ピークホールド手段を具体的に構成することができる。
【0068】
さらにまた、本発明の測定装置は、以上のように、前記ピークホールド手段を、アナログ入力電圧で充電されるホールド用のコンデンサと、前記アナログ入力電圧を前記コンデンサに与える逆流防止用のダイオードと、前記ダイオードと並列に設けられ、前記ダイオードの端子間を短絡することで前記コンデンサの充電電圧を前記アナログ入力電圧に等しくしてリセットさせるリセット用の短絡スイッチと、前記コンデンサのホールド電圧を出力するスイッチとを備える系統を複数系統備えて構成し、何れか1つの系統が前記短絡スイッチが遮断されてピークホールド動作に使用され、残余の系統が前記短絡スイッチが導通されて前記アナログ入力電圧にリセットされる。
【0069】
それゆえ、何れか1つの系統が順次前述のようなピークホールド動作を行うので、連続したピークの監視・検出を行うことができるとともに、ホールド電圧のリセットを要求されるサンプリング期間内に終了させる必要はなく、リセットする時間を充分に確保することができる。
【0070】
また、本発明の測定装置は、以上のように、ストレス印加手段によって測定対象にストレスを印加しつつ、その測定対象からの入力データを規定のサンプリングタイミングで読込んで測定を行う装置において、前記入力データを予め定める基準値と比較し、基準値を超えると、前記ストレス印加手段によるストレス印加を解除させる比較手段を設ける。
【0071】
それゆえ、測定装置が読込んだデータから異常発生を判断し、ストレスの印加を解除させるのでは、最大でサンプリング周期分の遅れが生じるのに対して、前記比較手段が、別途に常時入力データを監視し、速やかに異常の発生を検出するので、測定対象の高速な挙動を検出することができる。また、前記比較手段は、異常が生じた時点で速やかにストレスの印加を解除させるので、異常発生時における測定対象の状態をより適切に保持し、異常原因の解析などに寄与することができる。
【0072】
さらにまた、前記異常原因の解析などのために、アナログ/デジタル変換結果を格納しておくようにしても、比較手段が速やかに異常の発生を検出するので、その時点で格納(更新)を停止することで、メモリなどの格納手段の容量も抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の測定装置の電気的構成を示すブロック図である。
【図2】図1で示す測定装置の一部を詳細に示すブロック図である。
【図3】図2における上限ピークホールド回路の他の例を示すブロック図である。
【図4】本発明の実施の他の形態の測定装置の電気的構成を示すブロック図である。
【図5】典型的な従来技術の測定装置の電気的構成を示すブロック図である。
【符号の説明】
11,110 測定装置
12;121〜12N サンプル(測定対象)
13;131〜13N ストレス印加回路
14;141〜14N 入力バッファ
15,25;151〜15N 上限ピークホールド回路
16;161〜16N 下限ピークホールド回路
17,170 読出し用サンプルホールド回路
18,180 アナログ/デジタル変換器
19,190 処理回路
20,200 読出し制御回路
21;211〜21N 差分回路
22,220 可変基準値回路
22a デジタル/アナログ変換器
23;231〜23N 比較・ラッチ回路
24;240 読出し用ラッチ回路
A1 演算増幅器
A3 演算増幅器
A4 演算増幅器
A11,A21 演算増幅器
A11a,A11b 演算増幅器
A12,A22 ボルテージホロワ用の演算増幅器
A12a,A12b ボルテージホロワ用の演算増幅器
A13,A23 ボルテージホロワ用の演算増幅器
C11,C21 ホールド用のコンデンサ
C11a,C11b ホールド用のコンデンサ
C12,C22 ホールド用のコンデンサ
D1,D2 逆流防止用のダイオード
D1a,D1b 逆流防止用のダイオード
FF RSフリップフロップ
R11,R21 入力抵抗
R12,R22 帰還抵抗
S11,S21 リセット用の短絡スイッチ
S11a,S11b リセット用の短絡スイッチ
S12,S22;S121〜S12N,S221〜S22N 入力スイッチ
S13,S23 出力スイッチ
S31〜S3N 読出しスイッチ

Claims (6)

  1. アナログ入力データをアナログ/デジタル変換器にてデジタルデータに変換し、そのデジタルデータを用いて測定を行う装置において、
    前記アナログ/デジタル変換器の前段側に、前記アナログ入力データのピーク値を検出して保持するピークホールド手段を介在することを特徴とする測定装置。
  2. 前記アナログ入力は多チャネルであること特徴とする請求項1記載の測定装置。
  3. 前記ピークホールド手段は、
    前記アナログ入力データの最大値および最小値をそれぞれ検出して保持する上限ピークホールド回路および下限ピークホールド回路と、
    前記上限ピークホールド回路および下限ピークホールド回路のデータを入力して保持し、前記アナログ/デジタル変換器のサンプリングタイミングで前記アナログ/デジタル変換器へ出力する読出し用サンプルホ−ルド回路とを備えて構成されることを特徴とする請求項1または2記載の測定装置。
  4. 前記ピークホールド手段は、
    アナログ入力電圧で充電されるホールド用のコンデンサと、
    前記アナログ入力電圧を前記コンデンサに与える逆流防止用のダイオードと、
    前記ダイオードと並列に設けられ、前記ダイオードの端子間を短絡することで前記コンデンサの充電電圧を前記アナログ入力電圧に等しくしてリセットさせるリセット用の短絡スイッチとを備えて構成されることを特徴とする請求項1〜3の何れか1項に記載の測定装置。
  5. 前記ピークホールド手段は、
    アナログ入力電圧で充電されるホールド用のコンデンサと、
    前記アナログ入力電圧を前記コンデンサに与える逆流防止用のダイオードと、
    前記ダイオードと並列に設けられ、前記ダイオードの端子間を短絡することで前記コンデンサの充電電圧を前記アナログ入力電圧に等しくしてリセットさせるリセット用の短絡スイッチと、
    前記コンデンサのホールド電圧を出力するスイッチとを備える系統を複数系統備えて構成され、
    何れか1つの系統が前記短絡スイッチが遮断してピークホールド動作に使用され、残余の系統が前記短絡スイッチが導通して前記アナログ入力電圧にリセットされることを特徴とする請求項1〜3の何れか1項に記載の測定装置。
  6. ストレス印加手段によって測定対象にストレスを印加しつつ、その測定対象からの入力データを規定のサンプリングタイミングで読込んで測定を行う装置において、
    前記入力データを予め定める基準値と比較し、基準値を超えると、前記ストレス印加手段によるストレス印加を解除させる比較手段を含むことを特徴とする測定装置。
JP2003045027A 2003-02-21 2003-02-21 測定装置 Pending JP2004251856A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045027A JP2004251856A (ja) 2003-02-21 2003-02-21 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045027A JP2004251856A (ja) 2003-02-21 2003-02-21 測定装置

Publications (1)

Publication Number Publication Date
JP2004251856A true JP2004251856A (ja) 2004-09-09

Family

ID=33027552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045027A Pending JP2004251856A (ja) 2003-02-21 2003-02-21 測定装置

Country Status (1)

Country Link
JP (1) JP2004251856A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114550A (ja) * 2008-11-05 2010-05-20 Sony Corp 撮像素子、撮像素子の駆動方法およびカメラ
JP2012218718A (ja) * 2011-04-14 2012-11-12 Denso Corp 車両制御装置
CN102809705A (zh) * 2012-08-28 2012-12-05 国电南京自动化股份有限公司 多a/d协同实现高速高精度采样的方法
JP2018018895A (ja) * 2016-07-26 2018-02-01 ファナック株式会社 レーザ制御装置、方法及びプログラム
CN109085419A (zh) * 2018-09-07 2018-12-25 诸暨意创磁性技术有限公司 充磁机充磁峰值电流测量方法及装置
JP2019128248A (ja) * 2018-01-24 2019-08-01 株式会社ソシオネクスト ピーク・ボトム検出回路、a/dコンバータ及び集積回路

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114550A (ja) * 2008-11-05 2010-05-20 Sony Corp 撮像素子、撮像素子の駆動方法およびカメラ
JP2012218718A (ja) * 2011-04-14 2012-11-12 Denso Corp 車両制御装置
US8818645B2 (en) 2011-04-14 2014-08-26 Denso Corporation Vehicle control apparatus
CN102809705A (zh) * 2012-08-28 2012-12-05 国电南京自动化股份有限公司 多a/d协同实现高速高精度采样的方法
JP2018018895A (ja) * 2016-07-26 2018-02-01 ファナック株式会社 レーザ制御装置、方法及びプログラム
US10230209B2 (en) 2016-07-26 2019-03-12 Fanuc Corporation Laser control device, method and program
JP2019128248A (ja) * 2018-01-24 2019-08-01 株式会社ソシオネクスト ピーク・ボトム検出回路、a/dコンバータ及び集積回路
JP7059647B2 (ja) 2018-01-24 2022-04-26 株式会社ソシオネクスト ピーク・ボトム検出回路、a/dコンバータ及び集積回路
CN109085419A (zh) * 2018-09-07 2018-12-25 诸暨意创磁性技术有限公司 充磁机充磁峰值电流测量方法及装置
CN109085419B (zh) * 2018-09-07 2023-09-29 诸暨意创磁性技术有限公司 充磁机充磁峰值电流测量方法及装置

Similar Documents

Publication Publication Date Title
US5920199A (en) Charge detector with long integration time
US9240774B2 (en) Fast single-ended to differential converter
US10890615B2 (en) Sensor with self diagnostic function
KR20080022486A (ko) 조전지 총전압 검출 및 리크 검출장치
TW200949268A (en) Programmable gain trans-impedance amplifier overload recovery circuit
JP2004251856A (ja) 測定装置
JP2010164358A (ja) 抵抗測定装置および抵抗測定方法
CN111585244B (zh) 漏电保护电路、集成电路、电子设备以及方法
JP2002243771A (ja) 電池電圧検出回路
JP5320929B2 (ja) 電流測定装置
US6573728B2 (en) Method and circuit for electrical testing of isolation resistance of large capacitance network
WO2021145437A1 (ja) 装置、測定装置、方法及び測定方法
JP6662033B2 (ja) 蓄電素子の抵抗の測定方法および測定装置
US11656284B2 (en) Method for operating a battery sensor, and battery sensor
JP2014134453A (ja) 酸素濃度センサの制御装置
JP2001027655A (ja) 容量型センサの信号処理回路
SU1583994A1 (ru) Устройство дл измерени давлени в электровакуумном приборе
US20220200614A1 (en) Method for precisely detecting a signal for example of a sensor
JP3146472B2 (ja) ガス絶縁電気機器の故障検出装置
JP6315273B2 (ja) 絶縁状態測定装置
CN219496530U (zh) 电容检测装置
JP2000304776A (ja) ピーク測定装置
RU2017259C1 (ru) Устройство для автоматического измерения давления в электровакуумных приборах
JP2015141062A (ja) 組電池測定装置
JP2023076590A (ja) 地絡検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318