JP2004247052A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2004247052A
JP2004247052A JP2003032361A JP2003032361A JP2004247052A JP 2004247052 A JP2004247052 A JP 2004247052A JP 2003032361 A JP2003032361 A JP 2003032361A JP 2003032361 A JP2003032361 A JP 2003032361A JP 2004247052 A JP2004247052 A JP 2004247052A
Authority
JP
Japan
Prior art keywords
fuel cell
anode
line
hydrogen
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032361A
Other languages
English (en)
Inventor
Tadashi Shoji
忠 庄子
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003032361A priority Critical patent/JP2004247052A/ja
Publication of JP2004247052A publication Critical patent/JP2004247052A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池に空気を供給する電動コンプレッサの駆動電力が無くても起動可能な燃料電池システムを提供する。
【解決手段】燃料電池5のアノードに水素を供給するアノードライン7から分岐するアノードバイパスライン11を設ける。アノードバイパスライン11上には、調圧弁13,手動弁15,タービン17が配置される。カソードに空気を供給するカソードライン21から分岐するカソードバイパスライン27には、タービン17で駆動されるタービン駆動式送風装置25を設ける。バッテリ33の容量が不足して起動時の電動コンプレッサ19駆動電力が賄えないとき、手動弁15を開いて、アノードバイパスライン11経由で燃料電池5に水素を供給する。これによりタービン17が回転し、タービン駆動式送風装置25がカソードバイパスライン27経由で燃料電池5へ空気を供給する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムに係り、特に起動用バッテリの容量が不足しても起動可能とした燃料電池システムに関する。
【0002】
【従来の技術】
燃料電池は、水素ガスなどの燃料ガスと酸素を有する酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。すなわち、燃料電池車両は、高圧水素タンク、液体水素タンク、水素吸蔵合金タンクなどの水素貯蔵装置を車両に搭載し、そこから供給される水素と、酸化剤ガスとを燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギで駆動輪につながるモータを駆動するものであり、排出物質は水だけであるという究極のクリーン車両である。
【0003】
通常、地上で使用される燃料電池には、酸化剤ガスとして空気が用いられ、空気の供給には、ブロアやコンプレッサなどの電動モータを使用した送風機が一般的に用いられている。燃料電池の総合効率を高めるためには、これら送風機が消費する電力量は最小限に抑制する必要がある。
【0004】
また、燃料電池は、運転が開始されればそれ自体が発電体となるため、送風機の運転電力を燃料電池から得ることができるが、起動時には送風機の運転電力を外部のエネルギ源に頼る必要がある。
【0005】
例えば、特許文献1記載の技術では、燃料電池のカソード排ガスで駆動されるエキスパンダ(タービン)から空気を圧縮するコンプレッサに駆動力を伝えてコンプレッサをアシストするため、高電圧バッテリを不要とし、低電圧バッテリのみでコンプレッサを駆動するとともに、コンプレッサ駆動電力を抑制できるとしている。
【0006】
【特許文献1】
特開2002−158026号公報(第7頁、図4)
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1記載の構成では、エキスパンダを駆動させるためのカソード排ガスは、燃料電池を運転しなければ得られない。すなわち、燃料電池の起動時を考えた場合には、やはり大電力が供給できるバッテリを必要とするという問題点があった。
【0008】
仮に、低電圧バッテリのみで駆動するコンプレッサを適用したとしても、起動時に「コンプレッサを駆動させるための電力容量がない」もしくは、「バッテリが上がっている」等の条件下では、燃料電池を起動できないという問題点があった。
【0009】
【課題を解決するための手段】
本発明は、上記問題点を解決するため、水素と空気中に含まれる酸素との電気化学反応により発電する燃料電池と、該燃料電池に水素を供給するアノードラインと、該燃料電池に空気を供給するカソードラインと、前記アノードラインに接続する水素供給装置と、電気モータの駆動によって前記カソードラインに空気を送風する電動コンプレッサと、前記アノードラインから分岐するアノードバイパスラインと、該アノードバイパスラインに流れる水素の流量を制御する水素流量制御弁と、前記アノードバイパスラインを流れる水素の圧力よって駆動されるタービンと、該タービンの駆動によって前記カソードラインに空気を送風するタービン駆動式送風装置と、を備えたことを要旨とする燃料電池システムである。
【0010】
【発明の効果】
本発明によれば、本実施形態によれば、バッテリの容量が不足して、電動コンプレッサでは燃料電池システムが起動できないときに、アノードバイパスラインの弁を開くことにより、タービンが回転してタービン駆動式送風装置により燃料電池に空気を供給して、燃料電池システムを起動することができるという効果がある。
【0011】
【発明の実施の形態】
〔第1実施形態〕
図1は、本発明に係る燃料電池システムの第1実施形態の構成を説明するシステム構成図である。図1において、燃料電池システム1は、水素供給装置3と、図示しないアノード及びカソードを備える燃料電池5と、水素供給装置3から燃料電池5のアノードへ水素を供給する管路であるアノードライン7と、アノードライン流量制御弁9と、アノードライン7から分岐してアノードライン流量制御弁9をバイパスするアノードバイパスライン11と、水素供給装置3からアノードバイパスラインに供給される水素圧力を調整する調圧弁13と、調圧弁13の下流に設けられ手動で開閉される手動弁15と、手動弁15の下流に設けられアノードバイパスライン11を流れる水素ガス流で回転駆動されるタービン17と、電気モータの駆動によって空気を供給する電動コンプレッサ19と、電動コンプレッサ19から燃料電池5のカソードへ空気を供給する管路であるカソードライン21と、空気を導入する空気導入ライン23と、タービン17により回転駆動されるタービン駆動式送風装置25と、タービン駆動式送風装置25からカソードへ空気を供給する管路であるカソードバイパスライン27と、燃料電池5の発電量を検出する発電量検出回路29と、燃料電池5の発電電力でバッテリ33を充電する充電回路31と、充電回路31で充電されるとともに電動コンプレッサ19の電源となるバッテリ33と、バッテリ33の容量を検出して表示する容量計35とを備えている。
【0012】
水素供給装置3には、高圧水素ガスタンク、液体水素タンク及び液体水素気化装置、カーボンナノチューブ等の炭素系水素吸蔵材や水素吸蔵合金等を内蔵した水素吸蔵材タンク等を用いることができる。しかしながら、水素供給装置3から供給される水素圧力が高い方がタービン17を駆動するのに好ましく、本実施形態では、高圧水素ガスタンクを用いるものとする。
【0013】
燃料電池5の通常運転時には、水素供給装置3からアノードライン7を介して供給される水素ガスは、アノードライン流量制御弁9で運転状態に応じた圧力及び流量に調整される。また、充電回路31またはバッテリ33で駆動される電動コンプレッサ19が運転状態に応じた流量で空気を燃料電池5へ供給する。
【0014】
燃料電池5で発電された電圧及び電流は、発電量検出回路29で検出される。発電量検出回路29は、燃料電池5の発電量が電動コンプレッサ19の要求駆動電力を超えたか否かの判定結果を出力又は表示することができるようになっている。
【0015】
燃料電池で発電された電力は、図示しない負荷に供給されるとともに、充電回路31を介してバッテリ33へ充電される。充電回路31は、通常、DC/DCコンバータを備え、燃料電池5の電圧とバッテリ33の電圧との変換を行う。燃料電池5の電圧とバッテリ33の電圧の差異が小さい場合には、充電回路31は逆電流防止ダイオードと充電完了時の電流遮断のためのリレーまたは半導体スイッチによる簡易回路でもかまわない。
【0016】
バッテリ33には、容量計35が接続され、バッテリ33の残容量、言い換えれば充電状態を検出して、燃料電池の運転者に表示できるようになっている。この容量計35によるバッテリ容量の表示は、少なくとも燃料電池システムの起動時に、起動完了するまで電動コンプレッサ19にバッテリ33から電力供給が可能か否かの情報を含む表示である。具体的には、「OK」か[NG」の表示や、バッテリ容量計のレベル表示が起動に必要な容量を上回っているか否かが容易に判読できるものである。
【0017】
次に、図3のフローチャートを参照して、本実施形態における燃料電池システムの起動手順を説明する。
【0018】
まず、ステップS10において、容量計35でバッテリ33の容量をチェックし、電動コンプレッサを運転できる電力があるか否かを判断する。容量計35が起動が終了するまで電動コンプレッサを駆動できる容量を示している場合には、定常運転(電動コンプレッサによる空気供給)により起動を行う。
【0019】
バッテリ容量が不足していて電動コンプレッサによる空気供給では起動できない場合、手動操作による燃料電池システムの起動を行うために、ステップS12へ移る。
【0020】
なお、アノードライン流量制御弁9は電動コンプレッサ19の運転に連動する。すなわち、ステップS10で電動コンプレッサを運転できない場合は、アノードライン流量制御弁9の流量設定を0とする。
【0021】
ステップS12では、運転者が手動弁15を開き、アノードバイパスライン11に水素を供給する。アノードバイパスライン11に流れる水素流量と圧力は、調圧弁13であらかじめに調整をしておく。次いで、ステップS14で、アノードバイパスライン11を流れる水素は、タービン17を回転駆動し、タービン17は、タービン駆動式送風装置25を駆動する。
【0022】
ステップS16で、タービン17を通過した水素は、燃料電池5のアノードへ供給される。またタービン駆動式送風装置25によりカソードバイパスライン27を介して燃料電池5のカソードへ空気が供給される。これら水素及び空気中の酸素を用いて燃料電池5が発電を開始する。
【0023】
次いで、ステップS18で、燃料電池5の発電量を発電量検出回路29の検出結果でチェックし、発電量が電動コンプレッサ19の駆動電力に達したか否かを判定する。発電量がが電動コンプレッサ19の駆動電力に達していなければ、ステップS14へ戻る。
【0024】
ステップS18の判定で、発電量が電動コンプレッサ19の駆動電力以上になったときに、ステップS20へ移り、手動弁15を閉めて定常運転へと移行させる。
【0025】
なお、定常運転では、充電回路31からバッテリ33へフローティング充電しながら、主として充電回路31から電動コンプレッサ19へ電力供給してもよいし、図示しない切替回路を設けて燃料電池5から直接電動コンプレッサ19へ電力供給してもよい。
【0026】
本実施形態によれば、アノードバイパスラインにタービンを設け、カソードバイパスラインにタービン駆動式送風装置を設け、アノードバイパスラインを流れる水素ガスによりタービンを駆動し、駆動したタービンによりタービン駆動式送風装置を駆動して燃料電池のカソードに空気を供給できる。従って、バッテリで電動コンプレッサを運転することができなかったとしても、燃料電池システムを起動させることが可能となる。
【0027】
また調圧弁を設けることで、起動時に必要な燃料電池の運転負荷を調整できる。
【0028】
〔第2実施形態〕
図2は、本発明に係る燃料電池システムの第2実施形態の構成を説明するシステム構成図である。燃料電池が固体高分子型であれば、供給する水素と空気は加湿状態で供給した方が効率よく発電可能である。このため、本実施形態は、第1実施形態の構成に対して、アノードライン加湿器39とカソードライン加湿器41を付加している。さらにアノードバイパスライン11に手動弁15に代えて半自動バルブ37を設置している。その他の構成は、図1に示した第1実施形態と同様であるので、同一構成要素には同じ符号を付与して、重複する説明を省略する。
【0029】
本実施形態では、アノードライン加湿器39とカソードライン加湿器41により、燃料電池5のアノード及びカソードにそれぞれ加湿した水素及び空気を供給することができ、発電効率を向上させることができる。
【0030】
また、半自動バルブ37は、燃料電池5の発電電力が電動コンプレッサ19の駆動電力に達したときに、自動的にアノードバイパスライン11を閉じるようになっている。このため、燃料電池9が電動コンプレッサ19を運転させる電力を発電できたときには、半自動バルブ37が閉じることにより自動的にアノードバイパスライン11の水素流量を0まで減少させ、定常運転へと移行することができる。
【0031】
本実施形態によれば、バッテリの容量が不足して、電動コンプレッサでは燃料電池システムが起動できないときに、アノードバイパスラインの半自動バルブを手動で開いた後の操作は不要となり、第1実施形態に比べて運転者の操作が軽減される。
【図面の簡単な説明】
【図1】本発明に係る燃料電池システムの第1実施形態の構成を説明するシステム構成図である。
【図2】本発明に係る燃料電池システムの第2実施形態の構成を説明するシステム構成図である。
【図3】第1実施形態における起動時の操作を説明するフローチャートである。
【符号の説明】
1…燃料電池システム
3…水素供給装置
5…燃料電池
7…アノードライン
9…アノードライン流量制御弁
11…アノードバイパスライン
13…調圧弁
15…手動弁
17…タービン
19…電動コンプレッサ
21…カソードライン
23…空気導入ライン
25…タービン駆動式送風装置
27…カソードバイパスライン
29…発電量検出回路
31…充電回路
33…バッテリ
35…容量計

Claims (4)

  1. 水素と空気中に含まれる酸素との電気化学反応により発電する燃料電池と、
    該燃料電池に水素を供給するアノードラインと、
    該燃料電池に空気を供給するカソードラインと、
    前記アノードラインに接続する水素供給装置と、
    電気モータの駆動によって前記カソードラインに空気を送風する電動コンプレッサと、
    前記アノードラインから分岐するアノードバイパスラインと、
    該アノードバイパスラインに流れる水素の流量を制御する水素流量制御弁と、
    前記アノードバイパスラインを流れる水素の圧力よって駆動されるタービンと、
    該タービンの駆動によって前記カソードラインに空気を送風するタービン駆動式送風装置と、
    を備えたことを特徴とする燃料電池システム。
  2. 前記水素供給装置から前記水素流量制御弁までの間に圧力調整弁を備えたことを特徴とする請求項1記載の燃料電池システム。
  3. 前記アノードバイパスラインのタービン出口から燃料電池アノード入口までのラインおよび前記タービン駆動式送風装置からカソード入口までのラインの少なくとも一方に加湿装置を備えたことを特徴とする請求項1または請求項2記載の燃料電池システム。
  4. 前記水素流量制御弁は、流量減少動作を自動で行う半自動弁であることを特徴とする請求項1乃至請求項3の何れか1項に記載の燃料電池システム。
JP2003032361A 2003-02-10 2003-02-10 燃料電池システム Pending JP2004247052A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032361A JP2004247052A (ja) 2003-02-10 2003-02-10 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032361A JP2004247052A (ja) 2003-02-10 2003-02-10 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2004247052A true JP2004247052A (ja) 2004-09-02

Family

ID=33018730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032361A Pending JP2004247052A (ja) 2003-02-10 2003-02-10 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2004247052A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221967A (ja) * 2005-02-10 2006-08-24 Denso Corp 燃料電池システム
JP2008059828A (ja) * 2006-08-30 2008-03-13 Honda Motor Co Ltd 燃料電池システム及びその起動方法
JP2008091336A (ja) * 2006-09-29 2008-04-17 Gm Global Technology Operations Inc 急速凍結起動のための燃料電池起動方法
JP2008108442A (ja) * 2006-10-23 2008-05-08 Toyota Motor Corp 燃料電池システム及びそれを搭載した車両
US7655336B2 (en) 2003-05-29 2010-02-02 Honda Motor Co., Ltd. Fuel-cell system
KR101355999B1 (ko) * 2011-12-27 2014-02-05 대우조선해양 주식회사 선박용 연료전지 시스템
JP2014041808A (ja) * 2012-08-21 2014-03-06 Hyundai Motor Company Co Ltd 燃料電池の始動装置及び方法
JP2019029100A (ja) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 燃料電池システム及び制御装置
JP2019149250A (ja) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 燃料電池システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655336B2 (en) 2003-05-29 2010-02-02 Honda Motor Co., Ltd. Fuel-cell system
JP2006221967A (ja) * 2005-02-10 2006-08-24 Denso Corp 燃料電池システム
JP2008059828A (ja) * 2006-08-30 2008-03-13 Honda Motor Co Ltd 燃料電池システム及びその起動方法
JP2008091336A (ja) * 2006-09-29 2008-04-17 Gm Global Technology Operations Inc 急速凍結起動のための燃料電池起動方法
US8835065B2 (en) 2006-09-29 2014-09-16 GM Global Technology Operations LLC Fuel cell startup method for fast freeze startup
US9728799B2 (en) 2006-09-29 2017-08-08 GM Global Technology Operations LLC Fuel cell startup method for fast freeze startup
JP2008108442A (ja) * 2006-10-23 2008-05-08 Toyota Motor Corp 燃料電池システム及びそれを搭載した車両
KR101355999B1 (ko) * 2011-12-27 2014-02-05 대우조선해양 주식회사 선박용 연료전지 시스템
JP2014041808A (ja) * 2012-08-21 2014-03-06 Hyundai Motor Company Co Ltd 燃料電池の始動装置及び方法
US9160017B2 (en) 2012-08-21 2015-10-13 Hyundai Motor Company Fuel cell startup apparatus comprising emergency air supplier and method
JP2019029100A (ja) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 燃料電池システム及び制御装置
JP2019149250A (ja) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 燃料電池システム

Similar Documents

Publication Publication Date Title
JP4905642B2 (ja) 燃料電池システム及び移動体
KR101230900B1 (ko) 연료전지 하이브리드 시스템의 운전 제어 방법
JP4905847B2 (ja) 燃料電池システム
US20040023083A1 (en) Device and method for controlling fuel cell system
US8394517B2 (en) Fuel cell system and control method of the system
WO2008050881A1 (en) Fuel cell system
US20120077102A1 (en) Method of shutting down fuel cell system
JP2001243961A (ja) 燃料電池システム
JP2004253220A (ja) 燃料電池車両の制御装置
JP4639584B2 (ja) 燃料電池システム
JP2004247052A (ja) 燃料電池システム
JP4581382B2 (ja) 燃料電池システム
JP2006280108A (ja) 電動機システム及び電動機システムの制御方法
JP2005310429A (ja) 燃料電池システム
JP2006302836A (ja) 燃料電池システム
JPH11176454A (ja) 燃料電池の補機用電源
JP2009140757A (ja) 燃料電池システム
KR101851830B1 (ko) 연료 전지 시스템 및 그 제어 방법
JP3583914B2 (ja) 燃料電池の補機用電源
JP2006120532A (ja) 燃料電池システム
JP4337104B2 (ja) 燃料電池システム
JP2009009791A (ja) 燃料電池システム及びその制御方法
JP4706954B2 (ja) 燃料電池システム
JP3719205B2 (ja) 電源装置
KR100911562B1 (ko) 연료전지 스택 ocv 제거 및 과전압 상승 방지를 위한장치 및 방법