JP2004245190A - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP2004245190A
JP2004245190A JP2003038395A JP2003038395A JP2004245190A JP 2004245190 A JP2004245190 A JP 2004245190A JP 2003038395 A JP2003038395 A JP 2003038395A JP 2003038395 A JP2003038395 A JP 2003038395A JP 2004245190 A JP2004245190 A JP 2004245190A
Authority
JP
Japan
Prior art keywords
soc
battery
engine
destination
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038395A
Other languages
English (en)
Inventor
Hiroki Nishi
宏樹 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003038395A priority Critical patent/JP2004245190A/ja
Publication of JP2004245190A publication Critical patent/JP2004245190A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】エンジンの低温始動性を向上させたハイブリッド車両を提供する。
【解決手段】通常走行時の目標SOC(通常用SOC)と、エンジンを始動するために用いる通常SOCよりも高い目標SOC(エンジン始動用SOC)とを設定し、目的地までの残距離が所定距離になるまではバッテリーのSOCが通常用SOCとなるようにモータージェネレーターの発電制御を行い、目的地までの残距離が所定距離以下になったらバッテリーのSOCがエンジン始動用SOCとなるようにモータージェネレーターの発電制御を行う。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンとモーターを走行駆動源とするハイブリッド車両に関する。
【0002】
【従来の技術】
エンジンの低温始動時に、モーターの出力可能なトルクがエンジン始動に要するトルクより低い場合には、熱源によりエンジンとバッテリーを加温するようにしたハイブリッド車両が知られている(例えば、特許文献1参照)。
【0003】
この出願の発明に関連する先行技術文献としては次のものがある。
【特許文献1】
特開2001−234840号公報
【0004】
【発明が解決しようとする課題】
しかし、上述した従来のハイブリッド車両では、モーターの出力可能なトルクがエンジン始動に要するトルクを超えるまでエンジンとバッテリーを加温しなければならないので、エンジン始動に時間がかかるという問題がある。
【0005】
本発明は、エンジンの低温始動性を向上させたハイブリッド車両を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、通常走行時の目標SOC(通常用SOC)と、エンジンを始動するために用いる通常SOCよりも高い目標SOC(エンジン始動用SOC)とを設定し、目的地までの残距離が所定距離になるまではバッテリーのSOCが通常用SOCとなるようにモータージェネレーターの発電制御を行い、目的地までの残距離が所定距離以下になったらバッテリーのSOCがエンジン始動用SOCとなるようにモータージェネレーターの発電制御を行う。
【0007】
【発明の効果】
本発明によれば、燃費の改善を図りながらエンジンの低温始動性を向上させることができる。
【0008】
【発明の実施の形態】
《発明の第1の実施の形態》
図1に第1の実施の形態の構成を示す。一実施の形態のハイブリッド車両は、走行駆動源としてエンジン1とモータージェネレーター2を備えており、エンジン1とモータージェネレーター2の両方またはいずれか一方の駆動力により車両を走行させる。エンジン1およびモータージェネレーター2の駆動力は、変速機3および減速機4を介して駆動輪5a、5bに伝達される。
【0009】
インバーター6はバッテリー7の直流電力を交流電力に変換してモータージェネレーター2へ供給し、モータージェネレーター2から走行駆動力を発生させる。インバーター6はまた、モータージェネレーター2の交流発電電力を直流電力に変換してバッテリー7を充電し、モータージェネレーター2から回生制動力を発生させる。
【0010】
車両コントローラー8はCPU8a、ROM8b、RAM8c、A/Dコンバーター8dなどを備え、インバーター6を制御してモータージェネレーター2による駆動制御および発電制御を行う。車両コントローラー8には、バッテリー7の充電量(以下、SOC(State Of Charge)という)を検出するSOCセンサー9、イグニッションキー(不図示)がON位置に設定されるとオン(閉路)するイグニッションスイッチ10、エンジン1を自動始動するための始動用タイマー11、ナビゲーション装置12などが接続されている。
【0011】
SOCセンサー9は、電圧センサー9aによりバッテリー7の端子電圧Vbを検出するとともに、電流センサー9bによりバッテリー7の充放電電流Ibを検出し、バッテリー7の電圧Vbと電流Ibの検出結果に基づいてSOCを検出する。なお、この一実施の形態ではSOCセンサー9によりバッテリーSOCを検出する例を示すが、バッテリー7の充放電電流の積算によりバッテリーSOCを検出する方法、バッテリーの端子電圧VbのみによりバッテリーSOCを推定する方法など、他の検出方法を用いてもよい。
【0012】
ナビゲーション装置12には携帯電話機13、入力装置14、GPS受信機15、車速センサー16、記憶装置17などが接続される。ナビゲーション装置12は、GPS受信機15によりGPS衛星からの信号電波を受信して車両の現在地を検出するとともに、携帯電話機13を介して情報センター(不図示)から天気予報や渋滞情報を入手する。ナビゲーション装置12はまた、記憶装置17に記憶されている道路地図を用いて入力装置14により設定された目的地までの最適な経路を探索し、目的地までの経路誘導を行う。
【0013】
ナビゲーション装置12は、エンジン始動時刻の外気温、車両の現在地と目的地などの情報を車両コントローラー8へ提供する。なお、現在地の検出は、車両の走行距離と進行方位を検出し、車両の走行軌跡を演算して道路地図データとマップマッチングを行う、いわゆる自律航法によって検出することもできる。なお、この一実施の形態では携帯電話機13により天気予報を入手する例を示すが、テレビ、ラジオなどの一般メディアを通じて天気予報を入手してもよい。
【0014】
この明細書では、車両に搭乗して目的地まで走行する場合を車両の1回の運行とする。この場合、車両運行中に休憩や食事をとるために停車してエンジンを停止したとしても、その時点で車両の運行が終了したとせず、あくまでも目的地に到着したら車両の1回の運行が終了したとする。
【0015】
また、この明細書では、次回の車両運行時に低温環境下でもモータージェネレーター2でエンジン1を確実に始動できるように、今回の車両運行終了までにバッテリー7のSOCを確保する制御を、“エンジン始動用発電制御”と呼ぶ。このエンジン始動用発電制御においては、例えば、エンジン始動時の外気温が0℃の場合、エンジン始動を保証するためにSOC95%を確保する。
【0016】
これに対し、走行中のモータージェネレーター2による駆動力と回生制動力とを確保するために、バッテリー7のSOCを所定の範囲、例えば30〜80%に調節する制御を“通常の発電制御”と呼ぶ。つまり、エンジン始動用発電制御は、通常の発電制御よりも多いSOCにするためのSOC増量制御ということができる。
【0017】
従来のハイブリッド車両では、例えばバッテリーのSOCを30〜80%の範囲内に制御する上記“通常の発電制御”しか行われておらず、この場合、下限値30%で今回の車両運行を終了したとすると、次回の運行開始時のエンジン始動は30%のSOCのバッテリーからモータージェネレーターへ電力を供給してエンジンを駆動することになる。このとき、外気温が低いとバッテリーの放電可能な電力が小さくなり、モータージェネレーターの出力可能なトルクがエンジン始動に要するトルクを下回り、エンジンを始動できなくなる。
そこで、一実施の形態では、上記“エンジン始動用発電制御”を行うことによって、低温環境下でも確実にエンジンを始動できるようにする。
【0018】
第1の実施の形態では、目的地と目的地までの最適な経路が設定されている場合に限って上記“エンジン始動用発電制御”を実行する。目的地と最適経路が設定されていない場合は、今回の車両の運行がどこで終わるのか、すなわち、あとどのくらいの距離を走るのかを知ることができないので、上述したエンジン始動用発電制御を行うことができない。したがって、この場合は上記“通常の発電制御”を行う。
【0019】
第1の実施の形態ではまた、最適経路に沿った現在地から目的地までの残距離が予め定めた制御開始距離以下になったら上記“エンジン始動用発電制御”を開始する。ここで、制御開始距離は、今回の車両運行を終了する目的地へ到達するまでに、次回の車両運行時に低温環境下でも確実にエンジン始動が可能なバッテリー充電量(SOC)を確保するための最低の距離であり、予めシミュレーションや実車実験などにより最適な距離を設定する。
【0020】
ここで、目的地までの残距離が制御開始距離以下になったときにエンジン始動用発電制御を開始しないと、車両運行中、常に通常の発電制御よりも多いSOCに保持されることになる。一般に走行中には車両を制動する機会が頻繁にあり、ハイブリッド車両では車両の制動時にモータージェネレーター2による回生制動をかけて走行エネルギーの回収を行うが、回生制動をかけるとモータージェネレーター2の発電電力によってバッテリー7の充電が行われるため、SOCがさらに増大してバッテリー7の端子電圧が上限値に達する。つまり、過充電になる。上述したように、エンジン始動用発電制御はSOCの増量制御であるから、目的地までの制御開始距離の区間に限ってエンジン始動用発電制御を行い、それよりも前の走行区間では通常の発電制御を行うことによって、車両運行中の回生制動による燃費の改善を図りながら、エンジン1の始動性を改善することができる。
【0021】
図2は発電制御プログラムを示すフローチャートである。このフローチャートにより、第1の実施の形態の動作を説明する。車両コントローラー8のCPU8aは、イグニッションスイッチ10がオンするとこの発電制御プログラムの実行を開始する。
【0022】
ステップ1において、ナビゲーション装置12で目的地と目的地までの最適経路が設定されているかどうかを確認する。目的地と最適経路が設定されている場合は、次回の車両運行時に低温環境下でも確実にエンジン始動が可能なバッテリー充電量(SOC)を今回の運行終了までに確保する、上述した“エンジン始動用発電制御”を行うためにステップ2へ進む。一方、目的地と最適経路が設定されていない場合は、通常の発電制御を行うためにステップ12へ進む。
【0023】
エンジン始動用発電制御では、まず、ステップ2でナビゲーション装置12から現在地から目的地までの残距離を入手する。ナビゲーション装置12では目的地までの最適経路が探索されており、その最適経路に沿って現在地から目的地へ至る残距離は常に求められる。
【0024】
ステップ3において、目的地までの残距離が上述した制御開始距離以下になったかどうかを確認する。目的地までの残距離が制御開始距離を超えている場合は、上述したようにエンジン始動用発電制御を開始すると走行中の回生制動能力が十分に発揮できなくなり、燃費の改善を図れなくなるので、ステップ12へ進んで通常の発電制御を行う。目的地までの残距離が制御開始距離以下の場合はエンジン始動用発電制御を開始するためにステップ4へ進む。
【0025】
ステップ4では、始動用タイマー11によりエンジン1の始動時刻が設定されているかどうかを確認する。次回の車両運行時のエンジン始動時刻が設定されている場合はステップ5へ進み、ナビゲーション12を介して目的地周辺のエンジン始動時刻における予想外気温を入手する。この予想外気温は、ナビゲーション装置12の携帯電話機13を介して情報センターから入手するようにしてもよいし、あるいはインターネットサイトから入手してもよい。
【0026】
一方、エンジン始動時刻が設定されていない場合はステップ6へ進み、予め定めた時間後に次回の車両運行が開始されるとし、設定時間後の目的地周辺の予想外気温をナビゲーション装置12を介して入手する。この設定時間は、通勤や業務のために車両が毎日、運行されることを想定し、例えば12時間とする。なお、車両の使用目的に合わせてユーザーが任意の設定時間を選択できるようにしてもよい。例えば毎日車両を運行する場合には12時間を選択し、1日おきに運行する場合には24時間を選択する。
【0027】
ステップ7において、エンジン始動時刻の外気温環境下でエンジン1の始動を保証するためのバッテリーSOCを設定する。エンジン始動時の外気温が低いほど、モータージェネレーター2でエンジン1を始動するための所要電力が多くなる。外気温に応じたエンジン始動電力を求め、さらにその始動電力をモータージェネレーター2に供給するための最低のバッテリーSOCを求めてマップを作成し、車両コントローラー8のROM8bに記憶しておく。このマップからエンジン始動時刻の外気温に対応するバッテリーSOCを表引き演算し、次回の車両運行時のエンジン始動用SOCとする。
【0028】
続くステップ8では、SOCセンサー9によりバッテリー7の現在のSOCを検出する。ステップ9で、目的地に到着するまでにバッテリーSOCを上記エンジン始動用SOCとするための発電量を演算する。ステップ10において、演算結果の発電量にしたがってインバーター6を制御し、モータージェネレーター2のエンジン始動用発電制御を行う。ステップ11で目的地に到着したかどうかを確認し、目的地に到着していない場合はステップ10へ戻ってエンジン始動用発電制御を継続し、目的地に到着したらエンジン始動用発電制御を終了する。
【0029】
ステップ1で目的地と最適経路が設定されていない場合、またはステップ3で目的地までの残距離が制御開始距離より大きい場合は、ステップ12以降の通常の発電制御を行う。ステップ12において、走行中のモータージェネレーター2による駆動力と回生制動力とを確保するための通常用SOCを設定する。この通常用のSOCは、例えば30〜80%とする。
【0030】
続くステップ13で、SOCセンサー9により現在のバッテリーSOCを検出する。ステップ14において、バッテリーSOCが通常用SOC、例えば30〜80%の範囲に入るようにインバーター6を制御し、モータージェネレーター2の通常用発電制御を行う。ステップ15で、イグニッションスイッチ10がオフされたかどうかを確認し、イグニッションスイッチ10がオフされたら処理を終了し、オフされていなければステップ13へ戻って通常用の発電制御を続ける。
【0031】
このように、第1の実施の形態では、通常走行時に用いる通常用SOCと、エンジンを始動するために用いる通常SOCよりも高いエンジン始動用SOCとを設定し、目的地までの残距離が制御開始距離になるまではバッテリーSOCが通常用SOCとなるようにモータージェネレーターの発電制御を行い、目的地までの残距離が制御開始距離以下になったらバッテリーSOCがエンジン始動用SOCとなるようにモータージェネレーターの発電制御を行うようにした。つまり、目的地までの残距離が制御開始距離になるまでは通常のSOC管理、目的地までの残距離が制御開始距離以下になったらエンジン始動用のSOC管理をするようにしたので、通常走行時は回生制動による燃費の改善を図りながら、低温環境下におけるエンジンの始動性を向上させることができる。
【0032】
また、第1の実施の形態によれば、目的地における予想外気温に応じてエンジン始動用SOCを設定するようにしたので、寒冷地域を目的地に車両を運行した場合でも、エンジンの始動を確実に行うことができる。
さらに、第1の実施の形態によれば、目的地におけるエンジン始動時刻の予想外気温に応じてエンジン始動用SOCを設定するようにしたので、寒冷地域においてもエンジンの始動性をさらに向上させることができる。
【0033】
《発明の第2の実施の形態》
上述した第1の実施の形態では、走行中の発電制御により次回の車両運行時のエンジン始動用SOCを達成する例を示したが、エンジン停止後に次回の車両運行時のエンジン始動用SOCを確保するためにバッテリーの保温を行い、それでもエンジン始動用SOCを確保できない場合はエンジンを始動して発電を行う第2の実施の形態を説明する。
【0034】
図3は第2の実施の形態の構成を示す。なお、図1に示す機器と同様な機器に対しては同一の符号を付して相違点を中心に説明する。電動エアコン18は、バッテリー7の電力によりコンプレッサーモーター18aを駆動して車室内の空調を行う車両用空調装置である。保温タイマー19は、電動エアコン18を駆動してバッテリー7を保温する時間を計時するタイマーである。
【0035】
一般に、バッテリーの充電または放電を行うと、バッテリー自体が発熱し、バッテリー温度が上昇する。また、バッテリーは温度が高いほど放電可能な電力が多くなる、つまりSOCが高くなる。したがって、エンジン停止後、バッテリーSOCが次回の車両運行時のエンジン始動用SOCよりも低くなったら、強制的に電動エアコン18を作動させ、バッテリー7からコンプレッサーモーター18aへ放電することによってバッテリー7の自己発熱を促し、バッテリー温度を上げてエンジン始動用SOCを確保する。
【0036】
ただし、電動エアコン18を駆動するためにバッテリー7の放電を行うと、バッテリー7の電力消費にともなってSOCが低下する。したがって、放電によるSOCの減少量が、放電時のバッテリー温度上昇によるSOCの増加量を超えないように、予めシミュレーションまたは実験により最大の放電時間を決定し、その放電時間を超えないようにする。この一実施の形態では上記最大の放電時間を保温時間と呼び、この保温時間を保温タイマー19に設定して電動エアコン18の作動時間を管理する。
【0037】
図4は発電制御プログラムを示すフローチャートである。このフローチャートにより、第2の実施の形態の動作を説明する。車両コントローラー8のCPU8aは、イグニッションスイッチ10がオフするとこの発電制御プログラムの実行を開始する。なお、この第2の実施の形態ではイグニッションスイッチ10をオフしても車両コントローラー8、SOCセンサー9、始動用タイマー11、ナビゲーション装置12、携帯電話機13、電動エアコン18、保温用タイマー19へはバッテリー7から必要最少限の電力が供給されており、これらの機器はいつでも作動可能な状態にある。
【0038】
ステップ21において、始動用タイマー11によりエンジン1の始動時刻が設定されているかどうかを確認する。次回の車両運行時のエンジン始動時刻が設定されている場合はステップ22へ進み、ナビゲーション装置12を介して目的地周辺のエンジン始動時刻における予想外気温を入手する。一方、エンジン始動時刻が設定されていない場合はステップ23へ進み、上述したように予め定めた時間後に次回の車両運行が開始されるとし、設定時間後の目的地周辺の予想外気温をナビゲーション装置12を介して入手する。
【0039】
ステップ24において、上述したように、マップ参照によりエンジン始動時刻の外気温環境下でエンジン1の始動を保証するためのバッテリーSOCを設定する。続くステップ25でSOCセンサー9により現在のバッテリーSOCを検出する。ステップ26では、現在のSOCとエンジン始動時刻の外気温とに基づいて、エンジン始動時刻までバッテリー7を放置した場合のエンジン始動時刻におけるSOCを推定する。
【0040】
ステップ27において、電動エアコン18を作動して放電によりバッテリー7の温度を上げ、バッテリー7の保温をする必要があるかどうかを確認する。エンジン始動時刻におけるSOC推定値が、エンジン始動用SOCよりも低い場合はバッテリー7の保温が必要と判断し、ステップ28へ進む。ステップ28では、バッテリー7の電力により電動エアコン18を作動して保温を開始するとともに、保温タイマー19をスタートさせる。なお、ステップ27でバッテリー7の保温処理が不要と判断された場合は処理を終了する。
【0041】
ステップ29で予め設定した保温時間の経過を確認し、保温時間が経過するまで電動エアコン18の作動、つまりバッテリー7の保温を続ける。保温時間が経過したらステップ30へ進み、電動エアコン18の作動を停止してバッテリー7の保温を終了する。
【0042】
保温処理後のステップ31で、SOCセンサー9によりバッテリー7のSOCを検出する。また、ステップ32で、現在のSOCとエンジン始動時刻の外気温とに基づいて、エンジン始動時刻までバッテリー7を放置した場合のエンジン始動時刻におけるSOCを推定する。ステップ33において、エンジン1を始動してモータージェネレーター2により発電を行い、バッテリー7の充電を行う必要があるか否かを判断する。
【0043】
上述したバッテリー7の保温処理では、保温時間すなわち最大の放電時間の間、バッテリー7を放電させたので、これ以上の放電を行うと放電によるSOCの減少量が、放電時のバッテリー温度上昇によるSOCの増加量を超えてしまい、総合的にバッテリー7のSOCが低下する。したがって、上述した保温処理を繰り返すことはできない。
【0044】
エンジン始動時刻におけるSOC推定値が、エンジン始動用SOCよりも低い場合は発電によるバッテリー7の充電が必要であると判断し、ステップ34へ進む。なお、発電によるバッテリー7の充電が不要であると判断される場合は処理を終了する。
【0045】
ステップ34において、バッテリーSOCを上記エンジン始動用SOCとするための発電量を演算する。続くステップ35で、エンジン1によりモータージェネレーター2を駆動して発電を行ったときの、上記発電量を発電するのに要する時間を演算する。そして、発電に要する時間が経過した直後にエンジン始動時刻となるように、発電開始時刻を決定する。
【0046】
モータージェネレーター2により発電を行ってバッテリー7を充電すると、バッテリー7の自己発熱により温度が上昇し、バッテリーSOCが増加するが、バッテリー充電後、長時間放置すると、バッテリー温度の低下にともなってバッテリーSOCも低下してしまう。したがって、充電終了直後のバッテリーSOCが最も高い状態にあるときにエンジン1が始動され、車両の運行が開始されるのが望ましい。
【0047】
ステップ36で発電開始時刻になったか否かを確認し、発電開始時刻になったらステップ37へ進む。ステップ37では、インバーター6を制御してバッテリー7の電力をモータージェネレーター2へ供給し、モータージェネレーター2によりエンジン1を始動する。エンジン始動後、インバーター6を制御してモータージェネレーター2により発電を行い、発電電力をバッテリー7へ供給して充電を行う。
【0048】
ステップ38においてSOCセンサー9によりバッテリー7のSOCを検出し、続くステップ39でバッテリー7のSOCが上述したエンジン始動用SOC以上になったかどうかを確認する。バッテリーSOCがエンジン始動用SOC以上になるまでモータージェネレーター2による発電を継続し、エンジン始動用SOC以上になったらステップ40へ進む。ステップ40では、エンジン1を停止してモータージェネレーター2による発電を終了する。
【0049】
なお、上述した第1の実施の形態により目的地に到着後、第2の実施の形態を実行し、バッテリーのSOCがエンジン始動用SOCよりも低い場合に上述した保温処理とエンジンによりモータージェネレーターを駆動して発電を行う処理とを実行してもよい。
【0050】
このように、第2の実施の形態によれば、バッテリーSOCがエンジン始動用SOCよりも低い場合には、バッテリーから電動エアコンへ所定時間、放電するようにしたので、通常走行時は回生制動による燃費の改善を図りながら、低温環境下におけるエンジンの始動性を向上させることができる。
なお、第2の実施の形態では、保温処理においてバッテリーから所定時間、放電を行う車載電気機器として電動エアコンを例に上げて説明したが、車載電気機器は電動エアコンに限定されず、ラジオ、テレビ、オーディオ、ウインドウデフォッガーなどを利用してもよい。
【0051】
また、第2の実施の形態によれば、電動エアコンへの放電後のバッテリーSOCがエンジン始動用SOCよりも低い場合には、エンジンを始動してモータージェネレーターの発電電力によりバッテリーの充電を行うようにしたので、低温環境下におけるエンジンの始動性をさらに向上させることができる。
【0052】
特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、SOCセンサー9がSOC検出手段を、車両コントローラー8が発電制御手段およびバッテリー制御手段を、携帯電話機13が情報入手手段を、始動用タイマー11が時刻設定手段をそれぞれ構成する。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
【図面の簡単な説明】
【図1】第1の実施の形態の構成を示す図である。
【図2】第1の実施の形態の発電制御プログラムを示すフローチャートである。
【図3】第2の実施の形態の構成を示す図である。
【図4】第2の実施の形態の発電制御プログラムを示すフローチャートである。
【図5】図4に続く、第2の実施の形態の発電制御プログラムを示すフローチャートである。
【符号の説明】
1 エンジン
2 モータージェネレーター
3 変速機
4 減速機
5a、5b 駆動輪
6 インバーター
7 バッテリー
8 車両コントローラー
8a CPU
8b ROM
8c RAM
8d A/Dコンバーター
9 SOCセンサー
9a 電圧センサー
9b 電流センサー
10 イグニッションスイッチ
11 始動用タイマー
12 ナビゲーション装置
13 携帯電話機
14 入力装置
15 GPS受信機
16 車速センサー
17 記憶装置
18 電動エアコン
18a コンプレッサーモーター
19 保温用タイマー

Claims (5)

  1. 目的地が設定されると目的地までの最適経路を探索するナビゲーション装置と、
    車両を駆動するエンジンと、
    車両の駆動、発電および前記エンジンの始動を行うモータージェレーターと、
    前記モータージェネレーターで発電した電力により充電されるバッテリーとを備えたハイブリッド車両において、
    前記バッテリーのSOCを検出するSOC検出手段と、
    通常走行時の目標SOC(以下、通常用SOCという)と、前記エンジンを始動するために用いる前記通常SOCよりも高い目標SOC(以下、エンジン始動用SOCという)とを設定し、目的地までの残距離が所定距離になるまでは前記バッテリーのSOCが前記通常用SOCとなるように前記モータージェネレーターの発電制御を行い、目的地までの残距離が前記所定距離以下になったら前記バッテリーのSOCが前記エンジン始動用SOCとなるように前記モータージェネレーターの発電制御を行う発電制御手段とを備えることを特徴とするハイブリッド車両。
  2. 請求項1に記載のハイブリッド車両において、
    予想外気温情報を入手する情報入手手段を備え、
    前記発電制御手段は、目的地における前記予想外気温に応じて前記エンジン始動用SOCを設定することを特徴とするハイブリッド車両。
  3. 請求項2に記載のハイブリッド車両において、
    エンジン始動時刻を設定する時刻設定手段を備え、
    前記発電制御手段は、目的地における前記エンジン始動時刻の前記予想外気温に応じて前記エンジン始動用SOCを設定することを特徴とするハイブリッド車両。
  4. 請求項1に記載のハイブリッド車両において、
    目的地到着後の前記バッテリーのSOCが前記エンジン始動用SOCよりも低い場合には、前記バッテリーから所定の車載電気機器へ所定時間、放電するバッテリー制御手段を備えることを特徴とするハイブリッド車両。
  5. 請求項4に記載のハイブリッド車両において、
    前記バッテリー制御手段は、前記所定の車載電気機器への放電後の前記バッテリーのSOCが前記エンジン始動用SOCよりも低い場合には、前記エンジンを始動して前記モータージェネレーターの発電電力により前記バッテリーの充電を行うことを特徴とするハイブリッド車両。
JP2003038395A 2003-02-17 2003-02-17 ハイブリッド車両 Pending JP2004245190A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038395A JP2004245190A (ja) 2003-02-17 2003-02-17 ハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038395A JP2004245190A (ja) 2003-02-17 2003-02-17 ハイブリッド車両

Publications (1)

Publication Number Publication Date
JP2004245190A true JP2004245190A (ja) 2004-09-02

Family

ID=33022938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038395A Pending JP2004245190A (ja) 2003-02-17 2003-02-17 ハイブリッド車両

Country Status (1)

Country Link
JP (1) JP2004245190A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046342A (ja) * 2004-07-30 2006-02-16 Ford Global Technologies Llc 車両及び車両のエンジン始動制御方法
JP2006238543A (ja) * 2005-02-23 2006-09-07 Hokkaido Railway Co 鉄道車両の蓄電装置暖機方法及び装置
JP2008016229A (ja) * 2006-07-03 2008-01-24 Mazda Motor Corp 車両用バッテリの制御装置
WO2008044516A1 (fr) * 2006-10-11 2008-04-17 Toyota Jidosha Kabushiki Kaisha Véhicule hybride, procédé de commande de véhicule hybride, programme pour amener un ordinateur à exécuter le procédé de commande, et support d'enregistrement lisible par un ordinateur contenant le programme
JP2008265594A (ja) * 2007-04-23 2008-11-06 Denso Corp ハイブリッド車両用の充放電制御装置および当該充放電制御装置用のプログラム
EP2020724A1 (en) * 2006-05-22 2009-02-04 Toyota Jidosha Kabushiki Kaisha Accumulator charge/discharge control device and charge/discharge control method
JP2011105293A (ja) * 2009-11-17 2011-06-02 Hyundai Motor Co Ltd ハイブリッド車両のバッテリーsocのバランシング制御方法
WO2011070848A1 (ja) * 2009-12-08 2011-06-16 本田技研工業株式会社 ハイブリッド車両
JP2013086529A (ja) * 2011-10-13 2013-05-13 Daimler Ag ハイブリッド車両の電力制御装置
JP2014504977A (ja) * 2010-12-09 2014-02-27 ルノー・トラックス ハイブリッド式の自力推進する車両をコントロールするための方法およびその種の方法に適合されたハイブリッド式の車両
WO2014168017A1 (ja) * 2013-04-11 2014-10-16 日産自動車株式会社 車両の制御装置および車両の制御方法
JP2016118124A (ja) * 2014-12-19 2016-06-30 マツダ株式会社 車両用電源制御装置
FR3044423A1 (fr) * 2015-11-26 2017-06-02 Peugeot Citroen Automobiles Sa Procede de calcul de reserve d’energie pour le demarrage du moteur thermique d’un vehicule hybride
JP2018088757A (ja) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 車両
JP2018090153A (ja) * 2016-12-06 2018-06-14 トヨタ自動車株式会社 ハイブリッド車両
CN109878494A (zh) * 2017-12-05 2019-06-14 丰田自动车株式会社 混合动力汽车及混合动力汽车用的控制装置
US10821996B2 (en) 2017-01-24 2020-11-03 Toyota Jidosha Kabushiki Kaisha Motor-driven vehicle
JP2020531358A (ja) * 2017-08-30 2020-11-05 ルノー エス.ア.エス.Renault S.A.S. ハイブリッド車の充電状態を管理するための方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046342A (ja) * 2004-07-30 2006-02-16 Ford Global Technologies Llc 車両及び車両のエンジン始動制御方法
JP4495003B2 (ja) * 2005-02-23 2010-06-30 北海道旅客鉄道株式会社 鉄道車両の蓄電装置暖機方法及び装置
JP2006238543A (ja) * 2005-02-23 2006-09-07 Hokkaido Railway Co 鉄道車両の蓄電装置暖機方法及び装置
EP2020724A4 (en) * 2006-05-22 2013-08-07 Toyota Motor Co Ltd CHARGING / UNLOADING CONTROL UNIT FOR ACCUMULATORS AND CHARGING / UNLOADING SYSTEMS
EP2020724A1 (en) * 2006-05-22 2009-02-04 Toyota Jidosha Kabushiki Kaisha Accumulator charge/discharge control device and charge/discharge control method
US8078417B2 (en) 2006-05-22 2011-12-13 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling charging and discharging power storage device
JP2008016229A (ja) * 2006-07-03 2008-01-24 Mazda Motor Corp 車両用バッテリの制御装置
WO2008044516A1 (fr) * 2006-10-11 2008-04-17 Toyota Jidosha Kabushiki Kaisha Véhicule hybride, procédé de commande de véhicule hybride, programme pour amener un ordinateur à exécuter le procédé de commande, et support d'enregistrement lisible par un ordinateur contenant le programme
US8210293B2 (en) 2006-10-11 2012-07-03 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, method of controlling hybrid vehicle, program for causing computer to execute the method of controlling hybrid vehicle, and computer readable storage medium having the program stored therein
JP2008265594A (ja) * 2007-04-23 2008-11-06 Denso Corp ハイブリッド車両用の充放電制御装置および当該充放電制御装置用のプログラム
JP2011105293A (ja) * 2009-11-17 2011-06-02 Hyundai Motor Co Ltd ハイブリッド車両のバッテリーsocのバランシング制御方法
US8700242B2 (en) 2009-12-08 2014-04-15 Honda Motor Co., Ltd. Hybrid vehicle
WO2011070848A1 (ja) * 2009-12-08 2011-06-16 本田技研工業株式会社 ハイブリッド車両
JP2014504977A (ja) * 2010-12-09 2014-02-27 ルノー・トラックス ハイブリッド式の自力推進する車両をコントロールするための方法およびその種の方法に適合されたハイブリッド式の車両
US9403527B2 (en) 2010-12-09 2016-08-02 Volvo Truck Corporation Method for controlling a hybrid automotive vehicle and hybrid vehicle adapted to such a method
JP2013086529A (ja) * 2011-10-13 2013-05-13 Daimler Ag ハイブリッド車両の電力制御装置
WO2014168017A1 (ja) * 2013-04-11 2014-10-16 日産自動車株式会社 車両の制御装置および車両の制御方法
JP2016118124A (ja) * 2014-12-19 2016-06-30 マツダ株式会社 車両用電源制御装置
FR3044423A1 (fr) * 2015-11-26 2017-06-02 Peugeot Citroen Automobiles Sa Procede de calcul de reserve d’energie pour le demarrage du moteur thermique d’un vehicule hybride
JP2018088757A (ja) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 車両
JP2018090153A (ja) * 2016-12-06 2018-06-14 トヨタ自動車株式会社 ハイブリッド車両
US10279800B2 (en) 2016-12-06 2019-05-07 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method for hybrid vehicle
US10821996B2 (en) 2017-01-24 2020-11-03 Toyota Jidosha Kabushiki Kaisha Motor-driven vehicle
JP2020531358A (ja) * 2017-08-30 2020-11-05 ルノー エス.ア.エス.Renault S.A.S. ハイブリッド車の充電状態を管理するための方法
CN109878494A (zh) * 2017-12-05 2019-06-14 丰田自动车株式会社 混合动力汽车及混合动力汽车用的控制装置
CN109878494B (zh) * 2017-12-05 2022-02-18 丰田自动车株式会社 混合动力汽车及混合动力汽车用的控制装置

Similar Documents

Publication Publication Date Title
JP2004245190A (ja) ハイブリッド車両
JP6624084B2 (ja) 電動車両
JP5487861B2 (ja) バッテリの暖機制御装置
CN109131309B (zh) 混合动力车辆
JP5740269B2 (ja) 車両用制御装置
JP4508281B2 (ja) 電池制御装置及び蓄電池の充放電制御方法
KR101836250B1 (ko) 구동 모터를 구비한 차량의 dc 컨버터의 출력 전압을 제어하는 방법 및 장치
JP5366685B2 (ja) 電動車両
JP2008017681A (ja) 車両の電力制御装置
JP2002125326A (ja) バッテリの充電制御方法
JP2013252015A (ja) 車両用電源制御方法及び装置
JP2008049877A (ja) 電池制御装置
WO2010113496A1 (ja) ハイブリッド車両
JP2007097359A (ja) ハイブリッド車両バッテリ充放電制御システム
WO2017212976A1 (ja) 車載電源システム
JP2007137275A (ja) 電源制御装置
JP2009030598A (ja) 車両用制御装置
JP2016141356A (ja) 自動車用電源装置及び自動車用電源装置の制御方法
JP2020035595A (ja) 車両の制御装置
JP2010154654A (ja) 車両用電池冷却制御装置
JP6424596B2 (ja) 車両の充電制御装置
JP5958457B2 (ja) ハイブリッド車両
JP2005146910A (ja) ハイブリッド車両及びその制御方法
US11396242B2 (en) Vehicle control device
JP5772309B2 (ja) 電力変換装置