JP2004232623A - Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine - Google Patents

Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine Download PDF

Info

Publication number
JP2004232623A
JP2004232623A JP2003076598A JP2003076598A JP2004232623A JP 2004232623 A JP2004232623 A JP 2004232623A JP 2003076598 A JP2003076598 A JP 2003076598A JP 2003076598 A JP2003076598 A JP 2003076598A JP 2004232623 A JP2004232623 A JP 2004232623A
Authority
JP
Japan
Prior art keywords
valve
dead center
intake
air
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076598A
Other languages
Japanese (ja)
Inventor
Osamu Nakada
治 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003076598A priority Critical patent/JP2004232623A/en
Publication of JP2004232623A publication Critical patent/JP2004232623A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for setting an expansion stroke rather than an actual compression stroke to be longer as referred with relation to piston strokes. <P>SOLUTION: A valve is provided to be opened simultaneously as or with a little delay behind an intake valve dedicated for mixed gas is in an intake stroke, and closed between a point a little after a lower dead point and a little before an upper dead point in the compression stroke. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法と、長く取り過ぎた時の対策と、多気筒の時、他の気筒との関係に関する。
【0002】
【従来の技術】
従来の4サイクルガソリンエンジンにおいては、理論として、
圧縮比=膨張比
である。
【0003】
【発明が解決しようとする課題】
従来の4サイクルガソリンエンジンにあっては、混合気が爆発に因って膨張する時、膨張してしまう前に、排気工程に移ってしまい、爆発に因って出たエネルギー(パワー、トルク)を十分、ピストン、そして、クランク・シャフトへと伝えられないまま排出してしまう、と言う問題点があった。
【0004】
本発明は、4サイクルガソリンエンジンの、爆発に因って出たエネルギーを、同じ量の燃料を消費するにあたって、より多く、ピストン、そして、クランク・シャフトへと伝える方法を得る事を目的としており、また、該方法を用いた時に、混合気にスムーズな流れを与える事を目的としている。
【0005】
さらに、多気筒の時、他の気筒との相互性を持たせる事を目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法においては、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁、を設ける。
【0007】
上記弁に、何も無い空間(混合気が一時停滞する所)を取り付ける。
【0008】
また、2気筒以上の時、上記何も無い空間を、他の気筒の何も無い空間と、1つにつなぐ。
【0009】
そして、4気筒以上の時、何も無い空間をなくせ、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁と弁を1つにつなぐ。
【0010】
また、上記弁を、圧縮工程で開け過ぎた時の対策として、膨張工程の時、膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる、空気専用の吸気弁を設ける。
【0011】
さらに、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる弁を、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、2種類に分ける。
【0012】
また、上記の、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁に付いている、何も無い空間からの(への)通路を、何も無い空間の端と端に取り付ける。
【0013】
そして、4気筒以上の時、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁が、吸気工程で開く時には、他の気筒の、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の中で、圧縮工程で開いている弁に、直接つなぐ。
【0014】
【作用】
上記の様に構成された、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法においては、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁、を設ける事に因り
圧縮比<膨張比
の工程が行える。
【0015】
上記弁に、何も無い空間、を取り付ける事に因り、圧縮工程の時、混合気は圧縮されて何も無い空間へ入るが、次の吸気工程の時に、シリンダー内に吸気される。
【0016】
また、2気筒以上の時、各気筒の何も無い空間を、1つにつなぐ事に因り、何も無い空間で混合気が停滞している時間を、同じ爆発回転数ならば、短縮できる。
【0017】
そして、4気筒以上の時、
180°(1工程)×4(4気筒)=720°
4サイクルガソリンエンジンの周期は、
180°(1ストローク)×4(4サイクル)=720°
つまり、4気筒以上の4サイクルガソリンエンジンでは、絶えず、いずれかの気筒に違う工程を行なわせる事ができるので、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁と弁を1つにつなぐ事に因り、前記の弁に出入する混合気は、吸気工程の時には、他の気筒に圧縮される形で吸気され、圧縮工程の時には、他の気筒に吸気される形で圧縮される。
【0018】
また、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる弁を、圧縮工程の時に開き過ぎた時の対策として、膨張工程の時、混合気が膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる、空気専用の吸気弁を設ける事に因り、さらに
圧縮比<膨張比
の比率の割合が高くとれ、膨張工程もスムーズに行える。
【0019】
そして、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる弁を、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、2種類に分け、それぞれの弁に付いている、何も無い空間からの通路を、何も無い空間の端と端に取り付ける事に因り、混合気は一定方向に流れ、出入の時の混合気同士の干渉を少なくする。
【0020】
さらに、4気筒以上の時、何も無い空間を無くせ、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁が、吸気工程の時に開く時には、他の気筒の、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の中で、圧縮工程で開いている弁に、直接つなぐ事に因り、混合気は一定方向に流れ、また、吸気工程の時には、他の気筒に圧縮される形で吸気され、圧縮工程の時には、他の気筒に吸気される形で圧縮されるので、混合気のスムーズな流れを得る事と、吸気、圧縮工程の抵抗を少なくする事ができる。
【0021】
【実施例】
実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる時の、弁の配置を示した横断面図であり、要は、混合気専用の吸気弁と、排気弁と、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる弁と、圧縮工程で閉じる弁を、圧縮工程の時に開け過ぎた時の対策として、膨張工程の時、混合気が膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる、空気専用の吸気弁の、4種類の弁の配置を示したものである。
【0022】
また、膨張工程の時、混合気が膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる、空気専用の吸気弁は、膨張し過ぎないのであれば、必要としない。
【0023】
図2から図7に示される実施例では、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる時の、工程を示したものであり、図2から図7は、
図2 吸気工程(混合気の吸気工程)
混合気専用の吸気弁と、何も無い空間からの弁は開き、空気専用の吸気弁と、排気弁は閉じている(何も無い空間からの弁は、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる弁であり、空気専用の吸気弁は、何も無い空間からの弁を、圧縮工程で開け過ぎた時の対策として、膨張工程の時、混合気が膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる、空気専用の吸気弁である。)。
図3 圧縮工程−1
混合気専用の吸気弁は閉じ、何も無い空間からの弁は、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる。そして、空気専用の吸気弁と、排気弁は閉じている(図3に示される、何も無い空間からの弁は、圧縮工程の時、下死点から約5分の4程、ピストンが上昇した時点で閉じると仮定した図であり、閉じる直前の図でもある。)。
図4 圧縮工程−2(点火)
混合気専用の吸気弁と、何も無い空間からの弁と、空気専用の吸気弁と、排気弁は、全部閉じている。
図5 膨張工程−1
混合気専用の吸気弁と、何も無い空間からの弁は閉じ、空気専用の吸気弁は、混合気が膨張し過ぎて回転の抵抗になる前に開く。そして、排気弁は閉じている(図5に示される、空気専用の吸気弁は、膨張工程の時、上死点から約4分の3程、ピストンが下降した時点で開くと仮定した図であり、開いた直後の図でもある。)。
図6 膨張工程−2(空気の吸気工程)
混合気専用の吸気弁と、何も無い空間からの弁は閉じ、空気専用の吸気弁も下死点で閉じる。そして、排気弁も閉じている。
図7 排気工程
混合気専用の吸気弁と、何も無い空間からの弁と、空気専用の吸気弁は閉じ、排気弁は開いている。
を示す、縦断面図である。
【0024】
また、図2から図7は、断面A−Aの方向から見たと仮定した図でもある。
【0025】
そして、図2から図7には、バルブ・タイミングは含まれておらず、バルブ・タイミングを含まないのは、各工程を分り易くする為でもある。
【0026】
図8に示される実施例では、直列型2気筒の、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならは長くとる時の、断面B−Bの方向から見たと仮定した、縦断面図であり、要は、何も無い空間を1つにする事に因り、何も無い空間へ圧縮されて入った混合気は、次の混合気の吸気工程を待たずに、他の気筒の混合気の吸気工程の時に吸気されるように、各気筒の工程を組め、それに因って、何も無い空での混合気の停滞時間を、同じ爆発回転数ならば、短縮できる事を示した図である。
【0027】
図9に示される実施例では、直列型4気筒の、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる時の、断面B−Bの方向から見たと仮定した、縦断面図であり、要は、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁と弁を1つにつなぐ事に因り、混合気は、吸気工程の時には、他の気筒に圧縮される形で吸気され、圧縮工程の時には他の気筒に吸気される形で圧縮されるように、各気筒の工程を組める事を示した図である。
【図28】
図10に示される実施例では、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならは長くとる時の、弁の配置を示した横断面図であり、要は、混合気専用の吸気弁と、排気弁と、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、4種類の弁の配置を示した図である。
【0029】
図11から図15に示される実施例では、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる時の、工程を示したものであり、図11から図15は、
図11 吸気工程(混合気の吸気工程)
混合気専用の吸気弁と、弁aは開き、弁bと、排気弁は閉じている(図11から図15に示される、弁aは、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁であり、弁bは、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁である。)。
図12 圧縮工程−1
混合気専用の吸気弁と、弁aは閉じ、弁bは、下死点で開き、上死点の少し手前の間で閉じる。そして排気弁は閉じている(図12に示される、弁bは、圧縮工程の時、下死点から約2分の1程、ピストンが上昇した時点で閉じると仮定した図であり、閉じる直前の図でもある。)。
図13 圧縮工程−2(点火)
混合気専用の吸気弁と、弁aと、弁bと、排気弁は、全部閉じている。
図14 膨張工程
混合気専用の吸気弁と、弁aと、弁bと、排気弁は、全部閉じている。
図15 排気工程
混合気専用の吸気弁と、弁aと、弁bは閉じ、排気弁は開いている。
を示す、縦断面図である。
【0030】
また、図11から図15は、断面C−Cの方向から見たと仮定した図でもある。
【0031】
そして、空気専用の吸気弁を用いた工程(膨張工程−2)は描かれていない。
【0032】
それは、図11から図15の、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる時の工程の図には、空気専用の吸気弁を含まない場合を描いた。
【0033】
さらに、図11から図15には、バルブ・タイミングは含まれておらず、バルブ・タイミングを含まないのは、各工程を分り易くする為でもある。
【0034】
図16に示される実施例では、直列型2気筒の、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる時の、断面D−Dの方向から見たと仮定した、縦断面図であり、要は、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、何も無い空間への通路を、何も無い空間の端と端に取り付ける事に因り、混合気は一定方向に流れ、また、吸気、圧縮工程の時には、他の気筒に、圧縮、吸気されるように、各気筒の工程を組める事を示した図である。
【0035】
図17に示される実施例では、直列型4気筒の、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる時の、断面D−Dの方向から見たと仮定した、縦断面図であり、要は、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁が、吸気工程の時に開く時には、他の気筒の、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の中で、圧縮工程で開いている弁に、直接つなぐ事に因り、混合気は一定方向に流れ、また、吸気工程の時には、他の気筒に圧縮される形で吸気され、圧縮工程の時には、他の気筒に吸気される形で圧縮されるので、混合気のスムーズな流れを得る事と、吸気、圧縮工程の抵抗を少なくする事ができる事を示した図である。
【0036】
また、上記条件を満たした、5気筒以上の、4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならは長くとる方法の図は、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁が、2気筒以上と関係し、複雑になり、上記条件を分りにくくするので、ここでは省く。
【0037】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0038】
吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁、を設ける事に因り、本当の、
圧縮比<膨張比
になる工程が行え、従来の、4サイクルガソリンエンジンよりも、同じ量の燃料を消費するのにあたって、爆発に因って出たエネルギー(パワー、トルク)を、より多く、ピストン、そして、クランク・シャフトへと、伝える事ができる。
【0039】
また、上記弁に、何も無い空間(混合気が一時停滞する所)を取り付ける事に因り、圧縮工程の時、混合気は何も無い空間へ圧縮されて入るが、次の混合気の吸気工程の時に吸気されるので、燃料を無駄にしなくなる。
【0040】
そして、2気筒以上の時、各気筒の何も無い空間を、1つにつなぐ事に因り、混合気の停滞時間を、同じ爆発回転数ならば短縮する事ができ、また、何も無い空間が各気筒に有るのよりも、1つにした方が場所を取らないのと、停滞時間を短縮できるので、さらに、小さくできる。
【0041】
また、4気筒以上の時、各気筒に、吸気工程、圧縮工程、膨張工程、排気工程、のいづれかを行なわせる事に因り、上記弁と弁をつなぐものだけで済み、何も無い空間のスペースがいらなくなる。
【0042】
さらに、圧縮工程の時、上記弁を開け過ぎた時の対策として、膨張工程の時、混合気が膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる、空気専用の吸気弁、を設ける事に因り、さらに、
圧縮比<膨張比
の比率の割合が高くとれ、膨張工程もスムーズに行える。
【0043】
また、同じエンジンの爆発回転数でも、高負荷の時には、圧縮工程で閉じる弁を早く閉じ、低負荷の時には、圧縮工程で閉じる弁を遅く閉じ、そして、膨張工程の時、空気専用の吸気弁を用いれば、パワーの向上、低燃費と、その場にあった、必要なエネルギーを得る事ができる。
【0044】
また、弁の開閉のタイミングを変えなくても、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用した時の、混合気専用の通路と、何も無い空間からの通路と、空気専用の通路の開閉と、該開閉装置の型(平成7年特許願第97346号)を用いれば、弁の開閉のタイミングを変える事に似た、工程が行える。
【0045】
また、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる弁を、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、2種類の弁に分け、それぞれの弁に付いている、何も無い空間からの通路を、何も無い空間の端と端に取り付ける事に因り、混合気は一定方向に流れるので、弁が1種類の時の、混合気が出入する時の干渉を、少なくできる。
【0046】
さらに、4気筒以上の時、吸気工程、圧縮工程、膨張工程、排気工程、と、各気筒にそれぞれ違った工程を行なわせる事ができるので、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁が、吸気工程で開く時には、他の気筒の、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の中で、圧縮工程で開いている弁に、直接つなぐ事に因り、混合気は一定方向に流れるので、スムーズな工程が行える。
【0047】
そして、4気筒以上の時、上記2種類の弁を上記のような関係にする事に因り、吸気工程の時には、他の気筒に圧縮される形で吸気され、圧縮工程の時には、他の気筒に吸気される形で圧縮されるので、吸気、圧縮工程の抵抗が少なくなる。
【図面の簡単な説明】
【図1】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、弁の配置の実施例を示す、横断面図である。
【図2】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(吸気工程)。
【図3】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(圧縮工程−1)。
【図4】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である〔圧縮工程−2(点火)〕。
【図5】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(膨張工程−1)。
【図6】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(膨張工程−2)。
【図7】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(排気工程)。
【図8】断面B−Bの方向から見たと仮定した、直列型2気筒4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、各気筒の、何も無い空間からの弁と、空気専用の吸気弁の、配置の実施例を示す、縦断面図である。
【図9】断面B−Bの方向から見たと仮定した、直列型4気筒4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、各気筒の、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過きた所から、上死点の少し手前の間で閉じる弁と、空気専用の吸気弁の、配置の実施例を示す、縦断面図である。
【図10】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、弁の配置の実施例を示す、横断面図である。
【図11】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(吸気工程)。
【図12】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(圧縮工程−1)。
【図13】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である〔圧縮工程−2(点火)〕。
【図14】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(膨張工程)。
【図15】4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、工程の実施例を示す、縦断面図である(排気工程)。
【図16】断面D−Dの方向から見たと仮定した、直列型2気筒4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、各気筒の、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁と、何も無い空間の、配置の実施例を示す、縦断面図である。
【図17】断面D−Dの方向から見たと仮定した、直列型4気筒4サイクルガソリンエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる方法の時の、各気筒の、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、配置の実施例を示す、縦断面図である。
【符号の説明】
1 混合気専用の吸気弁
2 排気弁
3 吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる弁(何も無い空間からも弁)
4 圧縮工程の時、何も無い空間からの弁を開け過ぎた時の対策として、膨張工程の時、混合気が膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる、空気専用の吸気弁(空気専用の吸気弁)
5 プラグ
6 気化器
7 吸気管
8 排気管
9 何も無い空間(混合気が一時停滞する所)
10 何も無い空間からの(への)通路
11 空気専用の吸気弁への通路
12 ピストン
13 混合気専用の吸気弁と排気弁
14 何も無い空間からの弁と空気専用の吸気弁
15 吸気工程完了
16 圧縮工程完了
17 膨張工程完了
18 排気工程完了
19 吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁と弁をつなぐ通路
20 吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁(弁a)
21 圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁(弁b)
22 弁aと弁b
23 弁aと弁bをつなぐ通路
A−A 断面
B−B 断面
C−C 断面
D−D 断面
[0001]
[Industrial applications]
SUMMARY OF THE INVENTION The present invention provides a method of taking a stroke of a four-stroke gasoline engine that expands longer than a step of truly compressing it, in terms of stroke, measures to take too long, and, in the case of a multi-cylinder, other cylinders. And relationship.
[0002]
[Prior art]
In a conventional four-stroke gasoline engine, as a theory,
Compression ratio = expansion ratio.
[0003]
[Problems to be solved by the invention]
In a conventional four-stroke gasoline engine, when the air-fuel mixture expands due to an explosion, it moves to the exhaust process before expanding, and the energy (power, torque) generated due to the explosion. Was exhausted without being transmitted to the piston and the crankshaft.
[0004]
It is an object of the present invention to obtain a method of transmitting the energy generated by the explosion of a four-stroke gasoline engine to the piston and the crankshaft in consuming the same amount of fuel. It is another object of the present invention to give a smooth flow to the mixture when the method is used.
[0005]
Furthermore, when the number of cylinders is multi-cylinder, it is intended to have reciprocity with other cylinders.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the method of the present invention, in which the expansion step of the four-stroke gasoline engine is longer than the actual compression step in terms of stroke, the air-fuel mixture is exclusively used during the intake step. A valve is provided that opens at the same time as or slightly after the intake valve, and closes just before the top dead center from a point slightly after the bottom dead center in the compression process.
[0007]
Attach a blank space (where the mixture temporarily stagnates) to the valve.
[0008]
When there are two or more cylinders, the empty space is connected to the empty space of the other cylinders.
[0009]
When there are more than four cylinders, there is no space left, and during the intake process, the valve opens at the same time as or slightly behind the intake valve dedicated to the mixture, and after entering the compression process, a little after the bottom dead center, Close the valve just before the dead center, connect the valves together.
[0010]
In addition, as a countermeasure when the valve is excessively opened in the compression step, an intake valve for exclusive use of air is provided in the expansion step, which is opened before it is excessively expanded and becomes rotational resistance and closed at the bottom dead center.
[0011]
In addition, during the intake process, open the valve at the same time as or slightly after the intake valve dedicated to the air-fuel mixture, and after entering the compression process, slightly after the bottom dead center, close the valve just before the top dead center. During the process, a valve that opens at the same time or slightly behind the intake valve dedicated to the mixture and closes at the bottom dead center, and a valve that opens at the bottom dead center and closes just before the top dead center during the compression process, Divide into two types.
[0012]
Also, at the time of the above-described intake process, a valve that opens at the same time or slightly behind the intake valve dedicated to the air-fuel mixture and closes at the bottom dead center, and a valve that opens at the bottom dead center and slightly before the top dead center during the compression process Attach the passages from the empty space to the end of the empty space, with the valves that close between them.
[0013]
When the number of cylinders is four or more, during the intake process, the valve that opens at the same time or slightly behind the intake valve dedicated to the air-fuel mixture and closes at the bottom dead center opens during the intake process. In the valve that opens at bottom dead center and closes shortly before top dead center, it is directly connected to the valve that is open in the compression process.
[0014]
[Action]
In the four-stroke gasoline engine configured as described above, in the method of taking the stroke, in terms of stroke, longer than the step of really compressing, the intake valve dedicated to the air-fuel mixture is used during the intake step. At the same time or with a slight delay, the valve is opened from a point slightly below the bottom dead center after entering the compression process and closed slightly before the top dead center, so that the process of compression ratio <expansion ratio can be performed.
[0015]
The air-fuel mixture is compressed into the empty space during the compression process due to the attachment of a space having nothing to the valve, but is sucked into the cylinder during the next suction process.
[0016]
Further, when there are two or more cylinders, by connecting the empty space of each cylinder to one, the time during which the air-fuel mixture is stagnant in the empty space can be reduced with the same explosion rotation speed.
[0017]
And when you have more than 4 cylinders,
180 ° (one process) × 4 (4 cylinders) = 720 °
The cycle of a 4-cycle gasoline engine is
180 ° (1 stroke) x 4 (4 cycles) = 720 °
In other words, in a four-stroke gasoline engine with four or more cylinders, any one cylinder can constantly perform a different process, so during the intake process, it opens simultaneously with or slightly behind the intake valve dedicated to the air-fuel mixture, and the compression process The air-fuel mixture that enters and exits the valve at the time of the intake process, due to connecting the valves and the valve one after entering and closing slightly before the top dead center from the point just after the bottom dead center The air is sucked in a form compressed by another cylinder, and is compressed in the form of being sucked into another cylinder in a compression step.
[0018]
Also, during the intake process, the valve that opens at the same time as or slightly after the intake valve dedicated to the air-fuel mixture, enters the compression process, and slightly after the bottom dead center, closes the valve slightly before the top dead center. As a countermeasure when it is opened too much during the process, at the time of the expansion process, the air-fuel mixture is opened before the air-fuel mixture expands too much and becomes the resistance of rotation, and it closes at the bottom dead center. The ratio of the compression ratio <the expansion ratio can be set high, and the expansion process can be performed smoothly.
[0019]
Then, during the intake process, open the valve at the same time as or slightly behind the intake valve dedicated to the air-fuel mixture, and after entering the compression process a little after the bottom dead center, close the valve just before the top dead center. During the process, a valve that opens at the same time or slightly behind the intake valve dedicated to the mixture and closes at the bottom dead center, and a valve that opens at the bottom dead center and closes just before the top dead center during the compression process, The air-fuel mixture flows in a certain direction due to the passage from the empty space attached to each valve to the end of the empty space, which is attached to each valve. Reduce interference between each other.
[0020]
Furthermore, when there are four or more cylinders, there is no space left. At the time of the intake process, the valve that opens at the same time as the intake valve dedicated to the air-fuel mixture or with a slight delay. The air-fuel mixture flows in a certain direction due to being directly connected to the valve that opens in the compression process among the cylinders that open at the bottom dead center during the compression process and close just before the top dead center during the compression process. During the intake process, the air is sucked in a form compressed by other cylinders, and in the compression process, it is compressed by being sucked into other cylinders, so that a smooth flow of the air-fuel mixture is obtained. Thus, the resistance of the intake and compression processes can be reduced.
[0021]
【Example】
Referring to the drawings, an embodiment will be described with reference to the drawings. FIG. 1 shows an arrangement of valves in a case where a stroke of a four-stroke gasoline engine is longer in a process of expanding than in a process of truly compressing. The main point is that the intake valve dedicated to the air-fuel mixture, the exhaust valve, and the intake valve dedicated to the air-fuel mixture are opened at the same time or slightly behind the intake valve during the intake process. As a countermeasure when the valve that closes slightly before top dead center and the valve that closes in the compression process from a point slightly past the top dead center, as a countermeasure when opening too much during the compression process, the air-fuel mixture expands too much during the expansion process. FIG. 3 shows an arrangement of four types of valves, an intake valve dedicated to air, which opens before becoming resistance to rotation and closes at a bottom dead center.
[0022]
Also, during the expansion process, an air-only intake valve that opens before the air-fuel mixture expands and becomes resistance to rotation and closes at bottom dead center is not required if it does not expand too much.
[0023]
In the embodiment shown in FIGS. 2 to 7, the process of expanding the four-stroke gasoline engine, in which the expansion process is longer than the truly compression process, in terms of stroke, is shown. 2 to 7
Fig. 2 Intake process (intake process of mixture)
The intake valve exclusively for the mixture and the valve from the empty space are open, and the intake valve exclusively for the air and the exhaust valve are closed. (The valve from the empty space is only for the mixture during the intake process. The valve opens at the same time as or slightly behind the intake valve, and closes just before the top dead center from a point slightly past the bottom dead center after entering the compression process.The air-only intake valve has no space. As a countermeasure when the valve from is opened too much in the compression process, it is an air-only intake valve that opens before the air-fuel mixture expands too much and becomes rotational resistance during the expansion process and closes at the bottom dead center. .).
Fig. 3 Compression process-1
The intake valve dedicated to the air-fuel mixture is closed, and the valve from the empty space is closed slightly before the top dead center, just after the bottom dead center after entering the compression process. Then, the intake valve dedicated to air and the exhaust valve are closed (the valve from the empty space shown in FIG. 3 raises the piston about 4/5 from the bottom dead center during the compression process. (It is assumed that the window is closed at the time of closing, and is also a diagram immediately before the window is closed.)
Fig. 4 Compression process-2 (ignition)
The intake valve dedicated to the mixture, the valve from the empty space, the intake valve dedicated to the air, and the exhaust valve are all closed.
Fig. 5 Expansion process-1
The intake valve dedicated to the mixture and the valve from the empty space are closed, and the intake valve dedicated to the air opens before the mixture is over-expanded and resists rotation. Then, the exhaust valve is closed (as shown in FIG. 5, the intake valve dedicated to air is assumed to open when the piston descends about three-quarters from top dead center during the expansion process. There is also a figure just after opening.)
Fig. 6 Expansion process-2 (air intake process)
The intake valve exclusively for the air-fuel mixture and the valve from the empty space are closed, and the intake valve exclusively for the air is closed at the bottom dead center. And the exhaust valve is also closed.
FIG. 7 Exhaust Step The intake valve exclusively for the air-fuel mixture, the valve from the empty space, the intake valve exclusively for the air are closed, and the exhaust valve is open.
FIG.
[0024]
FIG. 2 to FIG. 7 are also diagrams assuming that they are viewed from the direction of the cross section AA.
[0025]
2 to 7 do not include valve timing, and do not include valve timing in order to make each process easier to understand.
[0026]
In the embodiment shown in FIG. 8, the direction of the cross section BB when the expansion process is longer than the compression process in the in-line two-cylinder four-stroke gasoline engine, in terms of stroke, is taken longer. It is a vertical cross-sectional view assuming that the air-fuel mixture is compressed into a space where there is nothing. Instead of waiting, set up the process of each cylinder so that it is taken in during the intake process of the mixture of the other cylinders. Then, it is a diagram showing that it can be shortened.
[0027]
In the embodiment shown in FIG. 9, in the in-line four-cylinder, four-stroke gasoline engine, the direction of the cross section BB when the expansion process is longer than the compression process in terms of stroke is taken. It is a vertical cross-sectional view assuming that it is viewed from above. The air-fuel mixture is sucked in the form of being compressed into other cylinders during the intake process, and the other cylinders are compressed during the compression process. FIG. 9 is a diagram showing that the process of each cylinder can be assembled so that the air is compressed in such a manner as to be taken in.
FIG. 28
FIG. 10 is a cross-sectional view showing the arrangement of the valves when the stroke of the four-stroke gasoline engine, in which the expansion process is longer than the truly compression process in terms of stroke, is taken in the embodiment shown in FIG. In short, the intake valve and exhaust valve exclusively for the mixture, and the valve that opens at the same time or slightly behind the intake valve for the mixture during the intake process and closes at the bottom dead center, and the bottom dead center during the compression process FIG. 5 is a diagram showing the arrangement of four types of valves that are opened at a time and closed slightly before the top dead center.
[0029]
In the embodiment shown in FIGS. 11 to 15, the process of expanding the stroke of the four-stroke gasoline engine is longer than the process of truly compressing, in terms of stroke. 11 to FIG.
Fig. 11 Intake process (air-fuel mixture intake process)
The intake valve dedicated to the mixture and the valve a are open, and the valve b and the exhaust valve are closed (as shown in FIGS. 11 to 15, the valve a is at the same time as the intake valve dedicated to the mixture during the intake process. A valve that opens a little later and closes at the bottom dead center, and valve b is a valve that opens at the bottom dead center and closes just before the top dead center during the compression process.)
Figure 12 Compression process-1
The intake valve dedicated to the air-fuel mixture and the valve a close, the valve b opens at bottom dead center and closes shortly before top dead center. Then, the exhaust valve is closed (shown in FIG. 12 assuming that the valve b closes at the time when the piston rises about half the time from the bottom dead center during the compression process, and immediately before closing. It is also a figure.).
Figure 13 Compression process-2 (ignition)
The intake valve dedicated to the air-fuel mixture, the valve a, the valve b, and the exhaust valve are all closed.
FIG. 14 The intake valve dedicated to the air-fuel mixture in the expansion step, the valve a, the valve b, and the exhaust valve are all closed.
FIG. 15 Exhaust Step The intake valve dedicated to the air-fuel mixture, the valves a and b are closed, and the exhaust valve is open.
FIG.
[0030]
11 to 15 are also diagrams assuming that they are viewed from the direction of the cross section CC.
[0031]
A process using an air-only intake valve (expansion process-2) is not illustrated.
[0032]
That is, in FIGS. 11 to 15, the drawing of the four-stroke gasoline engine, in which the expansion process is longer than the truly compression process in terms of stroke, includes an intake valve dedicated to air. No case painted.
[0033]
Further, FIGS. 11 to 15 do not include the valve timing, and do not include the valve timing in order to make each process easier to understand.
[0034]
In the embodiment shown in FIG. 16, the direction of the cross section DD when the expansion step of the in-line two-cylinder four-stroke gasoline engine is longer than the actual compression step in terms of stroke. It is a vertical cross-sectional view assuming that it is viewed from the front. In short, during the intake process, a valve that opens at the same time or slightly behind the intake valve dedicated to air-fuel mixture and closes at the bottom dead center, and at the compression process, the bottom dead center The air-fuel mixture flows in a certain direction due to the passage to the empty space, which is opened at the end of the valve and closed slightly before the top dead center, at the end of the empty space. FIG. 9 is a diagram showing that a process of each cylinder can be assembled so that compression and intake are performed in another cylinder during a compression process.
[0035]
In the embodiment shown in FIG. 17, in the in-line four-cylinder, four-stroke gasoline engine, the direction of the cross section DD when the expansion step is longer than the truly compression step in terms of stroke. It is a vertical cross-sectional view assuming that it is viewed from the point.In short, at the time of the intake process, the valve opens at the same time as or slightly behind the intake valve dedicated to the air-fuel mixture, and when the valve that closes at the bottom dead center opens at the time of the intake process, The air-fuel mixture flows in a certain direction due to being directly connected to the valve that opens in the compression process among the cylinders that open at the bottom dead center during the compression process and close just before the top dead center during the compression process. During the intake process, the air is sucked in a form compressed by other cylinders, and in the compression process, it is compressed by being sucked into other cylinders, so that a smooth flow of the air-fuel mixture is obtained. Figure showing that the resistance of the intake and compression processes can be reduced A.
[0036]
Also, for a five-cylinder or four-stroke gasoline engine that satisfies the above conditions, the process of expanding the stroke, rather than the process of really compressing, is taken longer in terms of stroke. A valve that opens at the same time as or slightly after the intake valve dedicated to air and closes at the bottom dead center, and a valve that opens at the bottom dead center and closes just before the top dead center during the compression process is related to two or more cylinders. However, since it becomes complicated and makes it difficult to understand the above conditions, it is omitted here.
[0037]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0038]
During the intake process, provide a valve that opens at the same time as or slightly behind the intake valve dedicated to the air-fuel mixture, and closes slightly before the top dead center, just after the bottom dead center in the compression process. According to the real,
A process where the compression ratio <the expansion ratio can be performed, and the same amount of fuel is consumed compared to a conventional four-cycle gasoline engine. , And to the crankshaft.
[0039]
In addition, the air-fuel mixture is compressed into the empty space during the compression process due to the installation of an empty space (where the air-fuel mixture temporarily stagnates) in the above valve. Since air is taken in during the process, fuel is not wasted.
[0040]
When there are two or more cylinders, by connecting the empty space of each cylinder to one, the stagnation time of the air-fuel mixture can be reduced at the same explosion rotation speed, and the empty space However, it is possible to save space and shorten the stagnation time as compared with the case where one cylinder is provided, so that the size can be further reduced.
[0041]
When four or more cylinders are used, each cylinder performs one of the intake process, the compression process, the expansion process, and the exhaust process. No longer needed.
[0042]
Further, as a countermeasure when the valve is excessively opened during the compression process, an air-only intake valve is opened during the expansion process before the air-fuel mixture expands excessively and becomes a resistance to rotation, and closed at the bottom dead center. , And furthermore,
The ratio of the compression ratio <the expansion ratio can be set high, and the expansion process can be performed smoothly.
[0043]
Also, at the same engine explosion speed, when the load is high, the valve that closes in the compression process closes quickly, when the load is low, the valve that closes in the compression process closes slowly, and in the expansion process, the intake valve dedicated to air. By using, it is possible to improve power, reduce fuel consumption, and obtain necessary energy suitable for the situation.
[0044]
Also, without changing the timing of opening and closing the valve, a 4-way gasoline engine, a 6-cycle gasoline engine, when using a piston valve and a rotary valve, a mixture-only passage and a passage from an empty space By using the type of the opening / closing device (1995 Patent Application No. 97346) for opening / closing a passage dedicated to air, a process similar to changing the opening / closing timing of a valve can be performed.
[0045]
Also, during the intake process, open the valve at the same time as or slightly after the intake valve dedicated to the air-fuel mixture, enter the compression process, and after a little after the bottom dead center, close the valve just before the top dead center. During the process, a valve that opens at the same time or slightly behind the intake valve dedicated to the mixture and closes at the bottom dead center, and a valve that opens at the bottom dead center and closes just before the top dead center during the compression process, The mixture is divided into two types, and the passage from the empty space attached to each valve is attached to the end of the empty space, and the mixture flows in a certain direction. In the case of different types, it is possible to reduce interference when the mixture enters and exits.
[0046]
Furthermore, when the number of cylinders is four or more, different processes can be performed for each cylinder, such as the intake process, the compression process, the expansion process, and the exhaust process. When the valve that opens at a short delay and closes at the bottom dead center opens during the intake stroke, the other cylinder opens at the bottom dead center during the compression stroke and closes slightly before the top dead center. Since the air-fuel mixture flows in a certain direction due to the direct connection to the valve opened in the compression process, a smooth process can be performed.
[0047]
When the number of cylinders is four or more, the two types of valves are set in the above-described relationship, so that the intake is performed in the form of being compressed into another cylinder during the intake process, and the other cylinder is compressed during the compression process. Since the air is compressed in such a manner as to be sucked into the air, the resistance in the air intake and compression processes is reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an embodiment of the arrangement of valves in a four-stroke gasoline engine in a way that the expansion step is longer than the truly compression step in terms of stroke.
FIG. 2 is a longitudinal sectional view showing an embodiment of a process of a four-stroke gasoline engine in which a process of expanding a process, which is actually longer than a process of actually compressing, is longer than a process of actually compressing (intake process). ).
FIG. 3 is a longitudinal sectional view showing an embodiment of a process of a four-stroke gasoline engine in which a process of expanding a process, which is longer than a process of truly compressing, is longer than a process of actually compressing (compression process). -1).
FIG. 4 is a longitudinal sectional view showing an example of a process of a four-stroke gasoline engine in which a process of expanding a process, which is longer than a process of truly compressing, is longer in terms of a stroke. -2 (ignition)].
FIG. 5 is a longitudinal sectional view showing an embodiment of the process of the four-stroke gasoline engine in the case where the expansion step is longer than the truly compression step in terms of stroke (expansion step). -1).
FIG. 6 is a longitudinal sectional view showing an example of a process of a four-stroke gasoline engine in a case where a process for expanding a process is longer than a process for truly compressing the process in terms of a stroke (expansion process). -2).
FIG. 7 is a longitudinal sectional view showing an embodiment of the process of the four-stroke gasoline engine in the case of a method in which the expansion process is longer than the truly compression process in terms of stroke (exhaust process). ).
FIG. 8 assumes that the expansion process of the in-line two-cylinder four-cycle gasoline engine is longer than the actual compression process, assuming that it is viewed from the direction of the cross section BB. FIG. 5 is a longitudinal sectional view showing an embodiment of the arrangement of a valve from an empty space of each cylinder and an intake valve dedicated to air.
FIG. 9 assumes that the expansion process of the in-line four-cylinder four-stroke gasoline engine is longer than the actual compression process, assuming that it is viewed from the direction of the cross section BB. During the intake stroke of each cylinder, the valve opens at the same time as or slightly behind the intake valve dedicated to the air-fuel mixture, and closes slightly before the top dead center from the point where the bottom dead center was passed a little after entering the compression process. FIG. 3 is a longitudinal sectional view showing an embodiment of the arrangement of an intake valve dedicated to air.
FIG. 10 is a cross-sectional view showing an embodiment of the arrangement of the valves of a four-stroke gasoline engine in the case where the expansion step is longer than the truly compression step in terms of stroke.
FIG. 11 is a longitudinal sectional view showing an embodiment of the process of the four-stroke gasoline engine in the case where the expansion step is longer than the truly compression step in terms of the stroke (intake step). ).
FIG. 12 is a longitudinal sectional view showing an example of a process of a four-stroke gasoline engine in a case where a process of expanding a process, which is really longer than a process of truly compressing, is longer than a process of compressing (compression process). -1).
FIG. 13 is a longitudinal sectional view showing an example of a process of a four-stroke gasoline engine in which a process of expanding a process, which is longer than a process of truly compressing, is longer in terms of stroke. -2 (ignition)].
FIG. 14 is a longitudinal sectional view showing an embodiment of a process of a four-stroke gasoline engine in a case where a process of expanding a process rather than a process of truly compressing the process is taken longer in terms of a stroke (expansion process). ).
FIG. 15 is a vertical cross-sectional view showing an example of a process of a four-stroke gasoline engine in a case where a process of expanding a process rather than a process of truly compressing the process is longer in terms of a stroke (an exhaust process). ).
FIG. 16 shows a process of expanding a stroke of a two-cylinder four-stroke inline gasoline engine, which is assumed to be viewed from the direction of the cross section DD, in comparison with a process of truly compressing, in terms of stroke. During the intake stroke of each cylinder, the valve opens at the same time or slightly behind the intake valve dedicated to the mixture and closes at the bottom dead center, and opens at the bottom dead center during the compression stroke, slightly before the top dead center. FIG. 3 is a longitudinal sectional view showing an embodiment of the arrangement of the valve closing between and the empty space.
FIG. 17 shows a case where the expansion process of the in-line four-cylinder four-cycle gasoline engine is longer than that of the actual compression process, assuming that it is viewed from the direction of the cross section DD. During the intake stroke of each cylinder, the valve opens at the same time or slightly behind the intake valve dedicated to the mixture and closes at the bottom dead center, and opens at the bottom dead center during the compression stroke, slightly before the top dead center. FIG. 4 is a longitudinal sectional view showing an example of an arrangement of a valve that closes between them.
[Explanation of symbols]
1 Intake valve exclusively for air-fuel mixture 2 Exhaust valve 3 In the intake process, open at the same time as or slightly after the intake valve exclusively for air-fuel mixture. A valve that closes in the foreground (a valve even from an empty space)
4. In the compression process, as a countermeasure when the valve from an empty space is opened too much, in the expansion process, open before the air-fuel mixture expands too much and become a resistance to rotation, and close at the bottom dead center. Exclusive intake valve (exclusive intake valve for air)
5 Plug 6 Vaporizer 7 Intake pipe 8 Exhaust pipe 9 Empty space (where the mixture temporarily stagnates)
Reference Signs List 10 Passage from / to empty space 11 Passage to air-only intake valve 12 Piston 13 Intake valve and exhaust valve exclusively for air-fuel mixture 14 Valve from empty space and intake valve exclusively for air 15 Intake process Completed 16 Completed the compression process 17 Completed the expansion process 18 Completed the exhaust process 19 Opened the intake process at the same time as or slightly after the intake valve dedicated to the air-fuel mixture. A passage 20 connecting the valves, which closes just before the point, a valve (valve a) that opens at the same time as or slightly after the intake valve dedicated to the mixture during the intake process, and closes at the bottom dead center (valve a)
21 During the compression process, a valve that opens at bottom dead center and closes slightly before top dead center (valve b)
22 Valve a and Valve b
23 Passage AA connecting valve a and valve b Cross section BB Cross section CC Cross section DD Cross section

Claims (8)

吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、圧縮工程に入って下死点を少し過ぎた所から、上死点の少し手前の間で閉じる、弁、を設ける。At the time of the intake process, a valve is provided that opens at the same time as or slightly after the intake valve dedicated to the air-fuel mixture, and closes a little after the bottom dead center and just before the top dead center after entering the compression process. 請求項1記載の弁に、何も無い空間(混合気が一時停滞する所)、を取り付ける。The valve according to claim 1 is provided with an empty space (where the air-fuel mixture temporarily stagnates). 2気筒以上の時、請求項2記載の何も無い空間を、1つにつなぐ。When there are two or more cylinders, the empty space described in claim 2 is connected to one. 4気筒以上の時、請求項1記載の弁と弁をつなぐものだけで済ませる。In the case of four or more cylinders, only the valve connecting the valves described in claim 1 is required. 請求項1記載の弁を、圧縮工程で開け過きた時の対策として、膨張工程の時、膨張し過ぎて回転の抵抗になる前に開き、下死点で閉じる。空気専用の吸気弁、を設ける。As a countermeasure when the valve according to claim 1 is excessively opened in the compression step, the valve is opened in the expansion step before it is excessively expanded and becomes a resistance to rotation, and is closed at the bottom dead center. A dedicated air intake valve is provided. 請求項1記載の弁を、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、2種類に分ける。The valve according to claim 1, which opens at the same time as or slightly behind the intake valve dedicated to the air-fuel mixture during the intake process and closes at the bottom dead center. Divide into two types of valves that close slightly before. 請求項6記載の、2種類の弁への何も無い空間からの通路を、混合気が一定方向に流れるようにする為に、何も無い空間の端と端に取り付ける。Passages from the empty space to the two types of valves according to claim 6 are attached to the ends of the empty space so that the air-fuel mixture flows in a certain direction. 4気筒以上の時、請求項6記載の、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁と、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の、2種類の弁の関係を、吸気工程の時、混合気専用の吸気弁と同時か少し遅れて開き、下死点で閉じる弁が、吸気工程の時に開く時には、他の気筒の、圧縮工程の時、下死点で開き、上死点の少し手前の間で閉じる弁の中で、圧縮工程の時に開いている弁に、直接つなぐ。In the case of four or more cylinders, the valve according to claim 6, which opens at the same time as or slightly behind the intake valve dedicated to the air-fuel mixture during the intake process and closes at the bottom dead center, and opens at the bottom dead center during the compression process, The relationship between the two types of valves, which are closed slightly before the top dead center, is that the valve that opens at the same time as or slightly after the intake valve dedicated to the mixture during the intake process and closes at the bottom dead center is the intake process At the time of opening, at the time of the compression process, the other cylinder opens directly at the bottom dead center and closes a little before the top dead center, and is directly connected to the valve opened at the time of the compression process.
JP2003076598A 2003-02-01 2003-02-01 Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine Pending JP2004232623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076598A JP2004232623A (en) 2003-02-01 2003-02-01 Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076598A JP2004232623A (en) 2003-02-01 2003-02-01 Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine

Publications (1)

Publication Number Publication Date
JP2004232623A true JP2004232623A (en) 2004-08-19

Family

ID=32959480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076598A Pending JP2004232623A (en) 2003-02-01 2003-02-01 Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine

Country Status (1)

Country Link
JP (1) JP2004232623A (en)

Similar Documents

Publication Publication Date Title
JP2004232623A (en) Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine
JPS59113239A (en) Double expansion type internal-combustion engine
US20030226524A1 (en) Bazmi&#39;s six stroke engine
JPH09273430A (en) Six-cycle gasoline engine
RU80507U1 (en) FOUR-STROKE ICE WITH CONTINUED EXTENSION OF COMBUSTION PRODUCTS
JPH11336559A (en) Method of making stroke of expansion process longer than that of actually compressing process of 4-cycle gasoline engine
WO2015147554A1 (en) Engine
JPH1061447A (en) Method for making expansion stroke longer than real compression stroke in four cycle gasoline engine, if referring to stroke
JP2005042694A (en) Opening and closing of valve opened at bottom dead center and closed before top dead center in compression stroke, and opening and closing of passage from valve to space without anything
JP2003201873A (en) Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine
JP2000274255A (en) Setting stroke for really expanding at time of expanding stroke longer than stroke for really compressing at time of compressing stroke when using piston valve and rotary valve for four-cycle engine and six-cycle engine
JP2000199441A (en) Method of sparing longer time in terms of strokes for actually expanding process in expansion process than actually compressing process in compression process in using piston valve or rotary valve in four-cycle engine or six-cycle engine
JPH11303644A (en) Method of taking longer stroke in compression stroke than in actual compression stroke and taking longer stroke in actual expansion stroke than in expansion stroke, in using piston valve and rotary valve for four cycle engine and six cycle engine
JP2004332708A (en) Method of adopting longer effective expansion stroke than effective compression stroke when using piston valve or rotary valve for 4-cycle engine or 6-cycle engine
JP2001234770A (en) Method for taking really expanding stroke at expansion stroke longer than really compressing stroke at compression stroke when piston valve and rotary valve are used for four-cycle engine and six-cycle engine
JP2004204831A (en) Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke
JP2001082187A (en) Method for making actual expansion stroke in expansion stroke longer in stroke than actual compression stroke in compression stroke in the case of using piston valve and rotary vlave in 4-cycle engine or 6-cycle engine
JPH10196377A (en) Method for to performing longer stroke at real expansion stroke time than at real compression stroke time when piston valve and rotary valve are used in 4-cycle engine and 6-cycle engine
JP2002276398A (en) Measure for valve or air opening opened in intake stroke and closed after starting compression stroke in use of piston valve or rotary valve to 4-cycle gasoline engine or 6-cycle gasoline engine
JP2005076628A5 (en)
JP2000186558A (en) Stratified scavenging 2-cycle engine
JPH10196376A (en) Method for performing longer stroke at real expansion stroke time than at real compression stroke time when piston valve and rotary valve are used in 4-cycle engine and 6-cycle engine
JPH10184369A (en) Method of taking longer stroke for real expansion process, under expansion process, than for real compression process, under compression process, when piston valve and rotary valve are employed for four cycle engine and six cycle engine
JP2003262137A (en) Method for making actual expansion ratio larger than actual compression ratio when piston valve and rotary valve are used for 4-cycle engine, 6-cycle engine, 8-cycle engine, and 10-or-more cycle engine
JPH10331656A (en) Combined engine of four-cycle gasoline engine and eight-cycle gasoline engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040622

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050104

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050614