JP2004204831A - Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke - Google Patents

Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke Download PDF

Info

Publication number
JP2004204831A
JP2004204831A JP2002383853A JP2002383853A JP2004204831A JP 2004204831 A JP2004204831 A JP 2004204831A JP 2002383853 A JP2002383853 A JP 2002383853A JP 2002383853 A JP2002383853 A JP 2002383853A JP 2004204831 A JP2004204831 A JP 2004204831A
Authority
JP
Japan
Prior art keywords
dead center
stroke
diesel engine
valve
bottom dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383853A
Other languages
Japanese (ja)
Inventor
Osamu Nakada
治 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002383853A priority Critical patent/JP2004204831A/en
Publication of JP2004204831A publication Critical patent/JP2004204831A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for taking a process for expanding longer than a process for actually compressing a four cycle diesel engine in terms of strokes, and to obtain measures when the process is taken excessively long. <P>SOLUTION: In the compression process, an exhaust valve is opened and closed at a bottom dead center and before a top dead center, respectively. The exhaust valve is opened as measures when the exhaust valve is opened excessively in the compression process, and before excessive expansion results by explosion for resisting rotation in the expansion process, respectively, and is closed at the bottom dead center. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法に関する。
【0002】
また、ストロークで言うならば長く取った時、長く取り過ぎた時の対策に関する。
【0003】
【従来の技術】
従来の4サイクルディーゼルエンジンにおいては、理論として、
圧縮比=膨張比
であった。
【0004】
【発明が解決しようとする課題】
従来の4サイクルディーゼルエンジンにあっては、理論(現実は、バルブ・タイミングなどで違う。)として、
圧縮比=膨張比
の為、爆発に因って出たエネルギー(パワー、トルク)を、ピストン、そして、クランク・シャフトへと、充分伝えられないまま排出してしまう、と言う問題点があった。
【0005】
また、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る4サイクルディーゼルエンジンにした時、長く取り過ぎた時には、膨張し過ぎて回転の抵抗になる、と言う問題点があった。
【0006】
本発明は、4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法を得る事を目的としており、さらに、ストロークを長く取り過ぎた時の対策を得る事を目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成する為に、本発明の、4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長くとる法方においては、圧縮工程の時、排気弁を、下死点で開き上死点の手前の間で閉じる。
【0008】
そして、圧縮工程の時、排気弁を開け過ぎた時の対策として、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に、吸気弁を開き下死点で閉じる。
【0009】
【作用】
圧縮工程の時、排気弁を、下死点で開き上死点の手前の間で閉じる事に因り、
圧縮比<膨張比
の工程が行える。
【0010】
そして、圧縮工程の時、排気弁を開け過ぎた時の対策として、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に、吸気弁を開き下死点で閉じる事に因り、回転する時の抵抗も少なくなり、さらに、
圧縮比<膨張比
の比率の割合いが高く取れ、膨張工程もスムーズに行える。
【0011】
【実施例】
実施例について図面を参照して説明すると、図1においては、4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取るエンジンの、弁の配置を示した横断面図である。
【0012】
また、図1に示される吸気弁は、吸気工程の時、上死点で開き下死点で閉じる弁と、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に開き下死点で閉じる弁、を兼ねた弁であり、排気弁は、排気工程の時、下死点で開き上死点で閉じる弁と、圧縮工程の時、下死点で開き上死点の手前の間で閉じる弁、を兼ねた弁である。
【0013】
そして、図1に示される弁の数は、吸気弁と排気弁の2つであるが、他に、吸気弁を、吸気工程の時の吸気弁と、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に開き下死点で閉じる弁、の2つに分けたり、排気弁を、排気工程の時の排気弁と、圧縮工程の時、下死点で開き上死点の手前の間で閉じる弁、の2つに分けた図が描けたり、また、吸排気弁を、3つ以上用いた図も描ける。
【0014】
しかし、図1では、最低限必要な弁の数を示した図である。
【0015】
また、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗にならないのであれば、吸気弁を開く必要はない。
【0016】
図2から図7に示される実施例では、4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る、4サイクルディーゼルエンジンの工程と、ストロークを長く取り過ぎた時の対策の工程を示した図であり、図2から図7は、
図2 吸気工程
吸気弁は開き、排気弁は閉じている(吸気弁は、吸気工程の時、上死点で開き下死点で閉じる弁と、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に開き下死点で閉じる弁、を兼ねた弁であり、排気弁は、排気工程の時、下死点で開き上死点で閉じる弁と、圧縮工程の時、下死点で開き上死点の手前の間で閉じる弁、を兼ねた弁である。そして、図2に示される吸気弁は、閉じる直前の図である。)。
図3 圧縮工程−1(空気の排気)
吸気弁は閉じ、排気弁は、下死点で開き上死点の手前の間で閉じる(図3に示される排気弁は、ピストンが約5分の4程、上昇した時点で閉じると仮定した図であり、閉じる直前の図でもある。)。
図4 圧縮工程−2(燃料噴射)
吸気弁と排気弁は閉じている。
図5 膨張工程−1
吸気弁は、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に開き、そして、排気弁は閉じている(図5に示される吸気弁は、ピストンが約4分の3程、下降した時点で開くと仮定した図であり、開いた直後の図でもある)。
図6 膨張工程−2(空気の吸気)
吸気弁は下死点で閉じ、排気弁も閉じている(図6に示される吸気弁は、閉じた直後の図である。)。
図7 排気工程
吸気弁は閉じ、排気弁は開いている(図7に示される排気弁は、閉じる直前の図である。)。
を示す、縦断面図である。
【0017】
また、図2から図7のバルブ・タイミングは、エンジンの目的、爆発回転数、回転数の上昇時、下降時に因って違うので、含まれていない。そして、ピストンの形状も、この図には含まれていない。
【0018】
【発明の効果】
本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。
【0019】
圧縮工程の時、排気弁を、下死点で開き上死点の手前の間で閉じる事に因り、
圧縮比<膨張比
の式が成り立ち、従来の4サイクルディーゼルエンジンよりも、爆発に因って出たエネルギー(パワー、トルク)を、同じ量の燃料を消費するにあたって、ピストン、そして、クランク・シャフトへと、多く伝える事ができる。
【0020】
また、爆発に因って出たエネルギーを、同じ量の燃料を消費するにあたって、ピストン、そして、クランク・シャフトへと、多く伝える事ができると言う事は、省資源、省エネルギーにつながる。
【0021】
そして、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に、吸気弁を開き下死点で閉じる事に因り、
圧縮比<膨張比
の比率の割合が、さらに高くなり、それに因って排気ガスを空気で薄めるので、次の吸気の時に排気ガスがシリンダーの中に残る割り合いが少なくなり、次の燃料の時には、完全燃焼に近づくのと、膨張工程もスムーズに行える。
【0022】
さらに、動力にはならないが、空燃比(混合比)の関係上、
圧縮比<膨張比
になると言う事は、同じ排気量の同じ爆発回転数のエンジンでも、本当の燃料の消費が少ないので、低公害につながる。
【図面の簡単な説明】
【図1】4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法の時の弁の配置を示す、横断面図である。
【図2】4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法の工程を示す、縦断面図である(吸気工程)。
【図3】4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法の時の工程を示す、縦断面図である(圧縮工程−1、空気の排気)
【図4】4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法の時の工程を示す、縦断面図である(圧縮工程−2、燃料噴射)。
【図5】4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法の時の工程を示す、縦断面図である(膨張工程−1)。
【図6】4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法の時の工程を示す、縦断面図である(膨張工程−2、空気の吸気)
【図7】4サイクルディーゼルエンジンの、本当に圧縮する工程よりも膨張する工程の方を、ストロークで言うならば長く取る方法の時の工程を示す、縦断面図である(排気工程)。
【符号の説明】
1 吸気弁(吸気工程の時、上死点で開き下死点で閉じる弁と、膨張工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に開き下死点で閉じる弁、を兼ねた弁)
2 排気弁(排気工程の時、下死点で開き上死点で閉じる弁と、圧縮工程の時、下死点で開き上死点の手前の間で閉じる弁、を兼ねた弁)
3 燃料噴射器
4 吸気管
5 排気管
6 ピストン
[0001]
[Industrial applications]
The present invention relates to a method of extending a stroke of a four-stroke diesel engine that takes longer to expand than to really compress.
[0002]
It also relates to measures to be taken when taking a long stroke or taking too long.
[0003]
[Prior art]
In a conventional four-cycle diesel engine, as a theory,
Compression ratio = expansion ratio.
[0004]
[Problems to be solved by the invention]
In a conventional four-stroke diesel engine, the theory (actually, it depends on the valve timing etc.)
Due to the compression ratio = expansion ratio, there is a problem that energy (power, torque) generated by the explosion is discharged without being sufficiently transmitted to the piston and the crankshaft. .
[0005]
In addition, when a 4-stroke diesel engine that takes a longer stroke in terms of stroke than in a step of really compressing it, if it is taken too long, it will expand too much, resulting in rotational resistance. was there.
[0006]
An object of the present invention is to obtain a method of taking a longer stroke for a four-stroke diesel engine in a process of expanding than in a process of truly compressing, and furthermore, a countermeasure when the stroke is taken too long. The purpose is to get.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the method of the present invention, in which the expansion step of the four-stroke diesel engine is longer than the actual compression step in terms of stroke, the exhaust valve is used in the compression step. Open at the bottom dead center and close before the top dead center.
[0008]
Then, as a countermeasure when the exhaust valve is opened too much during the compression process, the intake valve is opened at the bottom dead center before the air expands too much due to the explosion and becomes rotational resistance during the expansion process. close.
[0009]
[Action]
During the compression process, the exhaust valve opens at the bottom dead center and closes before the top dead center,
The process of compression ratio <expansion ratio can be performed.
[0010]
Then, as a countermeasure when the exhaust valve is opened too much during the compression process, the intake valve is opened at the bottom dead center before the air expands too much due to the explosion and becomes rotational resistance during the expansion process. Due to the closing, the resistance when rotating decreases, and
The ratio of the compression ratio <the expansion ratio is high, and the expansion process can be performed smoothly.
[0011]
【Example】
Referring to the drawings, an embodiment will be described with reference to the drawings. FIG. 1 shows an arrangement of valves of an engine which takes a longer stroke in a process of expanding than a process of truly compressing a four-stroke diesel engine. FIG.
[0012]
Also, the intake valve shown in FIG. 1 has a valve that opens at the top dead center and closes at the bottom dead center during the intake process, and that the air expands too much due to the explosion during the expansion process, resulting in rotational resistance. The exhaust valve opens at the bottom dead center and closes at the top dead center during the exhaust process, and opens and closes at the bottom dead center during the compression process. This valve doubles as a valve that closes before the dead center.
[0013]
The number of valves shown in FIG. 1 is two, that is, an intake valve and an exhaust valve. In addition, the intake valve is used for the intake valve in the intake process and the air is exploded in the expansion process. And the valve is opened at the bottom dead center before it expands too much and becomes a resistance to rotation, and the exhaust valve is divided between the exhaust valve at the time of the exhaust process and the bottom dead center at the time of the compression process. It is possible to draw a figure divided into two, that is, a valve that closes before the top dead center, and a figure that uses three or more intake and exhaust valves.
[0014]
However, FIG. 1 is a diagram showing the minimum required number of valves.
[0015]
Also, during the expansion step, if the air expands too much due to the explosion and does not become a resistance to rotation, it is not necessary to open the intake valve.
[0016]
In the embodiment shown in FIGS. 2 to 7, in the four-stroke diesel engine, the expansion step is longer than the actual compression step in terms of the stroke, and the four-stroke diesel engine step and the stroke are longer. FIG. 2 to FIG. 7 are views showing steps of countermeasures when taking too much.
Fig. 2 Intake process The intake valve is open and the exhaust valve is closed. (The intake valve opens at the top dead center during the intake process and closes at the bottom dead center. The exhaust valve is a valve that opens and closes at the bottom dead center during the exhaust process, and a valve that opens at the bottom dead center and closes at the top dead center during the exhaust process. At this time, the valve also serves as a valve that opens at the bottom dead center and closes before the top dead center.The intake valve shown in FIG. 2 is a view immediately before closing.)
Figure 3 Compression process-1 (air exhaust)
The intake valve closes and the exhaust valve opens at bottom dead center and closes before top dead center. (The exhaust valve shown in FIG. 3 was assumed to close when the piston had risen about four-fifths. FIG. 5 and a diagram immediately before closing.)
Figure 4 Compression process-2 (fuel injection)
The intake and exhaust valves are closed.
Fig. 5 Expansion process-1
The intake valve opens before the air expands too much due to the explosion and resists rotation, and the exhaust valve closes (the intake valve shown in FIG. 5 shows that the piston is about three quarters , It is assumed that it opens when it descends, and it is also the figure immediately after opening.)
Figure 6 Expansion process-2 (air intake)
The intake valve is closed at the bottom dead center, and the exhaust valve is also closed (the intake valve shown in FIG. 6 is a view immediately after closing).
FIG. 7 The exhaust process intake valve is closed, and the exhaust valve is open (the exhaust valve shown in FIG. 7 is a diagram immediately before closing).
FIG.
[0017]
The valve timings in FIGS. 2 to 7 are not included because they differ depending on the purpose of the engine, the number of revolutions of the explosion, and when the number of revolutions rises and falls. Also, the shape of the piston is not included in this figure.
[0018]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0019]
During the compression process, the exhaust valve opens at the bottom dead center and closes before the top dead center,
The equation of compression ratio <expansion ratio holds, and the energy (power, torque) generated by the explosion is consumed by the same amount of fuel as the piston and crankshaft compared to the conventional four-cycle diesel engine. You can tell a lot.
[0020]
In addition, the fact that the energy generated by the explosion can be transmitted to the piston and the crankshaft in consuming the same amount of fuel leads to resource and energy savings.
[0021]
Then, during the expansion process, before the air expands too much due to the explosion and becomes rotational resistance, the intake valve opens and closes at the bottom dead center,
Since the ratio of the compression ratio <the expansion ratio is further increased, and the exhaust gas is diluted with air, the proportion of the exhaust gas remaining in the cylinder at the next intake is reduced, and the ratio of the next fuel is reduced. Occasionally, the expansion process can be smoothly performed as the combustion approaches the complete combustion.
[0022]
Furthermore, although it does not become power, due to the air-fuel ratio (mixing ratio),
The fact that the compression ratio <the expansion ratio means that even engines with the same displacement and the same explosion speed will consume less real fuel, leading to lower pollution.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a four-stroke diesel engine showing the arrangement of valves in a method that takes a longer stroke, in terms of stroke, than a step of truly compressing.
FIG. 2 is a vertical cross-sectional view showing a process of a method of taking a longer process in a stroke than in a process of truly compressing a four-stroke diesel engine in terms of a stroke (intake process).
FIG. 3 is a vertical cross-sectional view showing a step of a method of taking a longer stroke in a four-stroke diesel engine in a process of expanding than in a process of truly compressing (compression process-1, air Exhaust)
FIG. 4 is a vertical cross-sectional view showing a process of a method of taking a longer stroke of a four-stroke diesel engine in a process of expanding than in a process of truly compressing (compression process-2, fuel injection).
FIG. 5 is a longitudinal sectional view showing a process of a method of taking a longer stroke in a stroke of a four-stroke diesel engine than a truly compressing process (expansion process-1).
FIG. 6 is a longitudinal cross-sectional view showing a process of a method of taking a longer stroke in a four-stroke diesel engine in a process of expanding than in a process of truly compressing (expansion process-2, air Inspiration)
FIG. 7 is a vertical cross-sectional view showing a step of a method of taking a longer stroke in a four-stroke diesel engine in a process of expanding than in a process of truly compressing (exhaust process).
[Explanation of symbols]
1. Intake valve (a valve that opens at top dead center and closes at bottom dead center during the intake process, and a valve that opens at bottom dead center during the expansion process before air expands too much due to the explosion and becomes rotational resistance Close valve, double valve)
2. Exhaust valve (valve that opens at bottom dead center and closes at top dead center during the exhaust process and valve that opens at bottom dead center and closes before top dead center during the compression process)
3 fuel injector 4 intake pipe 5 exhaust pipe 6 piston

Claims (2)

圧縮工程の時、排気弁を、下死点で開き上死点の手前の間で閉じる、4サイクルディーゼルエンジン。A 4-cycle diesel engine that opens the exhaust valve at the bottom dead center and closes before the top dead center during the compression process. 請求項1記載の排気弁を、圧縮工程の時に開け過ぎた時の対策として、膨張(爆発)工程の時、空気が爆発に因って膨張し過ぎて回転の抵抗になる前に、吸気弁を開き下死点で閉じる、4サイクルディーゼルエンジン。As a countermeasure when the exhaust valve according to claim 1 is opened too much during the compression process, an intake valve is used during the expansion (explosion) process before the air is excessively expanded due to the explosion and becomes a rotational resistance. Open and close at bottom dead center, 4-cycle diesel engine.
JP2002383853A 2002-12-22 2002-12-22 Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke Pending JP2004204831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383853A JP2004204831A (en) 2002-12-22 2002-12-22 Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383853A JP2004204831A (en) 2002-12-22 2002-12-22 Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke

Publications (1)

Publication Number Publication Date
JP2004204831A true JP2004204831A (en) 2004-07-22

Family

ID=32818458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383853A Pending JP2004204831A (en) 2002-12-22 2002-12-22 Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke

Country Status (1)

Country Link
JP (1) JP2004204831A (en)

Similar Documents

Publication Publication Date Title
JP2004204831A (en) Method of taking process for expanding longer than process for actually compressing four cycle diesel engine in terms of stroke
JP2003262137A (en) Method for making actual expansion ratio larger than actual compression ratio when piston valve and rotary valve are used for 4-cycle engine, 6-cycle engine, 8-cycle engine, and 10-or-more cycle engine
JP2005042694A5 (en)
JPH09273430A (en) Six-cycle gasoline engine
JPH11132068A (en) Method for taking real expansion stroke during expansion longer than compression stroke during compression as stroke in cylindrical injection four-cycle gasoline engine, and measures when taking it excessively long
JPS59158328A (en) Internal-combustion engine
JP2002332848A (en) Method for providing actual expanding stroke during longer expansion stroke in terms of piston stroke than in actual compressing stroke during compression stroke for cylinder injection four-cycle engine and countermeasures for case of overlong stroke
JP2003293803A (en) Method to lengthen expansion process of cylinder injection gasoline engine further than real compression process of gasoline engine in terms of stroke
JP2005002980A (en) Method to make actual compression ratio larger than actual expansion ratio of an engine with 4 cycles, 6 cycles, 8 cycles, 10 cycles or more using piston valve or rotary valve
JP2001193509A (en) Method for providing actual expanding stroke during expansion stroke longer in terms of stroke than in actual compressing stroke during compression stroke for direct injection four-cycle engine and countermeasure for a case of too long stroke
RU2207442C2 (en) Working cycle of internal combustion engine
JP2005042694A (en) Opening and closing of valve opened at bottom dead center and closed before top dead center in compression stroke, and opening and closing of passage from valve to space without anything
JP2005076628A5 (en)
JPH1026025A (en) Method for making expansion stroke longer than actual compression stroke in four-cycle diesel engine, in terms of stroke
JPH09222020A (en) Method for making expanding stroke of in-cylinder injection engine longer than really compressing stroke in terms of stroke
JP2001032730A (en) Method for making true expansion ratio larger than true compression ratio when piston valve and rotary valve are used for four-cycle engine, six-cycle engine, eight- cycle engine and ten- or more-cycle engine
JPH04298630A (en) Internal combustion engine
JP2004251268A (en) Size of valve opened at top dead center and closed at bottom dead center in suction process and opened at bottom dead center and closed before top dead center in compression process and opening and closing of valve when the number of explosions of engine is at low rotation and high rotation
JPH10331656A (en) Combined engine of four-cycle gasoline engine and eight-cycle gasoline engine
JP2004301112A (en) Method for taking actual expanding stroke during expansion stroke longer in terms of stroke than in actual compressing stroke during compression stroke and countermeasure against tool long stroke, and direct injection 4-cycle gasoline engine performing opening/closing at low/high engine speed or at low/high load, and opening/closing of passage from valve in relation to size and number of valves
JP2007002834A (en) Four-stroke one-cycle engine performing output and cooling in one cycle
JPH10196423A (en) Method for making process of expansion longer than process of real compression of injection gasoline engine in cylinder in terms of stroke
JPH10317986A (en) Eight-stroke gasoline engine
JP2004232623A (en) Method for setting expansion stroke rather than actual compression stroke to be longer as referred with relation to stroke in four-cycle gasoline engine
JP2007024027A (en) Four-stroke one-cycle engine performing output and cooling in one cycle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

A521 Written amendment

Effective date: 20040322

Free format text: JAPANESE INTERMEDIATE CODE: A523

A072 Dismissal of procedure

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A073

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050329