JPS59113239A - Double expansion type internal-combustion engine - Google Patents

Double expansion type internal-combustion engine

Info

Publication number
JPS59113239A
JPS59113239A JP22260982A JP22260982A JPS59113239A JP S59113239 A JPS59113239 A JP S59113239A JP 22260982 A JP22260982 A JP 22260982A JP 22260982 A JP22260982 A JP 22260982A JP S59113239 A JPS59113239 A JP S59113239A
Authority
JP
Japan
Prior art keywords
expansion
cylinder
exhaust gas
combustion
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22260982A
Other languages
Japanese (ja)
Inventor
Yoshitaka Shimizu
清水 芳卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22260982A priority Critical patent/JPS59113239A/en
Publication of JPS59113239A publication Critical patent/JPS59113239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To raise the thermal efficiency of an internal combustion engine and to prevent thermal pollution by the exhaust gas, by communicating exhaust ports of two four-cycle type combustion cylinders having respectively a valve with the top of an expansion cylinder, and thereby introducing exhaust gas discharged from the combustion cylinders into the expansion cylinders. CONSTITUTION:Two four-cycle type combustion cylinders 1, 2 operated with the phase difference of 360 deg. to each other and one two-cycle type expansion cylinder 3 operated with a prescribed phase difference to the combustion cylinders 1, 2 are mounted on a common crank shaft 4. Further, exhaust ports 7, 10 of the combustion cylinders 1, 2 having respectively a valve are communicated with the top of the expansion cylinders 3 so that high-temperature, high-pressure exhaust gas discharged from the combustion cylinders is introduced alternately into the expansion cylinder 3 and re-expansion of the exhaust gas is caused in the expansion cylinder 3. By employing such an arrangement, it is enabled to raise the thermal efficiency of an internal combustion engine and to prevent environmental heat pollution by the exhaust gas.

Description

【発明の詳細な説明】 本発明は二段膨張式の内燃機関に関し、更に詳細には2
つの4サイクル式燃焼気筒と1つの2サイクル式膨張気
筒七を組み合わせることにより排気ガスから効率よく動
力を取り出すことができるように工夫した新規な二段膨
張式内燃機関に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-stage expansion internal combustion engine, and more particularly to a two-stage expansion internal combustion engine.
This invention relates to a new two-stage expansion internal combustion engine devised to efficiently extract power from exhaust gas by combining seven four-stroke combustion cylinders and one two-stroke expansion cylinder.

一般に4サイクル式内燃機関の燃焼気筒がら排出される
排気ガスの温度及び圧力は十分に高く大きいエネルギを
有しているが、従来の内燃機関においてはこのエネルギ
は無駄に大気中に放出されるのみであり、これを直接に
内燃機関の動力として取り出す試みはほとんどなされて
ぃながった。
In general, the temperature and pressure of the exhaust gas discharged from the combustion cylinder of a four-cycle internal combustion engine are sufficiently high and have a large amount of energy, but in conventional internal combustion engines, this energy is wasted and released into the atmosphere. However, there have been almost no attempts to extract this directly as power for an internal combustion engine.

ところが近年においてはセラミックスを利用した内燃機
関の開発が盛んであり、これにつれて従来以上の高温燃
焼が可能となるので排気ガスも必然的に高温高圧となり
、排気ガスのもつエネルギも増大の一途を辿る傾向にあ
る。
However, in recent years, the development of internal combustion engines using ceramics has been active, and as this has enabled combustion at a higher temperature than before, the exhaust gas will inevitably become high temperature and high pressure, and the energy contained in the exhaust gas will continue to increase. There is a tendency.

本発明者はこのような背景の下に、4サイクル式燃焼気
筒に4サイクル式膨張気筒を組み合わせ、燃焼気筒から
排出された排気ガスを膨張気筒の内部で再膨張させるこ
とにより従来無駄に放出されていた排気ガスのエネルギ
を機関の動力として取り出すことがてきる二段膨張式内
燃機関を発明した。この内燃機関は従来のものに比較し
て十分な省エネルギ効果を有することが確認されたが、
膨張気筒が2回転する間に1回しか排気ガスが送られぬ
ため、膨張気筒の作動になお無駄があるうらみがあった
Against this background, the present inventor combined a 4-cycle combustion cylinder with a 4-cycle expansion cylinder, and by re-expanding the exhaust gas discharged from the combustion cylinder inside the expansion cylinder, the exhaust gas that had previously been wasted was released. He invented a two-stage expansion internal combustion engine that could extract the energy from the exhaust gas used to generate engine power. It was confirmed that this internal combustion engine has a sufficient energy saving effect compared to conventional engines, but
Since exhaust gas was sent only once during the two revolutions of the expansion cylinder, there was a problem that there was still waste in the operation of the expansion cylinder.

本発明はこのような欠点を更に解決するためになされた
ものであり、共通のクランク軸4上に互いに360度の
位相差を保って作動する2つの4サイクル式燃焼気筒1
,2と、これらの燃焼気筒に対しで所定の位相差を保っ
て作動する1つの2サイクル式膨張気筒3とを取り付け
るとともに、各燃焼気筒l、2の弁材排気ポート7.1
0を膨張気筒3の上端にそれぞれ連通せしめ、各燃焼気
筒1,2から排出される高温高圧の排気ガスを交互に膨
張気筒3へ導きその内部で再膨張させるこ七を特徴とす
るものである。
The present invention has been made to further solve these drawbacks, and includes two four-cycle combustion cylinders 1 that operate on a common crankshaft 4 while maintaining a phase difference of 360 degrees from each other.
.
0 are connected to the upper ends of the expansion cylinders 3, and the high-temperature, high-pressure exhaust gases discharged from the combustion cylinders 1 and 2 are alternately guided to the expansion cylinders 3 and re-expanded therein. .

以下に本発明をガソリン機関に適用した実施例 3− により更に詳細に説明する。The following is an example 3- in which the present invention is applied to a gasoline engine. This will be explained in more detail below.

図面は本発明の内燃機関の作動工程を図式的に示す説明
図である。図中1と2は4サイクル式の燃焼気筒、3は
これよりシリンダ径の大きい2サイクル式の膨張気筒で
ある。燃焼気筒1と燃焼気筒2とは360度の位相差を
保って作動するよう共通のクランク軸4上に取り付けら
れており、また膨張気筒3はこれらの燃焼気筒1.2に
対してほぼ190度進んだ位相差を保って作動するよう
クランク軸4上に取り付けられている。図面ではクラン
ク軸4を分割して図示したが、実際には単一のクランク
軸上に全気筒を配置することが好ましい。燃焼気筒1は
その上端に混合気を取り入れる吸気弁5と排気制御弁6
とを備えており、この制御弁6につながる排気ポート7
は膨張気筒3の上端に連通されている。同様に燃焼気筒
2もその上端に吸気弁8と排気制御弁9とを備えており
、これにつながる排気ポーNOは膨張気筒3の上 4 
一 端に連通されている。膨張気筒3の上端には排気弁11
が設けられており、また膨張気筒3の中央下方部には排
気ポート12が設けられている。
The drawings are explanatory diagrams schematically showing the operating steps of the internal combustion engine of the present invention. In the figure, 1 and 2 are four-cycle combustion cylinders, and 3 is a two-stroke expansion cylinder with a larger cylinder diameter. Combustion cylinder 1 and combustion cylinder 2 are mounted on a common crankshaft 4 so as to operate with a phase difference of 360 degrees, and expansion cylinder 3 is rotated approximately 190 degrees with respect to these combustion cylinders 1.2. It is mounted on the crankshaft 4 so as to operate while maintaining an advanced phase difference. Although the crankshaft 4 is shown divided in the drawings, it is actually preferable to arrange all cylinders on a single crankshaft. The combustion cylinder 1 has an intake valve 5 that takes in the air-fuel mixture and an exhaust control valve 6 at its upper end.
and an exhaust port 7 connected to this control valve 6.
is connected to the upper end of the expansion cylinder 3. Similarly, the combustion cylinder 2 is also provided with an intake valve 8 and an exhaust control valve 9 at its upper end, and the exhaust port NO connected to these is located above the expansion cylinder 3.
It is connected to one end. An exhaust valve 11 is located at the upper end of the expansion cylinder 3.
An exhaust port 12 is provided at the lower center of the expansion cylinder 3.

このように構成された内燃機関の燃焼気筒lは一般の4
サイクル式内燃機関と同様に第1〜4図に示されるよう
に膨張、排気、吸気、圧縮の4工程を繰り返し、燃焼気
筒2もこれと360度の位相差を保って吸気、圧縮、膨
張、排気の4工程を繰り返すが、これに対してほぼ19
0度進んだ位相差をもって共通のクランク軸4に配置さ
れた膨張気筒3はこれらの工程に対応して排気、膨張、
排気、膨張の2工程を繰り返すこととなる。
The combustion cylinder l of the internal combustion engine configured in this way is the general 4
Similar to a cycle type internal combustion engine, the four steps of expansion, exhaust, intake, and compression are repeated as shown in Figures 1 to 4, and the combustion cylinder 2 also maintains a 360 degree phase difference to perform intake, compression, expansion, The 4 steps of evacuation are repeated, but about 19
The expansion cylinder 3, which is arranged on a common crankshaft 4 with a phase difference of 0 degrees, performs exhaust, expansion, and
The two steps of exhaustion and expansion are repeated.

燃焼気筒1の膨張工程においては第1図のように排気制
御弁6は閉じており、燃焼ガスは燃焼気筒lのピストン
13を押し下げて外部に仕事を行なう。燃焼気筒1が第
2図のように排気工程に移ると、排気制御弁6は第2図
のように開いて高温高圧の排気ガスを排気ポート7を通
じて膨張気筒3の上端に導く。燃焼気筒1の排気工程が
始まる時にはほぼ190度進んだ位相差を持つ膨張気筒
3のピストン14は上死点をやや過ぎた位置にあり、膨
張気筒3に導かれた排気ガスは膨張気筒3の内部で再膨
張してピストン14を押し下げつつクランク軸4を回転
させて外部に仕事を行ない、燃焼気筒1の排気ガスの持
つエネルギがここで有効に動力として取り出される。な
お膨張気筒3のピストン14が一定の距離まで下降する
と、排気ポート12が開くので再膨張した排気ガスは外
部に排出され、膨張気筒3の内部圧力は急速に低下する
ので次工程における排気が容易になる。
During the expansion process of the combustion cylinder 1, the exhaust control valve 6 is closed as shown in FIG. 1, and the combustion gas pushes down the piston 13 of the combustion cylinder 1 to perform work to the outside. When the combustion cylinder 1 moves to the exhaust stroke as shown in FIG. 2, the exhaust control valve 6 opens as shown in FIG. 2 to guide high temperature and high pressure exhaust gas through the exhaust port 7 to the upper end of the expansion cylinder 3. When the exhaust stroke of the combustion cylinder 1 begins, the piston 14 of the expansion cylinder 3, which has a phase difference of approximately 190 degrees, is at a position slightly past the top dead center, and the exhaust gas led to the expansion cylinder 3 is transferred to the expansion cylinder 3. The engine re-expands inside, pushes down the piston 14, rotates the crankshaft 4, and performs work to the outside, and the energy of the exhaust gas in the combustion cylinder 1 is effectively extracted as motive power. Note that when the piston 14 of the expansion cylinder 3 descends to a certain distance, the exhaust port 12 opens, so the re-expanded exhaust gas is discharged to the outside, and the internal pressure of the expansion cylinder 3 rapidly decreases, making it easy to exhaust in the next process. become.

次に燃焼気筒lが吸気工程に入ると第3図のように吸気
弁5が開き、排気制御弁6が閉じる。このとき膨張気筒
3の排気弁11が開くので、膨張気筒3の内部に残存し
ていた低温の排気ガスはピストン14の上昇によって押
し出され外部へ放出される。この第3図の状態において
、燃焼気筒2は膨張工程にある。
Next, when the combustion cylinder 1 enters the intake stroke, the intake valve 5 opens and the exhaust control valve 6 closes, as shown in FIG. At this time, the exhaust valve 11 of the expansion cylinder 3 opens, so that the low-temperature exhaust gas remaining inside the expansion cylinder 3 is pushed out by the rise of the piston 14 and discharged to the outside. In this state shown in FIG. 3, the combustion cylinder 2 is in an expansion process.

その後燃焼気筒lが第4図の圧縮工程に入ったとき、燃
焼気筒2は排気工程に入り、その排気制御弁9を開いて
燃焼気筒2の高温高圧の排気ガスを膨張気筒3の上端に
導く。このとき膨張気筒3のピストン14は上死点をや
や過ぎた位置にあり、排気ガスはピストン14を押し下
げてクランク軸4を駆動し、ここで燃焼気筒2の排気ガ
スが持つエネルギが機関の動力として有効に取り出され
ることとなる。その後膨張気筒3のピストン14は再膨
張を終えた排気ガスを第1図のように外部に排出しつつ
上昇し、以下同一の工程が繰り返されることきなる。
Thereafter, when the combustion cylinder 1 enters the compression stage shown in FIG. . At this time, the piston 14 of the expansion cylinder 3 is at a position slightly past the top dead center, and the exhaust gas pushes down the piston 14 and drives the crankshaft 4, and the energy of the exhaust gas of the combustion cylinder 2 is used to drive the engine. It will be effectively extracted as Thereafter, the piston 14 of the expansion cylinder 3 moves upward while discharging the re-expanded exhaust gas to the outside as shown in FIG. 1, and the same process is repeated thereafter.

以上の説明は本発明をガソリン機関に適用した実施例に
ついて行なったが、本発明をディーゼル機関にも適用す
ることができることは言うまでもない。また本実施例で
は燃焼気筒1,2と膨張気筒3との位相差をほぼ190
度に設定したが、この角度は適当に変更することができ
、膨張気筒3・のピストン14が上死点よりもやや手前
にあるときに排気ガスの導入を開始するようにしてもよ
い。
Although the above description has been made regarding an embodiment in which the present invention is applied to a gasoline engine, it goes without saying that the present invention can also be applied to a diesel engine. Furthermore, in this embodiment, the phase difference between the combustion cylinders 1 and 2 and the expansion cylinder 3 is approximately 190
Although the angle is set at 100 degrees, this angle can be changed appropriately, and the introduction of exhaust gas may be started when the piston 14 of the expansion cylinder 3 is located slightly before the top dead center.

以上に説明したように、本発明の内燃機関は互いに36
0度の位相差を保って作動する2つの4サイクル式燃焼
気筒の弁付き排気ポートをこれらの燃焼気筒に対して所
定の位相差を保って作動する2サイクル式の膨張気筒の
上端にそれぞれ連通させ、各燃焼気筒から排出される高
温高圧の排気ガスを膨張気筒の内部で交互に再膨張させ
るようにしたので、従来大気中に無駄に排出されていた
排気ガスのエネルギを機関の動力として有効に取り出す
ことが可能になったことは勿論、膨張気筒は1回転ごと
に出力を生ずるようになり、その作動に全く無駄がなく
なった。この結果、内燃機関の熱効率が向上して同一の
出力を得るに要する燃料消費量が減少し大幅な省エネル
ギ効果が得られるようになったのみならず、先願発明の
内燃機関 7− に比べて出力/重量の値が増大し、その実用性は更に大
きなものとなった。
As explained above, the internal combustion engine of the present invention is
The valved exhaust ports of two 4-cycle combustion cylinders that operate with a 0 degree phase difference are communicated with the upper ends of a 2-cycle expansion cylinder that operates with a predetermined phase difference with respect to these combustion cylinders. The high-temperature, high-pressure exhaust gas discharged from each combustion cylinder is alternately re-expanded inside the expansion cylinder, so the energy of the exhaust gas, which was previously wasted into the atmosphere, can now be used to power the engine. Of course, the expansion cylinder now produces an output every revolution, and there is no waste in its operation. As a result, the thermal efficiency of the internal combustion engine has improved and the fuel consumption required to obtain the same output has been reduced, resulting in a significant energy saving effect, as well as compared to the internal combustion engine of the earlier invention. As a result, the power/weight ratio has increased, and its practicality has become even greater.

また本発明の内燃機関は排気ガスの温度が従来の機関に
比較して大幅に低下するので、高温の排気ガスによる環
境の熱汚染を防止することも可能となる利点もある。
Furthermore, since the temperature of exhaust gas in the internal combustion engine of the present invention is significantly lower than in conventional engines, there is also the advantage that thermal pollution of the environment due to high-temperature exhaust gas can be prevented.

以上に詳述したように、本発明は従来技術の欠点をよく
解決したものであり、省エネルギ、環境浄化等の時代の
要請に応えるものとして社会に寄与するところは極めて
大なるものがある。
As described in detail above, the present invention satisfactorily solves the shortcomings of the prior art, and can greatly contribute to society by meeting the demands of the times such as energy saving and environmental purification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の内燃機関の作動工程図である
。 ■・・・・・・燃焼気筒   2・・・・・・燃焼気筒
3・・・・・・膨張気筒   4・・・・・・クランク
軸6・・・・・・排気制御弁  7・・・・・・排気ポ
ート9・・・・・・排気制御弁  lO・・・排気ポー
ト特許出願人   清水分車  8− $28 −244−
1 to 4 are operation process diagrams of the internal combustion engine of the present invention. ■... Combustion cylinder 2... Combustion cylinder 3... Expansion cylinder 4... Crankshaft 6... Exhaust control valve 7... ...Exhaust port 9...Exhaust control valve lO...Exhaust port patent applicant Fresh water vehicle 8- $28 -244-

Claims (1)

【特許請求の範囲】[Claims] ■ 共通のクランク軸4上に互いに360度の位相差を
保って作動する2つの4サイクル式燃焼気筒1,2と、
これらの燃焼気筒に対して所定の位相差を保って作動す
る1つの2サイクル式膨張気筒3とを取り付けるととも
に、各燃焼気筒1,2の弁材排気ポート7.10を膨張
気筒3の上端にそれぞれ連通せしめ、各燃焼気筒1.2
から排出される高温高圧の排気ガスを交互に膨張気筒3
へ導きその内部で再膨張させることを特徴とする二段膨
張式内燃機関。
■ Two four-cycle combustion cylinders 1 and 2 that operate on a common crankshaft 4 while maintaining a 360 degree phase difference from each other,
One two-cycle expansion cylinder 3 that operates while maintaining a predetermined phase difference is attached to these combustion cylinders, and the valve material exhaust port 7.10 of each combustion cylinder 1, 2 is connected to the upper end of the expansion cylinder 3. Each combustion cylinder 1.2
The high-temperature, high-pressure exhaust gas discharged from the expansion cylinder 3 is alternately
A two-stage expansion internal combustion engine characterized by being guided into the engine and re-expanded within the engine.
JP22260982A 1982-12-18 1982-12-18 Double expansion type internal-combustion engine Pending JPS59113239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22260982A JPS59113239A (en) 1982-12-18 1982-12-18 Double expansion type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22260982A JPS59113239A (en) 1982-12-18 1982-12-18 Double expansion type internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59113239A true JPS59113239A (en) 1984-06-29

Family

ID=16785134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22260982A Pending JPS59113239A (en) 1982-12-18 1982-12-18 Double expansion type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59113239A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042944A1 (en) * 2003-08-06 2005-05-12 Shengli Zhang Piston type internal-combustion engine with second expanding operation
JP2010529356A (en) * 2007-08-07 2010-08-26 スクデリ グループ リミテッド ライアビリティ カンパニー Split cycle engine with spiral crossover passage
CN105673202A (en) * 2016-02-14 2016-06-15 上海交通大学 Five-stroke engine
JP2017502202A (en) * 2013-12-19 2017-01-19 ボルボトラックコーポレーション Internal combustion engine
CN108506080A (en) * 2018-06-10 2018-09-07 孟金来 Reduce the method and hot gas ignition formula internal combustion engine of automotive fuel consumption
SE1751294A1 (en) * 2017-10-18 2019-04-19 Olshammar Nebula Ab Internal combustion engine with a combustion cylinder, an exhaust cylinder, and a turbocharge arrangement

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042944A1 (en) * 2003-08-06 2005-05-12 Shengli Zhang Piston type internal-combustion engine with second expanding operation
JP2010529356A (en) * 2007-08-07 2010-08-26 スクデリ グループ リミテッド ライアビリティ カンパニー Split cycle engine with spiral crossover passage
JP4841692B2 (en) * 2007-08-07 2011-12-21 スクデリ グループ リミテッド ライアビリティ カンパニー Split cycle engine with spiral crossover passage
KR101139893B1 (en) * 2007-08-07 2012-04-27 스쿠데리 그룹 엘엘씨 Split-cycle engine with a helical crossover passage
JP2017502202A (en) * 2013-12-19 2017-01-19 ボルボトラックコーポレーション Internal combustion engine
CN105673202A (en) * 2016-02-14 2016-06-15 上海交通大学 Five-stroke engine
SE1751294A1 (en) * 2017-10-18 2019-04-19 Olshammar Nebula Ab Internal combustion engine with a combustion cylinder, an exhaust cylinder, and a turbocharge arrangement
WO2019078776A1 (en) * 2017-10-18 2019-04-25 Olshammar Nebula Ab Internal combustion engine with turbocharge arrangement
SE541204C2 (en) * 2017-10-18 2019-04-30 Olshammar Nebula Ab Internal combustion engine with a combustion cylinder, an exhaust cylinder, and a turbocharge arrangement
CN111448375A (en) * 2017-10-18 2020-07-24 奥尔沙马尔星云公司 Internal combustion engine with turbocharging device
CN111448375B (en) * 2017-10-18 2022-07-15 奥尔沙马尔星云公司 Internal combustion engine with turbocharging device
CN108506080A (en) * 2018-06-10 2018-09-07 孟金来 Reduce the method and hot gas ignition formula internal combustion engine of automotive fuel consumption

Similar Documents

Publication Publication Date Title
US8371256B2 (en) Internal combustion engine utilizing dual compression and dual expansion processes
US6095100A (en) Combination internal combustion and steam engine
GB2057052A (en) Internal Combustion Engine Cycles
CN110778394A (en) Energy-saving four-stroke internal combustion engine
US4599863A (en) Compound internal combustion and external combustion engine
US4108119A (en) Bottom cycle manifold for four-stroke internal combustion engines
US6393841B1 (en) Internal combustion engine with dual exhaust expansion cylinders
JPS59113239A (en) Double expansion type internal-combustion engine
CN211144636U (en) Energy-saving four-stroke internal combustion engine
US20090235881A1 (en) Six-cycle internal combustion engine
JPH0216324A (en) Two cycle engine
JP2799917B2 (en) 2-4 cycle switching turbo compound engine
EP0142559A1 (en) Internal combustion engine
CN102155285B (en) Novel four-stroke four-cylinder layered dual-vortex combustion energy-saving internal combustion engine with new gas distribution mechanism
RU2167315C2 (en) Thermodynamic cycle for internal combustion engine and device for executing the cycle
JPS59128921A (en) Double-expansion type interal-combustion engine
JPS59113238A (en) Double expansion type internal-combustion engine
JPS61190125A (en) Complete expansion type internal-combustion engine
JP2003262137A (en) Method for making actual expansion ratio larger than actual compression ratio when piston valve and rotary valve are used for 4-cycle engine, 6-cycle engine, 8-cycle engine, and 10-or-more cycle engine
RU2044911C1 (en) Heat internal combustion engine
JPS61140125U (en)
GB2069041A (en) Crankcase compression four- stroke engine
Bacon et al. Engine Types and Cycles
JPS5543259A (en) Reciprocating piston type internal combustion engine serving regenerated heat exchange
JPS5512225A (en) Regeneration cycle internal combustion engine