JPS59128921A - Double-expansion type interal-combustion engine - Google Patents

Double-expansion type interal-combustion engine

Info

Publication number
JPS59128921A
JPS59128921A JP58002096A JP209683A JPS59128921A JP S59128921 A JPS59128921 A JP S59128921A JP 58002096 A JP58002096 A JP 58002096A JP 209683 A JP209683 A JP 209683A JP S59128921 A JPS59128921 A JP S59128921A
Authority
JP
Japan
Prior art keywords
cylinder
expansion
crank chamber
combustion
expansion cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58002096A
Other languages
Japanese (ja)
Inventor
Yoshitaka Shimizu
清水 芳卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58002096A priority Critical patent/JPS59128921A/en
Publication of JPS59128921A publication Critical patent/JPS59128921A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To reduce the amount of fuel consumed, by leading the exhaust gas discharged out of a combustion cylinder into an expansion cylinder and thereby making improvements in heat efficiency. CONSTITUTION:Both pistons 13 and 14 are coupled with a crankshaft 3 in common. When a combustion cylinder 1 starts its expansion, an expansion cylinder 2 is in an exhaust stroke. When the piston 13 goes down to somewhere around a halfway point of the stroke, a control valve 8 is opened and leads the exhaust gas into the expansion cylinder 2. When the piston 13 of the combustion cylinder 1 comes to the vicinity of a bottom dead center, a scavenging valve 5 is opened, leading the air-fuel mixture into a combustion chamber, while at an upward stroke of the piston 13, a control valve 11 is opened so that the xhaust gas is discharged to the atmosphere from an exhaust port 12.

Description

【発明の詳細な説明】 本発明は2サイクル式内燃機関の高温高圧の排気ガスを
利用して効率よく動力を取り出すことができるように工
夫した新規な二段膨張式内燃機関に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel two-stage expansion internal combustion engine that is devised to efficiently extract power by utilizing the high-temperature, high-pressure exhaust gas of the two-stroke internal combustion engine.

一般に2サイクル式内燃機関の燃焼気筒から排出される
排気ガスの温度及び圧力は十分に高く大きいエネルギを
有しているが、従来の内燃機関においてはこのエネルギ
は無、駄に大気中に放出されるのみであり、これを直接
に内燃−関の動力として取り出す試みはほとんとなされ
ていなかった。
Generally, the temperature and pressure of the exhaust gas discharged from the combustion cylinder of a two-stroke internal combustion engine are sufficiently high and have a large amount of energy, but in conventional internal combustion engines, this energy is wasted and wasted into the atmosphere. However, there have been almost no attempts to extract this directly as power for internal combustion engines.

ところが近年においてはセラミックスを利用した内燃機
関の開発が盛んてあり、これにつれて従来以上の高温燃
焼が可能となるので排気ガスも必然的に高温高圧となり
、排気ガスのもつエネルギも増大の一途を辿る傾向にあ
る。
However, in recent years, the development of internal combustion engines using ceramics has been active, and as this has enabled combustion at a higher temperature than before, the exhaust gas will inevitably become high temperature and high pressure, and the energy contained in the exhaust gas will continue to increase. There is a tendency.

本頓第1の発明は、このような背景の下に従来無駄に放
出されていた排気ガスのエネルギを機関の動力として取
り出すことにより2サイクル式内燃機関の熱効率を高め
るとともにその燃料消費量を大幅に低下さぜるこ七を目
的としてなされたものであって、クランク軸上にクラン
ク室掃気型2ザイクルテ(燃焼気筒と2ザイクル式膨張
気筒とを位相差をもたぜて取り4=1けるとともに、燃
焼気筒の弁(;I’tJl気ボート全ボート筒の上端に
連通せしめ、燃焼気筒から排出される高温高圧の排気ガ
スを膨張気筒へ導きその内部で再膨張させることを特徴
とするものである。
Against this background, Honton's first invention was to increase the thermal efficiency of a two-stroke internal combustion engine and significantly reduce its fuel consumption by extracting the energy of exhaust gas, which was previously wasted, as power for the engine. It was made with the aim of reducing the temperature of air that decreases in temperature, and has a crank chamber scavenging type 2-cycle cylinder (a combustion cylinder and a 2-cycle expansion cylinder with a phase difference of 4 = 1) mounted on the crankshaft. In addition, the combustion cylinder valve (;I'tJl is characterized by being connected to the upper end of all cylinders and guiding the high-temperature, high-pressure exhaust gas discharged from the combustion cylinder to the expansion cylinder and re-expanding it therein. It is.

また本願第2の発明は膨張気筒のクランク室を利用して
給気ガスの二段圧縮をあわせて行なわせることに、より
2ザイクル式内燃機関の熱効率を更に向上さぜるこ七を
目的としたもので、クランク軸」二にクランク室掃気型
2−リ・イクル弐燃焼気筒と2→〕°イクJL式膨張気
筒とを位相差をもたせて取り1侮す、燃焼気筒の弁イ1
排気ボートを膨張気筒の」1端に連通せしめて排気ガス
の二段膨張を行なわ且ると七もに、膨張気筒のクランク
室をワンウェイバルブを介して燃焼気筒のクランク室に
連通させ、給気ガスの二段圧縮を行なわせることを特徴
とするものである。
Further, the second invention of the present application aims to further improve the thermal efficiency of a two-cycle internal combustion engine by simultaneously performing two-stage compression of the intake gas using the crank chamber of the expansion cylinder. In this case, a combustion cylinder with a scavenged type 2-recycle combustion cylinder and a JL type expansion cylinder with a phase difference of 1 are placed on the crankshaft, and a combustion cylinder valve 1 is installed.
The exhaust boat is connected to one end of the expansion cylinder to perform two-stage expansion of exhaust gas, and the crank chamber of the expansion cylinder is connected to the combustion cylinder's crank chamber via a one-way valve to expand the supply air. It is characterized by performing two-stage compression of gas.

以下に本発明をガソリン機関に適用した図示の実施例に
より更に詳細に説明する。
EMBODIMENT OF THE INVENTION Below, the present invention will be explained in more detail with reference to illustrated embodiments in which the present invention is applied to a gasoline engine.

第1図〜第4図は本願第1の発明の実施例を示す作動説
明図であり、図中1はクランク室掃気型の2ザイクル式
燃焼気筒、2はこれよりシリンダ径の大きい2ザイクル
式の膨張気筒てあって、膨張気筒2は燃焼気筒1に対し
てほぼ95度遅れた位相差を保って作動するよう共通の
クランク軸3上に取り付けられている。図面ではクラン
ク軸3を分割して図示したが、実際には単一のクランク
軸上に全気筒を配置することが好ましい。燃焼気筒Iの
中央部の両側にはクランク室4に連通ずる掃気口5が開
口しており、クランク室4には混合気を取り入れるため
のワンウェイバルブ6例の吸気ロアが設置ノである。ま
た燃焼気筒1の上端には制御弁8例の排気ポート9が設
けられており、このtXt気ポ〜ト9は膨張気筒2の上
端に連通されている。なお膨張気筒2の中央部には排気
1コ10が設けてあり、またその」1端には制御弁1f
(−jの排気ポート12が設けられでいる。
1 to 4 are operation explanatory diagrams showing an embodiment of the first invention of the present application, in which 1 is a crank chamber scavenging type two-cycle type combustion cylinder, and 2 is a two-cycle type combustion cylinder with a larger cylinder diameter. The expansion cylinder 2 is mounted on a common crankshaft 3 so as to operate while maintaining a phase difference of approximately 95 degrees with respect to the combustion cylinder 1. Although the crankshaft 3 is shown divided in the drawings, it is actually preferable to arrange all cylinders on a single crankshaft. Scavenging ports 5 communicating with the crank chamber 4 are opened on both sides of the central portion of the combustion cylinder I, and the crank chamber 4 is equipped with intake lowers of six one-way valves for taking in air-fuel mixture. Further, an exhaust port 9 of eight control valves is provided at the upper end of the combustion cylinder 1, and this tXt port 9 is communicated with the upper end of the expansion cylinder 2. Note that an exhaust gas 10 is provided in the center of the expansion cylinder 2, and a control valve 1f is provided at one end of the exhaust cylinder 10.
(-j exhaust port 12 is provided.

このように構成された内燃機関は、先ず第1図に示され
るように燃焼気筒1が膨張を開始したとき、膨張気筒2
は排気工部にあり、そのピストン14は排気ポーI−1
2から排気ガスを押し出しつつ」二昇中である。第2図
に示すように燃焼気筒Iのピストン13がクランク軸3
を回転さぜつつスト1コークの半ばイ;j近まて下降し
たとき燃焼気筒1に対してほぼ95度遅れた位相差を保
って作動する膨張気筒2のビスI・ン14は上死点イ;
1近に至り、ここで燃焼気筒1の制御弁8が開いて高温
高圧の排気ガスを排気ポート9を介して膨張気筒2の上
端・\導く。この直前に制御弁IIは閉じているので、
高温高圧のU1気ガスは膨張気筒2の内部てそのピスト
ンj4を押し下げつつ再膨張し、こ−で排気ガスの持っ
熱エネルギがクランク軸3の回転動力士して有効的に外
部に取り出される。
In the internal combustion engine configured in this way, first, as shown in FIG. 1, when the combustion cylinder 1 starts expanding, the expansion cylinder 2
is located in the exhaust section, and its piston 14 is located at the exhaust port I-1.
``While pushing out exhaust gas from ``2'', it was ascending. As shown in FIG. 2, the piston 13 of the combustion cylinder I is connected to the crankshaft 3.
When the cylinder 1 is rotated and the stroke 1 is about halfway down, the screw 14 of the expansion cylinder 2, which operates while maintaining a phase difference of approximately 95 degrees with respect to the combustion cylinder 1, is at top dead center. stomach;
1, the control valve 8 of the combustion cylinder 1 opens to guide the high-temperature, high-pressure exhaust gas through the exhaust port 9 to the upper end of the expansion cylinder 2. Since control valve II is closed immediately before this,
The high-temperature, high-pressure U1 gas is re-expanded inside the expansion cylinder 2 while pushing down its piston j4, whereby the thermal energy of the exhaust gas is effectively taken out to the outside as the rotational power of the crankshaft 3.

一方、燃焼気筒1のピストンI3はその膨張工程におい
てクランク室4内の混合気を圧縮しつつ下降しており、
かくしで加圧された混合気は第3図の、よ・うに燃焼気
筒1のビスI・ン13がその下死点イリ近に至り、それ
までピストン13に、コ;り塞がれでいた掃気口5が開
く七同時に燃焼室内に入り、燃焼気筒1の内部に残γY
 L −Cい):= iJl丸ガフ、を招策。
On the other hand, the piston I3 of the combustion cylinder 1 is moving downward while compressing the air-fuel mixture in the crank chamber 4 during its expansion process.
As shown in Fig. 3, the air-fuel mixture pressurized by the cover reached the bottom dead center of the combustion cylinder 1, and until then it had been blocked by the piston 13. When the scavenging port 5 opens, it enters the combustion chamber at the same time, and residual γY remains inside the combustion cylinder 1.
L -C):= iJl round gaff, invited.

しで新1−い混合気、と置換ずろ。この古き燃焼気筒1
の制御弁8はなお開いているので押し出されたtJll
気ガスは膨張気筒2に入ることとなる。このようにして
掃気を終えた燃焼気筒1のピストン13は第4図に示さ
れるように上昇に転し、制御弁8が閉じて混合気の圧縮
]二部に入るが、この七き燃焼気筒Iのクランク室4は
負圧になるのでワンウェイヘノ1ブ(1か開き、新しい
1昆合気が吸気07がら吸引される。なおこの七き1膨
張気筒2のビス1ヘン14は−1:死点イ;1近にあり
、それまてピストし141によって閉しられていたtJ
F気nil I Oが開くので再膨張を終;した低温低
圧のり1紙ガスは、tJ)気1」10から大気中・\放
出される。また」二部の制御弁11も開くので、膨張気
筒2のビストント1の一1=昇につれてtJF気ガスは
排気ポートJ2がらも人気中・\放出され、かくして第
1図の状態に戻る、二、七七なり、JJ下同様のリイク
ルが4%lHり返されろ。
Replace it with a new mixture. This old combustion cylinder 1
Since the control valve 8 of is still open, the pushed out tJll
The gas enters the expansion cylinder 2. After completing scavenging in this way, the piston 13 of the combustion cylinder 1 moves upward as shown in FIG. 4, and the control valve 8 closes to compress the air-fuel mixture. Since the crank chamber 4 of I becomes negative pressure, the one-way cylinder 1 opens and new air is sucked in from the intake air 07.The screw 1 cylinder 14 of this seven-way expansion cylinder 2 is -1: Dead point A; tJ was near 1 and was closed by piston 141.
F air nil IO opens, so the low temperature, low pressure glue 1 paper gas that has finished re-expansion is released into the atmosphere from tJ) air 1'10. In addition, since the control valve 11 of the second part also opens, as the piston 1 of the expansion cylinder 2 rises, the tJF gas is also released from the exhaust port J2, thus returning to the state shown in Figure 1. , 77, the same recycle as under JJ should be returned by 4%lH.

このように本発明においては、従来無駄に大気中に放出
されていた2サイクル式内燃機関の排気ガスを膨張気筒
2の内部に導いて再膨張させることにより、排気ガスの
持つエネルギを有効に機関の動力として取り出すこ七が
可能上なった。
In this way, in the present invention, the exhaust gas of the two-stroke internal combustion engine, which was conventionally wasted wasted into the atmosphere, is guided into the expansion cylinder 2 and expanded again, so that the energy contained in the exhaust gas can be effectively used in the engine. It has become possible to extract this power as a power source.

次に第5図〜第1θ図に示す本願第2の発明の実施例に
ついて説明する。
Next, an embodiment of the second invention of the present application shown in FIGS. 5 to 1θ will be described.

これらの図面において第1発明の実施例に対応する部分
には同一の番号にダッシュを付して示し、その構造につ
いての説明を省略する。本実施例では膨張気筒2′もク
ランク室を利用して混合気の圧縮が可能な形式のもので
あって、そのクランク室15は燃焼気@1°のクランク
室4゛と連通ポート16を介して連通されている3、こ
の連通ボート16にはワンウェイバルブ17が設けられ
ており、膨張気筒2°のクランク室15の内部で一次圧
縮された混合気が連通ポーH6を経て燃焼気筒1゛のク
ランク室4′に入り、ここで更に二段圧縮されるように
構成されている。なお18はクランク室15−\混合気
を取り入れるための吸気口であり、19はワンウェイバ
ルブである。
In these drawings, parts corresponding to the embodiment of the first invention are indicated by the same numbers with dashes, and explanations of the structures thereof will be omitted. In this embodiment, the expansion cylinder 2' is also of a type in which the air-fuel mixture can be compressed using the crank chamber, and the crank chamber 15 is connected to the crank chamber 4' of combustion gas @1° through the communication port 16. 3. This communication boat 16 is provided with a one-way valve 17, and the air-fuel mixture that is primarily compressed inside the crank chamber 15 located at 2° of the expansion cylinder passes through the communication port H6 and is connected to the combustion cylinder 1. It enters the crank chamber 4', where it is further compressed in two stages. Note that 18 is an intake port for taking in the crank chamber 15-\ air-fuel mixture, and 19 is a one-way valve.

このように構成されたものは、基本的には第1発明の実
施例の機関と同様に作動するが、第5図〜第6図に示さ
れるように膨張気筒2゛のピストン14′が上昇行程に
あるとき吸気口18からクランク室15・\混合気を吸
引し、この混合気を第7図〜第8図のようにピストン1
4゛が下降する際にクランク室15内で一次圧縮する。
The engine constructed in this manner basically operates in the same manner as the engine according to the embodiment of the first invention, but as shown in FIGS. 5 and 6, the piston 14' of the expansion cylinder 2' moves upward. During the stroke, the air-fuel mixture in the crank chamber 15 is sucked through the intake port 18, and the air-fuel mixture is transferred to the piston 1 as shown in FIGS. 7 and 8.
4 is primarily compressed in the crank chamber 15 when it descends.

この圧縮は第10図のようにピストン14”が下死点に
達するまで継続するのであるが、第8図のように燃焼気
筒I゛のピストン3゛が下死点に達し、上昇に転すると
燃焼気筒l′のクランク室4゛の内部圧力が低下するの
で膨張気筒2′のクランク室15の内部で一次圧縮され
た混合気はワンウェイバルブ■7を介して燃焼気筒1゛
のクランク室4′へ流入し、一部は掃気に利用され残部
は第5図から第8図にか:Jての燃焼気筒l′のピスト
ン13′の下降行程中に二次圧縮される。この二次圧縮
中は燃焼気筒1′のクランク室4′の内圧が膨張気筒2
”のクランク室15の内圧よりも高くなるが、「二1ン
ウェイバルブ17の作用により膨張気筒2゛のクランク
室へ混合気が逆流することが防止されている。
This compression continues until the piston 14'' reaches the bottom dead center as shown in Fig. 10, but when the piston 3'' of the combustion cylinder I'' reaches the bottom dead center as shown in Fig. 8, it begins to rise. Since the internal pressure in the crank chamber 4' of the combustion cylinder 1' decreases, the air-fuel mixture that is primarily compressed inside the crank chamber 15 of the expansion cylinder 2' is transferred to the crank chamber 4' of the combustion cylinder 1' via the one-way valve 7. A part of it is used for scavenging, and the rest is subjected to secondary compression during the downward stroke of the piston 13' of each combustion cylinder l' as shown in FIGS. 5 to 8. During this secondary compression, The internal pressure of the crank chamber 4' of the combustion cylinder 1' is the same as that of the expansion cylinder 2'.
Although the internal pressure is higher than the internal pressure of the crank chamber 15 of the expansion cylinder 2, the action of the 21-way valve 17 prevents the air-fuel mixture from flowing back into the crank chamber of the expansion cylinder 2.

このように本実施例の内燃機関は膨張銀WJ2’のクラ
ンク室15て一次圧縮した混合気を燃焼気筒1゛のクラ
ンク室4゛て更に二次圧縮するので、前述の実施例の内
燃機関よりも混合気を高圧にすることができ、しかもこ
の−次圧縮は排気ガスのエネルギを利用して行なうもの
であるから内燃機関全体の熱効率を第1発明よりも更に
向上さゼることが可能である。
In this way, the internal combustion engine of this embodiment is more effective than the internal combustion engine of the previous embodiment, since the air-fuel mixture that has been primarily compressed in the crank chamber 15 of the expanded silver WJ2' is further compressed secondarily in the crank chamber 4 of the combustion cylinder 1'. Since the mixture can be made to have a high pressure and this secondary compression is performed using the energy of the exhaust gas, it is possible to further improve the thermal efficiency of the entire internal combustion engine compared to the first invention. be.

以上の実施例はいずれも本願発明をガソリン機関に適用
したものであるが、本願発明はディーゼル機関にも適用
することができる。また、実施例ては燃焼気筒と膨張気
筒との位相差を95度に設定したが、この位相差は適宜
変更することができることは言うまでもない。
In all of the above embodiments, the present invention is applied to a gasoline engine, but the present invention can also be applied to a diesel engine. Further, in the embodiment, the phase difference between the combustion cylinder and the expansion cylinder is set to 95 degrees, but it goes without saying that this phase difference can be changed as appropriate.

以上の実施例による説明からも明らかなように本願第1
の発明はクランク軸上にクランク室掃気型2サイクル式
燃焼気筒と2サイクル式膨張気筒とを位相差をもたせて
取りイ1けるとともに、燃焼気筒の押付排気ボートを膨
張気筒の上端に連通せしめ、燃焼気筒から排出される高
温高圧の排気ガスを膨張気筒へ導きその内部で再膨張さ
せるようにしたので、従来大気中に無駄に排出されてい
た排気ガスのエネルギを機関の動力として有効に取り出
すことが可能になった。この結果、内燃機関の熱効率が
向上して同一の出力を得るに要する燃料消費量が減少し
大幅な省エネルギ効果が得られるようになった。また本
発明の内燃機関は排気ガスの温度が従来の機関に比較し
て大幅に低下するので、高温の排気ガスによる環境の熱
汚染を防止することも可能となった。
As is clear from the explanation of the above embodiments, the first
In the invention, a crank chamber scavenging type two-cycle combustion cylinder and a two-cycle expansion cylinder are arranged with a phase difference on the crankshaft, and the pressing exhaust boat of the combustion cylinder is communicated with the upper end of the expansion cylinder. The high-temperature, high-pressure exhaust gas discharged from the combustion cylinder is guided to the expansion cylinder and re-expanded inside, making it possible to effectively extract the energy of the exhaust gas, which was previously wasted into the atmosphere, as power for the engine. is now possible. As a result, the thermal efficiency of the internal combustion engine has improved and the amount of fuel consumed to obtain the same output has been reduced, resulting in significant energy savings. Furthermore, since the temperature of exhaust gas in the internal combustion engine of the present invention is significantly lower than in conventional engines, it is also possible to prevent thermal pollution of the environment due to high-temperature exhaust gas.

また本願第2の発明は膨張気筒のクランク室を利用して
給気ガスの二段圧縮をあわぜて行なわせることにより2
サイクル式内燃機関の熱効率を更に向上させることが可
能となった。
In addition, the second invention of the present application utilizes the crank chamber of the expansion cylinder to simultaneously perform two-stage compression of the supply gas.
It has become possible to further improve the thermal efficiency of cycle-type internal combustion engines.

以上に詳述したように、本発明は従来技術の欠点をよく
解決したものであり、省エネルギ、環境浄化等の時代の
要請に応えるものとして社会に寄与するところは極めて
大なるものがある。
As described in detail above, the present invention satisfactorily solves the shortcomings of the prior art, and can greatly contribute to society by meeting the demands of the times such as energy saving and environmental purification.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本願第1発明の実施例の内燃機関の作
動行程図、第5図〜第10図は第2発明の実施例の内燃
機関の作動行程図である。 1・・・・・・燃焼気筒 2・・・・・・膨張気筒 3・・・・・・クランク軸 4・・・・・・燃焼気筒のクランク室 9・・・・・・U[気ボート 13・・・・・・燃焼気筒のピストン 14・・・・・・膨張気筒のピストン I5・・・・・・1膨張気筒のクランク室特許出願人 
  清水芳卓
1 to 4 are operation stroke diagrams of an internal combustion engine according to an embodiment of the first invention of the present application, and FIGS. 5 to 10 are operation stroke diagrams of an internal combustion engine according to an embodiment of the second invention. 1... Combustion cylinder 2... Expansion cylinder 3... Crankshaft 4... Combustion cylinder crank chamber 9... U 13...Piston of combustion cylinder 14...Piston of expansion cylinder I5...1 Crank chamber of expansion cylinder Patent applicant
Yoshitaka Shimizu

Claims (1)

【特許請求の範囲】 吐)クランク軸3上にクランク室掃気型2サイクル式撚
焼気筒1と2サイクル式膨張気筒2七を位相差をもたせ
て取4月り:Jるとともに、燃焼気筒1の押付排気ボー
ト9を膨張気筒2の上端に連通せしめ、燃焼気筒lから
排出される高温高圧の排気ガスを膨張気筒2−\導きそ
の内部て再膨張さゼることを特徴とする二段膨張式内v
A機関。 (21クランク軸3゛上にクランク室婦気型2ザイクル
式燃焼気筒1゛と2サイクル式膨張気筒2゛とを位相差
をもたゼて取り付1,1、燃焼気筒1′の弁f=1排気
ボート9゛を膨張気筒2゛の上端に連通せしめて排気ガ
スの二段膨張を行なわせるとともに、膨張気筒2゛のク
ランク室15をワンウェイベルブ17を介(7て燃焼気
筒のクランク室4゛に連通させ、給気ガスの二段圧縮を
行なわせることを特徴とする二段膨張式内燃機関。
[Claims] A crank chamber scavenging type two-cycle twisted firing cylinder 1 and a two-stroke expansion cylinder 27 are mounted on the crankshaft 3 with a phase difference. A two-stage expansion characterized in that the pressing exhaust boat 9 is connected to the upper end of the expansion cylinder 2, and the high-temperature, high-pressure exhaust gas discharged from the combustion cylinder 1 is guided to the expansion cylinder 2-\ and is re-expanded therein. v in the formula
A institution. (21 On the crankshaft 3', a crank chamber 2-cycle combustion cylinder 1' and a 2-cycle expansion cylinder 2' are installed with a phase difference 1, 1, and the valve f of the combustion cylinder 1' is installed. =1 Exhaust boat 9' is connected to the upper end of the expansion cylinder 2' to perform two-stage expansion of exhaust gas, and the crank chamber 15 of the expansion cylinder 2' is connected via the one-way bell 17 (7) to the crank chamber of the combustion cylinder. 4. A two-stage expansion internal combustion engine, characterized in that the engine is in communication with a four-stage engine, and air supply gas is compressed in two stages.
JP58002096A 1983-01-10 1983-01-10 Double-expansion type interal-combustion engine Pending JPS59128921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58002096A JPS59128921A (en) 1983-01-10 1983-01-10 Double-expansion type interal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58002096A JPS59128921A (en) 1983-01-10 1983-01-10 Double-expansion type interal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59128921A true JPS59128921A (en) 1984-07-25

Family

ID=11519814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58002096A Pending JPS59128921A (en) 1983-01-10 1983-01-10 Double-expansion type interal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59128921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056471A (en) * 1990-10-12 1991-10-15 Husen Norman R Van Internal combustion engine with two-stage exhaust

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056471A (en) * 1990-10-12 1991-10-15 Husen Norman R Van Internal combustion engine with two-stage exhaust

Similar Documents

Publication Publication Date Title
US5265564A (en) Reciprocating piston engine with pumping and power cylinders
US1781147A (en) Supercharger for internal-combustion engines
EP0476010B1 (en) Reciprocating piston engine with pumping and power cylinders
US2255925A (en) Multistage internal-combustion engine
US2249997A (en) Internal combustion method
CA2060203C (en) Reciprocating piston engine with pumping and power cylinders
CN209053687U (en) A kind of convex cylinder two-stroke internal combustion engine
JPS59113239A (en) Double expansion type internal-combustion engine
JPS59128921A (en) Double-expansion type interal-combustion engine
JPH0216324A (en) Two cycle engine
JPS56110517A (en) Supercharging device of internal combustion engine
JPH0338410Y2 (en)
JPS59229017A (en) Four-cycle engine
JPS5791324A (en) Internal combustion engine
RU2167315C2 (en) Thermodynamic cycle for internal combustion engine and device for executing the cycle
RU2144141C1 (en) Four-stroke combination internal combustion engine and method of use of high-pressure hot gases
JPS5847121A (en) Fuel saving type internal combustion engine
US1366319A (en) Internal-combustion engine
WO1998003050A3 (en) Internal combustion engine with slot-type gas distribution
JPS59113238A (en) Double expansion type internal-combustion engine
JPS61190125A (en) Complete expansion type internal-combustion engine
JPH0610695A (en) 2-4 stroke switching engine
JPS5735120A (en) Six-stroke reciprocating engine
RU2166652C1 (en) Method of operation and design of internal combustion engine
RU2254485C2 (en) Internal combustion engine