JP2003201873A - Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine - Google Patents

Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine

Info

Publication number
JP2003201873A
JP2003201873A JP2001403296A JP2001403296A JP2003201873A JP 2003201873 A JP2003201873 A JP 2003201873A JP 2001403296 A JP2001403296 A JP 2001403296A JP 2001403296 A JP2001403296 A JP 2001403296A JP 2003201873 A JP2003201873 A JP 2003201873A
Authority
JP
Japan
Prior art keywords
valve
dead center
air
intake
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001403296A
Other languages
Japanese (ja)
Inventor
Osamu Nakada
治 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001403296A priority Critical patent/JP2003201873A/en
Publication of JP2003201873A publication Critical patent/JP2003201873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making a stroke of a piston in a real expansion step at the time of an expansion step longer than that in a real compression step at the time of a compression step, when a piston valve and a rotary valve (Patent Application No.H3-356145) are used for a 4-cycle engine and a 6-cycle engine (Patent Application Nos.H2-417964 and H8-172736). <P>SOLUTION: At an intake step (in the case of a 6-cycle engine, a first intake step), a valve (a piston valve) opened at a top dead center and closed at a bottom dead center, or an air port (a rotary valve) is provided. At a compression step, a valve opened at a bottom dead center and closed in front of a top dead center, or an air port is provided. A space with nothing (where mixture or air is temporarily retained) is attached beyond it. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、4サイクルエンジ
ン(ガソリンエンジンとディーゼルエンジンと筒内噴射
ガソリンエンジン。)、6サイクルエンジン〔ガソリン
エンジンとディーゼルエンジン(平成2年特許願第41
7964号)と筒内噴射6サイクルガソリンエンジン
(平成8年特許願第172736号)。〕に、ピストン
バルブ、ロータリーバルブ(平成3年特許願第3561
45号)を使用した時の、圧縮工程の時、本当に圧縮す
る工程よりも、膨張工程の時、本当に膨張する工程の方
を、ストロークで言うならば長くとる方法と、長くとり
過ぎた時の対策と、多気筒の時、他の気筒との相互性に
関する。
TECHNICAL FIELD The present invention relates to a 4-cycle engine (gasoline engine, diesel engine and cylinder injection gasoline engine), 6-cycle engine [gasoline engine and diesel engine (Patent application No. 41 of 1990).
7964) and in-cylinder injection 6-cycle gasoline engine (1996 Patent Application No. 172736). ], Piston valve, rotary valve (1991 patent application No. 3561
No. 45) when using the compression process, the expansion process and the expansion process are longer than the actual compression process. Measures and mutuality with other cylinders when there are multiple cylinders.

【0002】[0002]

【従来の技術】従来の、4サイクルエンジン、6サイク
ルエンジンに、ピストンバルブ、ロータリーバルブを使
用した時の工程にあっては、理論として、圧縮比=膨張
比(本当は、バルブタイミングなどで違ってくる。)で
ある。
2. Description of the Related Art In the process of using a piston valve and a rotary valve in a conventional 4-cycle engine and 6-cycle engine, the theory is that compression ratio = expansion ratio (actually, it differs depending on the valve timing, etc.). It comes.)

【0003】[0003]

【発明が解決しようとする課題】従来の、4サイクルエ
ンジン、6サイクルエンジンに、ピストンバルブ、ロー
タリーバルブを使用した時の工程にあっては、膨張工程
の時、爆発に因って膨張してしまう前に、排気工程に移
ってしまい、爆発に因って出たエネルギー(パワー、ト
ルク)を、充分、ピストン、そしてクランク・シャフト
へと伝えられないまま排出してしまう、と言う問題点が
あった。
In the process of using a piston valve and a rotary valve in a conventional four-cycle engine and six-cycle engine, the process of expansion is caused by an explosion during the expansion process. Before it ends, it moves to the exhaust process, and the energy (power, torque) generated by the explosion is exhausted without being sufficiently transmitted to the piston and crank shaft. there were.

【0004】本発明は、4サイクルエンジン、6サイク
ルエンジンに、ピストンバルブ、ロータリーバルブを使
用した時の、圧縮工程の時、本当に圧縮する工程より
も、膨張工程の時、本当に膨張する工程の方を、ストロ
ークで言うならば長くとる方法を得る事を目的としてお
り、さらに、長くとり過ぎた時の対策と、多気筒の時、
他の気筒との相互性を得る事を目的としている。
The present invention is more suitable for the expansion process during the expansion process than the actual compression process during the compression process when piston valves and rotary valves are used in a 4-cycle engine and a 6-cycle engine. In terms of stroke, the purpose is to obtain a method that takes a long time.
The purpose is to get reciprocity with other cylinders.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の、4サイクルエンジン、6サイクルエンジ
ンに、ピストンバルブ、ロータリーバルブを使用した時
の、圧縮工程の時、本当に圧縮する工程よりも、膨張工
程の時、本当に膨張する工程の方を、ストロークで言う
ならば長くとる方法においては、吸気工程(6サイクル
エンジンの場合は1回目の吸気工程)の時、上死点で開
き下死点で閉じる弁、気口と、圧縮工程の時、下死点で
開き上死点の手前の間で閉じる弁、気口の、2種類の、
弁、気口を設ける。
In order to achieve the above object, when a piston valve and a rotary valve are used in a 4-cycle engine and a 6-cycle engine of the present invention, a step of really compressing in a compression step Rather than the expansion process, in the method of taking the process that really expands in terms of stroke, in the intake process (the first intake process in the case of a 6-cycle engine), it opens at the top dead center. There are two types of valves, a mouth and a valve that closes at bottom dead center and a mouth and a valve that opens at bottom dead center and closes before top dead center during the compression process
Provide valves and vents.

【0006】上記2種類の弁、気口からの(への)通路
の先に、何も無い空間(混合気、又は、空気が一時停滞
する所。)、を取り付ける。
[0006] The above-mentioned two types of valves, a space (an air-fuel mixture or a place where air temporarily stagnates) is attached to the end of the passage from (to) the air port.

【0007】上記2種類の弁、気口の、何も無い空間へ
の通路を、何も無い空間の端と端に取り付ける。
The passages of the above-mentioned two types of valves and air vents to the empty space are attached to the ends of the empty space.

【0008】また、多気筒の時、前記の何も無い空間
を、他の気筒の何も無い空間と、1つにつなぐ。
In the case of multiple cylinders, the empty space described above is connected to the empty spaces of the other cylinders.

【0009】そして、4サイクルエンジンの場合は、4
気筒以上の時、吸気工程の時、上死点で開き下死点で閉
じる弁、気口が、吸気工程で開く時には、その時、他の
気筒の、圧縮工程の時、下死点で開き上死点の手前の間
で閉じる弁、気口の中で、圧縮工程で閉じる弁、気口へ
と、直接つなぐ。
In the case of a 4-cycle engine, 4
When the number of cylinders is higher than the cylinder, the valve opens at the top dead center during the intake stroke, and closes at the bottom dead center.When the air port opens during the intake stroke, open at the bottom dead center during the compression stroke of other cylinders. Directly connect to the valve that closes before dead point, the valve that closes in the compression process in the air port, the air port.

【0010】さらに、6サイクルエンジンの場合は、6
気筒以上の時、1回目の吸気工程の時、上死点で開き下
死点で閉じる弁、気口が、1回目の吸気工程で開く時に
は、その時、他の気筒の、圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁、気口の中で、圧縮工程で
閉じる弁、気口へと、直接つなぐ。
Further, in the case of a 6-cycle engine, 6
When the number of cylinders is equal to or more than the cylinder, the valve that opens at the top dead center during the first intake stroke and closes at the bottom dead center, when the air port opens during the first intake stroke, at that time, during the compression stroke of another cylinder, Directly connect to the valve that opens at bottom dead center and closes before top dead center, the valve that closes in the compression process in the air port, and the air port.

【0011】また、圧縮工程の時、下死点で開き上死点
の手前の間で閉じる弁、気口を開け過ぎた時の対策とし
て、膨張工程の時、4サイクルディーゼルエンジンと、
筒内噴射4サイクルガソリンエンジンと、6サイクルデ
ィーゼルエンジンと、筒内噴射6サイクルガソリンエン
ジンの場合は、膨張し過ぎて回転の抵抗になる前に、吸
気弁、吸気口を開き、下死点で閉じる(膨張し過ぎて回
転の抵抗になる前に、吸気口を開き、下死点で閉じると
言う事は、同じロタリーバルブの吸気口を兼用するので
はなく、吸気口のあるロータリーバルブに、新しく、気
口を設ける事である。)。
Also, during the compression process, a valve that opens at the bottom dead center and closes before the top dead center, and as a countermeasure against excessive opening of the air vent, during the expansion process, a 4-cycle diesel engine,
In the case of in-cylinder injection 4-cycle gasoline engine, 6-cycle diesel engine, and in-cylinder injection 6-cycle gasoline engine, the intake valve and intake port are opened at the bottom dead center before it expands too much and becomes resistance to rotation. Close (Before expanding too much and becoming a resistance of rotation, opening the intake port and closing it at the bottom dead center does not mean to use the intake port of the same rotary valve, but to the rotary valve with the intake port, It is to establish a new mouth.)

【0012】また、圧縮工程の時、下死点で開き上死点
の手前の間で閉じる弁、気口を開け過ぎた時の対策とし
て、膨張工程の時、4サイクルガソリンエンジンの場合
は、空気専用の吸気弁、吸気口を設け、6サイクルガソ
リンエンジンの場合は、空気専用の吸気弁、吸気口(2
回目の吸気工程の時の、吸気弁、吸気口。)を、膨張し
過ぎて回転の抵抗になる前に開き、下死点で閉じる。
Further, as a countermeasure against a valve that opens at the bottom dead center and closes before the top dead center during the compression process, and when the air outlet is too open, during the expansion process, in the case of a 4-cycle gasoline engine, An intake valve and intake port dedicated to air are provided. For a 6-cycle gasoline engine, an intake valve and intake port (2
Intake valve and intake port during the second intake stroke. ), Open before it expands too much to resist rotation and close at bottom dead center.

【0013】[0013]

【作用】上記のように構成された、4サイクルエンジ
ン、6サイクルエンジンに、ピストンバルブ、ロータリ
ーバルブを使用した時の、圧縮工程の時、本当に圧縮す
る工程よりも、膨張工程の時、本当に膨張する工程の方
を、ストロークで言うなば長くとる方法においては、吸
気工程の時、上死点で開き下死点で閉じる弁、気口と、
圧縮工程の時、下死点で開き上死点の手前の間で閉じる
弁、気口の、2種類の弁、気口を設ける事に因り、本当
の、圧縮比<膨張比(何も無い空間は、必要である。)
の工程が行える。
When the piston valve and the rotary valve are used in the four-cycle engine and the six-cycle engine configured as described above, the expansion process is really expanded during the expansion process rather than the compression process during the compression process. In the method of taking a stroke that is longer than the stroke, in the intake stroke, a valve that opens at the top dead center and closes at the bottom dead center
During the compression process, the true compression ratio <expansion ratio (there is nothing) due to the provision of a valve that opens at bottom dead center and closes before top dead center Space is necessary.)
Can be performed.

【0014】そして、上記の、吸気工程の時上死点で開
き下死点で閉じる弁、気口と、圧縮工程の時、下死点で
開き上死点の手前の間で閉じる弁、気口からの通路の先
に、何も無い空間、を取り付ける事に因り、次の吸気工
程の時、混合気、又は空気は、シリンダー内に還元され
る。
The above-mentioned valve that opens at top dead center during the intake stroke and closes at bottom dead center and the air port and the valve that opens at bottom dead center before the top dead center during the compression stroke and closes Due to the installation of the empty space at the tip of the passage from the mouth, the air-fuel mixture or air is reduced into the cylinder during the next intake process.

【0015】そして、4サイクルガソリンエンジンと、
6サイクルガソリンエンジンの場合は、混合気が還元さ
れるので、燃料を無駄にしなくなる。
And a four-stroke gasoline engine,
In the case of a 6-cycle gasoline engine, the air-fuel mixture is reduced so that fuel is not wasted.

【0016】また、吸気工程の時、上死点で開き下死点
で閉じる弁、気口と、圧縮工程の時、下死点で開き上死
点の手前の間で閉じる弁、気口の、何も無い空間への通
路を、何も無い空間の端と端に取り付ける事に因り、混
合気、又は、空気は一定方向に流れる。
Further, during the intake stroke, a valve and an air vent that open at top dead center and close at bottom dead center, and during a compression stroke, a valve and an air vent that open at bottom dead center and close to before top dead center. , The air-fuel mixture or air flows in a certain direction by attaching the passage to the empty space to the end of the empty space.

【0017】また、多気筒の時、何も無い空間を、他の
気筒の何も無い空間と、1つにつなぐ事に因り、次の吸
気工程を待たずに、混合気、又は、空気は、他の気筒の
吸気工程の時に吸気されるように、各気筒の工程を組め
る。
Also, in the case of multiple cylinders, due to the fact that the empty space is connected to the empty space of the other cylinders as one, the air-fuel mixture or air will be discharged without waiting for the next intake process. The process of each cylinder can be assembled so that air is taken in during the intake process of other cylinders.

【0018】そして、4サイクルディーゼルエンジン
と、筒内噴射4サイクルガソリンエンジンと、6サイク
ルディーゼルエンジンと、筒内噴射6サイクルガソリン
エンジンの場合は、吸気工程の時、上死点で開き下死点
で閉じる弁、気口と、何も無い空間は必要としなくな
り、圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁、気口だけで、圧縮工程の時、本当に圧縮する工
程よりも、膨張工程の時、本当に膨張する工程の方を、
ストロークで言うならば長くとる方法は得れ、また、排
気弁、排気口を代用しても、その方法は得れるが、以下
に説明する気筒数の時は、つなげた方がよい(排気口を
代用すると言う事は、同じ排気口を兼用するのではな
く、排気口のあるロータリーバルブに、気口を設ける事
である。)。
In the case of the 4-cycle diesel engine, the cylinder injection 4-cycle gasoline engine, the 6-cycle diesel engine, and the cylinder-injection 6-cycle gasoline engine, the top dead center is opened during the intake stroke, and the bottom dead center is set. The valve that closes at, the air port, and the empty space are not needed. The valve that opens at the bottom dead center during the compression process and closes before the top dead center is the only air valve that can be compressed during the compression process. The process that really expands during the expansion process,
In terms of stroke, a longer method can be obtained, and even if the exhaust valve and exhaust port are substituted, that method can be obtained, but in the case of the number of cylinders described below, it is better to connect (exhaust port The thing to substitute is not to use the same exhaust port, but to provide a rotary valve with an exhaust port.

【0019】それは、4サイクルエンジンの場合は、4
気筒以上の時、それぞれの気筒に違う工程を行なわせる
事が出来るので、吸気工程の時、上死点で開き下死点で
閉じる弁、気口が、吸気工程で開く時には、その時、他
の気筒の、圧縮工程の時、下死点で開き上死点の手前の
間で閉じる弁、気口の中で、圧縮工程で閉じる弁、気口
へと、直接つなぐ事に因り、吸気工程の時には、他の気
筒に圧縮される形で吸気され、また、圧縮工程の時、下
死点で開き上死点の手前の間で閉じる弁、気口が、圧縮
工程で閉じる時には、その時、他の気筒の、吸気工程の
時、上死点で開き下死点で閉じる弁、気口の中で、吸気
工程で開いている弁、気口へと、直接つなぐ事に因り、
圧縮工程の時には、他の気筒に吸気される形で圧縮され
る。
In the case of a 4-cycle engine, it is 4
When it is more than a cylinder, it is possible to make each cylinder perform a different process, so during the intake process, the valve that opens at the top dead center and closes at the bottom dead center, when the mouth opens at the intake process, at that time, other During the compression process of the cylinder, the valve that opens at the bottom dead center and closes before the top dead center, the valve that closes in the compression process in the air port, and the direct connection to the air port Sometimes, it is inhaled in the form of being compressed by other cylinders, and when it is in the compression process, it opens at the bottom dead center and closes before the top dead center. Due to the direct connection to the valve that opens at the top dead center and closes at the bottom dead center during the intake stroke of the cylinder of
At the time of the compression process, it is compressed in a form of being sucked into another cylinder.

【0020】また、6サイクルエンジンの場合は、6気
筒以上の時、それぞれの気筒に違う工程を行なわせる事
ができるので、1回目の吸気工程の時、上死点で開き下
死点で閉じる弁、気口が、1回目の吸気工程で開く時に
は、その時、他の気筒の、圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁、気口の中で、圧縮工程で
閉じる弁、気口へと、直接つなぐ事に因り、1回目の吸
気工程の時には、他の気筒に圧縮される形で吸気され、
また、圧縮工程の時、下死点で開き上死点の手前の間で
閉じる弁、気口が、圧縮工程で閉じる時には、その時、
他の気筒の、1回目の吸気工程の時、上死点で開き下死
点で閉じる弁、気口の中で、1回目の吸気工程で開いて
いる弁、気口へと、直接つなぐ事に因り、圧縮工程の時
には、他の気筒に吸気される形で圧縮される。
Further, in the case of a 6-cycle engine, when the number of cylinders is 6 or more, each cylinder can perform a different process. Therefore, during the first intake process, it opens at the top dead center and closes at the bottom dead center. When the valve and the air port are opened in the first intake stroke, at that time, in the compression stroke of the other cylinder, the valve is opened at the bottom dead center and closed before the top dead center. Due to the direct connection to the valve and air port that are closed in the process, during the first intake process, it is inhaled in the form of being compressed by another cylinder,
Also, during the compression process, the valve that opens at the bottom dead center and closes before the top dead center, when the air vent closes during the compression process,
In the other cylinder, during the first intake stroke, the valve that opens at top dead center and closes at bottom dead center, the valve that opens in the first intake stroke in the air mouth, and the direct connection to the air mouth Due to this, during the compression process, it is compressed while being taken into another cylinder.

【0021】そして、圧縮工程の時、下死点で開き上死
点の手前の間で閉じる弁、気口を開け過ぎた時の対策と
して、膨張工程の時、4サイクルディーゼルエンジン
と、筒内噴射4サイクルガソリンエンジンと、6サイク
ルディーゼルエンジンと、筒内噴射6サイクルガソリン
エンジンの場合は、膨張し過ぎて回転の抵抗になる前
に、吸気弁、吸気口を開き、下死点で閉じる事に因り、
さらに、圧縮比<膨張比の比率の割合いが高くとれ、膨
張工程もスムーズに行える。
During the compression process, a valve that opens at the bottom dead center and closes before the top dead center, and as a countermeasure against excessive opening of the air vent, during the expansion process, a four-cycle diesel engine and a cylinder In the case of injection 4-cycle gasoline engine, 6-cycle diesel engine, and in-cylinder injection 6-cycle gasoline engine, open the intake valve and intake port and close them at bottom dead center before they expand too much and become a resistance to rotation. Due to
Furthermore, the ratio of compression ratio <expansion ratio can be made high, and the expansion process can be performed smoothly.

【0022】また、圧縮工程の時、下死点で開き上死点
の手前の間で閉じる弁、気口を開け過ぎた時の対策とし
て、膨張工程の時、4サイクルガソリンエンジンの場合
は、空気専用の吸気弁、吸気口を設け、6サイクルガソ
リンエンジンの場合は、空気専用の吸気弁、吸気口を、
膨張し過きて回転の抵抗になる前に開き、下死点で閉じ
る事に因り、さらに、 圧縮比<膨張比 の比率の割合いが高くとれ、膨張工程もスムーズに行え
る。
In the compression process, a valve that opens at the bottom dead center and closes before the top dead center, and as a countermeasure against excessive opening of the air vent, during the expansion process, in the case of a 4-cycle gasoline engine, An intake valve and intake port dedicated to air are provided. For a 6-cycle gasoline engine, an intake valve and intake port dedicated to air are
Due to the fact that it opens before it expands too much and becomes a resistance to rotation and closes at bottom dead center, the ratio of compression ratio <expansion ratio is high, and the expansion process can be performed smoothly.

【0023】[0023]

【発明の実施の形態】実施例について図面を参照して説
明すると、図1から図12においては、4サイクルエン
ジン、6サイクルエンジンに、ピストンバルブ、ロータ
リーバルブを使用した時の、圧縮工程の時、本当に圧縮
する工程よりも、膨張工程の時、本当に膨張する工程の
方を、ストロークで言うならば長くとる方法の、弁、気
口の配置を示した横断面図であり、図1から図12は、 図1 4サイクルガソリンエンジンにピストンバルブを用いた
時の、横断面図であり、混合気専用の吸気弁と、排気弁
と、吸気工程の時、上死点で開き下死点で閉じる弁と、
圧縮工程の時、下死点で開き上死点の手前の間で閉じる
弁と、空気専用の吸気弁(圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁を開け過ぎた時の対策とし
て、膨張工程の時、膨張し過ぎて回転の抵抗になる前に
開き、下死点で閉じる、空気専用の吸気弁。)を設けた
事を示す図である(以後、吸気工程の時、上死点で開き
下死点で閉じる弁は、弁a、であり、圧縮工程の時、下
死点で開き上死点の手前の間で閉じる弁は、弁b、であ
り、空気専用の吸気弁は、弁c、であり、6サイクルエ
ンジンの時の弁aは、1回目の吸気工程の時の、弁a、
である。)。 図2 4サイクルガソリンエンジンにロータリーバルブを用い
た時の、横断面図であり、ロータリーバルブを3つ用
い、その内、2つのロータリーバルブの断面(内型)
を、H型、にし、混合気専用の吸気口と、排気口と、吸
気工程の時、上死点で開き下死点で閉じる気口と、圧縮
工程の時、下死点で開き上死点の手前の間で閉じる気口
と、空気専用の吸気口(圧縮工程の時、下死点で開き上
死点の手前の間で閉じる気口を開け過ぎた時の対策とし
て、膨張工程の時、膨張し過ぎて回転の抵抗になる前に
開き、下死点で閉じる、空気専用の吸気口。)のある部
分を設けた事を示す図である(以後、吸気工程の時、上
死点で開き下死点で閉じる気口は、気口d、であり、圧
縮工程の時、下死点で開き上死点の手前の間で閉じる気
口は、気口e、であり、空気専用の吸気口は、気口f、
であり、6サイクルエンジンの時の気口dは、1回目の
吸気工程の時の、気口d、である。)。 図3 4サイクルディーゼルエンジンにピストンバルブを用い
た時の、横断面図であり、吸気弁と弁cを兼ねた弁と、
排気弁と、弁aと、弁bを設けた事を示す図である。 図4 4サイクルディーゼルエンジンにロータリーバルブを用
いた時の、横断面図であり、断面をH型、にしたロータ
リーバルブを2つ用い、吸気口と気口fと、排気口と、
気口dと、気口eのある部分を設けた事を示す図であ
る。 図5 筒内噴射4サイクルガソリンエンジンにピストンバルブ
を用いた時の、横断面図であり、吸気弁と弁cを兼ねた
弁と、排気弁と、弁aと、弁dを設けた事を示す図であ
る。 図6 筒内噴射4サイクルガソリンエンジンにロータリーバル
ブを用いた時の、横断面図であり、断面を、H型、にし
たロータリーバルブを2つ用い、吸気口と気口fと、排
気口と、気口dと、気口eのある部分を設けた事を示す
図である。 図7 6サイクルガソリンエンジンにピストンバルブを用いた
時の、横断面図であり、混合気専用の吸気弁と、1回目
と2回目の排気を兼ねた排気弁と、弁aと、弁bと、2
回目の吸気工程の時の弁と弁cを兼ねた弁を設けた事を
示す図である。 図8 6サイクルガソリンエンジンにロータリーバルブを用い
た時の、横断面図であり、ロータリーバルブを3つ用
い、その内、2つのロータリーバルブの断面をH型、に
し、混合気専用の吸気口と1回目と2回目の排気口と、
気口dと、気口eと、2回目の吸気口と気口fのある部
分を設けた事を示す図である。 図9 6サイクルディーゼルエンジンにピストンバルブを用い
た時の、横断面図であり、1回目と2回目の吸気弁と弁
cを兼ねた弁と、1回目と2回目の排気を兼ねた排気弁
と、弁aと、弁bを設けた事を示す図である。 図10 6サイクルディーゼルエンジンにロータリーバルブを用
いた時の、横断面図であり、断面を、H型、にしたロー
タリーバルブを2つ用い、1回目と2回目の吸気口と気
口fと、1回目と2回目の排気口と、気口dと、気口e
のある部分を設けた事を示す図である。 図11 筒内噴射6サイクルガソリンエンジンにピストンバルブ
を用いた時の、横断面図であり、1回目と2回目の吸気
弁と弁cを兼ねた弁と、1回目と2回目の排気を兼ねた
排気弁と、弁aと、弁bを設けた事を示す図である。 図12 筒内噴射6サイクルガソリンエンジンにロータリーバル
ブを用いた時の、横断面図であり、断面を、H型、にし
たロータリーバルブを2つ用い、1回目と2回目の吸気
口と気口fと、1回目と2回目の排気口と、気口dと、
気口eのある部分を設けた事を示す図である。である。
BEST MODE FOR CARRYING OUT THE INVENTION Referring to the drawings, an embodiment will be described with reference to FIGS. 1 to 12 when a piston valve and a rotary valve are used in a 4-cycle engine and a 6-cycle engine during a compression process. Fig. 1 is a cross-sectional view showing the arrangement of valves and air vents in a method of taking a stroke that really expands at the time of expansion step rather than a step of really compressing, as shown in Figs. FIG. 12 is a cross-sectional view of a piston valve used in the four-stroke gasoline engine of FIG. 1, showing an intake valve and an exhaust valve dedicated to the air-fuel mixture, and opening at the top dead center and the bottom dead center during the intake stroke. With a closing valve,
During the compression process, a valve that opens at bottom dead center and closes before top dead center, and an intake valve for air only (opens at bottom dead center and closes before top dead center during compression process) FIG. 6 is a diagram showing that, as a countermeasure against the excess, an intake valve for air only, which is opened before it expands excessively and becomes resistance to rotation during the expansion process, and is closed at bottom dead center (hereinafter referred to as “intake valve”). During the intake stroke, the valve that opens at top dead center and closes at bottom dead center is valve a, and during the compression stroke, the valve that opens at bottom dead center and closes just before top dead center is valve b. Yes, the intake valve dedicated to air is the valve c, and the valve a in the 6-cycle engine is the valve a in the first intake stroke,
Is. ). Figure 2 is a cross-sectional view of a four-cycle gasoline engine with rotary valves, including three rotary valves, two of which are cross-sections (inner type)
Is an H type, and an intake port and an exhaust port dedicated to the air-fuel mixture, an air port that opens at top dead center during the intake process and closes at bottom dead center, and a top dead position that opens at bottom dead center during the compression process An air inlet that closes before the point, and an air intake port for air only (opens at the bottom dead center during the compression process, and closes the space before the top dead center. It is a diagram showing that there is a part with an air intake port that opens before it expands too much and becomes resistance to rotation and closes at bottom dead center. The mouth that opens at the point and closes at the bottom dead center is the mouth d, and the mouth that opens at the bottom dead center and closes before the top dead center at the compression step is the mouth e and air. The dedicated intake port is the air port f,
The air outlet d in the case of the 6-cycle engine is the air outlet d in the first intake stroke. ). Figure 3 is a cross-sectional view when a piston valve is used in a four-cycle diesel engine, including a valve that also serves as an intake valve and a valve c,
It is a figure which shows having provided the exhaust valve, the valve a, and the valve b. FIG. 4 is a transverse cross-sectional view when a rotary valve is used in a four-cycle diesel engine, and two rotary valves having an H-shaped cross section are used, and an intake port, an air port f, an exhaust port,
It is a figure which shows having provided the part with the mouth d and the mouth e. 5 is a cross-sectional view of a cylinder injection four-cycle gasoline engine using a piston valve, showing that a valve that doubles as an intake valve and a valve c, an exhaust valve, a valve a, and a valve d are provided. FIG. 6 is a transverse cross-sectional view of a cylinder injection four-cycle gasoline engine using a rotary valve, using two rotary valves having an H-shaped cross section, an intake port, an air port f, and an exhaust port. It is a figure which shows having provided the part which has the mouth d, and the mouth e. 7 is a cross-sectional view of a 6-cycle gasoline engine using a piston valve, showing an intake valve dedicated to the air-fuel mixture, an exhaust valve that also serves as the first and second exhausts, a valve a, and a valve b. Two
It is a figure which shows having provided the valve which served as the valve and the valve c at the time of the intake process of the 1st time. Figure 8 is a transverse cross-sectional view of a 6-cycle gasoline engine using a rotary valve, in which three rotary valves are used, two of which have H-shaped cross sections, and an intake port dedicated to the air-fuel mixture is provided. The first and second exhaust ports,
It is a figure which shows having provided the part with the air inlet d, the air outlet e, and the 2nd intake opening and the air outlet f. Figure 9 is a cross-sectional view when a piston valve is used in a 6-cycle diesel engine. It is a valve that serves as both the first and second intake valves and valve c, and an exhaust valve that also serves as the first and second exhaust. It is a figure showing that valve a and valve b were provided. FIG. 10 is a transverse cross-sectional view when a rotary valve is used in a 6-cycle diesel engine, and two rotary valves having an H-shaped cross section are used, and an intake port and an air port f at the first and second times, First and second exhaust port, air port d, and air port e
It is a figure which shows having provided the part with. FIG. 11 is a cross-sectional view of a cylinder injection 6-cycle gasoline engine using a piston valve, which serves as both the first and second intake valves and the valve c as well as the first and second exhausts. It is a figure which shows having provided the exhaust valve, the valve a, and the valve b. FIG. 12 is a transverse cross-sectional view when a rotary valve is used in a cylinder injection 6-cycle gasoline engine, and two rotary valves having H-shaped cross sections are used, and the intake port and the intake port of the first and second times f, the first and second exhaust ports, and the air port d,
It is a figure which shows having provided the part with the mouth e. Is.

【0024】また、図1から図12に示される、弁c、
気口fは、圧縮工程の時、弁b、気口eを開け過ぎなけ
れば、必要としない。
Further, the valves c, shown in FIGS.
The air port f is not necessary unless the valve b and the air port e are opened too much during the compression process.

【0025】そして、4サイクルガソリンエンジンと、
6サイクルガソリンエンジンに、ピストンバルブ、ロー
タリーバルブを使用した時の、図1と、図2と、図7
と、図8には、気化器を取り付けてある。
And a 4-cycle gasoline engine,
1, 6 and 7 when a piston valve and a rotary valve are used in a 6-cycle gasoline engine.
In FIG. 8, a vaporizer is attached.

【0026】図13から図24に示される実施例では、 図13 図1を、断面A−Aの方向から見たと仮定した、縦断面
図である。 図14 図2を、断面B−Bの方向から見たと仮定した、縦断面
図である。 図15 図3を、断面C−Cの方向から見たと仮定した、縦断面
図である。 図16 図4を、断面D−Dの方向から見たと仮定した、縦断面
図である。 図17 図5を、断面E−Eの方向から見たと仮定した、縦断面
図である。 図18 図6を、断面F−Fの方向から見たと仮定した、縦断面
図である。 図19 図7を、断面G−Gの方向から見たと仮定した、縦断面
図である。 図20 図8を、断面H−Hの方向から見たと仮定した、縦断面
図である。 図21 図9を、断面I−Iの方向から見たと仮定した、縦断面
図である。 図22 図10を、断面J−Jの方向から見たと仮定した、縦断
面図である。 図23 図11を、断面K−Kの方向から見たと仮定した、縦断
面図である。 図24 図12を、断面L−Lの方向から見たと仮定した、縦断
面図である。である。
In the embodiment shown in FIGS. 13 to 24, FIG. 13 is a longitudinal sectional view on the assumption that FIG. 1 is viewed from the direction of the section AA. 14 is a vertical cross-sectional view, assuming that FIG. 2 is viewed from the direction of the cross section BB. 15 is a vertical cross-sectional view, assuming that FIG. 3 is viewed from the direction of the cross section CC. 16 is a longitudinal sectional view on the assumption that FIG. 4 is viewed from the direction of the section DD. 17 is a longitudinal sectional view on the assumption that FIG. 5 is viewed from the direction of the section EE. 18 is a longitudinal sectional view on the assumption that FIG. 6 is viewed from the direction of the section FF. 19 is a longitudinal sectional view on the assumption that FIG. 7 is viewed from the direction of the section GG. 20 is a longitudinal sectional view on the assumption that FIG. 8 is viewed from the direction of the section HH. 21 is a longitudinal sectional view on the assumption that FIG. 9 is viewed from the direction of the section I-I. 22 is a longitudinal sectional view on the assumption that FIG. 10 is viewed from the direction of the section J-J. 23 is a longitudinal sectional view on the assumption that FIG. 11 is viewed from the direction of the section KK. 24 is a longitudinal sectional view on the assumption that FIG. 12 is viewed from the direction of the section L-L. Is.

【0027】また、図1と図4と図13に示される、弁
aと弁b、気口dと気口eには、代表例として、何も無
い空間、を取り付け、弁aと弁b、気口dと気口eの、
何も無い空間への(からの)通路は、何も無い空間の端
と端に取り付けてある。
Further, as shown in FIGS. 1, 4, and 13, valves a and b, and air openings d and e are provided with empty spaces as typical examples. , Of mouth d and mouth e,
Passages to and from the empty space are attached to the ends of the empty space.

【0028】そして、図1から図24に示される、弁、
気口の数は、最低限必要な数だけを示したものであり、
また、何も無い空間は、代表例として、図1と図4と図
13に取り付けたものであり、弁、気口の、数と配置と
大きさは、エンジンによって、まちまちである。
Then, the valve shown in FIGS.
The number of mouths indicates only the minimum required number,
In addition, the empty space is the one attached to FIGS. 1, 4, and 13 as a typical example, and the number, arrangement, and size of the valves and the air vents vary depending on the engine.

【0029】図25から図32に示される実施例では、
6サイクルガソリンエンジンにピストンバルブを使用し
た時の、圧縮工程の時、本当に圧縮する工程よりも、膨
張工程の時、本当に膨張する工程の方を、ストロークで
言うならば長くとる方法の時の工程を示す、断面G−G
の方向から見たと仮定した、縦断面図であり、図25か
ら図32は、 図25 1回目の吸気工程(混合気の吸気工程) 混合気専用の吸気弁と、弁aは、上死点で開き下死点で
閉じ、1回目と2回目の排気を兼ねた排気弁と、弁b
と、2回目の吸気工程の時の弁と弁cを兼ねた弁は閉じ
ている。 図26 圧縮工程−1 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁は閉じ、弁bは、下死点で開き上死点の
手前の間で閉じ、2回目の吸気工程の時の弁と弁cを兼
ねた弁は閉じている(図26に示される、弁bは、下死
点で開き、ピストンが約3分の2程、上昇した時点で閉
じると仮定した図であり、閉じる直前の図でもあ
る。)。 図27 圧縮工程−2(点火) 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bと、2回目の吸気工程の時の弁
と弁cを兼ねた弁は、閉じている。 図28 膨張工程−1 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bは閉じ、2回目の吸気工程の時
の弁と弁cを兼ねた弁は、混合気が膨張し過ぎて回転の
抵抗になる前に開く(図28に示される、2回目の吸気
工程の時の弁と弁cを兼ねた弁は、ピストンが約3分の
2程、下降した時点で開くと仮定した図であり、開いた
直後の図でもある。)。 図29 膨張工程−2(空気の吸気工程) 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bは閉じ、2回目の吸気工程の時
の弁と弁cを兼ねた弁も、下死点で閉じる(図29に示
される、2回目の吸気工程の時の弁と弁cを兼ねた弁
は、閉じた直後の図である。)。 図30 1回目の排気工程 混合気専用の吸気弁と、弁aは閉じ、1回目と2回目の
排気を兼ねた排気弁は開き、弁bと、2回目の吸気工程
の時の弁と弁cを兼ねた弁は閉じている。 図31 2回目の吸気工程(空気の吸気工程) 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bは閉じ、2回目の吸気工程の時
の弁と弁cを兼ねた弁は開いている。 図32 2回目の排気工程 混合気専用の吸気弁と、弁aは閉じ、1回目と2回目の
排気を兼ねた排気弁は開き、弁bと、2回目の吸気工程
の時の弁と弁cを兼ねた弁は閉じている。を示す図であ
る。
In the embodiment shown in FIGS. 25-32,
When using a piston valve in a 6-cycle gasoline engine, when compressing, when compressing, when expanding, when expanding, it is the process that takes a longer stroke, Showing a cross section GG
25 is a longitudinal sectional view on the assumption that the mixture is viewed from the direction of FIG. 25. FIG. 25 to FIG. 32 are the first intake process (the intake process of the air-fuel mixture) of FIG. Open at and close at bottom dead center Exhaust valve that also serves as the first and second exhaust, and valve b
Then, the valve that doubles as the valve and the valve c during the second intake stroke is closed. FIG. 26 Compressing step-1 The intake valve dedicated to the air-fuel mixture, the valve a, and the exhaust valve that also serves as the first and second exhausts are closed, and the valve b is opened at the bottom dead center and before the top dead center. Closed, the valve that doubles as the valve and valve c during the second intake stroke is closed (valve b shown in FIG. 26 opens at bottom dead center, and the piston moves up by about two-thirds. It is a diagram that is assumed to be closed at the time point, and is also a diagram immediately before closing.). FIG. 27: Compression step-2 (ignition) Intake valve dedicated to air-fuel mixture, valve a, exhaust valve that also serves as first and second exhaust, valve b, and valve and valve during second intake step The valve that doubles as c is closed. FIG. 28 Expansion step-1 An intake valve dedicated to the air-fuel mixture, a valve a, an exhaust valve that also serves as the first and second exhausts, a valve b is closed, and a valve and a valve c at the time of the second intake step are closed. The combined valve opens before the air-fuel mixture expands too much and becomes a resistance to rotation (the valve that doubles as the valve and the valve c in the second intake stroke shown in FIG. 28 has a piston of about 3 minutes). 2 is a diagram that assumes that it opens when it descends, and also a diagram immediately after opening.). FIG. 29 Expansion step-2 (air intake step) An intake valve dedicated to the air-fuel mixture, a valve a, an exhaust valve that also serves as the first and second exhausts, and a valve b are closed during the second intake step. The valve that also serves as the valve and the valve c is closed at the bottom dead center (the valve that serves as the valve and the valve c at the time of the second intake process shown in FIG. 29 is a diagram immediately after closing). . Fig. 30 Intake valve dedicated to the first exhaust process mixture, valve a is closed, exhaust valve that also serves as the first and second exhausts is opened, valve b and the valve and valve during the second intake process The valve that doubles as c is closed. FIG. 31 Second intake process (air intake process) An intake valve dedicated to the air-fuel mixture, a valve a, an exhaust valve that also serves as the first and second exhausts, and a valve b are closed. The valve that doubles as the time valve and valve c is open. Fig. 32 Intake valve dedicated to the mixture in the second exhaust process, valve a is closed, the exhaust valve that also serves as the first and second exhausts is opened, and valve b and the valve and valve during the second intake process The valve that doubles as c is closed. FIG.

【0030】また、6サイクルガソリンエンジンにロー
タリーバルブを使用した時の、圧縮工程の時、本当に圧
縮する工程よりも、膨張工程の時、本当に膨張する工程
の方を、ストロークで言うならば長くとる方法の時の工
程を示す、断面H−Hの方向から見たと仮定した、縦断
面図は描かれていないが、ピストンバルブを用いた時
と、ロータリーバルブを用いた時の工程は同一なので、
ここでは省く。
When a rotary valve is used in a 6-cycle gasoline engine, the expansion step and the expansion step are longer than the actual compression step in the compression step. A vertical cross-sectional view showing the steps of the method, which is assumed to be viewed from the direction of the cross section H-H, is not drawn, but the steps using the piston valve and the rotary valve are the same,
Omit it here.

【0031】そして、4サイクルガソリンエンジンに、
ピストンバルブ、ロータリーバルブを使用した時の、圧
縮工程の時、本当に圧縮する工程よりも、膨張工程の
時、本当に膨張する工程の方を、ストロークで言うなら
ば長くとる方法の時の工程を示す、断面A−A、断面B
−Bの方向から見たと仮定した、縦断面図も描かれてい
ないが、2回目の吸気工程と排気工程を省き、弁、気口
の名称を、混合気専用の吸気弁、又は、混合気専用の吸
気口と、排気弁、又は、排気口と、弁a、又は、気口d
と、弁b、又は、気口eと、弁c、又は気口fのある部
分に変えれば、それぞれの工程の図が描ける。
Then, in the 4-cycle gasoline engine,
Shows the steps when using a piston valve or a rotary valve, when compressing, when expanding, when expanding, when expanding, it is the process that takes a long time to actually expand, rather than to actually compress. , Section A-A, section B
The vertical cross-sectional view, which is assumed to be viewed from the direction of −B, is not drawn, but the second intake process and exhaust process are omitted, and the names of the valve and the air port are the intake valve dedicated to the air-fuel mixture or the air-fuel mixture. Dedicated intake port and exhaust valve or exhaust port and valve a or air port d
, And the valve b or the air outlet e, and the valve c or the air outlet f are provided, the respective process diagrams can be drawn.

【0032】図33から図40に示される実施例では、
筒内噴射6サイクルガソリンエンジンにピストンバルブ
を使用した時の、圧縮工程の時、本当に圧縮する工程よ
りも、膨張工程の時、本当に膨張する工程の方を、スト
ロークで言うならば長くとる方法の時の工程を示す、断
面K−Kの方向から見たと仮定した、縦断面図であり、
図33から図40は、 図33 1回目の吸気工程 1回目と2回目の吸気弁と弁cを兼ねた弁は開き、1回
目と2回目の排気を兼ねた排気弁は閉じ、弁aは開き、
弁bは閉じている。 図34 圧縮工程−1 1回目と2回目の吸気弁と弁cを兼ねた弁と、1回目と
2回目の排気を兼ねた排気弁と、弁aは閉じ弁bは、下
死点で開き上死点の手前の間で閉じる(図34に示され
る、弁bは、下死点で開き、ピストンが約2分の1程、
上昇した時点で閉じると仮定した図であり、閉じる直前
の図でもある。)。 図35 圧縮工程−2(燃料噴射・点火) 1回目と2回目の吸気弁と弁cを兼ねた弁と、1回目と
2回目の排気を兼ねた排気弁と、弁aと、弁bは閉じて
いる。 図36 膨張工程−1 1回目と2回目の吸気弁と弁cを兼ねた弁は、膨張し過
ぎて回転の抵抗になる前に開き、1回目と2回目の排気
を兼ねた排気弁と、弁aと、弁bは閉じている(図36
に示される、1回目と2回目の吸気弁と弁cを兼ねた弁
は、ピストンが約4分の3程、下降した時点で開くと仮
定した図であり、開いた直後の図でもある。)。 図37 膨張工程−2(空気の吸気工程) 1回目と2回目の吸気弁と弁cを兼ねた弁は、下死点で
閉じ、1回目と2回目の排気を兼ねた排気弁と、弁a
と、弁bも閉じている(図37に示される、1回目と2
回目の吸気弁と弁cを兼ねた弁は、閉じた直後の図であ
る。)。 図38 1回目の排気工程 1回目と2回目の吸気弁と弁cを兼ねた弁は閉じ、1回
目と2回目の排気を兼ねた排気弁は開き、弁aと、弁b
は閉じている。 図39 2回目の吸気工程 1回目と2回目の吸気弁と弁cを兼ねた弁は開き、1回
目と2回目の排気を兼ねた排気弁と、弁aと、弁bは閉
じている。 図40 2回目の排気工程 1回目と2回目の吸気弁と弁cを兼ねた弁は閉じ、1回
目と2回目の排気を兼ねた排気弁は開き、弁aと、弁b
は閉じている。を示す図である。
In the embodiment shown in FIGS. 33-40,
When using a piston valve in a cylinder-injection 6-cycle gasoline engine, in the compression process, in the expansion process, in the expansion process, the actual expansion process is longer than the actual compression process. FIG. 11 is a vertical cross-sectional view showing a process of time, which is assumed to be viewed from a direction of a cross section KK,
33 to FIG. 40, the first intake stroke of the first intake stroke and the second intake valve of the second intake valve and the valve that also serves as the valve c are opened, and the exhaust valve that also serves as the first and second exhaust is closed, and the valve a is Open,
The valve b is closed. Fig. 34 Compression process-1 First and second intake valves and valves that also serve as valve c, first and second exhaust valves that also serve as exhaust, valve a closed and valve b opened at bottom dead center It closes before the top dead center (the valve b shown in FIG. 34 opens at the bottom dead center, and the piston is about ½).
It is a diagram that is assumed to close when rising, and is also a diagram immediately before closing. ). FIG. 35 Compression Step-2 (Fuel Injection / Ignition) The first and second intake valves also serve as the valve c, the exhaust valves also serve as the first and second exhausts, the valve a, and the valve b. It's closed. FIG. 36 Expansion step-1 The valve that doubles as the intake valve and the valve c for the first and second cycles opens before it expands too much and becomes a resistance to rotation, and an exhaust valve that doubles as the first and second exhausts. The valves a and b are closed (see FIG. 36).
The valve that also serves as the intake valve and the valve c for the first and second times shown in FIG. 6 is a diagram that is assumed to open when the piston moves down by about three-quarters, and is also a diagram immediately after opening. ). FIG. 37 Expansion step-2 (air intake step) The valve that doubles as the first and second intake valves and valve c closes at bottom dead center, and the exhaust valve that doubles as the first and second exhausts and the valve a
And the valve b is also closed (the first time and 2 shown in FIG. 37).
The valve that doubles as the intake valve and the valve c for the second time is a diagram immediately after the valve is closed. ). FIG. 38 First Exhaust Process The first and second intake valves also serving as the valve c are closed, the first and second exhaust valves serving as the exhaust are open, and the valves a and b are open.
Is closed. In the second intake process, the valve that also serves as the first and second intake valves and the valve c is opened, and the exhaust valve that also serves as the first and second exhausts, the valve a, and the valve b are closed. FIG. 40 Second Exhaust Process First and second intake valves that also serve as valves c are closed, exhaust valves that also serve as first and second exhausts are open, and valves a and b
Is closed. FIG.

【0033】また、筒内噴射6サイクルガソリンエンジ
ンにロータリーバルブを使用した時の、圧縮工程の時、
本当に圧縮する工程よりも、膨張工程の時、本当に膨張
する工程の方を、ストロークで言うならば長くとる方法
の時の工程を示す、断面L−Lの方向から見たと仮定し
た、縦断面図は描かれていないが、ピストンバルブを用
いた時と、ロータリーバルブを用いた時の工程は同一な
ので、ここでは省く。
When a rotary valve is used in a cylinder injection 6-cycle gasoline engine, during the compression process,
A longitudinal cross-sectional view, which is assumed to be viewed from the direction of the cross section L-L, showing a process of a method of taking a long time in terms of a stroke, in a process of actually expanding, in a process of expanding, rather than a process of really compressing. Although not shown, the steps when using a piston valve and when using a rotary valve are the same, so they are omitted here.

【0034】そして、筒内噴射4サイクルガソリンエン
ジンに、ピストンバルブ、ロータリーバルブを使用した
時の、圧縮工程の時、本当に圧縮する工程よりも、膨張
工程の時、本当に膨張する工程の方を、ストロークで言
うならば長くとる方法の時の工程を示す、断面E−E、
断面F−Fの方向から見たと仮定した、縦断面図も描か
れていないが、2回目の吸気工程と排気工程を省き、
弁、気口の名称を、吸気弁と弁cを兼ねた弁、又は、吸
気口と気口fと、排気弁、又は、排気口と、弁a、又
は、気口dと、弁b、又は、気口eのある部分に変えれ
ば、それぞれの工程の図が描ける。
When a piston valve and a rotary valve are used in a cylinder injection 4-cycle gasoline engine, the process of actually expanding during the expansion process is more important than the process of actually compressing during the compression process. Sectional line EE, which shows the steps in the method of taking a long stroke,
A vertical cross-sectional view, which is assumed to be viewed from the direction of the cross section FF, is not drawn, but the second intake process and exhaust process are omitted,
The names of the valve and the air port are the valves that also serve as the intake valve and the valve c, or the intake port and the air port f, the exhaust valve, the exhaust port, the valve a, or the air port d, and the valve b. Or, if you change to the part with the mouth e, you can draw the drawing of each process.

【0035】さらに、4サイクルディーゼルエンジン、
6サイクルディーゼルエンジンに、ピストンバルブ、ロ
ータリーバルブを使用した時の、圧縮工程の時、本当に
圧縮する工程よりも、膨張工程の時、本当に膨張する工
程の方を、ストロークで言うならば長くとる方法の時の
工程を示す、断面C−C、断面D−D、断面I−I、断
面J−Jの方向から見たと仮定した、縦断面図も描かれ
ていないが、筒内噴射4サイクルガソリンエンジン、筒
内噴射6サイクルガソリンエンジンに、ピストンバル
ブ、ロータリーバルブを使用した時の、圧縮工程の時、
本当に圧縮する工程よりも、膨張工程の時、本当に膨張
する工程の方を、ストロークで言うならば長くとる方法
の時の工程を示す縦断面図から、プラグを省けば、それ
ぞれの工程の図が描ける。
Furthermore, a 4-cycle diesel engine,
When using a 6-cycle diesel engine with a piston valve and a rotary valve, the compression process, the compression process, the expansion process, the expansion process, the expansion process takes longer than the actual compression process. Although the vertical cross-sectional view, which is assumed to be viewed from the direction of cross-section C-C, cross-section D-D, cross-section I-I, and cross-section J-J, showing the process at the time, is also not drawn, in-cylinder injection 4-cycle gasoline Engine, in-cylinder injection 6-cycle gasoline engine, when using piston valve, rotary valve, during compression process,
If you omit the plug from the vertical cross-sectional view showing the process of taking a long stroke in terms of stroke, the process of expanding in the expansion process rather than the process of compressing Can be drawn.

【0036】また、図25から図40の、ピストンバル
ブの、バルブ・タイミングは、エンジンの爆発回転数、
回転数の上昇時、下降時、また、圧縮比などに因って違
うので、含まれていない。
25 to 40, the valve timing of the piston valve is the engine explosion speed
It is not included because it differs depending on the compression ratio, etc. when the rotation speed increases, decreases.

【0037】また、バルブ・タイミングを含まないの
は、工程を説明し易くする為でもある。
Further, the reason why the valve timing is not included is to facilitate the explanation of the process.

【0038】図41に示される実施例では、多気筒(2
気筒以上)の時、各気筒にある何も無い空間を、他の気
筒の何も無い空間と、1つにつなぐ事に因り、次の吸気
工程を待たずに、混合気、又は、空気は、他の気筒の吸
気工程の時に吸気されるように、各気筒の工程を組める
事を示した図であり、代表例として、直列型2気筒、4
サイクルガソリンエンジンにピストンバルブを使用した
時の縦断面図を描いたものである。
In the embodiment shown in FIG. 41, the multi-cylinder (2
(Cylinders or more), by connecting the empty space in each cylinder with the empty space in the other cylinders, the air-fuel mixture or air will be released without waiting for the next intake process. FIG. 3 is a diagram showing that the process of each cylinder can be assembled so that air is taken in during the intake process of other cylinders.
It is a longitudinal cross-sectional view of a piston valve used in a cycle gasoline engine.

【0039】また、他のエンジンの、多気筒の時、各気
筒にある何も無い空間を、他の気筒の何も無い空間と1
つにつないだ図も描けるが、作用は同一なので、ここで
は省く。
When there are multiple cylinders in another engine, the empty space in each cylinder is equal to the empty space in other cylinders.
You can also draw connected figures, but they have the same effect, so I will omit them here.

【0040】また、図41は、断面M−Mの方向から見
たと仮定した図でもあり、弁a、弁bの、何も無い空間
への(からの)通路は、何も無い空間の端と端に取り付
けてある。
FIG. 41 is also a view on the assumption that the view is taken from the direction of the section MM, and the passages to (from) the empty spaces of the valves a and b are the ends of the empty space. And attached to the end.

【0041】図42に示される実施例では、4サイクル
エンジンの場合は、4気筒以上の時、各気筒に違う工程
を行なわせる事ができるので、吸気工程の時、上死点で
開き下死点で閉じる弁、気口が、吸気工程で開く時に
は、その時、他の気筒の、圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁、気口の中で、圧縮工程で
閉じる弁、気口へと直接つなぐ事に因り、混合気、又
は、空気は、吸気工程の時、上死点で開き下死点で閉じ
る弁、気口から、他の気筒に圧縮される形で吸気され、
圧縮工程の時、下死点で開き上死点の手前の間で閉じる
弁、気口に、他の気筒に吸気される形で圧縮される事を
示した図であり、代表例として、断面N−Nの方向から
見たと仮定した、直列型4気筒、4サイクルディーゼル
エンジンにピストンバルブを使用した時の、縦断面図を
描いたものである。
In the embodiment shown in FIG. 42, in the case of a four-cycle engine, when there are four or more cylinders, each cylinder can perform a different process. A valve that closes at a point, when the air port opens at the intake stroke, then at the time of the compression process of another cylinder, a valve that opens at the bottom dead center and closes before top dead center Due to the direct connection to the valve closed in the process, the air port, the air-fuel mixture or air is compressed into another cylinder from the valve closed in the top dead center and closed at the bottom dead point during the intake process. Is inhaled in the form of
In the compression process, it is a diagram showing that the valve is opened at the bottom dead center and closed before the top dead center, and that the air is compressed into the air port by another cylinder. FIG. 3 is a vertical cross-sectional view of when a piston valve is used in an in-line four-cylinder, four-cycle diesel engine, which is assumed to be viewed from the direction of NN.

【0042】また、他の4サイクルエンジンの、4気筒
の図も描けるが、作用は同一なので、ここでは省く。
Although a diagram of four cylinders of another four-cycle engine can also be drawn, the operation is the same and therefore omitted here.

【0043】また、上記条件を満たした、4サイクルエ
ンジンの、5気筒以上の図も描けるが、上記2種類の
弁、気口が、2気筒以上と関係し、作用を分りにくくす
る場合もあるので、ここでは省く。
Although it is possible to draw a diagram of five cylinders or more of a four-cycle engine satisfying the above conditions, there are cases where the above two types of valves and air ports are associated with two or more cylinders, making it difficult to understand the action. So I will omit it here.

【0044】図43に示される実施例では、6サイクル
エンジンの場合は、6気筒以上の時、各気筒に違う工程
を行なわせる事ができるので、1回目の吸気工程の時、
上死点で開き下死点で閉じる弁、気口が、1回目の吸気
工程で開く時には、その時、他の気筒の、圧縮工程の
時、下死点で開き上死点の手前の間で閉じる弁、気口の
中で、圧縮工程で閉じる弁、気口へと直接つなぐ事に因
り、混合気、又は、空気は、1回目の吸気工程の時、上
死点で開き下死点で閉じる弁、気口から、他の気筒に圧
縮される形で吸気され、圧縮工程の時、下死点で開き上
死点の手前の間で閉じる弁、気口に、他の気筒に吸気さ
れる形で圧縮される事を示した図であり、代表例とし
て、断面O−Oの方向から見たと仮定した、直列型6気
筒、筒内噴射6サイクルガソリンエンジンにピストンバ
ルブを使用した時の、縦断面図を描いたものである。
In the embodiment shown in FIG. 43, in the case of a 6-cycle engine, when there are 6 or more cylinders, each cylinder can be made to perform a different process.
When the valve and air port that open at top dead center and close at bottom dead center open in the first intake stroke, at that time, during the compression stroke of the other cylinder, open at bottom dead center and before the top dead center. Due to the valve being closed in the compression process in the closing valve and the air port, and being directly connected to the air port, the air-fuel mixture or air opens at the top dead center during the first inspiration process and opens at the bottom dead center. It is inhaled in the form of being compressed into the other cylinders from the closing valve and the air port, and is opened at the bottom dead center during the compression process and closes before the top dead center. It is a diagram showing that the piston valve is used in the in-line 6-cylinder, in-cylinder injection 6-cycle gasoline engine, which is assumed to be viewed from the direction of the section O-O. , Is a longitudinal sectional view.

【0045】また、他の6サイクルエンジンの、6気筒
の図も描けるが、作用は同一なので、ここでは省く。
A diagram of the 6-cylinder of another 6-cycle engine can also be drawn, but since the operation is the same, it is omitted here.

【0046】また、上記条件を満たした、6サイクルエ
ンジンの、7気筒以上の図も描けるが、上記2種類の
弁、気口が、2気筒以上と関係し、作用を分りにくくす
る場合もあるので、ここでは省く。
A drawing of a 6-cycle engine with 7 cylinders or more satisfying the above conditions can be drawn, but the above-mentioned two types of valves and air ports are related to 2 or more cylinders, and the operation may be difficult to understand. So I will omit it here.

【0047】[0047]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0048】4サイクルエンジン、6サイクルエンジン
に、ピストンバルブ、ロータリーバルブを使用した時、
吸気工程(6サイクルエンジンの場合は、1回目の吸気
工程。)の時、上死点で開き下死点で閉じる弁、気口
と、圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁、気口の、2種類の、弁、気口、を設ける事によ
り、圧縮工程の時、本当に圧縮する工程よりも、膨張工
程の時、本当に膨張する工程の方を、ストロークで言う
ならば長くとる方法が得られ、従って、 圧縮比<膨張比(何も無い空間は、必要である。) になり、従来の、4サイクルエンジン、6サイクルエン
ジンに、ピストンバルブ、ロータリーバルブを使用した
時よりも、同じ量の燃料を消費するにあたって、爆発に
因って出たエネルギー(パワー・トルク)を、少しでも
多く、ピストン、そして、クランク・シャフトへと伝え
る事ができる。
When a piston valve and a rotary valve are used in a 4-cycle engine and a 6-cycle engine,
During the intake stroke (in the case of a 6-cycle engine, the first intake stroke), the valve opens at top dead center and closes at bottom dead center, the air vent, and the compression stroke opens at bottom dead center and opens at top dead center. By providing two kinds of valves, a mouth and a valve, which are closed between the front side and the mouth, the step of really expanding during the expanding step is more important than the step of really compressing during the compression step. In terms of stroke, a method that takes a long time can be obtained, and therefore, the compression ratio <expansion ratio (a space with no space is required), and the conventional 4-cycle engine, 6-cycle engine, piston valve, rotary When consuming the same amount of fuel as when using a valve, the energy (power torque) generated by the explosion can be transferred to the piston and crankshaft as much as possible.

【0049】そして、上記2種類の、弁、気口の先に、
何も無い空間(混合気、又は、空気が、一時停渟する
所。)を取り付ける事に因り、圧縮工程の時、混合気、
又は、空気は、圧縮されて何も無い空間へ入るが、次の
吸気工程の時、シリンダー内に還元される(ガソリンエ
ンジンの場合は、混合気が液化するので、何も無い空間
はシリンダーより上にあるのが好ましい。)。
Then, above the two types of valves and vents,
Due to the installation of an empty space (air mixture or a place where air temporarily stops), during the compression process, the air mixture,
Or, the air is compressed and enters the empty space, but is reduced in the cylinder at the time of the next intake stroke (in the case of a gasoline engine, the air-fuel mixture is liquefied, so the empty space is less than the cylinder). It is preferably on top.)

【0050】特に、4サイクルガソリンエンジンと、6
サイクルガソリンエンジンに、ピストンバルブ、ロータ
リーバルブを使用した場合では、混合気がシリンダー内
に還元されるので、燃料を無駄にしなくなる。
In particular, a 4-cycle gasoline engine and 6
When the piston valve and the rotary valve are used in the cycle gasoline engine, the air-fuel mixture is returned to the cylinder, so that the fuel is not wasted.

【0051】また、4サイクルディーゼルエンジンと、
筒内噴射4サイクルガソリンエンジンと、6サイクルデ
ィーゼルエンジンと、筒内噴射6サイクルガソリンエン
ジンに、ピストンバルブ、ロータリーバルブを使用した
場合では、吸気工程の時、上死点で開き下死点で閉じる
弁、気口と、何も無い空間は必要としなくなり、圧縮工
程の時、下死点で開き上死点の手前の間で閉じる弁、気
口だけで、圧縮工程の時、本当に圧縮する工程よりも、
膨張工程の時、本当に膨張する工程の方を、ストローク
で言うならば長くとる方法は得れ、また、排気弁、排気
口を代用しても得れるが、説明項数0055、0057
の時の為に、ある方がよい〔排気口を代用すると言う事
は、同じ排気口を兼用するのではなく、排気口のあるロ
ータリーバルブ、1回目と2回目の排気口のあるロータ
リーバルブに、圧縮工程の時、下死点で開き上死点の手
前の間で閉じる気口(気口e)を設ける事である。〕。
Also, with a 4-cycle diesel engine,
When a piston valve and a rotary valve are used in a cylinder injection 4-cycle gasoline engine, a 6-cycle diesel engine, and a cylinder-injection 6-cycle gasoline engine, the intake valve opens at top dead center and closes at bottom dead center. A valve, an air vent, and an empty space are no longer needed, and a valve that opens at the bottom dead center during the compression process and closes before the top dead center is a valve and an air vent that only compresses during the compression process. than,
In the expansion step, a method of lengthening the step of really expanding can be obtained if it is referred to as a stroke, and it can be obtained by substituting an exhaust valve and an exhaust port.
Therefore, it is better to use the exhaust port instead of using the same exhaust port instead of using the same exhaust port for the rotary valve with the exhaust port, the rotary valve with the first and second exhaust ports. During the compression process, an air port (air port e) that opens at the bottom dead center and closes before the top dead center is provided. ].

【0052】また、弁aと弁b、又は、気口dと気口e
の、何も無い空間への通路を、何も無い空間の端と端に
取り付ける事に因り、混合気、又は、空気は一定方向に
流れ、混合気と混合気、空気と空気同志の干渉が少なく
なり、スムーズな工程が行なえる。
Further, the valve a and the valve b, or the air port d and the air port e.
By installing the passage to the empty space at the end of the empty space, the air-fuel mixture or air flows in a certain direction, so that the air-fuel mixture interferes with the air-fuel mixture. It is less, and smooth process can be performed.

【0053】そして、多気筒の時、何も無い空間を、他
の気筒の何も無い空間と、1つにつなぐ事に因り、混合
気、又は、空気は、次の吸気工程を待たずに、他の気筒
の吸気工程の時に吸気されるように、各気筒の工程を組
め、それに因って同じ爆発回転数ならば、混合気、又
は、空気の何も無い空間での停滞時間を、短縮できる、
もしくは、気筒数に因っては、何も無い空間をなくせ、
混合気、又は、空気が停滞しなくなる。
In the case of multiple cylinders, due to the fact that the empty space is connected to the empty spaces of the other cylinders, the air-fuel mixture or air does not wait for the next intake process. , The process of each cylinder is assembled so that it is taken in during the intake process of the other cylinder, and if the explosion speed is the same due to this, the stagnation time in a space without air-fuel mixture or air, Can be shortened,
Or, depending on the number of cylinders, eliminate the empty space,
The air-fuel mixture or air will not become stagnant.

【0054】また、何も無い空間が、各気筒に取り付け
てあるのよりも、1つにした方が場所を取らないのと、
混合気、又は、空気の何も無い空間での停滞時間を、短
縮できる、もしくは、気筒数に因っては、なくせるの
で、さらに、小さくできる、もしくは、各気筒の、弁a
と弁b、又は、気口dと気口eを、つなぐものだけで済
ませる事ができる。
In addition, it is more space-saving to have one empty space than to be installed in each cylinder.
The stagnation time in a space where there is no air-fuel mixture or air can be shortened or can be eliminated depending on the number of cylinders, so it can be further reduced, or the valve a of each cylinder can be reduced.
The valve b or the air outlet d and the air outlet e can be connected only.

【0055】さらに、4サイクルエンジンの場合は、4
気筒以上の時、弁a、又は、気口dが、吸気工程で開く
時には、その時、他の気筒の、弁b、又は、気口eの中
で、圧縮工程で閉じる、弁b、又は、気口eに直接つな
ぐ事に因り、吸気工程の時、混合気、又は、空気は、弁
a、又は、気口dから、他の気筒の、弁b、又は、気口
eに圧縮される形で吸気され、圧縮工程の時、弁b、又
は、気口eに、他の気筒の、弁a、又は、気口dに吸気
される形で圧縮されるので、吸気工程、圧縮工程の時の
抵抗が少なくなる。
Further, in the case of a 4-cycle engine, 4
When the number of cylinders is equal to or more than the cylinder, when the valve a or the air port d is opened in the intake process, at that time, the valve b or the air port e of another cylinder is closed in the compression process, the valve b, or Due to the direct connection to the air port e, the air-fuel mixture or air is compressed from the valve a or the air port d to the valve b or the air port e of another cylinder during the intake stroke. Is sucked into the valve b or the air outlet e at the time of the compression process, and is sucked into the valve a or the air port d of the other cylinder. Less time resistance.

【0056】また、何も無い空間はいらなくなり、混合
気、又は、空気も、一定方向に流れるので、さらに、ス
ムーズな工程が行える。
Further, since there is no need for an empty space and the air-fuel mixture or air also flows in a fixed direction, a smoother process can be performed.

【0057】そして、6サイクルエンジンの場合は、6
気筒以上の時、弁a、又は、気口dが、1回目の吸気工
程で開く時には、その時、他の気筒の、弁b、又は、気
口eの中で、圧縮工程で閉じる、弁b、又は、気口eに
直接つなぐ事に因り、1回目の吸気工程の時、混合気、
又は、空気は、弁a、又は、気口dから、他の気筒の、
弁b、又は、気口eに圧縮される形で吸気され、圧縮工
程の時、弁b、又は、気口eに、他の気筒の、弁a、又
は、気口dに吸気される形で圧縮されるので、1回目の
吸気工程、圧縮工程の時の抵抗が少なくなる。
In the case of a 6-cycle engine, 6
When the number of cylinders is equal to or more than that of the cylinders, when the valve a or the air port d is opened in the first intake stroke, at that time, in the valve b or the air inlet e of the other cylinder, the valve b or the valve b is closed. , Or due to the fact that it is directly connected to the air port e, the air-fuel mixture during the first intake stroke,
Or, the air flows from the valve a or the air outlet d to another cylinder,
The valve b or the port e is inhaled in the form of being compressed, and the valve b or port e is inhaled to the valve a or the port d of another cylinder during the compression process. Since it is compressed by, the resistance during the first intake stroke and compression stroke is reduced.

【0058】また、何も無い空間はいらなくなり、混合
気、又は、空気も、一定方向に流れるので、さらに、ス
ムーズな工程が行える。
Further, since there is no need for a space without anything and the air-fuel mixture or air also flows in a fixed direction, a smoother process can be performed.

【0059】また、圧縮工程の時、弁b、又は、気口e
を開け過ぎた時の対策として、膨張工程の時、4サイク
ルディーゼルエンジンと、筒内噴射4サイクルガソリン
エンジンと、6サイクルディーゼルエンジンと、筒内噴
射6サイクルガソリンエンジンの場合は、膨張し過ぎて
回転の抵抗になる前に、吸気弁、吸気口を開き、下死点
で閉じる事に因り、さらに、 圧縮比<膨張比 の比率が高くとれ、また、膨張工程もスムーズに行え
る。
Also, during the compression process, the valve b or the air outlet e
As a countermeasure against over-opening, the 4-stroke diesel engine, in-cylinder injection 4-cycle gasoline engine, 6-cycle diesel engine, and in-cylinder injection 6-cycle gasoline engine will expand too much during the expansion process. Because the intake valve and intake port are opened and closed at the bottom dead center before the rotation resistance is reached, the ratio of compression ratio <expansion ratio is high and the expansion process can be performed smoothly.

【0060】また、圧縮工程の時、弁b、又は、気口e
を開け過ぎた時の対策として、膨張工程の時、4サイク
ルガソリンエンジンと、6サイクルガソリンエンジンの
場合は、弁c、気口f(6サイクルガソリンエンジンの
場合は、2回目の吸気工程の弁を兼用しても、2回目の
吸気工程の時の気口のあるロータリーバルブに、気口f
を設けてもよい。)を用いる事に因り、さらに、 圧縮比<膨張比 の比率が高くとれ、また、膨張工程もスムーズに行え
る。
Also, during the compression process, the valve b or the air outlet e
As a countermeasure when the valve is opened too much, during the expansion process, the valve c and the port f in the case of the 4-cycle gasoline engine and the 6-cycle gasoline engine (the valve of the second intake process in the case of the 6-cycle gasoline engine) Even if it is also used, the air vent f
May be provided. In addition, the ratio of compression ratio <expansion ratio can be increased, and the expansion process can be performed smoothly.

【0061】また、 圧縮比<膨張比 の比率の割合が、さらに、高くとれると言う事は、排気
ガスを空気に因って、さらに、薄めると言うことで、排
気工程(6サイクルエンジンの場合は、2回目の排気工
程)から吸気工程(6サイクルエンジンの場合は、1回
目の吸気工程)に移る時、本当の排気ガスの残る割合が
少なくなり、それに因って、次の燃焼(膨張工程)で完
全燃焼に近付いたり、低公害につながる。
The fact that the ratio of compression ratio <expansion ratio can be made higher means that the exhaust gas is further diluted by the air, so that the exhaust process (in the case of 6-cycle engine) When the process moves from the second exhaust process) to the intake process (the first intake process in the case of a 6-cycle engine), the proportion of the true exhaust gas remaining decreases, and the next combustion (expansion) In the process), it approaches full combustion and leads to low pollution.

【0062】さらに、同じエンジンの爆発回転数でも、
高負荷の時には、弁b、又は、気口eを早く閉じ、低負
荷の時には、弁b、又は、気口eを遅く閉じ、そして、
弁c、又は、気口fを用いる事に因り、その場に合った
エネルギーの抽出と燃料の消費ができる。
Furthermore, even with the same engine explosion speed,
When the load is high, the valve b or the mouth e is closed early, when the load is low, the valve b or the mouth e is closed late, and
Due to the use of the valve c or the air port f, it is possible to extract energy and consume fuel according to the situation.

【0063】また、上記のような、弁、又は、気口に動
きをとらせれば、本当の圧縮比も変化するが、〔4サイ
クルエンジン、6サイクルエンジンに、ピストンバル
ブ、ロータリーバルブを使用した時の、エンジンの目
的、回転数、回転数の上昇、下降する時に、圧縮比を変
化させる方法と、該装置の型(平成7年特許願第109
930号)。〕を用いれば、その場に適した、本当の圧
縮比が得られる。
Further, if the valve or the air port as described above is moved, the true compression ratio also changes. [A piston valve and a rotary valve were used in a 4-cycle engine and a 6-cycle engine. The purpose of the engine, the number of revolutions, the method of changing the compression ratio when the number of revolutions rises and falls, and the type of the device (Patent application No. 109 of 1995).
930). ], The true compression ratio suitable for the situation is obtained.

【0064】そして、弁、気口を、早く閉じたり、遅く
閉じたり、又は、開けなかったりする作用の代用とし
て、〔4サイクルエンジン、6サイクルガソリンエンジ
ンに、ピストンバルブ、ロータリーバルブを使用した時
の、混合気専用の通路と、何も無い空間からの通路と、
空気専用の通路の開閉と、該開閉装置の型(平成7年特
許願第97346号)。〕を用いれば、早く閉じたり、
遅く閉じたり、又は、開けなかったりする作用に近づ
く。
Then, as an alternative to the action of closing the valve and the air port early, late lately, or not opening [when a piston valve or a rotary valve is used in a 4-cycle engine or a 6-cycle gasoline engine, , A passage dedicated to the air-fuel mixture and a passage from an empty space,
Opening and closing the passage exclusively for air and the type of the opening and closing device (1995 Patent Application No. 97346). ] To close the
Close to the action of closing late or not opening.

【図面の簡単な説明】[Brief description of drawings]

【図1】4サイクルガソリンエンジンにピストンバルブ
を使用した時の、弁の配置の実施例を示す、横断面図で
ある。
FIG. 1 is a cross-sectional view showing an example of valve arrangement when a piston valve is used in a 4-cycle gasoline engine.

【図2】4サイクルガソリンエンジンにロータリーバル
ブを使用した時の、ロータリーバルブの配置の実施例を
示す、横断面図である。
FIG. 2 is a cross-sectional view showing an embodiment of the arrangement of rotary valves when the rotary valve is used in a 4-cycle gasoline engine.

【図3】4サイクルディーゼルエンジンにピストンバル
ブを使用した時の、弁の配置の実施例を示す、横断面図
である。
FIG. 3 is a cross-sectional view showing an example of the arrangement of valves when a piston valve is used in a 4-cycle diesel engine.

【図4】4サイクルディーゼルエンジンにロータリーバ
ルブを使用した時の、ロータリーバルブの配置の実施例
を示す、横断面図である。
FIG. 4 is a cross-sectional view showing an embodiment of the arrangement of rotary valves when using rotary valves in a 4-cycle diesel engine.

【図5】筒内噴射4サイクルガソリンエンジンにピスト
ンバルブを使用した時の、弁の配置の実施例を示す、横
断面図である。
FIG. 5 is a transverse cross-sectional view showing an example of valve arrangement when a piston valve is used in a cylinder injection four-cycle gasoline engine.

【図6】筒内噴射4サイクルガソリンエンジンにロータ
リーバルブを使用した時の、ロータリーバルブの配置の
実施例を示す、横断面図である。
FIG. 6 is a cross-sectional view showing an embodiment of the arrangement of rotary valves when a rotary valve is used in a cylinder injection four-cycle gasoline engine.

【図7】6サイクルガソリンエンジンにピストンバルブ
を使用した時の、弁の配置の実施例を示す、横断面図で
ある。
FIG. 7 is a cross-sectional view showing an example of valve arrangement when a piston valve is used in a 6-cycle gasoline engine.

【図8】6サイクルガソリンエンジンにロータリーバル
ブを使用した時の、ロータリーバルブの配置の実施例を
示す、横断面図である。
FIG. 8 is a cross-sectional view showing an embodiment of the arrangement of rotary valves when the rotary valve is used in a 6-cycle gasoline engine.

【図9】6サイクルディーゼルエンジンにピストンバル
ブを使用した時の、弁の配置の実施例を示す、横断面図
である。
FIG. 9 is a cross-sectional view showing an example of the arrangement of valves when a piston valve is used in a 6-cycle diesel engine.

【図10】6サイクルディーゼルエンジンにロータリー
バルブを使用した時の、ロータリーバルブの配置の実施
例を示す、横断面図である。
FIG. 10 is a transverse cross-sectional view showing an example of the arrangement of rotary valves when the rotary valve is used in a 6-cycle diesel engine.

【図11】筒内噴射6サイクルガソリンエンジンにピス
トンバルブを使用した時の、弁の配置の実施例を示す、
横断面図である。
FIG. 11 shows an example of valve arrangement when a piston valve is used in a cylinder injection 6-cycle gasoline engine,
FIG.

【図12】筒内噴射6サイクルガソリンエンジンにロー
タリーバルブを使用した時の、ロータリーバルブの配置
の実施例を示す、横断面図である。
FIG. 12 is a cross-sectional view showing an embodiment of the arrangement of rotary valves when the rotary valve is used in a cylinder injection 6-cycle gasoline engine.

【図13】図1を、断面A−Aの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 13 is a vertical cross-sectional view showing an example in which FIG. 1 is viewed from the direction of the cross section AA.

【図14】図2を、断面B−Bの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 14 is a vertical cross-sectional view showing an embodiment on the assumption that FIG. 2 is viewed from the direction of the cross section BB.

【図15】図3を、断面C−Cの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 15 is a vertical cross-sectional view showing an embodiment on the assumption that FIG. 3 is viewed from the direction of the cross section CC.

【図16】図4を、断面D−Dの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 16 is a vertical cross-sectional view showing an example in which it is assumed that FIG. 4 is viewed from the direction of the cross section DD.

【図17】図5を、断面E−Eの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 17 is a vertical cross-sectional view showing an embodiment on the assumption that FIG. 5 is viewed from the direction of the cross section EE.

【図18】図6を、断面F−Fの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 18 is a vertical cross-sectional view showing an example in which it is assumed that FIG. 6 is viewed from the direction of the section FF.

【図19】図7を、断面G−Gの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 19 is a vertical cross-sectional view showing an embodiment on the assumption that FIG. 7 is viewed from the direction of the cross section GG.

【図20】図8を、断面H−Hの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 20 is a vertical cross-sectional view showing an example in which it is assumed that FIG. 8 is viewed from the direction of the section HH.

【図21】図9を、断面I−Iの方向から見たと仮定し
た実施例を示す、縦断面図である。
FIG. 21 is a vertical cross-sectional view showing an embodiment on the assumption that FIG. 9 is viewed from the direction of the cross section I-I.

【図22】図10を、断面J−Jの方向から見たと仮定
した実施例を示す、縦断面図である。
22 is a vertical cross-sectional view showing an example in which FIG. 10 is viewed from the direction of the section J-J.

【図23】図11を、断面K−Kの方向から見たと仮定
した実施例を示す、縦断面図である。
FIG. 23 is a vertical cross-sectional view showing an example in which FIG. 11 is assumed to be viewed from the direction of the section KK.

【図24】図12を、断面L−Lの方向から見たと仮定
した実施例を示す、縦断面図である。
FIG. 24 is a vertical cross-sectional view showing an embodiment on the assumption that FIG. 12 is viewed from the direction of the cross section LL.

【図25】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔1回目の吸気工程(混
合気の吸気工程)〕。
FIG. 25 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that it is viewed from the direction of a section GG [First intake process (intake process of air-fuel mixture)] ].

【図26】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である(圧縮工程−1)。
FIG. 26 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section GG (compression process-1).

【図27】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔圧縮工程−2(点
火)〕。
FIG. 27 is a vertical cross-sectional view showing a process when the piston valve is used in the 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of the cross section GG [compression process-2 (ignition)].

【図28】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔膨張工程−1(燃
焼)〕。
FIG. 28 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section GG [expansion process-1 (combustion)].

【図29】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔膨張工程−2(空気の
吸気工程)〕。
FIG. 29 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that it is viewed from the direction of a cross section GG [expansion process-2 (air intake process)].

【図30】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である(1回目の排気工程)。
FIG. 30 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that it is viewed from the direction of a cross section GG (first exhaust process).

【図31】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔2回目の吸気工程(空
気の吸気工程)〕。
FIG. 31 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that it is viewed from the direction of a cross section GG [second intake process (air intake process)] .

【図32】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である(2回目の排気工程)。
FIG. 32 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section GG (second exhaust process).

【図33】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(1回目の吸気
工程)。
FIG. 33 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section KK (first intake process).

【図34】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(圧縮工程−
1)。
FIG. 34 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section KK (compression process-
1).

【図35】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である〔圧縮工程−2
(燃料噴射・点火)〕。
FIG. 35 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that it is viewed from the direction of a cross section KK [compression process-2
(Fuel injection / ignition)].

【図36】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である〔膨張工程−1
(燃焼)〕。
FIG. 36 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that the piston valve is viewed from a direction of a cross section KK [Expansion process-1
(combustion)〕.

【図37】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である〔膨張工程−2
(空気の吸気工程)〕。
FIG. 37 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that it is viewed from the direction of a cross section KK.
(Air intake process)].

【図38】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(1回目の排気
工程)。
FIG. 38 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section KK (first exhaust process).

【図39】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(2回目の吸気
工程)。
FIG. 39 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section KK (second intake process).

【図40】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(2回目の排気
工程)。
FIG. 40 is a vertical cross-sectional view showing a process when a piston valve is used in a cylinder injection 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section KK (second exhaust process).

【図41】断面M−Mの方向から見たと仮定した、直列
型2気筒、4サイクルガソリンエンジンにピストンバル
ブを使用した時の、各気筒の弁aと弁bの関連の実施例
を示す、縦断面図である。
FIG. 41 shows an example of the relationship between the valves a and b of each cylinder when a piston valve is used in an in-line two-cylinder, four-cycle gasoline engine, assuming that it is viewed from the direction of the section MM. FIG.

【図42】断面N−Nの方向から見たと仮定した、直列
型4気筒、4サイクルディーゼルエンジンにピストンバ
ルブを使用した時の、各気筒の弁aと弁bの関連の実施
例を示す、縦断面図である。
FIG. 42 shows a related example of valve a and valve b of each cylinder when a piston valve is used in an in-line four-cylinder, four-cycle diesel engine, assuming that it is viewed from the direction of the section NN. FIG.

【図43】断面O−Oの方向から見たと仮定した、直列
型6気筒、筒内噴射6サイクルガソリンエンジンにピス
トンバルブを使用した時の、各気筒の弁aと弁bの関連
の実施例を示す、縦断面図である。
FIG. 43 shows a related example of the valve a and the valve b of each cylinder when a piston valve is used in an in-line 6-cylinder, in-cylinder injection 6-cycle gasoline engine, assuming that it is viewed from the direction of a section O-O. FIG.

【符号の説明】[Explanation of symbols]

1 混合気専用の吸気弁 2 排気弁 3 吸気工程の時、上死点で開き下死点で閉じる弁(弁
a) 4 圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁(弁b) 5 圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁(弁b)を開け過ぎた時の対策として、膨張工程
の時、膨張し過ぎて回転の抵抗になる前に開き、下死点
で閉じる、空気専用の吸気弁(弁c) 6 プラグ 7 気化器 8 吸気管 9 排気管 10 空気専用の吸気管 11 何も無い空間(混合気、又は、空気が一時停滞す
る所。) 12 断面(内型)を、H型、にし、混合気専用の吸気
口のある部分と、排気口のある部分を設けた、ロータリ
ーバルブ 13 断面(内型)を、H型、にし、吸気工程の時、上
死点で閉き下死点で閉じる気口(気口d)のある部分
と、圧縮工程の時、下死点で開き上死点の手前の間で閉
じる気口(気口e)のある部分を設けた、ロータリーバ
ルブ 14 圧縮工程の時、下死点で開き上死点の手前の間で
閉じる気口(気口e)を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口(気口f)のある部
分を設けた、ロータリーバルブ 15 何も無い空間からの通路〔吸気工程の時、上死点
で開き下死点で閉じる気口(気口d)への、何も無い空
間からの通路〕 16 何も無い空間への通路〔圧縮工程の時、下死点で
開き上死点の手前の間で閉じる気口(気口e)からの、
何も無い空間への通路〕 17 吸気弁と弁cを兼ねた弁 18 燃料噴射器 19 何も無い空間からの通路〔吸気工程の時、上死点
で開き下死点で閉じる弁(弁a)への、何も無い空間か
らの通路〕 20 何も無い空間への通路〔圧縮工程の時、下死点で
開き上死点の手前の間で閉じる弁(弁b)からの、何も
無い空間への通路〕 21 断面(内形)を、H型、にし、吸気口と気口fの
ある部分と、排気口のある部分を設けた、ロータリーバ
ルブ 22 混合気専用の吸気弁(1回目の吸気工程の時の
弁) 23 1回目と2回目の排気を兼ねた排気弁 24 2回目の吸気工程の時の弁(空気専用の吸気弁)
と弁cを兼ねた弁 25 断面(内型)を、H型、にし、混合気専用の吸気
口(1回目の吸気工程の時の吸気口)のある部分と、1
回目と2回目の排気口のある部分を設けた、ロータリー
バルブ 26 2回目の吸気工程の時の吸気口(空気専用の吸気
口)と気口fのある部分を設けた、ロータリーバルブ 27 1回目と2回目の吸気弁と弁cを兼ねた弁 28 断面(内型)を、H型、にし、1回目と2回目の
吸気口と気口fのある部分と、1回目と2回目の排気口
のある部分を設けた、ロータリーバルブ29 ピストン 30 混合気専用の吸気弁と、排気弁 31 弁aと弁b 32 ロータリーバルブの、混合気専用の吸気口 33 ロータリーバルブの、排気口 34 ロータリーバルブの、吸気工程の時、上死点で開
き下死点で閉じる気口(気口d) 35 ロータリーバルブの、圧縮工程の時、下死点で開
き上死点の手前の間で閉じる気口(気口e) 36 ロータリーバルブの、圧縮工程の時、下死点で開
き上死点の手前の間で閉じる気口(気口e)を開け過ぎ
た時の対策として、膨張工程の時、膨張し過ぎて回転の
抵抗になる前に開き、下死点で閉じる、空気専用の吸気
口(気口f) 37 ロータリーバルブの回転方向 38 吸気弁と弁cを兼ねた弁と、排気弁 39 ロータリーバルブの、吸気口 40 プラグと燃料噴射器 41 混合気専用の吸気弁(1回目の吸気工程の時の
弁)と、1回目と2回目の排気を兼ねた排気弁 42 空気専用の吸気弁(2回目の吸気工程の時の弁)
と弁cを兼ねた弁 43 ロータリーバルブの、混合気専用の吸気口(1回
目の吸気工程の時の吸気口) 44 ロータリーバルブの、1回目の排気口 45 ロータリーバルブの、2回目の排気口 46 1回目と2回目の吸気弁と弁cを兼ねた弁と、1
回目と2回目の排気を兼ねた排気弁 47 ロータリーバルブの、空気専用の吸気口(2回目
の吸気工程の時の吸気口) 48 ロータリーバルブの、1回目の吸気口 49 ロータリーバルブの、2回目の吸気口 50 混合気の吸気工程完了直前 51 膨張工程完了直前 52 吸気工程完了直前 53 圧縮工程完了直前 54 排気工程完了直前 55 弁aと弁bをつなぐ通路 56 1回目の吸気工程完了直前 57 2回目の吸気工程完了直前 58 1回目の排気工程完了直前 59 2回目の排気工程完了直前 60 燃焼室の、混合気専用の吸気口 61 燃焼室の、排気口 62 燃焼室の、吸気工程の時、上死点で開き下死点で
閉じる気口 63 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口 64 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口 65 燃焼室の、吸気口と、圧縮工程の時、下死点で開
き上死点の手前の間で閉じる気口を開け過ぎた時の対策
として、膨張工程の時、膨張し過ぎて回転の抵抗になる
前に開き、下死点で閉じる、空気専用の吸気口、を兼ね
た気口 66 燃焼室の、混合気専用の吸気口(1回目の吸気工
程の時の吸気口) 67 燃焼室の、1回目の排気口と、2回目の排気口を
兼ねた、排気口 68 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口と、2回目の吸気工
程(空気の吸気工程)の時の気口、を兼ねた気口 69 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口と、1回目と2回目
の吸気口、を兼ねた気口 A−A 断面 B−B 断面 C−C 断面 D−D 断面 E−E 断面 F−F 断面 G−G 断面 H−H 断面 I−I 断面 J−J 断面 K−K 断面 L−L 断面 M−M 断面 N−N 断面 O−O 断面
1 Intake valve dedicated to air-fuel mixture 2 Exhaust valve 3 Valve that opens at top dead center and closes at bottom dead center during intake stroke (valve a) 4 Open at bottom dead center and close to top dead center during compression stroke Close valve (valve b) 5 Open at bottom dead center during compression process and close valve (valve b) close to before top dead center as a countermeasure against excessive opening during expansion process Air intake valve (valve c) 6 plug 7 vaporizer 8 intake pipe 9 exhaust pipe 10 air dedicated intake pipe 11 empty space (mixture or , Where the air is temporarily stagnant.) 12 Rotary valve 13 cross section (internal type) with H-shaped cross section (internal type) and a portion with an intake port dedicated to air-fuel mixture and a part with an exhaust port Is H-shaped, and has a part with an air port (air port d) that closes at the top dead center and closes at the bottom dead center during the intake process and the bottom part during the compression process. Opened at a point and provided with a part with an air port (air port e) that closes before the top dead center. Rotary valve 14 A port that opens at the bottom dead center and closes before the top dead center during the compression process. As a countermeasure when (air outlet e) is opened too much, during the expansion process, it opens before it expands too much and becomes resistance to rotation.
A rotary valve 15 which is provided with a portion having an intake port (air port f) for exclusive use of air, which is closed at bottom dead center A passage from an empty space [in the intake process, air opened at top dead center and closed at bottom dead center] Passage from empty space to mouth (breath d) 16 Passage to empty space [During the compression process, it opens at bottom dead center and closes before top dead center (breath from e),
Passage to empty space] 17 Valve that doubles as an intake valve and valve c 18 Fuel injector 19 Passage from empty space [Valve that opens at top dead center and closes at bottom dead center during intake stroke (valve a 20) Passage to empty space] 20 Passage to empty space [Nothing from the valve (valve b) that opens at the bottom dead center and closes before the top dead center during the compression process) Passage to empty space] 21 Rotary valve 22 having an H-shaped cross section (inner shape) and provided with a portion with an intake port and an air outlet f, and a portion with an exhaust port 22 An intake valve (1 (Valve for the second intake process) 23 Exhaust valve that also serves as the first and second exhaust 24 Valve for the second intake process (intake valve dedicated to air)
The valve 25 that also serves as the valve c has an H-shaped cross-section (inner type), and has a portion with an intake port dedicated to the air-fuel mixture (intake port during the first intake process) and 1
Rotary valve 26 provided with a portion with the second and second exhaust ports Rotary valve 27 provided with the portion with the intake port (air-only intake port) and the air port f in the second intake process And the valve 28 which doubles as the intake valve and the valve c for the second time. The cross section (inner type) is made H-shaped, and the portion where the intake port and the air port f are at the first and second times, and the exhaust gas at the first and second times. A rotary valve 29 with a portion having a mouth, a piston 30, an intake valve dedicated to the air-fuel mixture, and an exhaust valve 31 a and a valve b 32 an intake port dedicated to the air-fuel mixture 33 a rotary valve, an exhaust port 34 a rotary valve Of the rotary valve of the rotary valve, which opens at the top dead center and closes at the bottom dead center (air opening d) 35, which opens at the bottom dead center and closes before the top dead center during the compression process (Port e) 36 Rotary valve compression process At the time of opening, as a measure against opening too much air opening (air opening e) which opens at the bottom dead center and closes before the top dead center, it opens before it expands too much and becomes resistance to rotation during the expansion process. Air-only intake port (air port f) closed at bottom dead center 37 Rotational direction of rotary valve 38 Valve that also functions as intake valve and valve c, exhaust valve 39 Rotary valve intake port 40 Plug and fuel injector 41 Intake valve dedicated to air-fuel mixture (valve used during the first intake process) and exhaust valve that also serves as first and second exhaust 42 Intake valve dedicated to air (valve used during the second intake process)
Valve 43 that also serves as valve c Intake port for the air-fuel mixture of the rotary valve (intake port during the first intake process) 44 First exhaust port of the rotary valve 45 Second exhaust port of the rotary valve 46 1st and 2nd intake valve and valve that doubles as valve c
Exhaust valve that also serves as the second and second exhaust 47 Intake port for air of rotary valve (intake port during the second intake process) 48 First intake port of rotary valve 49 Second time of rotary valve Intake port 50 immediately before completion of the intake process of the air-fuel mixture 51 immediately before completion of the expansion process 52 immediately before completion of the intake process 53 immediately before completion of the compression process 55 immediately before completion of the exhaust process 55 passage 56 connecting valve a and valve b 56 just before completion of the first intake process 57 2 Immediately before the completion of the first intake process 58 Immediately before the completion of the first exhaust process 59 Immediately before the completion of the second exhaust process 60 Intake port 61 of the combustion chamber dedicated to the air-fuel mixture 61 Exhaust port 62 of the combustion chamber At the intake process of the combustion chamber, Air port 63 that opens at top dead center and closes at bottom dead center 63 Combustion chamber, during compression process, air port that opens at bottom dead center and closes before top dead center 64 Combustion chamber, compression process during bottom process Open at a point, hand at top dead center As a countermeasure when opening the airway that closes in the front, open it before it expands too much and becomes resistance to rotation during the expansion process.
Air intake 65 that closes at bottom dead center As a countermeasure when the intake port of the combustion chamber and the compression port that opens at bottom dead center and closes before top dead center during the compression process are opened too much, In the expansion process, it opens before it expands too much and becomes resistance to rotation, and it closes at bottom dead center. It also serves as an air intake 66. 67 Intake port during the intake process) 67 Exhaust port that doubles as the exhaust port of the combustion chamber for the first time and the exhaust port for the second time of 68 The combustion chamber opens at the bottom dead center during the compression process and opens at the top dead center As a countermeasure when opening the airway that closes in front of you, open it before it expands too much and becomes resistance to rotation during the expansion process.
Air inlet 69 that closes at bottom dead center and serves as both the air inlet for air and the air outlet for the second intake process (air intake process) 69 Open at bottom dead center for the compression process of the combustion chamber As a countermeasure when opening the airway that closes before the top dead center too much, during the expansion process, open before it expands too much and becomes resistance to rotation,
An air inlet that closes at bottom dead center and serves both as an air intake and an air intake for the first time and the second time. AA cross section BB cross section CC cross section DD cross section EE cross section FF Section G-G Section H-H Section I-I Section J-J Section K-K Section L-L Section M-M Section N-N Section O-O Section

───────────────────────────────────────────────────── フロントページの続き (54)【発明の名称】 4サイクルエンジン、6サイクルエンジンに、ピストンバルブ、ロータリーバルブを使用した時 の、圧縮工程の時、本当に圧縮する工程よりも、膨張工程の時、本当に膨張する工程の方を、ス トロークで言うならば長くとる方法。   ─────────────────────────────────────────────────── ─── Continued front page    (54) [Title of Invention] When a piston valve or rotary valve is used in a 4-cycle engine or a 6-cycle engine                     In the compression process, the process that really expands during the expansion process is                     In trooke, it's a long way.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】4サイクルエンジン(ガソリンエンジンと
ディーゼルエンジンと筒内噴射ガソリンエンジン。)、
6サイクルエンジン〔ガソリンエンジンとディーゼルエ
ンジン(平成2年特許願第417964号)と筒内噴射
6サイクルガソリンエンジン(平成8年特許願第172
736号)。〕に、ピストンバルブ、ロータリーバルブ
(平成3年特許願第356145号)を使用した時、吸
気工程(6サイクルエンジンの場合は1回目の吸気工
程。)の時、上死点で開き下死点で閉じる弁(ピストン
バルブ)、気口(ロータリーバルブ)、と、圧縮工程の
時、下死点で開き上死点の手前の間で閉じる弁、気口、
の、2種類の、弁、気口、を設ける(何も無い空間は、
必要である。)
1. A four-cycle engine (gasoline engine, diesel engine, in-cylinder injection gasoline engine),
6-cycle engine [gasoline engine and diesel engine (1990 patent application No. 417964) and cylinder injection 6-cycle gasoline engine (1996 patent application No. 172)
736). ], When using a piston valve and a rotary valve (Japanese Patent Application No. 356145 of 1991), in the intake stroke (the first intake stroke in the case of a 6-cycle engine.), Open at the top dead center and bottom dead center A valve (piston valve), an air port (rotary valve) that closes at, and a valve that opens at the bottom dead center and closes before the top dead center during the compression process.
There are two types of valves and vents (the empty space is
is necessary. )
【請求項2】請求項1記載の、吸気工程の時、上死点で
開き下死点で閉じる弁、気口と、圧縮工程の時、下死点
で開き上死点の手前の間で閉じる弁、気口からの(へ
の)先に、何も無い空間(混合気、又は、空気が一時停
滞する所。)を取り付ける。
2. The valve according to claim 1, which is opened at the top dead center during the intake stroke and closed at the bottom dead center, and the air port, and between the valve opened at the bottom dead center before the top dead center during the compression stroke. Install an empty space (air mixture or a place where air temporarily stagnates) at (close to) the closing valve and the mouth.
【請求項3】請求項2記載の、吸気工程の時、上死点で
開き下死点で閉じる弁、気口と、圧縮工程の時、下死点
で開き上死点の手前の間で閉じる弁、気口の、何も無い
空間への(からの)通路、を、何も無い空間の端と端に
取り付ける。
3. The valve according to claim 2, which is opened at the top dead center during the intake stroke and closed at the bottom dead center, and the air port, and between the valve opened at the bottom dead center and before the top dead center during the compression stroke. Attach a closing valve, a passageway to the empty space to and from the empty space.
【請求項4】多気筒の時、請求項2記載の何も無い空間
を、他の気筒の何も無い空間と、1つにつなぐ。
4. When there are multiple cylinders, the empty space according to claim 2 is connected to the empty spaces of the other cylinders.
【請求項5】4サイクルエンジンの場合は、4気筒以上
の時、吸気工程の時、上死点で開き下死点で閉じる弁、
気口が、吸気工程で開く時には、その時、他の気筒の、
圧縮工程の時、下死点で開き上死点の手前の間で閉じる
弁、気口の中で、圧縮工程で閉じる弁、気口へと、直接
つなぐ。
5. In the case of a 4-cycle engine, a valve that opens at the top dead center and closes at the bottom dead center during the intake stroke when there are four or more cylinders,
When the air vent opens in the intake stroke, at that time, in other cylinders,
In the compression process, the valve is opened at the bottom dead center and closed before the top dead center. In the air port, the valve is closed in the compression process and the air port is directly connected.
【請求項6】6サイクルエンジンの場合は、6気筒以上
の時、1回目の吸気工程の時、上死点で開き下死点で閉
じる弁、気口が、1回目の吸気工程で開く時には、その
時、他の気筒の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる弁、気口の中で、圧縮工程で閉じる
弁、気口へと、直接つなぐ。
6. In the case of a 6-cycle engine, when the number of cylinders is 6 or more, the valve that opens at the top dead center and closes at the bottom dead center during the first intake stroke, and the air port opens during the first intake stroke At that time, in the compression process of another cylinder, a valve that opens at the bottom dead center and closes before the top dead center, a valve that closes in the compression process in the air port, and the air port are directly connected.
【請求項7】圧縮工程の時、下死点で開き上死点の手前
の間で閉じる弁、気口を開け過ぎた時の対策として、膨
張工程の時、4サイクルディーゼルエンジンと、筒内噴
射4サイクルガソリンエンジンと、6サイクルディーゼ
ルエンジンと、筒内噴射6サイクルガソリンエンジンの
場合は、膨張し過ぎて回転の抵抗になる前に、吸気弁、
吸気口を開き、下死点で閉じる。
7. A valve that opens at the bottom dead center during the compression process and closes before the top dead center, and as a countermeasure against excessive opening of the air vent, during the expansion process, a 4-cycle diesel engine, and a cylinder In the case of the injection 4-cycle gasoline engine, the 6-cycle diesel engine, and the in-cylinder injection 6-cycle gasoline engine, the intake valve,
Open the intake port and close it at bottom dead center.
【請求項8】圧縮工程の時、下死点で開き上死点の手前
の間で閉じる弁、気口を開けすぎた時の対策として、膨
張工程の時、4サイクルガソリンエンジンの場合は、空
気専用の吸気弁、吸気口を設け、6サイクルガソリンエ
ンジンの場合は、空気専用の吸気弁、吸気口(2回目の
吸気工程の時の、吸気弁、吸気口)を、膨張し過ぎて回
転の抵抗になる前に開き、下死点で閉じる。
8. A valve which opens at the bottom dead center during the compression process and closes before the top dead center, and as a countermeasure against excessive opening of the air vent, during the expansion process, in the case of a 4-cycle gasoline engine, Air intake valve and air intake port are provided, and in the case of a 6-cycle gasoline engine, the air intake valve and air intake port (intake valve and air intake port during the second intake process) are expanded too much to rotate. It opens before it becomes resistance to and closes at bottom dead center.
JP2001403296A 2001-12-31 2001-12-31 Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine Pending JP2003201873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001403296A JP2003201873A (en) 2001-12-31 2001-12-31 Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001403296A JP2003201873A (en) 2001-12-31 2001-12-31 Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine

Publications (1)

Publication Number Publication Date
JP2003201873A true JP2003201873A (en) 2003-07-18

Family

ID=27640539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001403296A Pending JP2003201873A (en) 2001-12-31 2001-12-31 Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine

Country Status (1)

Country Link
JP (1) JP2003201873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661197A (en) * 2012-05-14 2012-09-12 黄绵坤 Gas rotating cylinder auxiliary working energy-saving method for internal combustion engine
KR101305821B1 (en) * 2012-02-14 2013-09-06 한양대학교 에리카산학협력단 Variable compression ratio engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305821B1 (en) * 2012-02-14 2013-09-06 한양대학교 에리카산학협력단 Variable compression ratio engine
CN102661197A (en) * 2012-05-14 2012-09-12 黄绵坤 Gas rotating cylinder auxiliary working energy-saving method for internal combustion engine

Similar Documents

Publication Publication Date Title
US8051811B2 (en) Knock resistant split-cycle engine
US6467440B1 (en) Two stroke internal combustion engine
JP4322204B2 (en) Method for controlling a supercharged internal combustion engine comprising at least two cylinders and an engine using such a method
JP2003201873A (en) Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine
AU725932B2 (en) Two-cycle internal combustion engine
JP3932267B2 (en) 2-cycle engine
JP2004332708A (en) Method of adopting longer effective expansion stroke than effective compression stroke when using piston valve or rotary valve for 4-cycle engine or 6-cycle engine
JP2001082187A (en) Method for making actual expansion stroke in expansion stroke longer in stroke than actual compression stroke in compression stroke in the case of using piston valve and rotary vlave in 4-cycle engine or 6-cycle engine
JP2000199441A (en) Method of sparing longer time in terms of strokes for actually expanding process in expansion process than actually compressing process in compression process in using piston valve or rotary valve in four-cycle engine or six-cycle engine
JP2000274255A (en) Setting stroke for really expanding at time of expanding stroke longer than stroke for really compressing at time of compressing stroke when using piston valve and rotary valve for four-cycle engine and six-cycle engine
JP2001234770A (en) Method for taking really expanding stroke at expansion stroke longer than really compressing stroke at compression stroke when piston valve and rotary valve are used for four-cycle engine and six-cycle engine
JP2002201947A (en) Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engine
JPH11303644A (en) Method of taking longer stroke in compression stroke than in actual compression stroke and taking longer stroke in actual expansion stroke than in expansion stroke, in using piston valve and rotary valve for four cycle engine and six cycle engine
JPS58148227A (en) Intake device of multi-cylinder engine
JPS6030430Y2 (en) Internal combustion engine starting accelerator
JP2002276398A (en) Measure for valve or air opening opened in intake stroke and closed after starting compression stroke in use of piston valve or rotary valve to 4-cycle gasoline engine or 6-cycle gasoline engine
JPH10196377A (en) Method for to performing longer stroke at real expansion stroke time than at real compression stroke time when piston valve and rotary valve are used in 4-cycle engine and 6-cycle engine
JPH022904Y2 (en)
JP2001355450A (en) Stratified scavenging two-stroke internal combustion engine
JPH1047068A (en) Internal combustion engine
JP2000186558A (en) Stratified scavenging 2-cycle engine
JP2003262137A (en) Method for making actual expansion ratio larger than actual compression ratio when piston valve and rotary valve are used for 4-cycle engine, 6-cycle engine, 8-cycle engine, and 10-or-more cycle engine
JP3143394B2 (en) 2 cycle engine
JP2005076628A5 (en)
JP2001032730A (en) Method for making true expansion ratio larger than true compression ratio when piston valve and rotary valve are used for four-cycle engine, six-cycle engine, eight- cycle engine and ten- or more-cycle engine