JP2002201947A - Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engine - Google Patents
Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engineInfo
- Publication number
- JP2002201947A JP2002201947A JP2000405093A JP2000405093A JP2002201947A JP 2002201947 A JP2002201947 A JP 2002201947A JP 2000405093 A JP2000405093 A JP 2000405093A JP 2000405093 A JP2000405093 A JP 2000405093A JP 2002201947 A JP2002201947 A JP 2002201947A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- dead center
- intake
- stroke
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
- F02B41/02—Engines with prolonged expansion
- F02B41/04—Engines with prolonged expansion in main cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B75/021—Engines characterised by their cycles, e.g. six-stroke having six or more strokes per cycle
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、4サイクルエンジ
ン(ガソリンエンジンとディーゼルエンジンと筒内噴射
ガソリンエンジン。)、6サイクルエンジン〔ディーゼ
ルエンジンとガソリンエンジン(平成2年特許願第41
7964号)と筒内噴射6サイクルガソリンエンジン
(平成8年特許願第172736号)。〕に、ピストン
バルブ、ロータリーバルブ(平成3年特許願第3561
45号)を使用した時の、圧縮工程の時、本当に圧縮す
る工程よりも、膨張工程の時、本当に膨張する工程の方
を、ストロークで言うならば長くとる方法と、長くとり
過ぎた時の対策と、多気筒の時、他の気筒との相互性に
関する。The present invention relates to a four-stroke engine (a gasoline engine, a diesel engine, and a direct injection gasoline engine), a six-stroke engine (a diesel engine and a gasoline engine (Japanese Patent Application No. 41, 1990).
No. 7964) and a direct injection 6-cycle gasoline engine (1996 Patent Application No. 172736). ], A piston valve and a rotary valve (Patent Application No. 3561 of 1991)
No.45), when the compression process, the expansion process in the expansion process is really longer than in the compression process, the stroke is longer in terms of stroke. Regarding the countermeasures and the reciprocity with other cylinders in the case of multiple cylinders.
【0002】[0002]
【従来の技術】従来の、4サイクルエンジン、6サイク
ルエンジンに、ピストンバルブ、ロータリーバルブを使
用した時の工程にあっては、理論として、 圧縮比=膨張比(本当は、バルブ・タイミングなどで違
ってくる。) である。2. Description of the Related Art Conventionally, in a process in which a piston valve and a rotary valve are used in a 4-cycle engine and a 6-cycle engine, the compression ratio = expansion ratio (actually, it differs depending on the valve timing and the like). Come.)
【0003】[0003]
【発明が解決しようとする課題】従来の、4サイクルエ
ンジン、6サイクルエンジンに、ピストンバルブ、ロー
タリーバルブを使用した時の工程にあっては、膨張工程
の時、爆発に因って膨張してしまう前に、排気工程に移
ってしまい、爆発に因って出たエネルギー(パワー、ト
ルク)を、充分、ピストン、そして、クランク・シャフ
トへと伝えられないまま排出してしまう、と言う問題点
があった。In the process when a piston valve and a rotary valve are used in a conventional four-cycle engine or six-cycle engine, in the expansion process, the piston expands due to an explosion. The problem is that the energy (power, torque) generated by the explosion is exhausted without being transmitted to the piston and the crankshaft, before moving to the exhaust process. was there.
【0004】本発明は、4サイクルエンジン、6サイク
ルエンジンに、ピストンバルブ、ロータリーバルブを使
用した時の、圧縮工程の時、本当に圧縮する工程より
も、膨張工程の時、本当に膨張する工程の方を、ストロ
ークで言うならば長くとる方法を得る事を目的としてお
り、さらに、長くとり過ぎた時の対策と、多気筒の時、
他の気筒との相互性を得る事を目的としている。[0004] The present invention relates to a four-stroke engine or a six-stroke engine, in which a piston valve or a rotary valve is used. The aim is to obtain a method that takes a long stroke in terms of stroke, furthermore, measures for taking too long, and for multiple cylinders,
The purpose is to obtain reciprocity with other cylinders.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明の、4サイクルエンジン、6サイクルエンジ
ンに、ピストンバルブ、ロータリーバルブを使用した時
の、圧縮工程の時、本当に圧縮する工程よりも、膨張工
程の時、本当に膨張する工程の方を、ストロークで言う
ならば長くとる方法においては、吸気工程(6サイクル
エンジンの場合は1回目の吸気工程)の時、上死点で開
き下死点で閉じる弁、気口と、圧縮工程の時、下死点で
開き上死点の手前の間で閉じる弁、気口の、2種類の、
弁、気口、を設ける。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a four-stroke engine and a six-stroke engine using a piston valve and a rotary valve. In the method of taking the stroke which really expands in the case of the stroke in the case of the stroke, it opens at the top dead center in the intake process (the first intake process in the case of a 6-cycle engine). Two types of valves and vents that close at the bottom dead center, and valves and vents that open at the bottom dead center and close before the top dead center during the compression process,
Provide valves, air vents.
【0006】上記2種類の弁、気口への(からの)通路
の先に、何も無い空間(混合気、又は、空気が一時停滞
する所。)、を取り付ける。At the end of the two types of valves, the passage to (from) the air port, an empty space (where the air-fuel mixture or air temporarily stagnates) is installed.
【0007】上記2種類の弁、気口の、何も無い空間へ
の通路を、何も無い空間の端と端に取り付ける。[0007] Passages to the empty space of the above two types of valves and vents are attached to the ends of the empty space.
【0008】また、多気筒の時、前記の何も無い空間
を、他の気筒の何も無い空間と、1つにつなぐ。In the case of a multi-cylinder engine, the empty space is connected to the empty space of the other cylinders.
【0009】そして、4サイクルエンジンの場合は、4
気筒以上の時、吸気工程の時、上死点で開き下死点で閉
じる弁、気口が、吸気工程で開く時には、その時、他の
気筒の、圧縮工程の時、下死点で開き上死点の手前の間
で閉じる弁、気口の中で、圧縮工程で開く弁、気口へ
と、直接つなぐ。In the case of a 4-cycle engine, 4
When the number of cylinders is more than the cylinder, in the intake process, the valve opens at the top dead center and closes at the bottom dead center.When the air port opens in the intake process, the other cylinder opens at the bottom dead center during the compression process. The valve closes just before the dead center, in the vent, connects directly to the valve, vent that opens in the compression process.
【0010】さらに、6サイクルエンジンの場合は、6
気筒以上の時、1回目の吸気工程の時、上死点で開き下
死点で閉じる弁、気口が、1回目の吸気工程で開く時に
は、その時、他の気筒の、圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁、気口の中で、圧縮工程で
開く弁、気口へと、直接つなぐ。Further, in the case of a 6-cycle engine, 6
At the time of the cylinder or more, at the time of the first intake process, when the valve and the vent are opened at the top dead center and closed at the bottom dead center, and when the vent is opened in the first intake process, then at the time of the compression process of the other cylinder, In the valve and vent that opens at the bottom dead center and closes before the top dead center, it is directly connected to the valve and vent that opens in the compression process.
【0011】また、圧縮工程の時、下死点で開き上死点
の手前の間で閉じる弁、気口を開け過ぎた時の対策とし
て、膨張工程の時、4サイクルディーゼルエンジンと、
筒内噴射4サイクルガソリンエンジンと、6サイクルデ
ィーゼルエンジンと、筒内噴射6サイクルガソリンエン
ジンの場合は、膨張し過ぎて回転の抵抗になる前に、吸
気弁、吸気口を開き、下死点で閉じる(膨張し過ぎて回
転の抵抗になる前に、吸気口を開き、下死点で閉じると
言う事は、同じロータリーバルブの吸気口を兼用するの
ではなく、吸気口のあるロータリーバルブに、吸気口を
設ける事である。)。In the compression process, a valve that opens at the bottom dead center and closes before the top dead center, and as a measure against excessive opening of the air vent, a four-cycle diesel engine is used in the expansion process,
In the case of in-cylinder 4-cycle gasoline engine, 6-cycle diesel engine, and 6-cycle in-cylinder gasoline engine, the intake valve and the intake port are opened at the bottom dead center before the engine expands excessively and becomes rotational resistance. Close (opening the intake before closing at the bottom dead center before it expands too much to resist rotation) means that instead of using the same rotary valve as the intake, the rotary valve with the intake is It is to provide an intake port.)
【0012】また、圧縮工程の時、下死点で開き上死点
の手前の間で閉じる弁、気口を開け過ぎた時の対策とし
て、膨張工程の時、4サイクルガソリンエンジンの場合
は、空気専用の吸気弁、吸気口を設け、6サイクルガソ
リンエンジンの場合は、空気専用の吸気弁、吸気口(2
回目の吸気工程の時の、吸気弁、吸気口。)を、膨張し
過ぎて回転の抵抗になる前に開き、下死点で閉じる。In the case of a four-cycle gasoline engine, in the case of a four-cycle gasoline engine, in the case of an expansion process, a valve which opens at the bottom dead center and closes before the top dead center in the compression process, and a countermeasure for opening the vent too much. An air-only intake valve and intake port are provided. In the case of a 6-cycle gasoline engine, an air-only intake valve and intake port (2
The intake valve and intake during the second intake process. ) Opens before it expands too much to resist rotation and closes at bottom dead center.
【0013】[0013]
【作用】上記のように構成された、4サイクルエンジ
ン、6サイクルエンジンに、ピストンバルブ、ロータリ
ーバルブを使用した時の、圧縮工程の時、本当に圧縮す
る工程よりも、膨張工程の時、本当に膨張する工程の方
を、ストロークで言うならば長くとる方法においては、
吸気工程の時、上死点で開き下死点で閉じる弁、気口
と、圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁、気口の、2種類の弁、気口を設ける事に因り、
本当の、 圧縮比<膨張比(何も無い空間は、必要である。) の工程が行える。When a piston valve and a rotary valve are used in a four-stroke engine and a six-stroke engine configured as described above, the expansion process is more effective than the compression process in the compression process. In the method of taking the process to be longer in terms of stroke,
Two types of valves: a valve and a vent that opens at the top dead center and closes at the bottom dead center during the intake process, and a valve and vent that opens at the bottom dead center and closes before the top dead center during the compression process. , Due to the mood,
The process of real compression ratio <expansion ratio (the space where there is nothing) is necessary.
【0014】そして、上記の、吸気工程の時、上死点で
開き下死点で閉じる弁、気口と、圧縮工程の時、下死点
で開き上死点の手前の間で閉じる弁、気口への通路の先
に、何も無い空間、を取り付ける事に因り、次の吸気工
程の時、混合気、又は、空気は、シリンダー内に還元さ
れる。A valve that opens at the top dead center and closes at the bottom dead center during the intake process, and a valve that opens at the bottom dead center and closes before the top dead center during the compression process; Due to the installation of an empty space at the end of the passage to the vent, during the next intake step, the mixture or air is reduced back into the cylinder.
【0015】さらに、4サイクルガソリンエンジンと、
6サイクルガソリンエンジンの場合は、混合気が還元さ
れるので、燃料を無駄にしなくなる。Further, a four-cycle gasoline engine,
In the case of a six-cycle gasoline engine, the mixture is reduced, so that fuel is not wasted.
【0016】また、吸気工程の時、上死点で開き下死点
で閉じる弁、気口と、圧縮工程の時、下死点で開き上死
点の手前の間で閉じる弁、気口の、何も無い空間への通
路を、何も無い空間の端と端に取り付ける事に因り、混
合気、又は、空気は、一定方向に流れる。Also, in the intake process, a valve and a vent that open at the top dead center and close at the bottom dead center, and a valve and a vent that opens at the bottom dead center and closes before the top dead center during the compression process. The air-fuel mixture or air flows in a certain direction due to the passage to the empty space attached to the end of the empty space.
【0017】また、多気筒の時、何も無い空間を、他の
気筒の何も無い空間と、1つにつなぐ事に因り、次の吸
気工程を待たずに、混合気、又は、空気は、他の気筒の
吸気工程の時に吸気されるように、各気筒の工程を組め
る。In addition, in the case of a multi-cylinder engine, the air-fuel mixture or air can be formed without waiting for the next intake process by connecting the empty space to the empty space of the other cylinders. The process of each cylinder can be set so that air is taken in at the time of the intake process of another cylinder.
【0018】そして、4サイクルディーゼルエンジン
と、筒内噴射4サイクルガソリンエンジンと、6サイク
ルディーゼルエンジンと、筒内噴射6サイクルガソリン
エンジンの場合は、吸気工程の時、上死点で開き下死点
で閉じる弁、気口と、何も無い空間は必要としなくな
り、圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁、気口だけで、圧縮工程の時、本当に圧縮する工
程よりも、膨張工程の時、本当に膨張する工程の方を、
ストロークで言うならば長くとる方法は得れ、また、排
気弁、排気口を代用しても、その方法は得れるが、以下
に説明する気筒数の時は、つなげた方がよい(排気口を
代用すると言う事は、同じ排気口を兼用するのではな
く、排気口のあるロータリーバルブに、気口を設ける事
である。)。In the case of a 4-cycle diesel engine, a direct-injection 4-cycle gasoline engine, a 6-cycle diesel engine, and a direct-injection 6-cycle gasoline engine, they open at the top dead center during the intake stroke and have the bottom dead center. No need for a valve, vent, and empty space to close at the time of the compression process. At the compression process, it opens at the bottom dead center and closes just before the top dead center. The process of really expanding during the expansion process, rather than the process of doing
In terms of the stroke, a long method can be obtained, and the method can be obtained by substituting the exhaust valve and the exhaust port. However, when the number of cylinders described below is used, it is better to connect the cylinders (exhaust port). Substituting is not to use the same exhaust port, but to provide an air port in a rotary valve having an exhaust port.)
【0019】それは、4サイクルエンジンの場合は、4
気筒以上の時、それぞれの気筒に違う工程を行なわせる
事ができるので、吸気工程の時、上死点で開き下死点で
閉じる弁、気口が、吸気工程で開く時には、その時、他
の気筒の、圧縮工程の時、下死点で開き上死点の手前の
間で閉じる弁、気口の中で、圧縮工程で開く弁、気口へ
と、直接つなぐ事に因り、吸気工程の時には、他の気筒
に圧縮される形で吸気され、また、圧縮工程の時、下死
点で開き上死点の手前の間で閉じる弁、気口が、圧縮工
程で開く時には、その時、他の気筒の、吸気工程の時、
上死点で開き下死点で閉じる弁、気口の中で、吸気工程
で開く弁、気口へと、直接つなぐ事に因り、圧縮工程の
時には、他の気筒に吸気される形で圧縮される。That is, in the case of a 4-cycle engine, 4
When the number of cylinders is more than the cylinder, it is possible to make each cylinder perform a different process, so when the intake process, the valve that opens at the top dead center and closes at the bottom dead center, when the vent opens in the intake process, at that time, During the compression process of the cylinder, the valve opens at the bottom dead center and closes before the top dead center. In some cases, the intake air is compressed by other cylinders, and in the compression process, the valves and vents that open at the bottom dead center and close before the top dead center are opened during the compression process. During the intake process of the cylinder
A valve that opens at the top dead center and closes at the bottom dead center.In the vent, the valve opens in the intake process. Is done.
【0020】また、6サイクルエンジンの場合は、6気
筒以上の時、それぞれの気筒に違う工程を行なわせる事
ができるので、1回目の吸気工程の時、上死点で開き下
死点で閉じる弁、気口が、1回目の吸気工程で開く時に
は、その時、他の気筒の、圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁、気口の中で、圧縮工程で
開く弁、気口へと、直接つなぐ事に因り、1回目の吸気
工程の時には、他の気筒に圧縮される形で吸気され、ま
た、圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁、気口が、圧縮工程で開く時には、その時、他の
気筒の、1回目の吸気工程の時、上死点で開き下死点で
閉じる弁、気口の中で、1回目の吸気工程で開く弁、気
口へと、直接つなぐ事に因り、圧縮工程の時には、他の
気筒に吸気される形で圧縮される。In the case of a six-cycle engine, when the number of cylinders is six or more, each cylinder can perform a different process. Therefore, in the first intake process, the cylinder opens at the top dead center and closes at the bottom dead center. When the valve and air port are opened in the first intake process, then, in the other cylinder, during the compression process, the valve opens at the bottom dead center and closes before the top dead center. Due to the direct connection to valves and vents that open in the process, during the first intake process, air is sucked in the form compressed by other cylinders, and in the compression process, it opens at the bottom dead center and top dead. When the valve or vent closes before the point is opened in the compression stroke, then, in the first intake stroke of another cylinder, the valve opens at the top dead center and closes at the bottom dead center. In the compression process, air is taken into other cylinders by connecting directly to the valve and air port that opens in the first intake process. In is compressed.
【0021】そして、圧縮工程の時、下死点で開き上死
点の手前の間で閉じる弁、気口を開け過ぎた時の対策と
して、膨張工程の時、4サイクルディーゼルエンジン
と、筒内噴射4サイクルガソリンエンジンと、6サイク
ルディーゼルエンジンと、筒内噴射6サイクルガソリン
エンジンの場合は、膨張し過ぎて回転の抵抗になる前
に、吸気弁、吸気口を開き、下死点で閉じる事に因り、
さらに、 圧縮比<膨張比 の比率の割合いが高くとれ、膨張工程もスムーズに行え
る。In the compression process, a valve that opens at the bottom dead center and closes before the top dead center, and as a countermeasure for opening the vent too much, the expansion process uses a four-cycle diesel engine and an in-cylinder In the case of a 4-cycle gasoline engine, a 6-cycle diesel engine, and a 6-cycle in-cylinder gasoline engine, open the intake valve and intake port and close at the bottom dead center before expanding too much and causing rotation resistance. According to
Furthermore, the ratio of compression ratio <expansion ratio can be set high, and the expansion process can be performed smoothly.
【0022】また、圧縮工程の時、下死点で開き上死点
の手前の間で閉じる弁、気口を開け過ぎた時の対策とし
て、膨張工程の時、4サイクルガソリンエンジンの場合
は、空気専用の吸気弁、吸気口を設け、6サイクルガソ
リンエンジンの場合は、空気専用の吸気弁、吸気口を、
膨張し過きて回転の抵抗になる前に開き、下死点で閉じ
る事に因り、さらに、 圧縮比<膨張比 の比率の割合いが高くとれ、膨張工程もスムーズに行え
る。In the case of a four-stroke gasoline engine, in the case of a four-stroke gasoline engine, in the case of the expansion process, a valve which opens at the bottom dead center and closes before the top dead center during the compression process, and a countermeasure when the vent is excessively opened, An air-only intake valve and inlet are provided. In the case of a 6-cycle gasoline engine, an air-only intake valve and inlet are
Because it opens before it expands too much and becomes resistance to rotation, and closes at the bottom dead center, the ratio of compression ratio <expansion ratio can be high, and the expansion process can be performed smoothly.
【0023】[0023]
【発明の実施の形態】実施例について図面を参照して説
明すると、図1から図12においては、4サイクルエン
ジン、6サイクルエンジンに、ピストンバルブ、ロータ
リーバルブを使用した時の、圧縮工程の時、本当に圧縮
する工程よりも、膨張工程の時、本当に膨張する工程の
方を、ストロークで言うならば長くとる方法の、弁、気
口の配置を示した横断面図であり、図1から図12は、 図1 4サイクルガソリンエンジンにピストンバルブを用いた
時の、横断面図であり、混合気専用の吸気弁と、排気弁
と、吸気工程の時、上死点で開き下死点で閉じる弁と、
圧縮工程の時、下死点で開き上死点の手前の間で閉じる
弁と、空気専用の吸気弁(圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁を開け過ぎた時の対策とし
て、膨張工程の時、膨張し過ぎて回転の抵抗になる前に
開き、下死点で閉じる、空気専用の吸気弁。)を設けた
事を示す図である(以後、吸気工程の時、上死点で開き
下死点で閉じる弁は、弁a、であり、圧縮工程の時、下
死点で開き上死点の手前の間で閉じる弁は、弁b、であ
り、空気専用の吸気弁は、弁c、であり、6サイクルエ
ンジンの時の弁aは、1回目の吸気工程の時の弁a、で
ある。)。 図2 4サイクルガソリンエンジンにロータリーバルブを用い
た時の、横断面図であり、ロータリーバルブを3つ用
い、その内、2つのロータリーバルブの断面(内型)
を、H型、にし、混合気専用の吸気口と、排気口と、吸
気工程の時、上死点で開き下死点で閉じる気口と、圧縮
工程の時、下死点で開き上死点の手前の間で閉じる気口
と、空気専用の吸気口(圧縮工程の時、下死点で開き上
死点の手前の間で閉じる気口を開け過ぎた時の対策とし
て、膨張工程の時、膨張し過ぎて回転の抵抗になる前に
開き、下死点で閉じる、空気専用の吸気口。)のある部
分を設けた事を示す図である(以後、吸気工程の時、上
死点で開き下死点で閉じる気口は、気口d、であり、圧
縮工程の時、下死点で開き上死点の手前の間で閉じる気
口は、気口e、であり、空気専用の吸気口は、気口f、
であり、6サイクルエンジンの時の気口dは、1回目の
吸気工程の時の、気口d、である。)。 図3 4サイクルディーゼルエンジンにピストンバルブを用い
た時の、横断面図であり、吸気弁と弁cを兼ねた吸気弁
と、排気弁と、弁aと、弁bを設けた事を示す図であ
る。 図4 4サイクルディーゼルエンジンにロータリーバルブを用
いた時の、横断面図であり、断面を、H型、にしたロー
タリーバルブを2つ用い、吸気口と気口fと、排気口
と、気口dと、気口eのある部分を設けた事を示す図で
ある。 図5 筒内噴射4サイクルガソリンエンジンにピストンバルブ
を用いた時の、横断面図であり、吸気弁と弁cを兼ねた
吸気弁と、排気弁と、弁aと、弁bを設けた事を示す図
である。 図6 筒内噴射4サイクルガソリンエンジンにロータリーバル
ブを用いた時の、横断面図であり、断面を、H型、にし
たロータリーバルブを2つ用い、吸気口と気口fと、排
気口と、気口dと、気口eのある部分を設けた事を示す
図である。 図7 6サイクルガソリンエンジンにピストンバルブを用いた
時の、横断面図であり、混合気専用の吸気弁と、1回目
と2回目の排気を兼ねた排気弁と、弁aと、弁bと、2
回目の吸気工程の時の弁と弁cを兼ねた弁を設けた事を
示す図である。 図8 6サイクルガソリンエンジンにロータリーバルブを用い
た時の、横断面図であり、ロータリーバルブを3つ用
い、その内、2つのロータリーバルフの断面を、H型、
にし、混合気専用の吸気口と、1回目と2回目の排気口
と、気口dと、気口eと、2回目の吸気口と気口fのあ
る部分を設けた事を示す図である。 図9 6サイクルディーゼルエンジンにピストンバルブを用い
た時の、横断面図であり、1回目と2回目の吸気と弁c
を兼ねた吸気弁と、1回目と2回目の排気を兼ねた排気
弁と、弁aと、弁bを設けた事を示す図である。 図10 6サイクルディーゼルエンジンにロータリーバルブを用
いた時の、横断面図であり、断面を、H型、にしたロー
タリーバルブを2つ用い、1回目と2回目の吸気口と気
口fと、1回目と2回目の排気口と、気口dと、気口e
のある部分を設けた事を示す図である。 図11 筒内噴射6サイクルガソリンエンジンにピストンバルブ
を用いた時の、横断面図であり、1回目と2回目の吸気
と弁cを兼ねた吸気弁と、1回目と2回目の排気を兼ね
た排気弁と、弁aと、弁bを設けた事を示す図である。 図12 筒内噴射6サイクルガソリンエンジンにロータリーバル
ブを用いた時の、横断面図であり、断面を、H型、にし
たロータリーバルブを2つ用い、1回目と2回目の吸気
口と気口fと、1回目と2回目の排気口と、気口dと、
気口eのある部分を設けた事を示す図である。である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described with reference to the drawings. In FIGS. 1 to 12, a four-stroke engine and a six-stroke engine use a piston valve and a rotary valve in a compression step. FIG. 1 is a cross-sectional view showing the arrangement of valves and vents in a method of taking a process of actually expanding at the time of an expansion process longer than a process of truly compressing, in terms of stroke. Fig. 12 is a cross-sectional view of a four-stroke gasoline engine using a piston valve. The intake valve and the exhaust valve are exclusively for air-fuel mixture. A closing valve,
During the compression process, a valve that opens at the bottom dead center and closes before the top dead center, and an intake valve dedicated to air (opens a valve that opens at the bottom dead center and closes before the top dead center during the compression process) It is a diagram showing that, as a countermeasure in the event of passing, an intake valve dedicated to air is provided in the expansion step, which opens before closing due to excessive expansion and becomes a resistance to rotation, and is closed at the bottom dead center. In the intake process, the valve that opens at the top dead center and closes at the bottom dead center is the valve a, and during the compression process, the valve that opens at the bottom dead center and closes before the top dead center is the valve b. The intake valve dedicated to air is the valve c, and the valve a in the case of the 6-cycle engine is the valve a in the first intake process.) Fig. 2 is a cross-sectional view when a rotary valve is used in a four-cycle gasoline engine, in which three rotary valves are used, and two rotary valves are used (inner die).
Into an H-shape, an intake port dedicated to the mixture, an exhaust port, a vent that opens at the top dead center in the intake process and closes at the bottom dead center, and an open top dead center at the compression process A vent that closes before the point and an air inlet dedicated to air (as a countermeasure when the vent that opens at the bottom dead center and closes before the top dead center is too open during the compression process, FIG. 5 is a diagram showing that a portion having an air-only intake port that opens before opening and closes at the bottom dead center before becoming a resistance to rotation due to excessive expansion is provided. The opening that opens at the point and closes at the bottom dead center is the opening d. During the compression process, the opening that opens at the bottom dead center and closes before the top dead center is the opening e. The dedicated intake port is
And the air port d in the case of the 6-cycle engine is the air port d in the first intake process. ). FIG. 3 is a cross-sectional view when a piston valve is used in a four-cycle diesel engine, showing that an intake valve serving also as an intake valve and a valve c, an exhaust valve, a valve a, and a valve b are provided. It is. FIG. 4 is a cross-sectional view when a rotary valve is used in a four-cycle diesel engine. The rotary valve has two H-shaped rotary valves, and an intake port, a vent f, an exhaust port, and a vent. It is a figure which shows that d and the part with the air | mouth e were provided. FIG. 5 is a cross-sectional view when a piston valve is used in a direct injection 4-cycle gasoline engine, in which an intake valve serving also as an intake valve and a valve c, an exhaust valve, a valve a, and a valve b are provided. FIG. FIG. 6 is a cross-sectional view when a rotary valve is used in a direct injection four-cycle gasoline engine, in which two rotary valves having an H-shaped cross section are used, and an intake port, a vent f, and an exhaust port are used. It is a figure which shows that the part with a mouth d and the mouth e was provided. FIG. 7 is a cross-sectional view when a piston valve is used in a six-cycle gasoline engine, and includes an intake valve dedicated to air-fuel mixture, an exhaust valve serving also as first and second exhausts, a valve a, and a valve b. , 2
FIG. 9 is a diagram showing that a valve serving as a valve and a valve c at the time of a second intake process is provided. Fig. 8 is a cross-sectional view when a rotary valve is used in a 6-cycle gasoline engine, in which three rotary valves are used, and two rotary valves are H-shaped,
FIG. 7 is a view showing that an inlet dedicated to an air-fuel mixture, a first outlet and a second outlet, a port d, a port e, and a portion having a second inlet and a port f are provided. is there. FIG. 9 is a cross-sectional view when a piston valve is used in a 6-cycle diesel engine.
FIG. 3 is a diagram showing that an intake valve serving also as a valve, an exhaust valve serving also as first and second exhausts, a valve a, and a valve b are provided. FIG. 10 is a transverse cross-sectional view when a rotary valve is used in a 6-cycle diesel engine, using two rotary valves having H-shaped cross sections, the first and second intake ports and air ports f, First and second exhaust port, vent d, vent e
It is a figure showing that a certain part was provided. FIG. 11 is a cross-sectional view when a piston valve is used in a direct injection 6-cycle gasoline engine. The intake valve also serves as the first and second intake and the valve c, and also serves as the first and second exhaust. FIG. 7 is a view showing that an exhaust valve, a valve a, and a valve b are provided. FIG. 12 is a cross-sectional view when a rotary valve is used in a direct injection 6-cycle gasoline engine, in which two rotary valves having H-shaped cross sections are used, and the first and second intake ports and air ports. f, the first and second exhaust ports, the air port d,
It is a figure which shows that the part with the air | mouth e was provided. It is.
【0024】また、図1から図12に示される、弁c、
気口fは、圧縮工程の時、弁b、気口eを開け過ぎなけ
れば、必要としない。Further, the valves c and c shown in FIGS.
The vent f is not required unless the valve b and the vent e are opened too much during the compression process.
【0025】そして、4サイクルガソリンエンジンと、
6サイクルガソリンエンジンに、ピストンバルブ、ロー
タリーバルブを使用した時の、図1と、図2と、図7
と、図8には、気化器を取り付けてある。And a four-cycle gasoline engine,
FIGS. 1, 2 and 7 when a piston valve and a rotary valve are used in a 6-cycle gasoline engine.
In FIG. 8, a vaporizer is attached.
【0026】図13から図24に示される実施例では、 図13 図1を、断面A−Aの方向から見たと仮定した、縦断面
図である。 図14 図2を、断面B−Bの方向から見たと仮定した、縦断面
図である。 図15 図3を、断面C−Cの方向から見たと仮定した、縦断面
図である。 図16 図4を、断面D−Dの方向から見たと仮定した、縦断面
図である。 図17 図5を、断面E−Eの方向から見たと仮定した、縦断面
図である。 図18 図6を、断面F−Fの方向から見たと仮定した、縦断面
図である。 図19 図7を、断面G−Gの方向から見たと仮定した、縦断面
図である。 図20 図8を、断面H−Hの方向から見たと仮定した、縦断面
図である。 図21 図9を、断面I−Iの方向から見たと仮定した、縦断面
図である。 図22 図10を、断面J−Jの方向から見たと仮定した、縦断
面図である。 図23 図11を、断面K−Kの方向から見たと仮定した、縦断
面図である。 図24 図12を、断面L−Lの方向から見たと仮定した、縦断
面図である。である。In the embodiment shown in FIGS. 13 to 24, FIG. 13 is a longitudinal sectional view assuming that FIG. 1 is viewed from the direction of section AA. FIG. 14 is a longitudinal sectional view assuming that FIG. 2 is viewed from the direction of the section BB. FIG. 15 is a longitudinal sectional view assuming that FIG. 3 is viewed from the direction of the section CC. FIG. 16 is a longitudinal sectional view assuming that FIG. 4 is viewed from the direction of the section DD. FIG. 17 is a longitudinal sectional view assuming that FIG. 5 is viewed from the direction of the section EE. FIG. 18 is a longitudinal sectional view assuming that FIG. 6 is viewed from the direction of the section FF. FIG. 19 is a longitudinal sectional view assuming that FIG. 7 is viewed from the direction of the section GG. FIG. 20 is a longitudinal sectional view assuming that FIG. 8 is viewed from the direction of the section HH. FIG. 21 is a longitudinal sectional view assuming that FIG. 9 is viewed from the direction of the section II. FIG. 22 is a longitudinal sectional view assuming that FIG. 10 is viewed from the direction of section JJ. FIG. 23 is a longitudinal sectional view assuming that FIG. 11 is viewed from the direction of the section KK. FIG. 24 is a longitudinal sectional view assuming that FIG. 12 is viewed from the direction of the section LL. It is.
【0027】また、図1と図4と図13に示される、弁
aと弁b、気口dと気口eには、何も無い空間、を取り
付け、弁aと弁b、気口dと気口eの、何も無い空間へ
の(からの)通路は、何も無い空間の端と端に取り付け
てある。Also, empty spaces are attached to the valves a and b and the vents d and e shown in FIGS. 1, 4 and 13, and the valves a and b and the vent d Passages to and from the empty space of the air outlet e are attached to the ends of the empty space.
【0028】そして、図1から図24に示される、弁、
気口の数は、最低限必要な数だけを示したものであり、
また、何も無い空間は、代表例として、図1と図4と図
13に取り付けたものであり、弁、気口の、数と配置と
大きさは、エンジンによって違ってくる。The valve shown in FIGS. 1 to 24,
The number of mouths indicates only the minimum required number,
The empty space is a typical example attached to FIG. 1, FIG. 4 and FIG. 13, and the number, arrangement and size of valves and vents differ depending on the engine.
【0029】図25から図32に示される実施例では、
6サイクルガソリンエンジンにピストンバルブを使用し
た時の、圧縮工程の時、本当に圧縮する工程よりも、膨
張工程の時、本当に膨張する工程の方を、ストロークで
言うならば長くとる方法の時の工程を示す、断面G−G
の方向から見たと仮定した、縦断面図であり、図25か
ら図32は、 図25 1回目の吸気工程(混合気の吸気工程) 混合気専用の吸気弁と、弁aは、上死点で開き下死点で
閉じ、1回目と2回目の排気を兼ねた排気弁と、弁b
と、2回目の吸気工程の時の弁と弁cを兼ねた弁は閉じ
ている。 図26 圧縮工程−1 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁は閉じ、弁bは、下死点で開き上死点の
手前の間で閉じ、2回目の吸気工程の時の弁と弁cを兼
ねた弁は閉じている(図26に示される、弁bは、下死
点で開き、ピストンが約3分の2程、上昇した時点で閉
じると仮定した図であり、閉じる直前の図でもあ
る。)。 図27 圧縮工程−2(点火) 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bと、2回目の吸気工程の時の弁
と弁cを兼ねた弁は、閉じている。 図28 膨張工程−1 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bは閉じ、2回目の吸気工程の時
の弁と弁cを兼ねた弁は、混合気が膨張し過ぎて回転の
抵抗になる前に開く(図28に示される、2回目の吸気
工程の時の弁と弁cを兼ねた弁は、ピストンが約3分の
2程、下降した時点で開くと仮定した図であり、開いた
直後の図でもある。)。 図29 膨張工程−2(空気の吸気工程) 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bは閉じ、2回目の吸気工程の時
の弁と弁cを兼ねた弁も、下死点で閉じる(図29に示
される、2回目の吸気工程の時の弁と弁cを兼ねた弁
は、閉じた直後の図である。)。 図30 1回目の排気工程 混合気専用の吸気弁と、弁aは閉じ、1回目と2回目の
排気を兼ねた排気弁は開き、弁bと、2回目の吸気工程
の時の弁と弁cを兼ねた弁は閉じている。 図31 2回目の吸気工程(空気の吸気工程) 混合気専用の吸気弁と、弁aと、1回目と2回目の排気
を兼ねた排気弁と、弁bは閉じ、2回目の吸気工程の時
の弁と弁cを兼ねた弁は開いている。 図32 2回目の排気工程 混合気専用の吸気弁と、弁aは閉じ、1回目と2回目の
排気を兼ねた排気弁は開き、弁bと、2回目の吸気工程
の時の弁と弁cを兼ねた弁は閉じている。を示す図であ
る。In the embodiment shown in FIGS. 25 to 32,
When a piston valve is used in a 6-cycle gasoline engine, the process of expanding the process in the expansion process is longer than the process of the actual compression in the compression process. Shows the cross section GG
FIGS. 25 to 32 show the first intake process (air-fuel mixture intake process). The intake valve dedicated to the air-fuel mixture and the valve a are located at the top dead center. Open at the bottom dead center and close at the bottom dead center.
In addition, the valve serving as the valve and the valve c in the second intake process is closed. Fig. 26 Compression process-1 The intake valve dedicated to the air-fuel mixture, the valve a, and the exhaust valve serving also as the first and second exhausts are closed, and the valve b is opened at the bottom dead center and before the top dead center. The valve serving as the valve and the valve c at the time of the second suction process is closed (the valve b shown in FIG. 26 is opened at the bottom dead center, and the piston rises about two thirds). (It is a diagram that is assumed to be closed at the time, and is also a diagram immediately before closing.) FIG. 27 Compression process-2 (ignition) Intake valve dedicated to air-fuel mixture, valve a, exhaust valve serving also as first and second exhaust, valve b, valve and valve during second intake process The valve also serving as c is closed. FIG. 28 Expansion process-1 The intake valve dedicated to the air-fuel mixture, the valve a, the exhaust valve serving also as the first and second exhaust, and the valve b are closed, and the valve and the valve c in the second intake process are closed. The valve that also doubles opens before the air-fuel mixture expands too much and becomes a resistance to rotation (see FIG. 28, the valve that doubles as the valve during the second intake stroke and the valve c has a piston of about 3 minutes). 2 is a diagram assuming that it opens when it descends, and is also a diagram immediately after opening.) FIG. 29 Expansion process-2 (air intake process) The intake valve dedicated to the air-fuel mixture, the valve a, the exhaust valve serving also as the first and second exhaust, and the valve b are closed, and the second intake process is performed. The valve that also serves as the valve c also closes at the bottom dead center (the valve that also serves as the valve and the valve c at the time of the second intake process shown in FIG. 29 is a view immediately after the valve is closed). . FIG. 30. First Exhaust Process The intake valve dedicated to the air-fuel mixture and the valve a are closed, the exhaust valves serving as the first and second exhausts are opened, and the valve b and the valves and valves in the second intake process are opened. The valve also serving as c is closed. FIG. 31 Second intake process (air intake process) An intake valve dedicated to the air-fuel mixture, a valve a, an exhaust valve serving also as the first and second exhaust, and a valve b are closed, and the second intake process is performed. The valve serving as the time valve and the valve c is open. FIG. 32 Second Exhaust Step The intake valve dedicated to the air-fuel mixture and the valve a are closed, the exhaust valves serving as the first and second exhausts are opened, and the valve b and the valves and valves during the second intake step are opened. The valve also serving as c is closed. FIG.
【0030】また、6サイクルガソリンエンジンにロー
タリーバルブを使用した時の、圧縮工程の時、本当に圧
縮する工程よりも、膨張工程の時、本当に膨張する工程
の方を、ストロークで言うならば長くとる方法の時の工
程を示す、断面H−Hの方向から見たと仮定した、縦断
面図は描かれていないが、ピストンバルブを用いた時
と、ロータリーバルブを用いた時の工程は同一なので、
ここでは省く。In addition, when a rotary valve is used in a 6-cycle gasoline engine, the process of really expanding in the expansion process is longer than the process of really compressing in the compression process in terms of stroke. Although the vertical cross-sectional view showing the steps of the method and assuming that it was viewed from the direction of the section HH is not drawn, the steps when using the piston valve and when using the rotary valve are the same,
I omit it here.
【0031】そして、4サイクルガソリンエンジンに、
ピストンバルブ、ロータリーバルブを使用した時の、圧
縮工程の時、本当に圧縮する工程よりも、膨張工程の
時、本当に膨張する工程の方を、ストロークで言うなら
ば長くとる方法の時の工程を示す、断面A−A、断面B
−Bの方向から見たと仮定した、縦断面図も描かれてい
ないが、2回目の吸気工程と排気工程を省き、弁、気口
の名称を、混合気専用の吸気弁、又は、混合気専用の吸
気口と、排気弁、又は、排気口と、弁a、又は、気口d
と、弁b、又は、気口eと、弁c、又は気口fのある部
分に変えれば、それぞれの工程の図が描ける。Then, for a 4-cycle gasoline engine,
In the case of using a piston valve and a rotary valve, the process of expanding the process of expanding in the expansion process is longer than the process of truly compressing in the compression process. , Section A-A, section B
Although the vertical sectional view, which is assumed to be viewed from the direction of −B, is not drawn, the second intake process and the exhaust process are omitted, and the names of the valves and the vents are changed to the intake valve dedicated to the air-fuel mixture or the air-fuel mixture. Exclusive inlet, exhaust valve or exhaust, valve a or air d
And the valve b or the air port e and the valve c or the air port f, it is possible to draw a diagram of each process.
【0032】図33から図40に示される実施例では、
筒内噴射6サイクルガソリンエンジンにピストンバルブ
を使用した時の、圧縮工程の時、本当に圧縮する工程よ
りも、膨張工程の時、本当に膨張する工程の方を、スト
ロークで言うならば長くとる方法の時の工程を示す、断
面K−Kの方向から見たと仮定した、縦断面図であり、
図33から図40は、 図33 1回目の吸気工程 1回目と2回目の吸気と弁cを兼ねた吸気弁は開き、1
回目と2回目の排気を兼ねた排気弁は閉じ、弁aは開
き、弁bは閉じている。 図34 圧縮工程−1 1回目と2回目の吸気と弁cを兼ねた吸気弁と、1回目
と2回目の排気を兼ねた排気弁と、弁aは閉じ 弁b
は、下死点で開き上死点の手前の間で閉じる(図34に
示される、弁bは、下死点で開き、ピストンが約2分の
1程、上昇した時点で閉じると仮定した図であり、閉じ
る直前の図でもある。)。 図35 圧縮工程−2(燃料噴射・点火) 1回目と2回目の吸気と弁cを兼ねた吸気弁と、1回目
と2回目の排気を兼ねた排気弁と、弁aと、弁bは、閉
じている。 図36 膨張工程−1 1回目と2回目の吸気と弁cを兼ねた吸気弁は、膨張し
過ぎて回転の抵抗になる前に開き、1回目と2回目の排
気を兼ねた排気弁と、弁aと、弁bは閉じている(図3
6に示される、1回目と2回目の吸気と弁cを兼ねた吸
気弁は、ピストンが約4分の3程、下降した時点で開く
と仮定した図であり、開いた直後の図でもある。)。 図37 膨張工程−2(空気の吸気工程) 1回目と2回目の吸気と弁cを兼ねた吸気弁は、下死点
で閉じ、1回目と2回目の排気を兼ねた排気弁と、弁a
と、弁bも閉じている(図37に示される、1回目と2
回目の吸気と弁cを兼ねた吸気弁は、閉じた直後の図で
ある。)。 図38 1回目の排気工程 1回目と2回目の吸気と弁cを兼ねた吸気弁は閉じ、1
回目と2回目の排気を兼ねた排気弁は開き、弁aと、弁
bは閉じている。 図39 2回目の吸気工程 1回目と2回目の吸気と弁cを兼ねた吸気弁は開き、1
回目と2回目の排気を兼ねた排気弁と、弁aと、弁bは
閉じている。 図40 2回目の排気工程 1回目と2回目の吸気と弁cを兼ねた吸気弁は閉じ、1
回目と2回目の排気を兼ねた排気弁は開き、弁aと、弁
bは閉じている。を示す図である。In the embodiment shown in FIGS. 33 to 40,
When using a piston valve in an in-cylinder 6-cycle gasoline engine, the process of really expanding in the expansion process is longer than the process of really compressing in the compression process. It is a longitudinal sectional view showing a process at the time, assuming that it is viewed from the direction of the section KK,
FIG. 33 to FIG. 40 show FIG. 33. First intake process The first and second intakes and the intake valve serving also as valve c are opened.
The exhaust valve serving as the second and the third exhaust is closed, the valve a is opened, and the valve b is closed. Fig. 34 Compression process-1 The first and second intakes and the intake valve serving as the valve c, the first and second exhaust valves serving as the exhaust, and the valve a is closed.
Open at bottom dead center and close before top dead center (assumed that valve b, shown in FIG. 34, opens at bottom dead center and closes when the piston rises about one-half, or so. FIG. 2 and the figure immediately before closing.) FIG. 35 Compression process-2 (fuel injection / ignition) The first and second intakes and the intake valve that also serves as the valve c, the first and second exhaust valves that also serve as the exhaust, the valve a, and the valve b Is closed. FIG. 36: Expansion Step-1 The first and second intakes and the intake valve serving also as the valve c are opened before they become excessively inflated and become rotational resistance, and the exhaust valve serving also as the first and second exhausts is provided. Valves a and b are closed (FIG. 3).
6, the intake valve serving as the first and second intake and the valve c is assumed to be opened when the piston descends by about three quarters, and is also a figure immediately after being opened. . ). 37. Inflation process-2 (air intake process) The intake valve serving as the first and second intake and the valve c is closed at the bottom dead center, and the exhaust valve serving also as the first and the second exhaust is provided with a valve. a
And the valve b is also closed (the first time and the second time shown in FIG. 37).
The intake valve serving as the valve c and the second intake is a view immediately after being closed. ). FIG. 38 First Exhaust Step First and second intakes and the intake valve serving also as valve c are closed.
The exhaust valve serving as the second and the third exhaust is open, and the valves a and b are closed. FIG. 39 Second intake process The first and second intakes and the intake valve serving as valve c are opened.
The exhaust valve serving as the second and the second exhaust, the valve a, and the valve b are closed. FIG. 40 Second exhaust process First and second intakes and the intake valve serving also as valve c are closed.
The exhaust valve serving as the second and the third exhaust is open, and the valves a and b are closed. FIG.
【0033】また、筒内噴射6サイクルガソリンエンジ
ンにロータリーバルブを使用した時の、圧縮工程の時、
本当に圧縮する工程よりも、膨張工程の時、本当に膨張
する工程の方を、ストロークで言うならば長くとる方法
の時の工程を示す、断面L−Lの方向から見たと仮定し
た、縦断面図は描かれていないが、ピストンバルブを用
いた時と、ロータリーバルブを用いた時の工程は同一な
ので、ここでは省く。When a rotary valve is used in a direct injection 6-cycle gasoline engine, a compression process is performed.
A longitudinal cross-sectional view assuming that it is viewed from the direction of a cross section LL, showing a step of a method of taking a longer time in a case of a method of actually expanding in a case of an expansion step than in a step of actually compressing. Are not drawn, but the steps when using a piston valve and when using a rotary valve are the same, and are omitted here.
【0034】そして、筒内噴射4サイクルガソリンエン
ジンに、ピストンバルブ、ロータリーバルブを使用した
時の、圧縮工程の時、本当に圧縮する工程よりも、膨張
工程の時、本当に膨張する工程の方を、ストロークで言
うならば長くとる方法の時の工程を示す、断面E−E、
断面F−Fの方向から見たと仮定した、縦断面図も描か
れていないが、2回目の吸気工程と排気工程を省き、
弁、気口の名称を、吸気弁と弁cを兼ねた吸気弁、又
は、吸気口と気口fと、排気弁、又は、排気口と、弁
a、又は、気口dと、弁b、又は、気口eのある部分に
変えれば、それぞれの工程の図が描ける。When a piston valve and a rotary valve are used in a direct injection four-cycle gasoline engine, the process of really expanding in the expansion process is better than the process of really compressing in the compression process. Sections EE, which show the steps of the method of taking a long stroke,
Although the vertical sectional view is not drawn assuming that it is viewed from the direction of the section FF, the second intake step and the exhaust step are omitted,
Names of the valve and the port are an intake valve serving as an intake valve and a valve c, or an intake port and a port f, an exhaust valve or an exhaust port, a valve a or a port d, and a valve b. Or, if the part is changed to a part having a mouth e, a diagram of each step can be drawn.
【0035】さらに、4サイクルディーゼルエンジン、
6サイクルディーゼルエンジンに、ピストンバルブ、ロ
ータリーバルブを使用した時の、圧縮工程の時、本当に
圧縮する工程よりも、膨張工程の時、本当に膨張する工
程の方を、ストロークで言うならば長くとる方法の時の
工程を示す、断面C−C、断面D−D、断面I−I、断
面J−Jの方向から見たと仮定した、縦断面図も描かれ
ていないが、筒内噴射4サイクルガソリンエンジン、筒
内噴射6サイクルガソリンエンジンに、ピストンバル
ブ、ロータリーバルブを使用した時の、圧縮工程の時、
本当に圧縮する工程よりも、膨張工程の時、本当に膨張
する工程の方を、ストロークで言うならば長くとる方法
の時の工程を示す縦断面図から、プラグを省けば、それ
ぞれの工程の図が描ける。Further, a 4-cycle diesel engine,
When using a piston valve and a rotary valve in a 6-cycle diesel engine, the process of really expanding in the expansion process is longer than the process of really compressing in the compression process. Although the vertical cross-sectional view is not drawn, assuming that it is viewed from the directions of the cross-section CC, the cross-section DD, the cross-section II, and the cross-section JJ, the in-cylinder four-cycle gasoline is shown. In the compression process, when a piston valve and a rotary valve are used for an engine and a direct injection 6-cycle gasoline engine,
If the plug is omitted from the vertical cross-sectional view showing the process of the method of taking the process of actually expanding when the expansion process is longer than the process of actually compressing, if the plug is omitted, the diagram of each process will be shown. I can draw.
【0036】また、図25から図40の、ピストンバル
ブの、バルブ・タイミングは、エンジンの爆発回転数、
回転数の上昇時、下降時、また、圧縮比などに因って違
うので、含まれていない。The valve timing of the piston valve shown in FIGS.
It is not included because it differs depending on the increase / decrease of the rotation speed and the compression ratio.
【0037】また、バルブ・タイミングを含まないの
は、工程を説明し易くする為でもある。The reason that the valve timing is not included is also to facilitate the description of the process.
【0038】図41に示される実施例では、多気筒(2
気筒以上)の時、各気筒にある何も無い空間を、他の気
筒の何も無い空間と、1つにつなぐ事に因り、次の吸気
工程を待たずに、混合気、又は、空気は、他の気筒の吸
気工程の時に吸気されるように、各気筒の工程を組める
事を示した図であり、代表例として、直列型2気筒、4
サイクルガソリンエンジンにピストンバルブを使用した
時の縦断面図を描いたものである。In the embodiment shown in FIG. 41, the multi-cylinder (2
At the time of more than one cylinder), the air-fuel mixture or air can be generated without waiting for the next intake process by connecting the empty space in each cylinder to the empty space in the other cylinders. FIG. 9 is a diagram showing that the process of each cylinder can be assembled so that air is taken in at the time of the intake process of another cylinder.
FIG. 3 is a vertical sectional view when a piston valve is used in a cycle gasoline engine.
【0039】また、他のエンジンの、多気筒の時、各気
筒にある何も無い空間を、他の気筒の何も無い空間と1
つにつないだ図も描けるが、作用は同一なので、ここで
は省く。In the case of a multi-cylinder engine of another engine, the empty space in each cylinder is defined as one empty space in the other cylinder.
A connected figure can be drawn, but the operation is the same, so it is omitted here.
【0040】また、図41は、断面M−Mの方向から見
たと仮定した図でもあり、弁a、弁bの、何も無い空間
への(からの)通路は、何も無い空間の端と端に取り付
けてある。FIG. 41 is also a view assuming that it is viewed from the direction of the section MM. The passages of the valves a and b to and from the empty space are the ends of the empty space. And attached to the end.
【0041】図42に示される実施例では、4サイクル
エンジンの場合は、4気筒以上の時、各気筒に違う工程
を行なわせる事ができるので、吸気工程の時、上死点で
開き下死点で閉じる弁、気口が、吸気工程で開く時に
は、その時、他の気筒の、圧縮工程の時、下死点で開き
上死点の手前の間で閉じる弁、気口の中で、圧縮工程で
開く弁、気口へと直接つなぐ事に因り、混合気、又は、
空気は、吸気工程の時、上死点で開き下死点で閉じる
弁、気口に、他の気筒に圧縮される形で吸気され、圧縮
工程の時、下死点で開き上死点の手前の間で閉じる弁、
気口に、他の気筒に吸気される形で圧縮される事を示し
た図であり、代表例として、断面N−Nの方向から見た
と仮定した、直列型4気筒、4サイクルディーゼルエン
ジンにピストンバルブを使用した時の、縦断面図を描い
たものである。In the embodiment shown in FIG. 42, in the case of a four-stroke engine, when the number of cylinders is four or more, different processes can be performed for each cylinder. When the valve or vent that closes at the point opens in the intake process, then, in the other cylinder, during the compression process, the valve opens at the bottom dead center and closes before the top dead center. Due to the valve that opens in the process and the direct connection to the air port,
In the intake process, air is drawn into the valve and air port that opens at the top dead center and closes at the bottom dead center, and is compressed into other cylinders. A valve that closes between you,
FIG. 4 is a diagram showing that the air port is compressed in a form in which it is taken into another cylinder. As a representative example, an in-line four-cylinder, four-cycle diesel engine is assumed to be viewed from the direction of the cross section NN. FIG. 3 is a vertical sectional view when a piston valve is used.
【0042】また、他の4サイクルエンジンの、4気筒
の図も描けるが、作用は同一なので、ここでは省く。Although a diagram of four cylinders of another four-stroke engine can be drawn, the operation is the same, so that it is omitted here.
【0043】また、上記条件を満たした、4サイクルエ
ンジンの、5気筒以上の図も描けるが、上記2種類の
弁、気口が、2気筒以上と関係し、作用を分りにくくす
る場合もあるので、ここでは省く。Although a diagram of five or more cylinders of a four-stroke engine satisfying the above conditions can be drawn, the above-mentioned two types of valves and vents are related to two or more cylinders, and there are cases where the operation is difficult to understand. So, I omit it here.
【0044】図43に示される実施例では、6サイクル
エンジンの場合は、6気筒以上の時、各気筒に違う工程
を行なわせる事ができるので、1回目の吸気工程の時、
上死点で開き下死点で閉じる弁、気口が、1回目の吸気
工程で開く時には、その時、他の気筒の、圧縮工程の
時、下死点で開き上死点の手前の間で閉じる弁、気口の
中で、圧縮工程で開く弁、気口へと直接つなぐ事に因
り、混合気、又は、空気は、1回目の吸気工程の時、上
死点で開き下死点で閉じる弁、気口に、他の気筒に圧縮
される形で吸気され、圧縮工程の時、下死点で開き上死
点の手前の間で閉じる弁、気口に、他の気筒に吸気され
る形で圧縮される事を示した図であり、代表例として、
断面O−Oの方向から見たと仮定した、直列型6気筒、
筒内噴射6サイクルガソリンエンジンにピストンバルブ
を使用した時の、縦断面図を描いたものである。In the embodiment shown in FIG. 43, in the case of a six-stroke engine, when the number of cylinders is six or more, a different process can be performed for each cylinder.
When the valve and vent open at the top dead center and close at the bottom dead center, open at the first intake stroke, then at the compression stroke of other cylinders, open at the bottom dead center and before the top dead center. The air-fuel mixture or air opens at the top dead center in the first intake process, and opens at the bottom dead center due to the close valve, the valve that opens in the compression process in the vent, and the direct connection to the vent. The intake valve is compressed into another cylinder by the closing valve and vent, and is opened at the bottom dead center and closed before the top dead center during the compression process. It is a diagram showing that it is compressed in a form, as a representative example,
An in-line six-cylinder, assumed to be viewed from the direction of the cross section OO,
FIG. 3 is a longitudinal sectional view when a piston valve is used in a direct injection 6-cycle gasoline engine.
【0045】また、他の6サイクルエンジンの、6気筒
の図も描けるが、作用は同一なので、ここでは省く。Although a drawing of a six-cylinder engine of another six-stroke engine can be drawn, its operation is the same, so that it is omitted here.
【0046】また、上記条件を満たした、6サイクルエ
ンジンの、7気筒以上の図も描けるが、上記2種類の
弁、気口が、2気筒以上と関係し、作用を分りにくくす
る場合もあるので、ここでは省く。Although a drawing of a six-stroke engine satisfying the above conditions and having seven or more cylinders can be drawn, the above-mentioned two types of valves and air ports are related to two or more cylinders, so that the operation may be difficult to understand. So, I omit it here.
【0047】[0047]
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0048】4サイクルエンジン、6サイクルエンジン
に、ピストンバルブ、ロータリーバルブを使用した時、
吸気工程(6サイクルエンジンの場合は、1回目の吸気
工程)の時、上死点で開き下死点で閉じる弁、気口と、
圧縮工程の時、下死点で開き上死点の手前の間で閉じる
弁、気口の、2種類の、弁、気口、を設ける事により、
圧縮工程の時、本当に圧縮する工程よりも、膨張工程の
時、本当に膨張する工程の方を、ストロークで言うなら
ば長くとる方法が得られ、従って、 圧縮比<膨張比(何も無い空間は、必要である。)。 になり、従来の、4サイクルエンジン、6サイクルエン
ジンに、ピストンバルブ、ロータリーバルブを使用した
時よりも、同じ量の燃料を消費するにあたって、爆発に
因って出たエネルギー(パワー・トルク)を、少しでも
多く、ピストン、そして、クランク・シャフトへと伝え
る事ができる。When a piston valve and a rotary valve are used in a 4-cycle engine and a 6-cycle engine,
At the time of the intake process (the first intake process in the case of a 6-cycle engine), the valve and air port that open at the top dead center and close at the bottom dead center are:
At the time of the compression process, by providing two types of valves and vents that open at the bottom dead center and close before the top dead center,
It is possible to obtain a method of taking a longer stroke in the expansion process in the expansion process than in the compression process in the compression process, in a stroke, so that the compression ratio <the expansion ratio (the space where there is nothing) ,is necessary.). In comparison with conventional 4-stroke and 6-stroke engines, the same amount of fuel is consumed than when a piston valve and a rotary valve are used. A little more can be transmitted to the piston and crankshaft.
【0049】そして、上記2種類の、弁、気口の先に、
何も無い空間(混合気、又は、空気が、一時停渟する
所。)を取り付ける事に因り、圧縮工程の時、混合気、
又は、空気は、圧縮されて何も無い空間へ入るが、次の
吸気工程の時、シリンダー内に還元される(ガソリンエ
ジンの場合は、混合気が液化するので、何も無い空間は
シリンダーより上にあるのが好ましい。)。Then, at the end of the above two types of valves and vents,
Due to the installation of an empty space (where the mixture or air temporarily stops), during the compression process, the mixture,
Or, the air is compressed and enters the empty space, but is reduced in the cylinder during the next intake process (in the case of gasoline, the air-fuel mixture liquefies, so the empty space is Preferably above.)
【0050】特に、4サイクルガソリンエンジンと、6
サイクルガソリンエンジンに、ピストンバルブ、ロータ
リーバルブを使用した場合では、混合気がシリンダー内
に還元されるので、燃料を無駄にしなくなる。In particular, a four-stroke gasoline engine,
When a piston valve and a rotary valve are used in a cycle gasoline engine, the air-fuel mixture is returned to the cylinder, so that fuel is not wasted.
【0051】また、4サイクルディーゼルエンジンと、
筒内噴射4サイクルガソリンエンジンと、6サイクルデ
ィーゼルエンジンと、筒内噴射6サイクルガソリンエン
ジンに、ピストンバルブ、ロータリーバルブを使用した
場合では、吸気工程の時、上死点で開き下死点で閉じる
弁、気口と、何も無い空間は必要としなくなり、圧縮工
程の時、下死点で開き上死点の手前の間で閉じる弁、気
口だけで、圧縮工程の時、本当に圧縮する工程よりも、
膨張工程の時、本当に膨張する工程の方を、ストローク
で言うならば長くとる方法は得れ、また、排気弁、排気
口を代用しても得れるが、説明項数0055、0057
の時の為に、ある方がよい〔排気口を代用すると言う事
は、同じ排気口を兼用するのではなく、排気口のあるロ
ータリーバルブ、1回目と2回目の排気口のあるロータ
リーバルブに、圧縮工程の時、下死点で開き上死点の手
前の間で閉じる気口(気口e)を設ける事である。〕。Also, a four-cycle diesel engine,
When a piston valve and a rotary valve are used in a direct injection 4-cycle gasoline engine, a 6-cycle diesel engine, and a direct injection 6-cycle gasoline engine, they open at the top dead center and close at the bottom dead center during the intake process. The valve, vent and empty space are not required anymore. During the compression process, only the valve and vent are opened at the bottom dead center and closed before the top dead center. than,
At the time of the expansion step, it is possible to obtain a method in which the step of actually expanding is longer in terms of stroke, and it is also possible to substitute the exhaust valve and the exhaust port.
It is better to use an exhaust port instead of using the same exhaust port. Instead of using the same exhaust port, use a rotary valve with an exhaust port and a rotary valve with the first and second exhaust ports. In the compression step, a vent (a vent e) that opens at the bottom dead center and closes before the top dead center is provided. ].
【0052】また、弁aと弁b、又は、気口dと気口e
の、何も無い空間への通路を、何も無い空間の端と端に
取り付ける事に因り、混合気、又は、空気は一定方向に
流れ、混合気、又は、空気の、スムーズな流れが得られ
る。Further, the valve a and the valve b, or the vent d and the vent e
The air-fuel mixture or air flows in a certain direction due to the passage to the empty space at the end of the empty space, and a smooth flow of the air-fuel mixture or air is obtained. Can be
【0053】そして、多気筒の時、何も無い空間を、他
の気筒の何も無い空間と、1つにつなぐ事に因り、混合
気、又は、空気は、次の吸気工程を待たずに、他の気筒
の吸気工程の時に吸気されるように、各気筒の工程を組
め、それに因って同じ爆発回転数ならば、混合気、又
は、空気の何も無い空間での停滞時間を、短縮できる、
もしくは、気筒数に因っては、何も無い空間をなくせ、
混合気、又は、空気が停滞しなくなる。Then, in the case of a multi-cylinder system, by connecting the empty space to the empty space of the other cylinders into one, the air-fuel mixture or the air can be obtained without waiting for the next intake process. The process of each cylinder is set so that it is taken in at the time of the intake process of the other cylinders, so that if the explosion speed is the same, the air-fuel mixture or the stagnation time in a space where there is no air, Can be shortened,
Or, depending on the number of cylinders, you can eliminate the empty space,
The mixture or air no longer stagnates.
【0054】また、何も無い空間が、各気筒に取り付け
てあるのよりも、1つにした方が場所を取らないのと、
混合気、又は、空気の何も無い空間での停滞時間を、短
縮できる、もしくは、気筒数に因っては、なくせるの
で、さらに、小さくできる、もしくは、各気筒の、弁a
と弁b、又は、気口dと気口eを、つなぐものだけで済
ませる事ができる。In addition, there is no empty space in each cylinder compared to the space provided in each cylinder.
The stagnation time in the air-fuel-free or air-free space can be reduced or eliminated depending on the number of cylinders, so that it can be further reduced or the valve a of each cylinder can be reduced.
And the valve b, or the air port d and the air port e can be completed only with a connecting element.
【0055】さらに、4サイクルエンジンの場合は、4
気筒以上の時、弁a、又は、気口dが、吸気工程で開く
時には、その時、他の気筒の、弁b、又は、気口eの中
で、圧縮工程で開く、弁b、又は、気口eに直接つなぐ
事に因り、吸気工程の時、混合気、又は、空気は、弁
a、又は、気口dに、他の気筒の、弁b、又は、気口e
に圧縮される形で吸気され、圧縮工程の時、弁b、又
は、気口eに、他の気筒の、弁a、又は、気口dに吸気
される形で圧縮されるので、吸気工程、圧縮工程の時の
抵抗が少なくなる。Further, in the case of a 4-cycle engine, 4
At the time of the cylinder or more, when the valve a or the port d is opened in the intake process, then, in the valve b or the port e of another cylinder, the valve b or the valve d is opened in the compression process. Due to the direct connection to the air port e, during the intake process, the air-fuel mixture or air is supplied to the valve a or air port d and the valve b or air port e of another cylinder.
In the compression process, the air is compressed into the valve b or the air port e while being sucked into the valve a or the air port d of another cylinder. In addition, resistance during the compression process is reduced.
【0056】また、何も無い空間はいらなくなり、混合
気、又は、空気も、一定方向に流れるので、さらに、ス
ムーズな工程が行える。Further, since there is no need for an empty space, and the mixture or air flows in a certain direction, a smoother process can be performed.
【0057】そして、6サイクルエンジンの場合は、6
気筒以上の時、弁a、又は、気口dが、1回目の吸気工
程で開く時には、その時、他の気筒の、弁b、又は、気
口eの中で、圧縮工程で開く、弁b、又は、気口eに直
接つなぐ事に因り、1回目の吸気工程の時、混合気、又
は、空気は、弁a、又は、気口dに、他の気筒の、弁
b、又は、気口eに圧縮される形で吸気され、圧縮工程
の時、弁b、又は、気口eに、他の気筒の、弁a、又
は、気口dに吸気される形で圧縮されるので、1回目の
吸気工程、圧縮工程の時の抵抗が少なくなる。In the case of a 6-cycle engine, 6
When the number of cylinders is equal to or more than one, when the valve a or the port d is opened in the first intake step, then, in the valve b or the port e of another cylinder, the valve b or the port e is opened in the compression step. Or, due to the direct connection to the air port e, at the time of the first intake process, the air-fuel mixture or the air is supplied to the valve a or the air port d to the valve b or the air port of another cylinder. Since the air is sucked in the form compressed to the port e, and compressed in the compression process, the valve b or the port e is compressed to be sucked into the valve a or the port d of another cylinder. The resistance during the first intake process and the compression process is reduced.
【0058】また、何も無い空間はいらなくなり、混合
気、又は、空気も、一定方向に流れるので、さらに、ス
ムーズな工程が行える。Further, since there is no need for an empty space, and the air-fuel mixture or the air flows in a certain direction, a smoother process can be performed.
【0059】また、圧縮工程の時、弁b、又は、気口e
を開け過ぎた時の対策として、膨張工程の時、4サイク
ルディーゼルエンジンと、筒内噴射4サイクルガソリン
エンジンと、6サイクルディーゼルエンジンと、筒内噴
射6サイクルガソリンエンジンの場合は、膨張し過ぎて
回転の抵抗になる前に、吸気弁、吸気口を開き、下死点
で閉じる事に因り、さらに、 圧縮比<膨張比 の比率が高くとれ、また、膨張工程もスムーズに行え
る。In the compression step, the valve b or the air port e
As a countermeasure when the engine is opened too much, in the expansion process, in the case of a 4-cycle diesel engine, a direct injection 4-cycle gasoline engine, a 6-cycle diesel engine, and a direct injection 6-cycle gasoline engine, the engine is over-expanded. By opening the intake valve and the intake port before turning resistance and closing at the bottom dead center, the ratio of compression ratio <expansion ratio can be set high, and the expansion process can be performed smoothly.
【0060】また、圧縮工程の時、弁b、又は、気口e
を開け過ぎた時の対策として、膨張工程の時、4サイク
ルガソリンエンジンと、6サイクルガソリンエンジンの
場合は、弁c、気口f(6サイクルガソリンエンジンの
場合は、2回目の吸気工程の弁を兼用しても、2回目の
吸気工程の時の気口のあるロータリーバルブに、気口f
を設けてもよい。)を用いる事により、さらに、 圧縮比<膨張比 の比率が高くとれ、また、膨張工程もスムーズに行え
る。At the time of the compression step, the valve b or the air port e
As a countermeasure when the valve is excessively opened, in the expansion process, the valve c and the vent f (for the 4-cycle gasoline engine and the 6-cycle gasoline engine, the valve (for the 6-cycle gasoline engine, the valve of the second intake process) Even if the air valve is used, the air f
May be provided. ), The ratio of compression ratio <expansion ratio can be further increased, and the expansion process can be performed smoothly.
【0061】また、 圧縮比<膨張比 の比率の割合が、さらに、高くとれると言う事は、排気
ガスを空気に因って、さらに、薄めると言うことで、排
気工程(6サイクルエンジンの場合は、2回目の排気工
程)から吸気工程(6サイクルエンジンの場合は、1回
目の吸気工程)に移る時、本当の排気ガスを排出する割
合が少なくでき、それに因って、低公害につながる。The fact that the ratio of the ratio of compression ratio <expansion ratio can be further increased means that the exhaust gas is further thinned by the air. Can reduce the proportion of real exhaust gas when moving from the second exhaust process to the intake process (first intake process in the case of a 6-cycle engine), leading to low pollution. .
【0062】さらに、同じエンジンの爆発回転数でも、
高負荷の時には、弁b、又は、気口eを早く閉じ、低負
荷の時には、弁b、又は、気口eを遅く閉じ、そして、
弁c、又は、気口fを用いる事に因り、その場に合った
エネルギーの抽出と燃料の消費ができる。Further, even with the same engine explosion speed,
At a high load, the valve b or the port e is closed early, at a low load, the valve b or the port e is closed late, and
By using the valve c or the air port f, energy extraction and fuel consumption suitable for the situation can be performed.
【0063】また、上記のような、弁、又は、気口に動
きをとらせれば、本当の圧縮比も変化するが、4サイク
ルエンジン、6サイクルエンジンに、ピストンバルブ、
ロータリーバルブを使用した時の、エンジンの目的、回
転数、回転数の上昇、下降する時に、圧縮比を変化させ
る方法と、該装置の型(平成7年特許願第109930
号)、を用いれば、その場に適した、本当の圧縮比が得
られる。If the valve or air port is moved as described above, the actual compression ratio also changes.
The purpose of the engine when the rotary valve is used, the number of revolutions, the method of changing the compression ratio when the number of revolutions rises and falls, and the type of the device (1995 Patent Application No. 109930)
No.), a real compression ratio suitable for the situation can be obtained.
【0064】そして、弁、気口を、早く閉じたり、遅く
閉じたり、又は、開けなかったりする作用の代用とし
て、4サイクルガソリンエンジン、6サイクルガソリン
エンジンに、ピストンバルブ、ロータリーバルブを使用
した時の、混合気専用の通路と、何も無い空間からの通
路と、空気専用の通路の開閉と、該開閉装置の型(平成
7年特許願第97346号)、を用いれば、早く閉じた
り、遅く閉じたり、又は、開けなかったりする作用に近
づく。When a piston valve or a rotary valve is used in a four-cycle gasoline engine or a six-cycle gasoline engine, as an alternative to the action of closing the valve or vent early, closing it late, or not opening it. By using a passage dedicated to an air-fuel mixture, a passage from an empty space, a passage dedicated to air, and a type of the opening / closing device (Japanese Patent Application No. 97346), Approaches the action of closing or opening slowly.
【図1】4サイクルガソリンエンジンにピストンバルブ
を使用した時の、弁の配置の実施例を示す、横断面図で
ある。FIG. 1 is a cross-sectional view showing an example of a valve arrangement when a piston valve is used in a four-cycle gasoline engine.
【図2】4サイクルガソリンエンジンにロータリーバル
ブを使用した時の、ロータリーバルブの配置の実施例を
示す、横断面図である。FIG. 2 is a cross-sectional view showing an example of an arrangement of a rotary valve when the rotary valve is used in a four-cycle gasoline engine.
【図3】4サイクルディーゼルエンジンにピストンバル
ブを使用した時の、弁の配置の実施例を示す、横断面図
である。FIG. 3 is a cross-sectional view showing an example of a valve arrangement when a piston valve is used in a four-cycle diesel engine.
【図4】4サイクルディーゼルエンジンにロータリーバ
ルブを使用した時の、ロータリーバルブの配置の実施例
を示す、横断面図である。FIG. 4 is a cross-sectional view showing an example of an arrangement of a rotary valve when the rotary valve is used in a four-cycle diesel engine.
【図5】筒内噴射4サイクルガソリンエンジンにピスト
ンバルブを使用した時の、弁の配置の実施例を示す、横
断面図である。FIG. 5 is a cross-sectional view showing an embodiment of a valve arrangement when a piston valve is used in a direct injection 4-cycle gasoline engine.
【図6】筒内噴射4サイクルガソリンエンジンにロータ
リーバルブを使用した時の、ロータリーバルブの配置の
実施例を示す、横断面図である。FIG. 6 is a cross-sectional view showing an embodiment of the arrangement of the rotary valve when the rotary valve is used in a direct injection 4-cycle gasoline engine.
【図7】6サイクルガソリンエンジンにピストンバルブ
を使用した時の、弁の配置の実施例を示す、横断面図で
ある。FIG. 7 is a cross-sectional view showing an example of a valve arrangement when a piston valve is used in a 6-cycle gasoline engine.
【図8】6サイクルガソリンエンジンにロータリーバル
ブを使用した時の、ロータリーバルブの配置の実施例を
示す、横断面図である。FIG. 8 is a cross-sectional view showing an embodiment of the arrangement of the rotary valve when the rotary valve is used in a 6-cycle gasoline engine.
【図9】6サイクルディーゼルエンジンにピストンバル
ブを使用した時の、弁の配置の実施例を示す、横断面図
である。FIG. 9 is a cross-sectional view showing an example of valve arrangement when a piston valve is used in a 6-cycle diesel engine.
【図10】6サイクルディーゼルエンジンにロータリー
バルブを使用した時の、ロータリーバルブの配置の実施
例を示す、横断面図である。FIG. 10 is a cross-sectional view showing an example of the arrangement of the rotary valves when the rotary valves are used in a 6-cycle diesel engine.
【図11】筒内噴射6サイクルガソリンエンジンにピス
トンバルブを使用した時の、弁の配置の実施例を示す、
横断面図である。FIG. 11 shows an example of valve arrangement when a piston valve is used in a direct injection 6-cycle gasoline engine.
FIG.
【図12】筒内噴射6サイクルガソリンエンジンにロー
タリーバルブを使用した時の、ロータリーバルブの配置
の実施例を示す、横断面図である。FIG. 12 is a cross-sectional view showing an embodiment of the arrangement of the rotary valve when the rotary valve is used in a direct injection 6-cycle gasoline engine.
【図13】図1を、断面A−Aの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 13 is a longitudinal sectional view showing the embodiment assuming that FIG. 1 is viewed from the direction of the section AA.
【図14】図2を、断面B−Bの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 14 is a longitudinal sectional view showing an example assuming that FIG. 2 is viewed from the direction of the section BB.
【図15】図3を、断面C−Cの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 15 is a longitudinal sectional view showing an example assuming that FIG. 3 is viewed from the direction of the section CC.
【図16】図4を、断面D−Dの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 16 is a longitudinal sectional view showing the embodiment assuming that FIG. 4 is viewed from the direction of the section DD.
【図17】図5を、断面E−Eの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 17 is a longitudinal sectional view showing an example assuming that FIG. 5 is viewed from the direction of the section EE.
【図18】図6を、断面F−Fの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 18 is a longitudinal sectional view showing an example assuming that FIG. 6 is viewed from the direction of the section FF.
【図19】図7を、断面G−Gの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 19 is a longitudinal sectional view showing an example assuming that FIG. 7 is viewed from the direction of the section GG.
【図20】図8を、断面H−Hの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 20 is a longitudinal sectional view showing an example assuming that FIG. 8 is viewed from the direction of the section HH.
【図21】図9を、断面I−Iの方向から見たと仮定し
た実施例を示す、縦断面図である。FIG. 21 is a longitudinal sectional view showing an example assuming that FIG. 9 is viewed from the direction of the section II.
【図22】図10を、断面J−Jの方向から見たと仮定
した実施例を示す、縦断面図である。FIG. 22 is a longitudinal sectional view showing an example assuming that FIG. 10 is viewed from the direction of the section JJ.
【図23】図11を、断面K−Kの方向から見たと仮定
した実施例を示す、縦断面図である。FIG. 23 is a longitudinal sectional view showing an example assuming that FIG. 11 is viewed from the direction of the section KK.
【図24】図12を、断面L−Lの方向から見たと仮定
した実施例を示す、縦断面図である。FIG. 24 is a longitudinal sectional view showing an example assuming that FIG. 12 is viewed from the direction of the section LL.
【図25】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔1回目の吸気工程(混
合気の吸気工程)〕。FIG. 25 is a vertical cross-sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section GG. [First intake process (air-fuel mixture intake process)] ].
【図26】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である(圧縮工程−1)。FIG. 26 is a longitudinal sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of the section GG (compression process-1).
【図27】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔圧縮工程−2(点
火)〕。FIG. 27 is a longitudinal sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is seen from a direction of a section GG [compression process-2 (ignition)].
【図28】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔膨張工程−1(燃
焼)〕。FIG. 28 is a longitudinal sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of the section GG [expansion process-1 (combustion)].
【図29】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔膨張工程−2(空気の
吸気工程)〕。FIG. 29 is a longitudinal sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of the cross section GG [expansion process-2 (air intake process)].
【図30】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である(1回目の排気工程)。FIG. 30 is a longitudinal sectional view showing a step when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of section GG (first exhaust step).
【図31】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である〔2回目の吸気工程(空
気の吸気工程)〕。FIG. 31 is a longitudinal sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is seen from a direction of a section GG [second intake process (air intake process)]; .
【図32】断面G−Gの方向から見たと仮定した、6サ
イクルガソリンエンジンにピストンバルブを使用した時
の工程を示す、縦断面図である(2回目の排気工程)。FIG. 32 is a longitudinal sectional view showing a process when a piston valve is used in a 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of the cross section GG (second exhaust process).
【図33】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(1回目の吸気
工程)。FIG. 33 is a longitudinal sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is seen from a direction of a section KK (first intake process).
【図34】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(圧縮工程−
1)。FIG. 34 is a vertical cross-sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of the cross section KK (compression process—
1).
【図35】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である〔圧縮工程−2
(燃料噴射・点火)〕。FIG. 35 is a longitudinal sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is viewed from the direction of a cross section KK [Compression process-2]
(Fuel injection / ignition)].
【図36】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である〔膨張工程−1
(燃焼)〕。FIG. 36 is a longitudinal sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of the section KK [Expansion process-1]
(combustion)〕.
【図37】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である〔膨張工程−2
(空気の吸気工程)〕。FIG. 37 is a longitudinal sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of the cross section KK [Expansion process-2]
(Air intake process)].
【図38】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(1回目の排気
工程)。FIG. 38 is a longitudinal sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is seen from a direction of a section KK (first exhaust process).
【図39】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(2回目の吸気
工程)。FIG. 39 is a longitudinal sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is seen from a direction of a section KK (second intake process).
【図40】断面K−Kの方向から見たと仮定した、筒内
噴射6サイクルガソリンエンジンにピストンバルブを使
用した時の工程を示す、縦断面図である(2回目の排気
工程)。FIG. 40 is a longitudinal sectional view showing a process when a piston valve is used in a direct injection 6-cycle gasoline engine, assuming that the piston valve is seen from the direction of the section KK (second exhaust process).
【図41】断面M−Mの方向から見たと仮定した、直列
型2気筒、4サイクルガソリンエンジンにピストンバル
ブを使用した時の、各気筒の弁aと弁bの関連の実施例
を示す、縦断面図である。FIG. 41 shows a related embodiment of valves a and b of each cylinder when a piston valve is used in an in-line two-cylinder, four-stroke gasoline engine, assuming that it is viewed from the direction of the section MM. It is a longitudinal cross-sectional view.
【図42】断面N−Nの方向から見たと仮定した、直列
型4気筒、4サイクルディーゼルエンジンにピストンバ
ルブを使用した時の、各気筒の弁aと弁bの関連の実施
例を示す、縦断面図である。FIG. 42 shows a related embodiment of the valves a and b of each cylinder when a piston valve is used in an in-line four-cylinder, four-stroke diesel engine, assuming that it is viewed from the direction of the cross section NN. It is a longitudinal cross-sectional view.
【図43】断面O−Oの方向から見たと仮定した、直列
型6気筒、筒内噴射6サイクルガソリンエンジンにピス
トンバルブを使用した時の、各気筒の弁aと弁bの関連
の実施例を示す、縦断面図である。FIG. 43 is a view showing a related example of valves a and b of each cylinder when a piston valve is used in an in-line six-cylinder, in-cylinder in-cylinder six-cycle gasoline engine, assuming that the piston is viewed from a direction of a cross section OO FIG.
1 混合気専用の吸気弁 2 排気弁 3 吸気工程の時、上死点で開き下死点で閉じる弁(弁
a) 4 圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁(弁b) 5 圧縮工程の時、下死点で開き上死点の手前の間で閉
じる弁(弁b)を開け過ぎた時の対策として、膨張工程
の時、膨張し過ぎて回転の抵抗になる前に開き、下死点
で閉じる、空気専用の吸気弁(弁c) 6 プラグ 7 気化器 8 吸気管 9 排気管 10 空気専用の吸気管 11 何も無い空間(混合気、又は、空気が一時停滞す
る所) 12 断面(内型)を、H型、にし、混合気専用の吸気
口のある部分と、排気口のある部分を設けた、ロータリ
ーバルブ 13 断面(内型)を、H型、にし、吸気工程の時、上
死点で閉き下死点で閉じる気口(気口d)のある部分
と、圧縮工程の時、下死点で開き上死点の手前の間で閉
じる気口(気口e)のある部分を設けた、ロータリーバ
ルブ 14 圧縮工程の時、下死点で開き上死点の手前の間で
閉じる気口(気口e)を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口(気口f)のある部
分を設けた、ロータリーバルブ 15 何も無い空間からの通路〔吸気工程の時、上死点
で開き下死点で閉じる気口(気口d)への、何も無い空
間からの通路〕 16 何も無い空間への通路〔圧縮工程の時、下死点で
開き上死点の手前の間で閉じる気口(気口e)からの、
何も無い空間への通路〕 17 吸気弁と弁cを兼ねた弁 18 燃料噴射器 19 何も無い空間からの通路〔吸気工程の時、上死点
で開き下死点で閉じる弁(弁a)への、何も無い空間か
らの通路〕 20 何も無い空間への通路〔圧縮工程の時、下死点で
開き上死点の手前の間で閉じる弁(弁b)からの、何も
無い空間への通路〕 21 断面(内形)を、H型、にし、吸気口と気口fの
ある部分と、排気口のある部分を設けた、ロータリーバ
ルブ 22 混合気専用の吸気弁(1回目の吸気工程の時の
弁) 23 1回目と2回目の排気を兼ねた排気弁 24 2回目の吸気工程の時の弁(空気専用の吸気弁)
と弁cを兼ねた弁 25 断面(内型)を、H型、にし、混合気専用の吸気
口(1回目の吸気工程の時の吸気口)のある部分と、1
回目と2回目の排気口のある部分を設けた、ロータリー
バルブ 26 2回目の吸気工程の時の吸気口(空気専用の吸気
口)と、気口fのある部分を設けた、ロータリーバルブ 27 1回目と2回目の吸気と弁cを兼ねた吸気弁 28 断面(内型)を、H型、にし、1回目と2回目の
吸気口と気口fのある部分と、1回目と2回目の排気口
のある部分を設けた、ロータリーバルブ 29 ピストン 30 混合気専用の吸気弁と、排気弁 31 弁aと弁b 32 ロータリーバルブの、混合気専用の吸気口 33 ロータリーバルブの、排気口 34 ロータリーバルブの吸気工程の時、上死点で開き
下死点で閉じる気口(気口d) 35 ロータリーバルブの、圧縮工程の時、下死点で開
き上死点の手前の間で閉じる気口(気口e) 36 ロータリーバルブの、圧縮工程の時、下死点で開
き上死点の手前の間で閉じる気口(気口e)を開け過ぎ
た時の対策として、膨張工程の時、膨張し過ぎて回転の
抵抗になる前に開き、下死点で閉じる、空気専用の吸気
口(気口f) 37 ロータリーバルブの回転方向 38 吸気弁と弁cを兼ねた弁と、排気弁 39 ロータリーバルブの、吸気口 40 プラグと燃料噴射器 41 混合気専用の吸気弁(1回目の吸気工程の時の
弁)と、1回目と2回目の排気を兼ねた排気弁 42 空気専用の吸気弁(2回目の吸気工程の時の弁)
と、弁cを兼ねた弁 43 ロータリーバルブの、混合気専用の吸気口(1回
目の吸気工程の時の吸気口) 44 ロータリーバルブの、1回目の排気口 45 ロータリーバルブの、2回目の排気口 46 1回目と2回目の吸気と弁cを兼ねた吸気弁と、
1回目と2回目の排気を兼ねた排気弁 47 ロータリーバルブの、空気専用の吸気口(2回目
の吸気工程の時の吸気口) 48 ロータリーバルブの、1回目の吸気口 49 ロータリーバルブの、2回目の吸気口 50 混合気の吸気工程完了直前 51 膨張工程完了直前 52 吸気工程完了直前 53 圧縮工程完了直前 54 排気工程完了直前 55 弁aと弁bをつなぐ通路 56 1回目の吸気工程完了直前 57 2回目の吸気工程完了直前 58 1回目の排気工程完了直前 59 2回目の排気工程完了直前 60 燃焼室の、混合気専用の吸気口 61 燃焼室の、排気口 62 燃焼室の、吸気工程の時、上死点で開き下死点で
閉じる気口 63 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口 64 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口 65 燃焼室の、吸気口と、圧縮工程の時、下死点で開
き上死点の手前の間で閉じる気口を開け過ぎた時の対策
として、膨張工程の時、膨張し過ぎて回転の抵抗になる
前に開き、下死点で閉じる、空気専用の吸気口、を兼ね
た気口 66 燃焼室の、混合気専用の吸気口(1回目の吸気工
程の時の吸気口 67 燃焼室の、1回目の排気口と、2回目の排気口を
兼ねた、排気口 68 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口と、2回目の吸気工
程(空気の吸気工程)の時の気口、を兼ねた気口 69 燃焼室の、圧縮工程の時、下死点で開き上死点の
手前の間で閉じる気口を開け過ぎた時の対策として、膨
張工程の時、膨張し過ぎて回転の抵抗になる前に開き、
下死点で閉じる、空気専用の吸気口と、1回目の吸気口
と、2回目の吸気口、を兼ねた気口 A−A 断面 B−B 断面 C−C 断面 D−D 断面 E−E 断面 F−F 断面 G−G 断面 H−H 断面 I−I 断面 J−J 断面 K−K 断面 L−L 断面 M−M 断面 N−N 断面 O−O 断面1 Intake valve dedicated to air-fuel mixture 2 Exhaust valve 3 Valve that opens at top dead center and closes at bottom dead center during intake process (valve a) 4 During compression process opens at bottom dead center and before just before top dead center Close valve (valve b) 5 In the compression process, as a measure against opening the valve (valve b) that opens at the bottom dead center and closes before the top dead center too much, in the expansion process, it expands too much and rotates. Open before closing, and close at bottom dead center, air-only intake valve (valve c) 6 plug 7 carburetor 8 intake pipe 9 exhaust pipe 10 air-only intake pipe 11 empty space (mixture or , Where air temporarily stagnates) 12 The cross section (inner mold) is H-shaped, and the rotary valve 13 section (inner mold) is provided with a portion having an intake port dedicated to air-fuel mixture and a portion having an exhaust port. , H-shaped, and at the time of the intake process, a portion having a vent (port d) closed at the top dead center and closed at the bottom dead center; A rotary valve provided with a portion having a vent (vent e) that opens at the bottom dead center and closes before the top dead center. 14 During the compression process, the rotary valve opens at the bottom dead center and closes before the top dead center. As a countermeasure when the air port (air port e) is opened too much, at the time of the expansion process, it opens before it expands too much and becomes a resistance to rotation,
A rotary valve provided with a part with an air inlet (air port f) that closes at the bottom dead center. 15 A passage from an empty space [at the time of the suction process, it opens at the top dead center and closes at the bottom dead center. Passage from the empty space to the mouth (mouth d)] 16 Passage to the empty space [Ventilation opening at bottom dead center and closing before top dead center during compression process e) from
Passage to empty space] 17 Valve serving as intake valve and valve c 18 Fuel injector 19 Passage from empty space [Valve that opens at top dead center and closes at bottom dead center during intake process (valve a 20) Passage from an empty space to 20) Passage to an empty space [Nothing from valve (valve b) that opens at bottom dead center and closes before top dead center during the compression process Passage to a space where there is no] 21 A rotary valve having a H-shaped cross section (inner shape), a portion having an intake port and a port f, and a portion having an exhaust port 22 An intake valve (1 23) Exhaust valve that also serves as first and second exhaust 24) Valve during second intake (air intake valve)
The cross section (inner mold) of the valve 25 is also H-shaped, and a portion having an intake port dedicated to the mixture (the intake port at the time of the first intake step) and 1
A rotary valve 26 provided with a portion having the second and second exhaust ports, and a rotary valve 27 1 provided with a portion having an air inlet (a dedicated air inlet) at the time of the second suction process and a portion having an air port f. The cross section (inner mold) of the intake valve 28 which also serves as the valve c and the first and second intakes is H-shaped, and the first and second portions having the intake port and the air port f, and the first and second intakes Rotary valve 29 Piston 30 Inlet valve dedicated to air-fuel mixture, Exhaust valve 31 Valve a and Valve b 32 Intake port dedicated to air-fuel mixture 33 Exhaust port of rotary valve Rotary valve 29 Piston 30 Vent that opens at top dead center and closes at bottom dead center during valve intake process (vent d) 35 Vent of rotary valve that opens at bottom dead center and closes before top dead center during compression process (Vent e) 36 Pressure of rotary valve In the contraction process, as a countermeasure when the air vent (air vent e) that opens at the bottom dead center and closes before the top dead center is excessively opened, the expansion process takes place before the air volume expands excessively and becomes a resistance to rotation. , Closed at bottom dead center, air dedicated air inlet (air port f) 37 Rotational direction of rotary valve 38 Valve serving as intake valve and valve c, and exhaust valve 39 Intake port of rotary valve 40 Plug and fuel Injector 41 Intake valve dedicated to air-fuel mixture (valve for first intake step) and exhaust valve serving as first and second exhausts 42 Intake valve dedicated to air (valve for second intake step) )
43 The intake port dedicated to the air-fuel mixture of the rotary valve (the intake port at the time of the first intake process) 44 The first exhaust port of the rotary valve 45 The second exhaust of the rotary valve Mouth 46 The first and second intakes and an intake valve that also serves as valve c,
Exhaust valve that also serves as first and second exhausts 47 Inlet for air only of rotary valve (inlet at the time of second intake process) 48 First intake of rotary valve 49 Two of rotary valve The first intake port 50 immediately before the completion of the intake process of the air-fuel mixture 51 immediately before the completion of the expansion process 52 immediately before the completion of the intake process 53 just before the completion of the compression process 54 immediately before the completion of the exhaust process 55 a passage connecting the valve a and the valve b 56 immediately before the completion of the first intake process 57 Immediately before the completion of the second intake process 58 Immediately before the completion of the first exhaust process 59 Immediately before the completion of the second exhaust process 60 In the combustion chamber, the intake port dedicated to the air-fuel mixture 61 The combustion chamber, the exhaust port 62 The combustion chamber during the intake process The opening at the top dead center and closing at the bottom dead center 63 The opening of the combustion chamber during the compression process, the opening at the bottom dead center and closing before the top dead center 64 The bottom of the combustion chamber during the compression process At dead center As a measure of when you close too open air inlets between the front of the upper dead point came, when the expansion process, to open before the resistance of the rotation too inflated,
Air intake port closed at bottom dead center, dedicated to air 65 As a countermeasure when the air intake port of the combustion chamber and the air opening that opens at bottom dead center and closes before top dead center during the compression process are too open, At the time of the expansion process, the air opening that opens before closing to the rotation resistance due to excessive expansion, and closes at the bottom dead center. The intake port at the time of the intake process 67 The exhaust port which also serves as the first exhaust port and the second exhaust port of the combustion chamber 68 At the compression process, the combustion chamber opens at the bottom dead center and before the top dead center. As a countermeasure when opening the mouth to be closed too much, during the expansion process, open before it expands too much and becomes the resistance of rotation,
A vent that closes at the bottom dead center and serves as both the air intake port and the air port during the second intake process (air intake process). 69 The combustion chamber opens at the bottom dead center during the compression process. As a countermeasure when the air vent closes before the top dead center is too open, in the expansion process, open before it expands too much and becomes a resistance to rotation,
An air outlet that closes at the bottom dead center and serves as an air inlet, a first air inlet, and a second air inlet AA cross section BB cross section CC cross section DD cross section EE Cross section FF cross section GG cross section HH cross section II cross section JJ cross section KK cross section LL cross section MM cross section NN cross section OO cross section
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 15/04 F02D 15/04 D // F02B 75/02 F02B 75/02 A (54)【発明の名称】 4サイクルエンジン、6サイクルエンジンに、ピストンバルブ、ロータリーバルブを使用した時 の、圧縮工程の時、本当に圧縮する工程よりも、膨張工程の時、本当に膨張する工程の方を、ス トロークで言うならば長くとる方法。──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 15/04 F02D 15/04 D // F02B 75/02 F02B 75/02 A (54) [Title of Invention] When using a piston valve or rotary valve for a 4-cycle engine or a 6-cycle engine, the process of truly expanding in the expansion process is more of a stroke than the process of really compressing in the compression process. Then take a long way.
Claims (8)
とディーゼルエンジンと筒内噴射ガソリンエンジ
ン。)、6サイクルエンジン〔ディーゼルエンジンとガ
ソリンエンジン(平成2年特許願第417964号)と
筒内噴射6サイクルガソリンエンジン(平成8年特許願
第172736号)。〕に、ピストンバルブ、ロータリ
ーバルブ(平成3年特許願第356145号)を使用し
た時、吸気工程(6サイクルエンジンの場合は1回目の
吸気工程。)の時、上死点で開き下死点で閉じる弁(ピ
ストンバルブ)、気口(ロータリーバルブ)、と、圧縮
工程の時、下死点で開き上死点の手前の間で閉じる弁、
気口、の、2種類の、弁、気口、を設ける。1. A four-cycle engine (a gasoline engine, a diesel engine, and a direct injection gasoline engine), a six-cycle engine (a diesel engine, a gasoline engine (Japanese Patent Application No. 417964), and a direct injection six-cycle gasoline engine). (1996 Patent Application No. 172736). ], When a piston valve and a rotary valve (patent application No. 356145 in 1991) are used, in the intake process (the first intake process in the case of a 6-cycle engine), it opens at the top dead center and opens at the bottom dead center. Valve (piston valve), air port (rotary valve), and valve that opens at bottom dead center and closes before top dead center during compression process,
Two types of valves and vents are provided.
で開き下死点で閉じる弁、気口と、圧縮工程の時、下死
点で開き上死点の手前の間で閉じる弁、気口の先に、何
も無い空間(混合気、又は、空気が一時停滞する
所。)、を取り付ける。2. The valve according to claim 1, which is opened at a top dead center and closed at a bottom dead center during an intake process, and between a valve and an air port opened at a bottom dead center and just before the top dead center during a compression process. At the end of the closing valve and vent, attach an empty space (where the air-fuel mixture or air temporarily stagnates).
で開き下死点で閉じる弁、気口と、圧縮工程の時、下死
点で開き上死点の手前の間で閉じる弁、気口の、何も無
い空間への(からの)通路、を、何も無い空間の端と端
に取り付ける。3. The valve according to claim 2, which is opened at a top dead center and closed at a bottom dead center during an intake process, and between a vent and an opening at a bottom dead center before a top dead center during a compression process. Attach the closing valve, vent to the empty space, to the empty space end to end.
間を、他の気筒の何も無い空間と、1つにつなぐ。4. In the case of a multi-cylinder, the empty space according to claim 2 is connected to the empty space of another cylinder as one.
上の時、吸気工程の時、上死点で開き下死点で閉じる
弁、気口が、吸気工程で開く時には、他の気筒の、圧縮
工程の時、下死点で開き上死点の手前の間で閉じる弁、
気口の中で、圧縮工程で開く弁、気口へと、直接つな
ぐ。5. In the case of a four-stroke engine, when the number of cylinders is four or more, during the intake stroke, the valve opens at the top dead center and closes at the bottom dead center. During the compression process, a valve that opens at the bottom dead center and closes before the top dead center,
In the vent, connect directly to the valve and vent that opens in the compression process.
上の時、1回目の吸気工程の時、上死点で開き下死点で
閉じる弁、気口が、1回目の吸気工程で開く時には、そ
の時、他の気筒の、圧縮工程の時、下死点で開き上死点
の手前の間で閉じる弁、気口の中で、圧縮工程で開く
弁、気口へと、直接つなぐ。6. In the case of a six-stroke engine, when the number of cylinders is six or more, a valve that opens at the top dead center and closes at the bottom dead center in the first intake stroke, and a vent opens in the first intake stroke. At that time, in the compression process of the other cylinders, the valve is opened at the bottom dead center and closed before the top dead center, and the valve is opened directly in the compression process.
前の間で閉じる弁、気口を開け過ぎた時の対策として、
膨張工程の時、4サイクルディーゼルエンジンと、筒内
噴射4サイクルガソリンエンジンと、6サイクルディー
ゼルエンジンと、筒内噴射6サイクルガソリンエンジン
の場合は、膨張し過ぎて回転の抵抗になる前に、吸気
弁、吸気口を開き、下死点で閉じる。7. In the compression step, a valve that opens at the bottom dead center and closes before the top dead center, as a countermeasure when the vent is opened too much,
At the time of the expansion process, in the case of a 4-cycle diesel engine, a direct injection 4-cycle gasoline engine, a 6-cycle diesel engine, and a direct injection 6-cycle gasoline engine, the intake air is increased before the engine is over-expanded and becomes rotational resistance. Open the valve and intake port and close at the bottom dead center.
前の間で閉じる弁、気口を開け過ぎた時の対策として、
膨張工程の時、4サイクルガソリンエンジンの場合は、
空気専用の吸気弁、吸気口を設け、6サイクルガソリン
エンジンの場合は、空気専用の吸気弁、吸気口(2回目
の吸気工程の時の、吸気弁、吸気口)を、膨張し過ぎて
回転の抵抗になる前に開き、下死点で閉じる。8. In the compression step, a valve that opens at the bottom dead center and closes before the top dead center,
During the expansion process, in the case of a 4-cycle gasoline engine,
A dedicated air intake valve and intake port are provided. In the case of a 6-cycle gasoline engine, the exclusive air intake valve and intake port (the intake valve and intake port at the time of the second intake process) are excessively expanded and rotated. Open before reaching resistance and close at bottom dead center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000405093A JP2002201947A (en) | 2000-12-31 | 2000-12-31 | Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000405093A JP2002201947A (en) | 2000-12-31 | 2000-12-31 | Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002201947A true JP2002201947A (en) | 2002-07-19 |
Family
ID=18868881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000405093A Pending JP2002201947A (en) | 2000-12-31 | 2000-12-31 | Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002201947A (en) |
-
2000
- 2000-12-31 JP JP2000405093A patent/JP2002201947A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3964451A (en) | Internal combustion engine with a supercharger | |
US7318314B2 (en) | Method of controlling a supercharged internal-combustion engine with at least two cylinders and engine using such a method | |
JP2002201947A (en) | Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engine | |
JP2001234770A (en) | Method for taking really expanding stroke at expansion stroke longer than really compressing stroke at compression stroke when piston valve and rotary valve are used for four-cycle engine and six-cycle engine | |
JP2000274255A (en) | Setting stroke for really expanding at time of expanding stroke longer than stroke for really compressing at time of compressing stroke when using piston valve and rotary valve for four-cycle engine and six-cycle engine | |
JPS6088810A (en) | Internal-combustion engine | |
JP2001082187A (en) | Method for making actual expansion stroke in expansion stroke longer in stroke than actual compression stroke in compression stroke in the case of using piston valve and rotary vlave in 4-cycle engine or 6-cycle engine | |
JP2000199441A (en) | Method of sparing longer time in terms of strokes for actually expanding process in expansion process than actually compressing process in compression process in using piston valve or rotary valve in four-cycle engine or six-cycle engine | |
JPH11303644A (en) | Method of taking longer stroke in compression stroke than in actual compression stroke and taking longer stroke in actual expansion stroke than in expansion stroke, in using piston valve and rotary valve for four cycle engine and six cycle engine | |
JPH10196377A (en) | Method for to performing longer stroke at real expansion stroke time than at real compression stroke time when piston valve and rotary valve are used in 4-cycle engine and 6-cycle engine | |
JPS60153427A (en) | Supercharged multi-cylinder internal-combustion engine | |
JP3948081B2 (en) | Spark ignition internal combustion engine | |
JPS6030430Y2 (en) | Internal combustion engine starting accelerator | |
JP2003201873A (en) | Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine | |
JP2004332708A (en) | Method of adopting longer effective expansion stroke than effective compression stroke when using piston valve or rotary valve for 4-cycle engine or 6-cycle engine | |
JPH10196376A (en) | Method for performing longer stroke at real expansion stroke time than at real compression stroke time when piston valve and rotary valve are used in 4-cycle engine and 6-cycle engine | |
JPH10184369A (en) | Method of taking longer stroke for real expansion process, under expansion process, than for real compression process, under compression process, when piston valve and rotary valve are employed for four cycle engine and six cycle engine | |
JPH09273430A (en) | Six-cycle gasoline engine | |
JP2003262137A (en) | Method for making actual expansion ratio larger than actual compression ratio when piston valve and rotary valve are used for 4-cycle engine, 6-cycle engine, 8-cycle engine, and 10-or-more cycle engine | |
JPH07189703A (en) | Intake device for uniflow type two-cycle engine | |
JP2001032730A (en) | Method for making true expansion ratio larger than true compression ratio when piston valve and rotary valve are used for four-cycle engine, six-cycle engine, eight- cycle engine and ten- or more-cycle engine | |
JP2005042694A5 (en) | ||
GB2196693A (en) | Supercharged four-stroke engine | |
JPH11336559A (en) | Method of making stroke of expansion process longer than that of actually compressing process of 4-cycle gasoline engine | |
JP2002276398A (en) | Measure for valve or air opening opened in intake stroke and closed after starting compression stroke in use of piston valve or rotary valve to 4-cycle gasoline engine or 6-cycle gasoline engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070923 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071228 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071230 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071230 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20080205 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20080520 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20080805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20101102 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20110315 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20120313 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120925 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20120925 |