JP2004227938A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2004227938A
JP2004227938A JP2003014675A JP2003014675A JP2004227938A JP 2004227938 A JP2004227938 A JP 2004227938A JP 2003014675 A JP2003014675 A JP 2003014675A JP 2003014675 A JP2003014675 A JP 2003014675A JP 2004227938 A JP2004227938 A JP 2004227938A
Authority
JP
Japan
Prior art keywords
fuel
oxidant
flow path
cooling water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014675A
Other languages
English (en)
Inventor
Hideo Maeda
秀雄 前田
Hisatoshi Fukumoto
久敏 福本
Osamu Hiroi
治 廣井
Akihisa Yoshimura
晃久 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003014675A priority Critical patent/JP2004227938A/ja
Publication of JP2004227938A publication Critical patent/JP2004227938A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】この発明は、間欠的に生成した水分により乾燥した電解質膜を湿潤させ、反応分布を均一として、高い特性を長時間保持できる燃料電池を得る。
【解決手段】酸化剤流体供給配管14が燃料電池10の酸化剤流体供給口に接続されている。そして、ブロア15が酸化剤流体供給配管14に接続され、酸化剤流体を燃料電池10の酸化剤流体供給口に供給できるようになっている。さらに、制御装置16がインバータ17を介してブロア15の回転数を間欠的に調整できるようになっている。
【選択図】 図6

Description

【0001】
【発明の属する技術分野】
この発明は、電気化学的な反応を利用して発電する、例えば電気自動車等で使用される燃料電池に関し、特に電解質膜のイオン導電度が水分含有量により変化する固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
従来の燃料電池は、水分を含むことによりイオン導電性が発揮される電解質膜を燃料電極および酸化剤電極により挟持してなる単電池(単セル)と、酸化剤流体を流通させる酸化剤流路が一面側に形成された第1セパレータ板と、燃料流体を流通させる燃料流路が一面側に形成され、冷却水を流通させる冷却水流路が他面側に形成された第2セパレータ板とを備えている。そして、従来の燃料電池は、第1セパレータ板がその一面側を酸化剤電極に向けて配設され、かつ、第2セパレータ板がその一面側を燃料電極に向けて配設されてなる積層体を複数積層して構成されている。
従来の燃料電池は、酸化剤流体としての空気が各酸化剤流路に供給され、燃料流体としての水素ガスが各燃料流路に供給される。そして、水素は燃料電極上で電気化学反応によりプロトンとなる。この燃料電極上で生成されたプロトンは、水を伴って電解質膜中を酸化剤電極まで移動し、酸化剤電極上で酸素と反応して水を生成する。
【0003】
従来の燃料電池では、単セルに反応ガスを供給し続けることで反応が継続する。この時、この反応で重要な役割を果たす電解質膜のイオン導電性は、膜の水分含有量にほぼ比例し、かつ、電解質膜の水分含水量は、雰囲気ガスの湿度に依存することが知られている。(例えば、非特許文献1参照)
そこで、一般には、電解質膜のイオン導電性を確保するために、反応ガスを加湿して燃料電池を運転するようにしている。(例えば、非特許文献2参照)
【0004】
しかし、反応ガスの加湿には大きなエネルギーが必要となり、例えばセル温度80℃に対して飽和するまで供給ガスを加湿しようとすると、空気の加湿に必要な熱量は燃料電池の発電量を超える熱量(1.4倍)が必要となり、廃熱の有効利用を阻害するだけでなく、余分なエネルギーを消費し、コジェネ発電の効率を引き下げる恐れがあった。そのため、供給ガスの加湿量を抑制して運転できる燃料電池が求められる。
【0005】
しかし、酸化剤流路に乾燥した空気を供給した場合、酸化剤流路の上流域では電解質膜が乾燥し、電池反応は生成水により湿潤となった下流域に集中してしまい、十分な電池特性を発揮できなくなる。
そこで、酸化剤流路の空気の供給口と排出口とを周期的に切り換えて運転し、電解質膜の水分分布を均一化させるようにしている。(例えば、特許文献1参照)
【0006】
【非特許文献1】
「J. Electrochem. Soc.」140(1993), pp1041−1047 ”Water Uptake by and Transport Through Nafion 117 Membranes”
【非特許文献2】
「第9回燃料電池シンポジウム講演要旨集」2002, ”低加湿対応PEFCスタックの開発”
【特許文献1】
特表2001−525596号公報
【0007】
【発明が解決しようとする課題】
この従来の燃料電池では、反応ガスの切り換え時には、差圧が大きくついたり、ガス欠を防止するために弁の切り換えタイミングを微妙に制御する必要があり、また、圧力損失の低い切替弁が必要となり、その運転を容易に実現できない、という不具合があった。
【0008】
この発明は、上記の題を解消するためになされたもので、湿度の低い反応ガスを供給しても、間欠的に生成した水分により、乾燥した電解質膜を湿潤させ、反応分布を均一として、長期に渡って高電圧・高出力が得られる燃料電池を提供するものである。
【0009】
【課題を解決するための手段】
この発明に係る燃料電池は、負荷および燃料流路に供給される燃料流体の流量を変えることなく、酸化剤流路に供給される酸化剤流体の流量を間欠的に減少させる酸化剤流体流量調整手段を備えているものである。
【0010】
また、酸化剤流路に供給される酸化剤流体の流量を変えることなく、負荷と燃料流路に供給される燃料流体の流量とを間欠的に増大させる燃料流体流量・負荷調整手段を備えているものである。
【0011】
また、酸化剤流路から排出される酸化剤流体の排ガスを間欠的に酸化剤流路に供給する酸化剤流体の排ガスリサイクル手段を備えているものである。
【0012】
また、冷却水流路に流通される冷却水の温度を間欠的に下げる冷却水温調整手段を備えているものである。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図について説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る燃料電池の構成を説明する側面図、図2はこの発明の実施の形態1に係る燃料電池の単セルの構成を説明する断面図、図3はこの発明の実施の形態1に係る燃料電池の第1セパレータ板の酸化剤流路面を示す平面図、図4はこの発明の実施の形態1に係る燃料電池の第2セパレータ板の燃料流路面を示す平面図、図5はこの発明の実施の形態1に係る燃料電池の第2セパレータ板の冷却水流路面を示す平面図、図6はこの発明の実施の形態1に係る燃料電池のシステム図、図7はこの発明の実施の形態1に係る燃料電池における空気利用率およびセル電圧変化を示す図である。
【0014】
第1セパレータ板1は、図3に示されるように、カーボン等の導電性材料を矩形平板状に作製されたもので、酸化剤供給口20、燃料排出口23および冷却水供給口24がその1辺に穿設され、酸化剤排出口21、燃料供給口22および冷却水排出口25が相対する1辺に穿設されている。そして、7本の酸化剤流路11が、第1セパレータ板1の主面に酸化剤供給口20から酸化剤排出口21に至るように蛇腹状に形成されている。
【0015】
第2セパレータ板2は、図4および図5に示されるように、カーボン等の導電性材料を矩形平板状に作製されたもので、酸化剤供給口20、燃料排出口23および冷却水供給口24がその1辺に穿設され、酸化剤排出口21、燃料供給口22および冷却水排出口25が相対する1辺に穿設されている。そして、7本の燃料流路12が、第2セパレータ板2の主面に燃料供給口22から燃料排出口23に至るように蛇腹状に形成されている。また、4本の冷却水流路13が、第2セパレータ板2の他面に冷却水供給口24から冷却水排出口25に至るように蛇腹状に形成されている。
【0016】
単セル(単電池)6は、図2に示されるように、酸化剤電極3および燃料電極4が電解質膜5を挟持して構成されている。そして、酸化剤電極3および燃料電極4は、水平方向に幅7cm、垂直方向に高さ14cmの長方形をなし、ほぼ100cmの有効面積を有している。また、電解質膜5は、酸化剤電極3および燃料電極4より大形の矩形状に形成され、図示していないが、酸化剤供給口20、燃料排出口23および冷却水供給口24がその1辺に穿設され、酸化剤排出口21、燃料供給口22および冷却水排出口25が相対する1辺に穿設されている。
ここで、酸化剤電極3および燃料電極4には、例えばカーボン多孔質体(カーボン布等)の電解質膜5側の表面に白金とカーボンとからなる触媒層を設けたものが用いられる。また、電解質膜5には、例えば固体高分子電解質膜が用いられ、具体的には、ナフィオン(デュポン社の登録商標)、アシプレックス(旭化成(株)の登録商標)、フレミオン(旭硝子(株)の登録商標)が用いられる。
【0017】
そして、酸化剤流路11を酸化剤電極3に面するように第1セパレータ板1を単セル6に重ね合わせ、かつ、燃料流路12を燃料電極4に面するように第2セパレータ板2を単セル6に重ね合わせてなる積層体を70枚積層してスタック7が構成される。また、一対の集電端子8がスタック7の両端に配設され、一対の端板9が集電端子8の外側に配設され、締め付け一体化されて、燃料電池10が構成される。
このように構成された燃料電池10は、酸化剤供給口20、酸化剤排出口21、燃料供給口22、燃料排出口23、冷却水供給口24および冷却水排出口25が、それぞれ積層方向に連通している。そして、酸化剤流体としての空気が、端板9を介して酸化剤供給口20に供給され、各第1セパレータ板1の酸化剤流路11を流通して酸化剤排出口21に至り、端板9を介して排出される。また、燃料流体としての水素ガスが、端板9を介して燃料供給口22に供給され、各第2セパレータ板2の燃料流路12を流通して燃料排出口23に至り、端板9を介して排出される。さらに、冷却水が、端板9を介して冷却水供給口24に供給され、各第2セパレータ板2の冷却水流路13を流通して冷却水排出口25に至り、端板9を介して排出される。
【0018】
そして、この燃料電池10では、図6に示されるように、ブロア15が酸化剤流体供給配管14に接続されている。このブロア15は、その回転数が、制御装置16によりインバータ17を介して間欠的に制御されるようになっている。なお、ブロア15、制御装置16およびインバータ17が、酸化剤流体の流量調整手段を構成している。
【0019】
つぎに、この実施の形態1の動作について説明する。
まず、燃料流体としての水素ガスが端板9から燃料供給口22に導入され、各単セル6の燃料流路12内を流れて各単セル6の燃料電極4に供給される。一方、酸化剤流体としての空気が端板9から酸化剤供給口20に導入され、各単セル6の酸化剤流路11内を流れて各単セル6の酸化剤電極3に供給される。
そして、燃料電極4上において、水素が酸化され、プロトンと電子とが生成される。一方、酸化剤電極3上において、燃料電極4で生成されたプロトンが電解質膜5中を移動して酸化剤電極3に到達し、空気中の酸素および外部回路を介して酸化剤電極3に供給された電子と反応し、水が生成される。そして、この化学反応で生成された電子を外部回路により電流として取り出すことになる。
【0020】
ここで、冷却水を端板9から冷却水供給口24に導入し、各単セル6の冷却水流路13内を流した後冷却水排出口25および端板9を介して排出し、燃料電池10の温度を80℃に維持する。そして、酸化剤供給口20から露点65℃の空気を利用率50%相当の流量(68l/min)で流し、25Aの電流で発電運転を実施した。なお、COを20ppm含有する改質模擬ガス(水素:75%、CO:残り)を燃料として燃料利用率80%相当の流量で流した。
この時、酸化剤流路11の酸化剤供給口20近傍(酸化剤入口部)の相対湿度は53%であり、酸化剤流路11の酸化剤排出口21近傍(酸化剤出口部)の相対湿度は80%に達した。そして、セル電圧は初期で750mVであったものが、1時間半運転を継続した時点では730mVまで低下した。
【0021】
この時点で、制御装置16によりインバータ17を介してブロア15の回転数を減少させ、空気流量を5分間57l/minに絞った(空気利用率60%)。これにより、酸化剤出口部での酸素分圧は、ドライベースで12%であったものが、9.6%まで低下した。一方、酸化剤入口部での相対湿度は53%であったが、酸化剤出口部での相対湿度は90%まで上昇した。そのため、図7中曲線Aで示されるように、空気流量を絞った瞬間は、セル電圧が20mV程度低下するが、5分間で740mVまで回復し、空気流量を元に戻すと、初期と同じ745mV近くまで回復した。これは、下流側の水分量が多く、かつ、下流側の酸素濃度が低くなるため、反応分布が上流側にシフトし、上流側に水分が補給されて湿潤状態に復帰したためと推考される。
この操作を1時間半毎に繰り返して運転を継続したが、10時間運転を継続した時点でも740mV以上の電圧を保つことができる。
【0022】
また、比較例として、燃料電池10の温度を80℃に維持し、酸化剤供給口20から露点65℃の空気を利用率50%相当の流量(68l/min)で流し、25Aの電流で発電運転を実施した場合のセル電圧の測定結果を図7中Cとして示す。なお、COを20ppm含有する改質模擬ガス(水素:75%、CO:残り)を燃料として燃料利用率80%相当の流量で流した。
この比較例では、酸化剤流路11の酸化剤入口部の相対湿度は53%であった。一方、酸化剤流路11の酸化剤出口部の相対湿度は、燃料電池反応により水が生成されるため、空気中の水分量が増大し、80%に達した。そして、セル電圧は初期で750mVであったものが、5時間運転を継続した時点では700mVまで低下した。これは、空気流路の上流に相当する領域では、電解質膜5が乾燥してそのイオン抵抗が増大し、一方空気流路の下流に相当する領域では、生成水により電解質膜5の水分含有量が増加し、そのイオン抵抗が減少し、反応分布が不均一になったためと推考される。
【0023】
このように、この実施の形態1によれば、燃料流量および負荷を変えることなく空気流量を間欠的に絞るように制御したので、空気流量が絞られた期間において、反応分布が上流側にシフトして、上流側に水分が補給されて上流側が湿潤状態に復帰し、長時間の運転において高電圧・高出力を維持できる燃料電池が得られる。
また、空気流量を絞っている期間の発電量は、初期40W程度低下するものの、空気流量を減らすことにより、ブロア15の所要電力が20W程度低減できるので、実質損失は、1kWの出力に対して2%に当たる最大20Wであった。
【0024】
ついで、燃料電池10の運転条件について検討する。
この実施の形態1においては、空気流量を絞る際に、空気利用率を定格の1.2倍に当たる60%に増大させたが、空気利用率を定格の1.4倍の70%に増大させても同様の向上効果が得られた。しかし、空気利用率を定格の1.4倍に増大させると、一部のセル電圧が大きく低下するなどしてセル電圧にばらつきを生じることがあり、空気流量を過剰に絞ることは好ましくない。また、空気利用率を定格の1.1倍以下とすると、セル電圧の回復効果はみられなかった。そこで、空気流量を絞る際には、空気利用率を定格の1.1倍より大きく、1.4倍より小さくすればよく、好ましくは定格の1.2倍程度がよい。
また、空気流量を絞る時間を10分に延ばすことによりセル電圧の回復量が大きくなることがわかった。そして、空気流量を元に戻してから数分後にはセル電圧が同程度に落ち着いていたので、空気流量を絞る時間は数分から10分程度が適している。なお、空気流量を絞る時間を20分以上に延ばすと、一部のセル電圧が大きく低下するなどしてセル電圧にばらつきを生じることがあり、毎回長時間空気流量を絞ることは好ましくない。しかし、数回に1回の割合で空気流量を絞る時間を20分程度に延ばすことは、セル電圧特性を向上させる上で有効であることもわかった。
さらに、空気流量を絞る間隔は、1回の運転時間が半日程度の場合には、1時間から2時間の間が適しており、また、長時間連続運転をする場合には、数時間に1回でも効果が認められた。
【0025】
なお、上記実施の形態1では、冷却水流路13を第2セパレータ板2の他面に形成するものとしているが、冷却水流路13を第1セパレータ1の他面に形成するようにしてもよい。
また、上記実施の形態1では、ブロア15、制御装置16およびインバータ17により酸化剤流体の流量調整手段を構成するものとしているが、酸化剤流体の流量調整手段はこれに限定されるものではなく、酸化剤流体の流量を間欠的に調整できるものであればよい。
【0026】
実施の形態2.
図8はこの発明の実施の形態2に係る燃料電池のシステム図、図9はこの発明の実施の形態2に係る燃料電池における空気利用率およびセル電圧変化を示す図である。
この実施の形態2では、図8に示すように、燃料流体が改質器30から燃料流体供給配管31を介して燃料電池10に供給されるようになっている。また、インバータ32が一対の集電端子8に接続されている。そして、制御装置33が、燃料流体の流量を間欠的に増大させるように改質器30を制御するとともに、燃料流体の流量の間欠的な増大に連動してインバータ32を介して燃料電池10の負荷を間欠的に増大させるようになっている。
なお、燃料電池10は上記実施の形態1と同等のものである。また、制御装置33およびインバータ32が、燃料流体の流量および燃料電池の負荷の調整手段を構成している。
【0027】
つぎに、この実施の形態2の動作について説明する。
燃料電池10の温度を80℃に維持した状態で、酸化剤供給口20から露点65℃の空気を利用率50%相当の流量(68l/min)で流し、25Aの電流で発電運転を実施した。なお、CO濃度が20ppm前後の改質ガス(水素:約70%、CO:残り)を燃料として燃料利用率80%相当の流量で流した。
この時、酸化剤流路11の酸化剤入口部の相対湿度は53%であり、酸化剤流路11の酸化剤出口部の相対湿度は80%に達した。そして、セル電圧は初期で750mVであったものが、1時間半運転を継続した時点では730mVまで低下した。
【0028】
この時点で、空気流量を固定し、制御装置33により改質器30からの燃料流体流量を定格の1.2倍(燃料利用率:80%、空気利用率:60%)に増大させるとともに、インバータ32を介して電流を定格の1.2倍(30A)に増大させた。これにより、酸化剤出口部での酸素分圧は、ドライベースで12%であったものが、9.6%まで低下した。一方、酸化剤入口部での相対湿度は53%であったが、酸化剤出口部での相対湿度は90%まで上昇した。
そのため、図9中曲線Bで示されるように、燃料流量および負荷を増大させた瞬間は、セル電圧が690mVまで低下するが、5分間で710mVまで回復し、燃料流体流量および負荷を元に戻すと、初期と同じ745mV近くまで回復した。これは、下流側の水分量が多く、かつ、下流側の酸素濃度が低くなるため、反応分布が上流側にシフトし、上流側に水分が補給されて湿潤状態に復帰したためと推考される。
この操作を1時間半毎に繰り返して運転を継続したが、10時間運転を継続した時点でも740mV以上の電圧を保つことができる。
なお、図9中曲線Cは、比較例として、燃料電池10の温度を80℃に維持し、酸化剤供給口20から露点65℃の空気を利用率50%相当の流量(68l/min)で流し、かつ、燃料として燃料利用率80%相当の流量で流し、25Aの電流で発電運転を実施した比較例のセル電圧の測定結果を示している。
【0029】
このように、この実施の形態2によれば、制御装置33が改質器30およびインバータ32を制御して、空気流量を変えることなく燃料流体流量および負荷を連動して間欠的に増大させるようにしたので、燃料流体流量および負荷が増大された期間において、反応分布が上流側にシフトして、上流側に水分が補給されて上流側が湿潤状態に復帰し、長時間の運転において高電圧・高出力を維持できる燃料電池が得られる。
また、負荷を増大させている期間の発電量は、180Wも増大するが、セル電圧が低下する分、DC発電効率が3%低下する。
【0030】
ついで、燃料電池10の運転条件について検討する。
この実施の形態2においては、負荷を定格の1.2倍に当たる30Aに増大させたが、負荷を定格の1.4倍の35Aに増大させても同様の向上効果が得られた。しかし、負荷を定格の1.4倍に増大させると、セル電圧が650mVまで低下してしまい効率が大きく低下することや、改質器30に余力がない場合には、燃料流体流量を定格以上に増大させることが困難となる。また、負荷を定格の1.1倍に増大させると、セル電圧の回復効果がみられるものの、回復時間が長くなってしまう。そこで、負荷は、定格の1.1倍より大きく、1.4倍より小さくすればよく、好ましくは定格の1.2倍程度がよい。
また、負荷を増大する時間を10分に延ばすことによりセル電圧の回復量が大きくなることがわかったが、効率保持の観点から負荷を増大させる時間はできるだけ短くすることがよく、負荷を増大させる時間は数分から10分程度が適している。なお、負荷を増大させる時間を20分程度に延ばすことは、ベース特性を上げる上で有効であることもわかった。
さらに、負荷を増大させる間隔は、1回の運転時間が半日程度の場合には、1時間から2時間の間が適しており、また、長時間連続運転をする場合には、数時間に1回でも効果が認められた。
【0031】
なお、上記実施の形態2では、制御装置33およびインバータ32により燃料流体流量・負荷調整手段を構成するものとしているが、燃料流体流量・負荷調整手段はこれに限定されるものではなく、燃料流体の流量と負荷とを連動して間欠的に調整できるものであればよい。
【0032】
実施の形態3.
図10はこの発明の実施の形態3に係る燃料電池のシステム図である。
この実施の形態3では、図10に示すように、酸化剤流体の排ガスが排ガスリターン配管35を介して酸化剤流体供給配管14に供給できるようになっている。そして、排ガスリサイクル用ブロア36および電磁弁37が排ガスリターン配管35に配設されている。さらに、制御装置38が、排ガスを燃料電池10に間欠的に供給するように、排ガスリサイクル用ブロア36および電磁弁37を間欠起動するようになっている。
なお、燃料電池10は上記実施の形態1と同等のものである。また、制御装置38、排ガスリターン配管35、リサイクル用ブロア36および電磁弁37が、排ガスのリサイクル手段を構成している。
【0033】
つぎに、この実施の形態3の動作について説明する。
燃料電池10の温度を80℃に維持した状態で、酸化剤供給口20から露点65℃の空気を利用率50%相当の流量(68l/min)で流し、25Aの電流で発電運転を実施した。なお、COを20ppm含有する改質模擬ガス(水素:75%、CO:残り)を燃料として燃料利用率80%相当の流量で流した。
この時、酸化剤流路11の酸化剤入口部の相対湿度は53%であり、酸化剤流路11の酸化剤出口部の相対湿度は80%に達した。そして、セル電圧は初期で750mVであったものが、1時間半運転を継続した時点では730mVまで低下した。
【0034】
この時点で、制御装置38が、電磁弁37を開弁するとともに、排ガスリサイクル用ブロア36を起動し、3分後電磁弁37を閉弁するとともに、排ガスリサイクル用ブロア36を停止する。これにより、空気の排ガスが排ガスリターン配管35を介して酸化剤流体供給配管14に戻され、空気が2倍となって燃料電池10に供給される。この時、酸化剤出口部での酸素分圧は、変化せずドライベースで12%であったが、酸化剤入口部での酸素分圧は21%から17%まで低下する。一方、酸化剤出口部での相対湿度は変化せず80%であったが、酸化剤入口部の相対湿度は53%から67%に増大する。これは、下流側の水分量が多なった排ガスが排ガスリターン配管35を介して上流側に供給されたため、反応分布が上流側にシフトし、上流側に水分が補給されて湿潤状態に復帰したためと推考される。
そのため、空気の排ガスを供給した瞬間は、酸化剤入口部の酸素濃度が低下するため、セル電圧が720mV近くまで低下するが、数秒で730mVを超え、短時間(3分間)で750mVまで回復し、排ガスの供給を止めると、初期と同じ745mV近くまで回復した。
この操作を1時間半毎に繰り返して運転を継続したが、10時間運転を継続した時点でも740mV以上の電圧を保つことができる。
【0035】
このように、この実施の形態3によれば、制御装置38が排ガスリサイクル用ブロア36および電磁弁37を間欠起動して空気の排ガスを間欠的に燃料電池10に供給させるようにしたので、排ガスが供給された期間において、反応分布が上流側にシフトして、上流側に水分が補給されて上流側が湿潤状態に復帰し、長時間の運転において高電圧・高出力を維持できる燃料電池が得られる。
また、空気をリサイクルさせている期間の発電量の低下はほとんどないが、排ガスリサイクル用ブロア36の動力が50W増大し、その分発電量が低下した。
【0036】
ついで、燃料電池10の運転条件について検討する。
この実施の形態3においては、空気のリサイクル量は、ブロア15による空気供給量と同じ量としているが、リサイクル量はブロア15による空気供給量の半分以上であればセル電圧の回復効果が得られる。一方、リサイクル量は基本的に多いほどセル電圧の回復効果が大きくなるが、余分な補機動力や大型のブロアが必要となることから、リサイクル量はブロア15による空気供給量に対して等量付近とすることが適当である。
また、排ガスのリサイクル時間を10分に延ばすことによりセル電圧の回復量が大きくなることがわかったが、効率保持の観点から排ガスのリサイクル時間はできるだけ短くすることがよく、2〜3分から10分程度が適している。なお、排ガスのリサイクルを数回行った後、セル電圧の回復量が少なくなる場合には、排ガスのリサイクル時間を通常より長くすることが有効である。
さらに、排ガスのリサイクルする間隔は、1回の運転時間が半日程度の場合には、1時間から2時間の間が適しており、また、長時間連続運転をする場合には、数時間に1回でも効果が認められた。
【0037】
なお、上記実施の形態3では、制御装置38、排ガスリターン配管35、リサイクル用ブロア36および電磁弁37により排ガスのリサイクル手段を構成するものとしているが、排ガスのリサイクル手段はこれに限定されるものではなく、排ガスを間欠的に燃料電池に供給できるものであればよい。
【0038】
実施の形態4.
図11はこの発明の実施の形態4に係る燃料電池のシステム図である。
この実施の形態4では、図11に示すように、冷却水は、貯水タンク40から冷却水供給配管41を介して燃料電池10に供給され、燃料電池10を冷却した後、冷却水排水配管42を介して貯水タンク40に戻されるようになっている。そして、第1熱交換器43が冷却水排水配管42に設けられ、ファン45を備えた第2熱交換器44が冷却水供給配管41に設けられている。また、ブロア46が冷却水供給配管41に設けられている。さらに、制御装置47がファン45を間欠起動するように構成されている。
なお、燃料電池10は上記実施の形態1と同等のものである。また、制御装置47、第2熱交換器44およびファン45が、冷却水温調整手段を構成している。
【0039】
つぎに、この実施の形態4の動作について説明する。
ブロア46を駆動して、貯水タンク40内の水(冷却水)が冷却水供給配管41を介して燃料電池10に供給される。そして、冷却水は端板9から冷却水供給口24に導入され、各単セル6の冷却水流路13内を流通して単セル6を冷却した後冷却水排出口25および端板9を介して排出され、冷却水排水配管42を介して貯水タンク40に戻される。これにより、燃料電池10の温度が80℃に維持される。
そして、燃料電池10の温度を80℃に維持した状態で、酸化剤供給口20から露点65℃の空気を利用率50%相当の流量(68l/min)で流し、25Aの電流で発電運転を実施した。なお、COを20ppm含有する改質模擬ガス(水素:75%、CO:残り)を燃料として燃料利用率80%相当の流量で流した。
この時、酸化剤流路11の酸化剤入口部の相対湿度は53%であり、酸化剤流路11の酸化剤出口部の相対湿度は80%に達した。そして、セル電圧は初期で750mVであったものが、1時間半運転を継続した時点では730mVまで低下した。
【0040】
この時点で、制御装置47が、ファン45を2分間駆動する。これにより、冷却水供給配管41内を流れる冷却水が第2熱交換器44でファン45による空気流と熱交換し、その温度が10℃低下する。その結果、水温が10℃低下した冷却水が、燃料電池10に供給され、燃料電池10の温度が低下する。この場合、酸化剤入口部での相対湿度が80%に増大し、酸化剤流路の中間地点で飽和し、下流域では結露が生じる。これにより、最初の1分でスタック7の温度が下がり、乾燥していた電解質膜5が湿潤化し、セル電圧が1分程度で755mVまで回復する。そして、ファン45の駆動が停止されると、冷却水の水温が元に戻り、スタック7の発熱により、徐々に温度が上がり、初期と同じ745mV近くまで回復した。この操作を1時間半毎に繰り返して運転を継続したが、10時間運転を継続した時点でも740mV以上の電圧を保つことができる。
【0041】
また、スタック7を冷却して暖められた冷却水は、冷却水排水配管42に導入され、第1熱交換器43で、水道水との間で熱交換して冷却され、貯水タンク40に戻される。そして、冷却水と熱交換して暖められた水道水は、貯湯槽に貯液される。この時、冷却水の水温を下げすぎないように、水道水の水量は調整される。
【0042】
このように、この実施の形態4によれば、冷却水供給配管41に第2熱交換器44を配設し、ファン45を間欠起動して、燃料電池10に供給される冷却水の水温を間欠的に低下させているので、スタック7の温度が下がり、乾燥していた電解質膜5が湿潤状態に復帰し、長時間の運転において高電圧・高出力を維持できる燃料電池が得られる。
また、スタック7に供給される冷却水の水温を下げている期間の発電量の低下はほとんどないが、この期間内は冷却水排水配管42に排水される冷却水の水温が貯湯槽に必要な水温よりも低くなるので、水道水の給水が停止され、貯湯槽への温水の供給は停止される。
【0043】
ついで、燃料電池10の運転条件について検討する。
この実施の形態4においては、スタック7に供給される冷却水の水温を10℃下げるものとしているが、冷却水の水温を15℃以上下げると、フラッディングによりセル特性が急落した。また、冷却水の水温の低下量が5℃未満であると、セル電圧の回復効果が遅かった。そこで、冷却水の水温の低下量は5℃から10℃とすることが望ましい。
また、冷却水の水温を低下させる時間を5分より長くすると、フラッディングによりセル特性が急落するので、冷却水の水温を低下させる時間は1分から5分程度が適当である。
さらに、冷却水の水温を低下させる間隔は、1回の運転時間が半日程度の場合には、1時間から2時間の間が適しており、また、長時間連続運転をする場合には、数時間に1回でも効果が認められた。
【0044】
なお、上記実施の形態4では、制御装置47、第2熱交換器44およびファン45により冷却水温調整手段を構成するものとしているが、冷却水温調整手段はこれに限定されるものではなく、燃料電池に供給される冷却水の水温を間欠的に調整できるものであればよい。
【0045】
実施の形態5.
図12はこの発明の実施の形態5に係る燃料電池のシステム図、図13はこの発明の実施の形態5に係る燃料電池の第1セパレータ板の酸化剤流路面を示す平面図、図14はこの発明の実施の形態5に係る燃料電池の第2セパレータ板の冷却水流路面を示す平面図、図15はこの発明の実施の形態5に係る燃料電池における酸化剤流路位置と相対湿度との関係を示す図である。
【0046】
第1セパレータ板1Aは、図13に示されるように、カーボン等の導電性材料を矩形平板状に作製されたもので、酸化剤供給口20、燃料排出口23、第1冷却水供給口26aおよび第1冷却水供給口27aがその1辺に穿設され、酸化剤排出口21、燃料供給口22、第1冷却水排出口26bおよび第2冷却水排出口27bが相対する1辺に穿設されている。そして、7本の酸化剤流路11が、第1セパレータ板1Aの主面に酸化剤供給口20から酸化剤排出口21に至るように蛇腹状に形成されている。
【0047】
第2セパレータ板2Aは、図14に示されるように、カーボン等の導電性材料を矩形平板状に作製されたもので、酸化剤供給口20、燃料排出口23、第1冷却水供給口26aおよび第2冷却水供給口27aがその1辺に穿設され、酸化剤排出口21、燃料供給口22、第1冷却水排出口26bおよび第2冷却水排出口27bが相対する1辺に穿設されている。4本の第1冷却水流路13Aが、第2セパレータ板2の他面に、酸化剤流路11の上流側(図13中上半分)に対応する領域に、第1冷却水供給口26aから第1冷却水排出口26bに至るように蛇腹状に形成されている。さらに、4本の第2冷却水流路13Bが、第2セパレータ板2の他面に、酸化剤流路11の下流側(図13中下半分)に対応する領域に、第2冷却水供給口27aから第2冷却水排出口27bに至るように蛇腹状に形成されている。
なお、図示していないが、上記実施の形態1と同様に、7本の燃料流路12が、第2セパレータ板2Aの主面に燃料供給口22から燃料排出口23に至るように蛇腹状に形成されている。
【0048】
また、単セルを構成する電解質膜には、図示していないが、酸化剤供給口20、燃料排出口23、第1冷却水供給口26aおよび第2冷却水供給口27aがその1辺に穿設され、酸化剤排出口21、燃料供給口22、第1冷却水排出口26bおよび第2冷却水排出口27bが相対する1辺に穿設されている。
そして、酸化剤流路11を酸化剤電極3に面するように第1セパレータ板1Aを単セルに重ね合わせ、かつ、燃料流路12を燃料電極4に面するように第2セパレータ板2Aを単セルに重ね合わせてなる積層体を70枚積層してスタック7Aが構成される。また、一対の集電端子8がスタック7Aの両端に配設され、一対の端板9が集電端子8の外側に配設され、締め付け一体化されて、燃料電池10Aが構成される。
このように構成された燃料電池10Aは、酸化剤供給口20、酸化剤排出口21、燃料供給口22、燃料排出口23、第1冷却水供給口26a、第2冷却水供給口27a、第1冷却水排出口26bおよび第2冷却水排出口27bが、それぞれ積層方向に連通している。
【0049】
この実施の形態5では、図12に示すように、冷却水は、貯水タンク40から冷却水供給配管41Aを介して燃料電池10に供給され、燃料電池10を冷却した後、冷却水排水配管42を介して貯水タンク40に戻されるようになっている。そして、第1熱交換器43が冷却水排水配管42に設けられ、ブロア46が冷却水供給配管41Aに設けられている。また、冷却水供給配管41Aは、燃料電池10A側が第1および第2冷却水供給配管48、49に分岐されている。そして、第1冷却水供給配管48は、第1冷却水供給口26aに接続され、第2冷却水供給配管49は、第2冷却水供給口27aに接続されている。さらに、ファン45を備えた第2熱交換器44が第1冷却水供給配管48に設けられ、制御装置47がファン45を間欠起動するように構成されている。
なお、制御装置47、第1冷却水供給配管48、第2熱交換器44およびファン45が、冷却水温調整手段を構成している。
【0050】
つぎに、この実施の形態5の動作について説明する。
ブロア46を駆動して、貯水タンク40内の水(冷却水)が冷却水供給配管41Aを介して燃料電池10Aに供給される。そして、冷却水は第1および第2冷却水供給配管48、49を介して端板9から第1および第2冷却水供給口26a、27aに導入され、各単セル6の第1および第2冷却水流路13A、13B内を流通して単セル6を冷却した後第1および第2冷却水排出口26b、27bおよび端板9を介して排出され、冷却水排水配管42を介して貯水タンク40に戻される。これにより、燃料電池10Aの温度が80℃に維持される。
そして、燃料電池10Aの温度を80℃に維持した状態で、酸化剤供給口20から露点65℃の空気を利用率50%相当の流量(68l/min)で流し、25Aの電流で発電運転を実施した。なお、COを20ppm含有する改質模擬ガス(水素:75%、CO:残り)を燃料として燃料利用率80%相当の流量で流した。
この時、酸化剤流路11の酸化剤入口部の相対湿度は53%であり、酸化剤流路11の酸化剤出口部の相対湿度は80%に達した。そして、セル電圧は初期で750mVであったものが、1時間半運転を継続した時点では730mVまで低下した。
【0051】
この時点で、制御装置47が、ファン45を5分間駆動する。これにより、第1冷却水供給配管48内を流れる冷却水が第2熱交換器44でファン45による空気流と熱交換し、その温度が10℃低下する。その結果、水温が10℃低下した冷却水が、燃料電池10Aに供給され、燃料電池10Aの温度が低下する。この場合、酸化剤流路11の上流側のみの温度が10℃下がるので、酸化剤流路11内の相対湿度プロフィールは、極端には、上流側が図15中曲線Dに相当し、下流側が図15中曲線Eに相当する。しかし、実際には、上流側および下流側でなだらかな温度勾配が生じ、さらに上流側後半部で一部結露した水分が温度の高い下流側に直接移動するため、図15中曲線Fに相当する相対湿度プロフィールを形成する。そのため、酸化剤流路面内の相対湿度は80%〜90%前後に均一化される。
これにより、最初の2、3分でスタック7Aの空気上流側の温度が下がり、乾燥していた電解質膜5が湿潤化して、セル電圧が760mVまで向上する。第1冷却水供給配管48を流れる冷却水の水温を元に戻すと、スタック7Aの発熱により徐々に温度があがり、初期と同じ745mV近くまで回復した。この操作を1時間半毎に繰り返して運転を継続したが、10時間運転を継続した時点でも740mV以上の電圧を保つことができる。
【0052】
なお、上記実施の形態4では、酸化剤流路11の相対湿度は、酸化剤入口部で80%に増大し、中間地点で飽和し、下流域で一部結露が生じていた。そこで、上記実施の形態4での酸化剤流路11の相対湿度プロファイルは、図15中曲線Dに相当するようになる。
【0053】
このように、この実施の形態5によれば、酸化剤流路11の上流側に対応する領域を冷却する第1冷却水流路13Aと、酸化剤流路11の下流側に対応する領域を冷却する第2冷却水流路13Bとを設け、第1冷却水流路13Aに接続された第1冷却水供給配管48に第2熱交換器44を配設し、ファン45を間欠起動して、第1冷却水流路13Aに供給される冷却水の水温を間欠的に低下させているので、スタック7Aの酸化剤流路11の上流側に対応する領域の温度が下がり、乾燥していた電解質膜5が湿潤状態に復帰し、長時間の運転において高電圧・高出力を維持できる燃料電池が得られる。
【0054】
ついで、燃料電池10Aの運転条件について検討する。
この実施の形態5においては、第1冷却水流路13Aに供給される冷却水の水温を10℃下げるものとしているが、冷却水の水温を15℃以上下げても、フラッディングによるセル特性の急落はみられなかった。そして、冷却水の水温を20℃下げた時に、フラッディングによるセル特性の急落がみられた。また、冷却水の水温の低下量が5℃未満であると、セル電圧の回復効果が遅かった。そこで、冷却水の水温の低下量は5℃から15℃とすることが望ましい。
また、冷却水の水温を低下させる時間が10分以内であれば、フラッディングを生じることはなく、上記実施の形態4に比べて、制御が極めて容易となる。
さらに、冷却水の水温を低下させる間隔は、1回の運転時間が半日程度の場合には、1時間から2時間の間が適しており、また、長時間連続運転をする場合には、数時間に1回でも効果が認められた。
【0055】
なお、上記実施の形態5では、制御装置47、第1冷却水供給配管48、第2熱交換器44およびファン45により冷却水温調整手段を構成するものとしているが、冷却水温調整手段はこれに限定されるものではなく、燃料電池の第1冷却水流路13Aに供給される冷却水の水温を間欠的に調整できるものであればよい。
【0056】
【発明の効果】
この発明は、以上説明したように、負荷および燃料流路に供給される燃料流体の流量を変えることなく、酸化剤流路に供給される酸化剤流体の流量を間欠的に減少させる酸化剤流体流量調整手段を備えているので、酸化剤流体の流量を減少させた期間において、反応分布が上流側に移動して、生成水により上流側が湿潤となり、水分分布が均一化され、高い特性を長時間保持できる燃料電池が得られる。
【0057】
また、酸化剤流路に供給される酸化剤流体の流量を変えることなく、負荷と燃料流路に供給される燃料流体の流量とを間欠的に増大させる燃料流体流量・負荷調整手段を備えているので、負荷と塩嶺流体の流量を増大させた期間において、反応分布が上流側に移動して、生成水により上流側が湿潤となり、水分分布が均一化され、高い特性を長時間保持できる燃料電池が得られる。
【0058】
また、酸化剤流路から排出される酸化剤流体の排ガスを間欠的に酸化剤流路に供給する酸化剤流体の排ガスリサイクル手段を備えているので、酸化剤流体の排ガスをリサイクルしている期間において、排ガスに含まれる水分が酸化剤流路の上流側に環流されて、上流側が湿潤となり、水分分布が均一化され、高い特性を長時間保持できる燃料電池が得られる。
【0059】
また、冷却水流路に流通される冷却水の温度を間欠的に下げる冷却水温調整手段を備えているので、冷却水温を下げている期間において、反応ガス中の水分が結露し、乾燥した電解質膜に水分が補給され、高い特性を長時間保持できる燃料電池が得られる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係る燃料電池の構成を説明する側面図である。
【図2】この発明の実施の形態1に係る燃料電池の単セルの構成を説明する断面図である。
【図3】この発明の実施の形態1に係る燃料電池の第1セパレータ板の酸化剤流路面を示す平面図である。
【図4】この発明の実施の形態1に係る燃料電池の第2セパレータ板の燃料流路面を示す平面図である。
【図5】この発明の実施の形態1に係る燃料電池の第2セパレータ板の冷却水流路面を示す平面図である。
【図6】この発明の実施の形態1に係る燃料電池のシステム図である。
【図7】この発明の実施の形態1に係る燃料電池における空気利用率およびセル電圧変化を示す図である。
【図8】この発明の実施の形態2に係る燃料電池のシステム図である。
【図9】この発明の実施の形態2に係る燃料電池における空気利用率およびセル電圧変化を示す図である。
【図10】この発明の実施の形態3に係る燃料電池のシステム図である。
【図11】この発明の実施の形態4に係る燃料電池のシステム図である。
【図12】この発明の実施の形態5に係る燃料電池のシステム図である。
【図13】この発明の実施の形態5に係る燃料電池の第1セパレータ板の酸化剤流路面を示す平面図である。
【図14】この発明の実施の形態5に係る燃料電池の第2セパレータ板の冷却水流路面を示す平面図である。
【図15】この発明の実施の形態5に係る燃料電池における酸化剤流路位置と相対湿度との関係を示す図である。
【符号の説明】
1、1A 第1セパレータ板、2、2A 第2セパレータ板、3 酸化剤電極、4 燃料電極、5 電解質膜、6 単セル、10、10A 燃料電池、11 酸化剤流路、12 燃料流路、13 冷却水流路、13A 第1冷却水流路、13B 第2冷却水流路、15 ブロア(酸化剤流体流量調整手段)、16 制御装置(酸化剤流体流量調整手段)、17 インバータ(酸化剤流体流量調整手段)、32 インバータ(燃料流体流量・負荷調整手段)、33 制御装置(燃料流体流量・負荷調整手段)、35 排ガスリターン配管(排ガスリサイクル手段)、36 排ガスリサイクル用ブロア(排ガスリサイクル手段)、37 電磁弁(排ガスリサイクル手段)、38 制御装置(排ガスリサイクル手段)、44 第2熱交換器(冷却水温調整手段)、45 ファン(冷却水温調整手段)、47制御装置(冷却水温調整手段)、48 第1冷却水供給配管(冷却水温調整手段)。

Claims (5)

  1. 水分を含むことによりイオン導電性が発揮される電解質膜を燃料電極および酸化剤電極により挟持してなる単セルと、酸化剤流体を流通させる酸化剤流路が一面側に形成され、該酸化剤流路を上記酸化剤電極に向けて配設される第1セパレータ板と、燃料流体を流通させる燃料流路が一面側に形成され、該燃料流路を上記燃料電極に向けて配設される第2セパレータ板とを順次積層して構成され、冷却水流路が上記第1および第2セパレータ板の一方に形成されてなる燃料電池において、
    負荷および上記燃料流路に供給される上記燃料流体の流量を変えることなく、上記酸化剤流路に供給される上記酸化剤流体の流量を間欠的に減少させる酸化剤流体流量調整手段を備えていることを特徴とする燃料電池。
  2. 水分を含むことによりイオン導電性が発揮される電解質膜を燃料電極および酸化剤電極により挟持してなる単セルと、酸化剤流体を流通させる酸化剤流路が一面側に形成され、該酸化剤流路を上記酸化剤電極に向けて配設される第1セパレータ板と、燃料流体を流通させる燃料流路が一面側に形成され、該燃料流路を上記燃料電極に向けて配設される第2セパレータ板とを順次積層して構成され、冷却水流路が上記第1および第2セパレータ板の一方に形成されてなる燃料電池において、
    上記酸化剤流路に供給される上記酸化剤流体の流量を変えることなく、負荷と上記燃料流路に供給される上記燃料流体の流量とを間欠的に増大させる燃料流体流量・負荷調整手段を備えていることを特徴とする燃料電池。
  3. 水分を含むことによりイオン導電性が発揮される電解質膜を燃料電極および酸化剤電極により挟持してなる単セルと、酸化剤流体を流通させる酸化剤流路が一面側に形成され、該酸化剤流路を上記酸化剤電極に向けて配設される第1セパレータ板と、燃料流体を流通させる燃料流路が一面側に形成され、該燃料流路を上記燃料電極に向けて配設される第2セパレータ板とを順次積層して構成され、冷却水流路が上記第1および第2セパレータ板の一方に形成されてなる燃料電池において、
    上記酸化剤流路から排出される上記酸化剤流体の排ガスを間欠的に上記酸化剤流路に供給する酸化剤流体の排ガスリサイクル手段を備えていることを特徴とする燃料電池。
  4. 水分を含むことによりイオン導電性が発揮される電解質膜を燃料電極および酸化剤電極により挟持してなる単セルと、酸化剤流体を流通させる酸化剤流路が一面側に形成され、該酸化剤流路を上記酸化剤電極に向けて配設される第1セパレータ板と、燃料流体を流通させる燃料流路が一面側に形成され、該燃料流路を上記燃料電極に向けて配設される第2セパレータ板とを順次積層して構成され、冷却水流路が上記第1および第2セパレータ板の一方に形成されてなる燃料電池において、
    上記冷却水流路に流通される冷却水の温度を間欠的に下げる冷却水温調整手段を備えていることを特徴とする燃料電池。
  5. 上記冷却水流路は、上記酸化剤流路の上流側を冷却する第1冷却水流路と、上記酸化剤流路の下流側を冷却する第2冷却水流路とを備え、
    上記冷却水温調整手段が、上記第1冷却水流路を流通される上記冷却水の水温を間欠的に下げることを特徴とする請求項4記載の燃料電池。
JP2003014675A 2003-01-23 2003-01-23 燃料電池 Pending JP2004227938A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014675A JP2004227938A (ja) 2003-01-23 2003-01-23 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014675A JP2004227938A (ja) 2003-01-23 2003-01-23 燃料電池

Publications (1)

Publication Number Publication Date
JP2004227938A true JP2004227938A (ja) 2004-08-12

Family

ID=32902646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014675A Pending JP2004227938A (ja) 2003-01-23 2003-01-23 燃料電池

Country Status (1)

Country Link
JP (1) JP2004227938A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141551A (ja) * 2005-11-16 2007-06-07 Honda Motor Co Ltd 燃料電池スタック
JP2009170409A (ja) * 2007-12-18 2009-07-30 Commissariat A L'energie Atomique 温度を低下させることによる回復ステップを備える燃料電池の使用方法
JP2013089347A (ja) * 2011-10-14 2013-05-13 Tokyo Gas Co Ltd 燃料電池の出力電圧回復装置及び方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141551A (ja) * 2005-11-16 2007-06-07 Honda Motor Co Ltd 燃料電池スタック
JP4675757B2 (ja) * 2005-11-16 2011-04-27 本田技研工業株式会社 燃料電池スタック
JP2009170409A (ja) * 2007-12-18 2009-07-30 Commissariat A L'energie Atomique 温度を低下させることによる回復ステップを備える燃料電池の使用方法
JP2013089347A (ja) * 2011-10-14 2013-05-13 Tokyo Gas Co Ltd 燃料電池の出力電圧回復装置及び方法

Similar Documents

Publication Publication Date Title
JP4072707B2 (ja) 固体高分子電解質型燃料電池発電装置とその運転方法
WO2004004055A1 (ja) 固体高分子型セルアセンブリ
JP4295847B2 (ja) 固体高分子型燃料電池システム
JPH10247505A (ja) 固体高分子電解質型燃料電池
JP2008524813A (ja) 燃料電池スタックの夏期および冬期モードの動作
JPH1131520A (ja) 固体高分子型燃料電池
JP2004031135A (ja) 燃料電池およびその制御方法
JPH09180743A (ja) 固体高分子形燃料電池
JP4632917B2 (ja) 固体高分子形燃料電池
JPWO2002047190A1 (ja) 高分子電解質型燃料電池と、その運転方法
JP3141619B2 (ja) 固体高分子電解質型燃料電池発電装置
JPH09283162A (ja) 固体高分子型燃料電池
JP2004327354A (ja) 燃料電池および燃料電池の運転方法
JP3738956B2 (ja) 燃料電池
JP2000277128A (ja) 固体高分子型燃料電池
JP4665353B2 (ja) 固体高分子電解質型燃料電池発電装置とその運転方法
JP5425092B2 (ja) 燃料電池、燃料電池システム及び燃料電池の運転方法
JPH11162489A (ja) 燃料電池装置および燃料電池装置の運転方法
JP3924198B2 (ja) 燃料電池システム及び燃料電池システムの起動方法
JPH0864218A (ja) 固体高分子電解質型燃料電池の運転方法
JP2004227938A (ja) 燃料電池
JP3736475B2 (ja) 燃料電池
JP4790964B2 (ja) 除加湿装置付き燃料電池
JP2000357530A (ja) 燃料電池システム
JP4419353B2 (ja) 固体高分子形燃料電池の運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825