JP2004227839A - 加熱調理器 - Google Patents

加熱調理器 Download PDF

Info

Publication number
JP2004227839A
JP2004227839A JP2003012244A JP2003012244A JP2004227839A JP 2004227839 A JP2004227839 A JP 2004227839A JP 2003012244 A JP2003012244 A JP 2003012244A JP 2003012244 A JP2003012244 A JP 2003012244A JP 2004227839 A JP2004227839 A JP 2004227839A
Authority
JP
Japan
Prior art keywords
light
light emitting
pan
reflected light
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003012244A
Other languages
English (en)
Other versions
JP4089444B2 (ja
Inventor
Katsunori Zaizen
克徳 財前
Tadashi Nakatani
直史 中谷
Naoaki Ishimaru
直昭 石丸
Tomoya Fujinami
知也 藤濤
Hirofumi Inui
弘文 乾
Kenji Takenaka
賢治 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003012244A priority Critical patent/JP4089444B2/ja
Publication of JP2004227839A publication Critical patent/JP2004227839A/ja
Application granted granted Critical
Publication of JP4089444B2 publication Critical patent/JP4089444B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

【課題】トッププレートに載せられた鍋の温度を精度良く測定するため、鍋の反射率を正確に測定することが課題である。
【解決手段】トッププレート1下面に配し鍋2へ参照用の赤外線を照射する発光手段31と、鍋2で反射される光を測定する反射光測定手段33と、この反射光測定手段33の出力から鍋2の反射率を算出する反射率算出手段35と、発光手段31のパルス駆動を行うパルス駆動手段32を備え、トッププレートを透過させる赤外線の照度を向上させ、鍋2の反射率を精度良く測定することで、鍋2の正確な温度を測定する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、トッププレートに載置した鍋の反射率及び温度を精度良く検出することができる加熱調理器に関するものである。
【0002】
【従来の技術】
鍋内の被加熱物を加熱する加熱調理器においては、被加熱物の温度とほぼ等価である鍋底面の温度を検知する方式として、鍋を載置するトッププレートを介して接触型温度センサのサーミスタで鍋底温度を間接的に検出する方式が一般的である。また、より応答性の良い検知方法として、鍋底面から放射される赤外線を検出して鍋底面の温度を直接検知する方法も知られている。この従来例を図23で説明する。
【0003】
本体上面にトッププレート1を設け、鍋2を載置する。この鍋2を電磁誘導加熱する加熱コイル3と、この加熱コイル3に高周波電流供給する高周波電流供給手段4と、温度を検出する赤外線センサ5と、この赤外線センサ5の出力から鍋2の底面温度を算出し、加熱コイル3に供給する電力を制御する制御手段6を設けている。21は制御手段6へ電力を供給する直流電源、22は商用電源、23は全波整流手段、24は、電源コンデンサ25、共振コンデンサ26、スイッチング素子27から成るインバータである。
【0004】
このような加熱調理器では、トッププレート1は、強度を高めるため特殊組成のガラスを再加熱してガラス中に微細結晶を析出させた結晶化ガラス(例えば、「リシア系セラミックス」LiO−Al−SiO)が用いられており(図22に、その透過特性例のグラフを、代表的な赤外線窓材の透過特性とともに示す)、2.6μm以下の波長の赤外線は80%以上透過し、3〜4μmの波長の赤外線は30%程度透過し、4μmよりも長い波長の赤外線は殆ど通さない。
【0005】
従って、4μm以下の波長成分でのみ、鍋2の底面温度を測定する必要があるが、一般的に調理時の鍋2の底面温度は、約30℃〜230℃であり、この温度のピーク波長はステファン・ボルツマンの法則より6ミクロン〜10ミクロンの波長である。(温度が高くなればなるほど加速度的に大きなエネルギーを赤外線として放射する。図22のグラフ下側に、その様子を30℃、100℃、200℃について示す。)絶対温度がT(K)である物体の表面からは赤外線を含めた電磁波が放射されているが、その単位時間当たりの総放射エネルギー量E(W/m)は、式(1)で表わされる。
【0006】
(1)…E=εσT
ここでεは放射率、σはステファン・ボルツマン常数(5.67×10−8W/m)である。すなわち、あらゆる物質はその絶対温度の4乗に比例する強度の電磁波を放射している。式(1)より約300°K(30℃)の常温の物体が放射するエネルギーのピークは約10μm付近(熱赤外域と呼ぶ)にある。
【0007】
一方、上記のようにトッププレート1が透過できる波長は4ミクロン以下の波長の赤外線であり、この4ミクロン以下の波長成分だけでは、約570°K(300℃)の鍋2の底面からの赤外線放射エネルギーでも30%以下しか透過せず、赤外線センサ5に届く赤外線エネルギーは微弱であり、従って、赤外線センサ5内の検出器で電気信号に変換するだけではS/N比が悪く、調理時の温度を測定するには、精度が良くなく、別の工夫が必要となる。
【0008】
その解決策として、赤外線センサ5とアンプと一体化する方法や、トッププレート1に窓材を埋め込んで上記問題を解決する方法(例えば、特許文献1参照)が提案されているが、多様な放射率を有する鍋種や多様な調理方法・調理シーンへの対応には言及されていない。
【0009】
物体表面に於ける赤外線の吸収、放射の最もよい理想的な物体は、黒体(Black body)と呼ばれ、放射率は1である。これに比べて一般の物体は、灰色体(graybody)と呼ばれ、放射率は1未満〜0を超える値との間の値となる。
【0010】
この放射率を測定する主な方法には、放射率をキー入力する方法、既知の放射率の部位と比較して求める測定法、接触式温度計と併用する測定法、多色赤外線による測定法、環境温度切り換え法による測定法、FTIRを用いた間接測定法、対象物に参照光(赤外線)を照射し、反射光から反射率を測定する方法などがある。最後の反射光から反射率を測定する方法は、(例えば、特許文献2あるいは、特許文献3参照)、赤外線LEDなどの安価な光源から所定の波長の参照光を鍋2の底面に照射し、鍋2の底面から反射される同波長の赤外線の強度から鍋2の底面の反射率を測定する方法である。この測定法では非接触で測定が可能であると共に、大がかりな装置や、鍋底への黒体塗布等の前処理も必要がなく、加熱調理器における放射率(≒1−反射率)測定用として最適である。
【0011】
【特許文献1】
特許第2897306号公報
【特許文献2】
特開平11−225881号公報
【特許文献3】
特開2002−75624号公報
【0012】
【発明が解決しようとする課題】
図18に示した従来構成の誘導加熱調理器は、トッププレート1を介して赤外線センサ5により鍋2の底面の温度を直接検知しているが、鍋2の底面からの赤外線放射エネルギーの大部分はトッププレート1で吸収されてしまうため、S/N比が悪い計測になると共に、多様な反射率を持つ鍋の種類や、多様な調理シーンには対応できていない。
【0013】
また、赤外線センサ5は一般的に周囲温度の影響を受けやすく、加熱コイル3やトッププレート1を介して伝わる鍋2からの伝導熱、スイッチング素子27の発熱の輻射・対流熱の影響などにより周囲温度が大きく変化するような加熱調理器本体内で、精度の良い放射温度をすることは難しかった。
【0014】
本発明の目的は、周囲温度の変化による影響を最小限すると共に、鍋2底面の反射率を正確に測定することにより、鍋2の底面の温度を高精度に測定することができる加熱調理器を提供することである。
【0015】
【課題を解決するための手段】
本発明は、鍋を加熱する加熱コイルと、前期加熱コイルに電力を供給する加熱手段と、前記加熱コイルの上部で鍋を載置するトッププレートと、前記トッププレート下面に配し鍋底面から放射される赤外線を検知する赤外線センサと、前記赤外線センサの受光面に装着した所定の帯域の波長の光を透過させるバンドパスフィルターと、前記赤外線センサの出力を増幅するアンプと、前記アンプの出力から鍋底面温度を算出する温度算出手段と、前記トッププレート下面に配し前記鍋へ所定の波長の参照用の赤外線を照射する発光手段と、前記発光手段をパルス駆動するパルス駆動手段と、前記鍋からの反射光を測定する反射光測定手段と、前記反射光測定手段の出力から前記鍋の反射率を算出する反射率算出手段と、前記温度算出手段と反射率算出手段の出力に応じて加熱コイルに供給する電力を制御する制御手段を備え、前記発光手段は、パルス駆動を行うことによりIfを大きくし、トッププレートを透過させる参照用の赤外線の照度を向上させ、正確な反射率を測定し、非接触で精度良く鍋底の温度が測定できる加熱調理器としているものである。
【0016】
【発明の実施の形態】
請求項1から4に記載の発明は、鍋を加熱する加熱コイルと、前期加熱コイルに電力を供給する加熱手段と、前記加熱コイルの上部で鍋を載置するトッププレートと、前記トッププレート下面に配し鍋底面から放射される赤外線を検知する赤外線センサと、前記赤外線センサの受光面に装着した所定の帯域の波長の光を透過させるバンドパスフィルターと、前記赤外線センサの出力を増幅するアンプと、前記アンプの出力から鍋底面温度を算出する温度算出手段と、前記トッププレート下面に配し前記鍋へ参照用の赤外線を照射する発光手段と、前記発光手段をパルス駆動するパルス駆動手段と、前記鍋からの反射光を測定する反射光測定手段と、前記反射光測定手段の出力から前記鍋の反射率を算出する反射率算出手段と、前記温度算出手段と反射率算出手段の出力に応じて加熱コイルに供給する電力を制御する制御手段を備え、前記発光手段は、パルス駆動を行うことによりIfを大きくし、トッププレートを透過させる参照用の赤外線の照度を向上させることによって、周囲温度に影響されずに、高精度に鍋の温度測定が出来る加熱調理器としているものである。
【0017】
請求項5〜7に記載の発明は、反射光測定手段に、二重積分型回路あるいは同期検波型回路あるいはVpp検出型回路や、微弱光パルス検出回路や、PLL回路を用いて、より精度良く反射光を検出することが可能となるものである。
【0018】
請求項8に記載の発明は、ゼロ・バイアスを与え、暗電流をキャンセルするようにすることで、精度の良い反射光測定が可能となる。
【0019】
請求項9に記載の発明は、反射光測定手段の直流電源は、発光手段の直流電源と別電源とすることで、耐ノイズの高い反射光測定が可能となる。
【0020】
請求項10から11に記載の発明は、検出出力にローパスフィルターもしくはバンドパスフィルターを入れたり、外乱光をカットする導光部を設けたりすることで、加熱手段のノイズや外乱光を低減し、よりより精度良く反射光を検出することが可能となるものである。
【0021】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0022】
(実施例1)
図1は本実施例における調理器の構成を示すブロック図である。本実施例の加熱調理器は、トッププレート1に載置し調理物を加熱調理する鍋2と、鍋2を加熱する加熱コイル3と、加熱コイル3に高周波電流を供給し、鍋2を加熱する加熱手段4と、トッププレート1下面に配し鍋2の底面から放射される赤外線を検知する赤外線センサ5と、赤外線センサ5の受光面に装着した所定帯域の波長の光を透過させるバンドパスフィルター28と、赤外線センサ5に一体化されその出力を増幅するアンプ29と、このアンプ29の出力から鍋2の底面温度を算出する温度算出手段30と、同じくトッププレート1下面に配し鍋2へ所定の波長の参照用の赤外線を照射する発光手段31と、発光手段31内の発光素子をパルス駆動するパルス駆動手段32と、鍋2の底面からの参照用の赤外線の反射光を測定する反射光測定手段33と、反射光測定手段33の受光面に装着した所定帯域の波長の光を透過させるバンドパスフィルター34と、反射光測定手段33の出力から鍋2の底面の反射率を算出する反射率算出手段35と、温度算出手段30と反射率算出手段35の出力に応じて加熱コイル3に供給する電力を制御する制御手段36を備え、トッププレート1を透して鍋2底面の赤外線反射率を算出することで、温度算出手段30の出力を補正するようにしたものである。37は冷却手段、38は同温度制御手段である。
【0023】
次に実施例1の動作を説明する。図示していない電源スイッチを投入し、操作スイッチで所定の温度を設定すると、制御手段36が加熱手段4を制御して加熱コイル3に所定の電力を供給する。加熱コイル3に高周波電流が供給されると、加熱コイル3から誘導磁界が発せられ、トッププレート1に載置した鍋2の底部が誘導加熱される。この熱によって鍋2の温度が上昇し、鍋2内の調理物が調理される。赤外線センサ5は受光した赤外線のエネルギーに比例した電圧を出力するもので、熱応答型検出器であるボロメータ、熱電対を一点に集めたサーモパイル、焦電素子あるいは、量子型のHgTdTeやIgAs等シリコン素子の検出器を用いている。
【0024】
従って、鍋2の温度が上昇すると鍋2の底面からの赤外線放射強度も強くなり、赤外線センサ5が受光する赤外線エネルギー量が増え、赤外線センサ5の出力信号電圧が高くなる。
【0025】
上述したように、トッププレート1は4μm以下の波長の赤外線しか透過せず、赤外線センサ5に届く赤外線エネルギーは微弱であるが、モジュールとして赤外線センサ5と一体化されたアンプ29で500〜5000倍程度に増幅した後に出力することで、S/N比を確保し、実用的な温度測定を可能としている。
【0026】
また、測定誤差となるトッププレート1自身から放射される赤外線をカットするため所定帯域(例えば、0.8〜6.5μm、上限波長はトッププレート1の透過波長域とする)の波長の光を透過させるのバンドパスフィルター28を赤外線センサ5の受光面に装着している。温度算出手段30はアンプ29の出力信号電圧から上記のステファン・ボルツマンの式を基にした不定積分式あるいは累乗形の近似式を用いて鍋2の底面温度を算出し、制御手段36に送る。
【0027】
次に、トッププレート1下面に配し、パルス駆動手段32により所定のデューティで駆動される発光手段31が鍋2へ参照用の波長0.5〜1.5μmの赤外線を間欠照射し、鍋2の底面からの参照用の赤外線の反射光を反射光測定手段33が測定する。そして、反射率算出手段35が反射光測定手段33の出力から鍋2の底面の反射率を算出する。この算出した反射率(≒1−放射率)信号を入力して、制御手段36が温度算出手段30出力から求まる鍋2の検知温度を補正することで、鍋底の非接触で高精度な温度測定が可能となる。
【0028】
図2に対象物(鍋2)の反射率と、その反射光による反射光測定手段33の検出出力との関係をグラフで示す。対象物の反射率と検出出力は良好な比例関係にあり、発光手段31内の発光素子の駆動電流Ifが大きいほど、反射光測定手段33内の受光素子での検出出力も大きくなる。グラフ2から分かるように、反射率が1未満から、0を超える値までを検出可能なため、全ての鍋種と調理シーンに対応することが出来る。
【0029】
以上に述べたように、特に本実施例1によれば、パルス駆動手段32により発光手段31内の発光素子を間欠駆動することにより、発光素子の温度上昇による劣化の問題を解消し、DC駆動時より大きな駆動電流Ifで駆動できるため、より大きな検出出力が得られ、反射率算出手段35は正確な反射率を測定できる。
制御手段36は、温度算出手段30の出力する温度信号を、反射率算出手段35の出力する反射率信号によって補正して正確で応答性の良い検出温度を演算で求め、この検出温度により加熱コイル3に供給する電力を制御する。従って、鍋2の底面温度が設定された温度となり、調理時に必要な微妙な火加減を実現できるものである。
【0030】
なお、上記の構成でも基本的な温度測定は可能であるが、前述のように、赤外線センサ5や、受・発光素子は周囲温度の影響を受けやすいので、冷却手段37でセンサの周囲から冷却し、温度制御手段38が、この冷却温度を所定の値に制御して、より精度が良く、安定した温度測定が出来るようにしている。
【0031】
なお、反射率測定の誤差となる上記参照光の波長域以外の光は、反射光測定手段33の受光面に装着したバンドパスフィルター34がカットする。一般的には、バンドパスフィルター34を受光素子表面に装着した状態で、供給されている。
【0032】
なお、参照光の波長0.5〜1.5μmでは、トッププレート1の反射率:ρは略々0に近く、低い値を示すので、トッププレート1からの反射による散乱光や、高温物体である加熱コイル3の反影の影響は少ない。
【0033】
また、波長0.5〜1.5μmの赤外線はトッププレート1で殆ど減衰することがなく、80%を越える量が透過するので、精度の良い反射率測定が行える。また、この測定した反射率は、一般に使用される鍋種に於いては、バンドパスフィルター28を通して赤外線センサ5に受光される波長帯域の赤外線における反射率と同じである。
【0034】
なお、発光手段31内の発光素子と反射光測定手段33内の受光素子の取付角度(図3に送受光部の要部断面図を示す。θ、θ‘が取付角度である。)は、鍋2までの距離の変化を考慮して、どのような場合でも均一に最大反射光が得られるような値に決定する。
【0035】
なお、赤外線センサ5とアンプ29を一体化しない方法も考えられるが、一体化して赤外線センサ5の検知出力を直ちに増幅してから、配線出力した方がS/N比及び耐ノイズ性の向上が図れる。
【0036】
なお、鍋側面の反射率を測定し、赤外線センサによる温度測定値を補正する製品も実用化され、使用に供されているが、側面の測定には様々な障害物、例えば、鍋から生じる水蒸気や油、調理用に置かれた調理用材料や、ボール等の調理器具が考えられる。従って、鍋と発光・受光部間は遮断され、測定不可能となったり、測定値に誤りが生じるケースが多く存在するため、鍋底面の反射率を測定する本発明の方式の方が優れており、構成上からも別の技術であるのは、明らかである。
【0037】
(実施例2)
本実施例は、調理器としての基本構成は実施例1と同様であり、基本構成についての説明は省略する。この実施例2は、発光手段31のパルス駆動デューティは、50%もしくは、発光手段31内の発光素子のIfが最大値となるようなデューティで駆動するようにした点が上記の実施例1とは異なるものであり、この点を中心に説明する。図4は、パルス駆動手段32にデジタルICのインバータを用いた例を示した回路図である。図4で40は直流電源、41〜44はCMOSインバータ、45はトランジスタ、46は発光手段31の正キャリア引き抜き用の抵抗で、発光手段31と並列接続しても良い。47〜49は電流制限用の抵抗、50はコンデンサ、51はコンデンサ50と共に充放電の時定数を決める抵抗である。
【0038】
次に動作を説明すると、インバータ43の出力がHighの時、コンデンサ50に抵抗51を通して充電を始めると、インバータ41の入力は徐々に上がる。
そして、インバータ41の上限スレッショルド電圧VTHを越えると、各インバータは反転し、インバータ43の出力がLowとなり、コンデンサ50は抵抗51を通して放電を始める。
【0039】
次に、インバータ41の下限スレッショルド電圧VTLを下回ると、各インバータは再び反転する。以上の動作を繰り返して、図4の回路はデューティ50%で発振し、発光手段31は間欠駆動される。ここで、抵抗51に並列に低Vのショットキー・バリアあるいはゲルマニウムダイオード52と抵抗53の直列回路(図示せず)を並列接続すれば、トランジスタ45のON時間は同じで、OFF時間長くすることが出来る。すなわち、任意のデューティ比を設定することが可能となる。
【0040】
図5は、発光手段31内の発光素子のIfDCと周囲温度との関係、及び、デューティ比とIfpulseとの関係を示すグラフである。図5(a)より発光素子のディレーティングレシオは−0.8mA/℃であるから、周囲温度上昇を75℃までとすると図5(b)より50%デューティ(Duty ratio=0.5)でIfpeak50=42mA、10%デューティ(Duty ratio=0.1)でIfpeak10=180mA、1%デューティ(Duty ratio=0.01)でIfpeak1=960mAの電流が流せることが分かる。DC駆動では20mAまでしか流せないことから、パルス駆動を行うことで2倍から48倍のIfを流せることになり、照射光強度も上がり、精度の良い反射光測定を行うことが可能となる。実験して求めた結果では、Duty ratio=0.1〜0.5が反射光の強度が安定すると共に、回路要因によりデューティ比がばらついても素子の劣化を防ぐことが出来るので、この範囲で用いると良い。従って、この回路形式ではIfmax.は、実用的には180mA/Duty ratio=0.1が妥当である。
【0041】
なお、直流電源40の電圧は、インバータ41〜44に4000シリーズのCMOS−ICを用いる場合は、12V程度、HCやAHCファミリを用いる時は5.5V程度にする。
【0042】
なお、抵抗49は回路の構成上、インバータ41の入力に定格を越えた電圧が加わるため、入力保護用に入れてあり、10kΩから500kΩ程度が適当な値である。あまり、大きくなると抵抗49にノイズが乗り、出力の反転時にチャタリングを生じることがある。逆に抵抗49が小さすぎると、インバータ41の入力端子に過大電流が流れ、ICを損傷したり、ICの種類を換えると発振周波数が変化することになる。
【0043】
また、発振周波数はfosc≒1/(2.2C4950)の計算で目安が出せる。
【0044】
(実施例3)
本実施例は、調理器としての基本構成は実施例1と同様であり、基本構成についての説明は省略する。発光手段31のパルス駆動デューティは、発光素子の素子温度を検出し、可変するようにした点が上記の実施例1から2とは異なるものであり、この点を中心に説明する。
【0045】
図6は、パルス駆動手段32にデジタルICのインバータとPTC(正特性)サーミスタを用いた例を示した回路図である。図6で54は発光手段31近傍に配置したPTCサーミスタ、55、56はこのPTCサーミスタ54の特性のリニアライズ用の抵抗、57はショットキー・バリアあるいはゲルマニウムダイオードである。コンデンサ50は抵抗51とダイオード57を介して放電され、抵抗51と、PTCサーミスタ54と抵抗55の並列回路と、抵抗56を介して充電される。PTCサーミスタ54とリニアライズ用の抵抗55、56の値は、例えばIfpeak=220mAを流すために、発光手段31の温度が25℃の時はDuty ratio=0.1で、75℃の時にDuty ratio≒0.07となるような値に設定する。トランジスタ45のON時間はコンデンサ50と抵抗51の時定数で決まるが、約100μS(図5より)に設定する。PTCサーミスタは温度が上がると、抵抗値が上がるため、コンデンサ50の充電時間が延び、トランジスタ45のOFF時間が長くなり、デューティ比は小さくなる。
【0046】
以上のように、発光素子の素子温度に応じてデューティ比を可変する動作により、例えば220mA(Duty ratio=0.1〜0.07)という大電流を周囲温度−25℃〜+75℃の環境下で流すことが可能となり、照射光強度が上がり、精度の良い反射光測定を行うことが可能となる。
【0047】
なお、本実施例では、インバータIC1石(4素子入り)と、数本の抵抗と、コンデンサというシンプルな回路構成で、パルス駆動手段32を構成したが、安価な回路構成であれば、他の手段、例えばコルピッツ発振回路とシュミット・トリガ・インバータを用いても良い。
【0048】
(実施例4)
本実施例は、調理器としての基本構成は実施例1と同様であり、基本構成についての説明は省略する。VfIf一定化手段により、発光手段31内の発光素子のVとIfとの積あるいは和あるいは差あるいは比を一定に保ち、且つ、パルス駆動手段により前記発光素子をパルス駆動するようにした点が上記の実施例1〜3とは異なるものであり、この点を中心に説明する。
【0049】
図7は、VfIf一定化手段60にOPアンプと掛算器を、パルス駆動手段32にデジタルICのインバータを用いた例を示した回路図である。図7で61、62は電流制限抵抗、63は発光手段31の電流Ifを検出する抵抗、64はOPアンプ、65〜68は抵抗でOPアンプ64と差動増幅回路69を形成し、発光手段31内の発光素子のVfを測定するVf測定手段としている。70はVf測定手段69の出力とIf検出抵抗63の両端の電圧との積の演算を行う掛算器、71は基準電源、72はこの基準電源71の基準電圧値と掛算器70の出力を比較する比較器、73はMOS−FET、74はトランジスタである。比較器72が基準電圧値と比較して、VfとIfとの積が一定となるようにMOS−FET73の出力を制御する。パルス駆動手段32の出力でトランジスタ74が所定のデューティ比(Duty ratio=0.1〜0.07)でON/OFFされ、発光手段31はVfとIfとの積を常に一定に保った状態で間欠駆動されるので、大きな電流Ifで駆動することが出来る。
【0050】
トランジスタのOFF時間(発光手段31の発光時間)はコンデンサ50と抵抗56とインバータ41のスレッショルド電圧及びダイオード57のVfで定まり(VTH→VTL+Vf)で定まり、ON時間(発光手段31の消光時間)はコンデンサ50と抵抗56と抵抗75とインバータ41のスレッショルド電圧で定まる(VTL+Vf→VTH)。
【0051】
パルス駆動手段32で間欠駆動することにより、大きな電流Ifで駆動出来る。すなわち大きな反射光検出出力が得られると共に、VfIf一定化手段60で発光手段31のVfとIfの積を常に一定に保つことがでデューティ比が0.07程度でも安定した反射光を得られる。さらに、発光手段31から照射される放射束も図8のグラフに示すように、周囲温度への依存性がない、非常にフラットな特性となり、正確な反射率測定が可能となる。
【0052】
なお、上記の回路ではスイッチング素子を駆動する電流もIf検出用の抵抗63に流れるため、バイポーラトランジスタ等に比べて駆動電力が一番低いMOS−FETを用いた時が、VfとIfとの積のあるいは和あるいは差あるいは比を一定化する精度が一番良くなる。
【0053】
(実施例5)
本実施例は、調理器としての基本構成は実施例1と同様であり、基本構成についての説明は省略する。この実施例5は、反射光測定手段33は、二重積分型検出回路あるいは同期検波型回路あるいはVpp検出型回路のいずれかとした点が上記の実施例1〜4とは異なるものであり、この点を中心に説明する。
【0054】
図9は本実施例の二重積分型検出回路の構成を示す回路図である。図9で79は反射光測定手段33内の受光素子であるフォト・トランジスタ、80はI−V変換回路、81はピーク検出回路である。間欠して受光される反射光によるフォト・トランジスタ79の電流出力icを、I−V変換回路80で大きな電圧出力に変換し、ピーク検出回路81でそのピーク値を検出して出力している。82はノイズバイパス用のコンデンサ、83、84はI−V変換比を決定する抵抗(本実施例では変換比=100としている)、85はOPアンプ、86、87はバイアス用の分割抵抗、88は抵抗、89はコンデンサで、抵抗88とコンデンサ89でローパスフィルタ90を構成する。91、92は増幅度を決定する抵抗(本実施例では増幅度=1としている)、93はOPアンプ、94はダイオード、95は出力保護抵抗、96はピーク値を保持するコンデンサ、97はリセットスイッチである。
【0055】
次に図10のタイミング図を用いて動作を説明する。発光手段31をパルス駆動手段32で間欠駆動しているため、反射光測定手段33で受光する反射光も間欠して入光し、この入光する反射光による電流出力icをI−V変換回路80で増幅すると図11(a)に示すような矩形波となる。OPアンプ85のバイアス電圧は、その出力電圧VC89が発光手段31がOFFで参照光が無い時に0以上の値となり、発光手段31がONで参照光があり、且つ、鍋のある時はマイナスの値となるように、抵抗86と抵抗87で設定している。
【0056】
ここで、リセットスイッチ97をONして、ピーク値ホールド用のコンデンサ96の電荷を充分に放電した後、リセットスイッチ97をtでOFFすると、コンデンサ96の電圧はI−V変換回路80の出力が正の期間は零を保ち、負になると充電を始め(図11のt)、ピーク値に達した後は(図11のt)、その値を保持する。従って、反射率算出手段35はリセットスイッチ97をOFFしてから、所定の時間が経過した後に、ピーク検出回路81の出力を入力すれば、鍋の反射率に応じた安定した信号を入力することが出来る。
【0057】
なお、コンデンサ82とローパスフィルタ90で高周波ノイズは除去している。また、パルス駆動周波数5kHzで、I−V変換比は100程度で十分なS/N比を得られる。また、時間tは動作原理より任意のタイミングで良い。
【0058】
次に本実施例の同期検波型回路図を図11に示す。図11で79は反射光測定手段33内の受光素子であるフォト・トランジスタ、101はC−MOSICのアナログスイッチ、102は電流検出用抵抗、103はピーク検出回路、104はパルス遅延回路、105はリセットスイッチである。106はOPアンプ、107はダイオード、108は出力保護抵抗、109はピーク値保持用のコンデンサ、110は抵抗、111は遅延用コンデンサである。
【0059】
次に、図12のタイミング図に基づいて動作を説明する。アナログスイッチ101は図7のデジタルICのインバータを用いたパルス駆動手段32の出力VOSCの反転信号を遅延した信号VSWG101でON/OFFする。(図12(b)、VCNT101がHighの時は、アナログスイッチ101はON、VCNT101がLowの時はアナログスイッチ101はOFFである)時間tでリセットスイッチ105をOFFすると、時間tで反射光に比例したフォト・トランジスタ79の電流出力ic(図12(a))が流れ始めるが、アナログスイッチ101がONしているので、Voは零のままである。
【0060】
パルス遅延回路104で遅延操作されたアナログスイッチ101が時間tでOFFすると、反射光によるフォト・トランジスタ79の電流IcとR102との積の電圧Vo=Ic×R102が、ピーク検出回路103のコンデンサ109に充電され、t以降も保持される(図12(c))。反射率算出手段35はスイッチ105をONしてコンデンサ109を放電した後、スイッチ105をOFFし、所定時間後にパルス駆動手段32の出力VOSCに同期してピークホールドされた反射光に比例した電圧Voを入力することで、鍋2の底面の反射率を算出することが出来る。なお、リセットスイッチ105をOFFするタイミングは、アナログスイッチ101がONしている期間内が望ましい。
【0061】
次に本実施例のVpp検出型回路図を図13に示す。図13で79は反射光測定手段33内の受光素子であるフォト・トランジスタ、120は光電流検出用の抵抗、121、122はコンデンサ、123、124はダイオード、125、128はOPアンプ、126、127と、129、130はOPアンプ125、128の増幅度を決定する抵抗、131、132はOPアンプ128にバイアス電圧を与える抵抗、133、134はリセット用のアナログスイッチである。
【0062】
次に、図14のタイミング図に基づいて動作を説明する。パルス駆動手段32により発光手段31が間欠駆動され、その反射光によるフォト・トランジスタ79の電流出力Icは抵抗120で電圧に変換される(図14(a))。OPアンプ128のバイアス電圧は、出力電圧Vが発光手段31がOFFで参照光が無い時に0を越える値となり、発光手段31がONで参照光があり、且つ、鍋のある時はマイナスの値となるように抵抗131と抵抗132で設定している(図14(b))。
【0063】
まず、アナログスイッチ133、134をONして、コンデンサ121、122の電荷を放電した後、時間t(図14)でアナログスイッチ133、134をOFFする。
【0064】
出力電圧Vがプラスのピークでは、OPアンプ128の出力に接続されたダイオード123が理想ダイオードとして働き、コンデンサ121の右端子側をアース電位に保つので、コンデンサ121は抵抗120の両端の電圧の正のピーク値に正しく充電される。
【0065】
一方、抵抗120の両端の電圧がそれよりも下がるとダイオード123はOFFとなり、抵抗120の両端の電圧の負のピーク値では、コンデンサ121の右端子側に、先ほど充電された正のピーク値が加算された電圧が生じる。OPアンプ125とダイオード124、抵抗126、127がピーク検出器として動作するため、コンデンサ122には正負のピーク値を加算した値Vppに正しく充電される(図14(c))。反射率算出手段35は、このVpp値を反射光測定手段33の出力Voとして入力するので、安定した反射光信号を入力し、鍋2底面の反射率を算出することが出来る。
【0066】
本実施例では特に、VPP値を測定することで、参照光に近い波長の外乱光の影響や、素子温度の変化による光電流の変動を排除して、精度の良い反射率測定を行うことが出来る。
【0067】
なお、リセット用のアナログスイッチ133、134をOFFする時間tは、Vの出力電圧は、全てVPP値より低い値なので、任意の時間で良い。また、アナログスイッチのON抵抗が、OPアンプ125、128の出力保護抵抗を兼ねている。
【0068】
なお、二重積分型検出回路及び同期検波型回路でも、参照光に近い波長の外乱光の影響や、素子温度の変化による光電流の変動を出来るだけ排除するように、参照光が無い時の検出電圧をアース電位の近くになるように構成している。
【0069】
(実施例6)
本実施例は、調理器としての基本構成は実施例1と同様であり、基本構成についての説明は省略する。この実施例6は、反射光測定手段は、微弱光パルス検出回路とした点が上記の実施例1〜5とは異なるものであり、この点を中心に説明する。図15は本実施例の構成を示す微弱光パルス検出回路図である。図15で139は反射光測定手段33内の受光素子であるフォト・ダイオード、140、141はフォト・ダイオード33に逆バイアスを与える抵抗、142、143はコンデンサ、144は電荷増幅回路、145は波形整形回路、146はピーク検出回路、147〜150はOPアンプ、152〜157はコンデンサ、158〜164は抵抗、165は可変抵抗、166はダイオード、167はリセットスイッチである。
【0070】
次に、図16のタイミング図に基づいて動作を説明する。パルス駆動手段32により発光手段31が間欠駆動される。本実施例では、駆動電流の平均値、すなわち消費電流を節電するため、発光時間を100マイクロ秒未満、例えば、50マイクロ秒に設定ししている。前記、発光手段31の照射する所定波長の赤外線の反射光によるフォト・ダイオード139の電流出力idは電荷増幅回路144で電圧に変換される(図16(a))。コンデンサ153と抵抗159で時定数Tを、コンデンサ154と抵抗160で時定数Tを、コンデンサ156と抵抗163で時定数Tを生成する。
【0071】
本実施例ではT=Tとしているので、波形整形回路145の出力パルスの立ち上がり時間Toは、To=T+Tとなる。まず、リセットスイッチ167をONして、コンデンサ157の電荷を放電した後、時間t10(図16)でリセットスイッチ167をOFFする。出力電圧Vに従って、コンデンサ157は充電され、ピーク値となるt12以降はピーク検出器146によりピーク値で保持される。(図16(c))。反射率算出手段35は、このピーク値を反射光測定手段33の出力Voとして入力するので、安定した反射光信号を入力することが出来る。
【0072】
本実施例では特に、継続時間が100マイクロ秒未満の微弱な光パルスの光量を電荷増幅器で増幅し、その光量に比例した電圧を、波形整形回路により所定のパルスの振幅に変換することで安定した反射光測定が行えるもので、低消費電力な反射率測定を可能としている。
【0073】
なお、微弱光パルス検出回路は感度が高いため、外部の電気雑音を拾いやすいため、電気的なシールドを完全に行う必要がある。また、センサ周辺の機械的な振動によるマイクロフォニック雑音を防ぐために、防振処理を施す必要もある。
【0074】
(実施例7)
本実施例は、調理器としての基本構成は実施例1と同様であり、基本構成についての説明は省略する。この実施例7は、PLL回路で受光パルスに同期するようにした点が上記の実施例1〜6とは異なるものであり、この点を中心に説明する。
【0075】
図17は本実施例におけるPLL回路による反射光検出部の構成を示す回路図である。図17で170は可変抵抗、171、172はシュミット・トリガ・インバータ、173はDタイプ・フリップフロップ、174は市販のIC化されたPLL回路、175、176はリトリガラブル・モノステーブル・マルチバイブレータ、177、178はアナログスイッチ、179は反射光電流に比例した電圧値を保持するコンデンサ、180はOPアンプ、181は積分回路である。
【0076】
本実施例では、PLL回路174は、位相比較器182と、ループフィルタ183と、ゲインアンプ184と、電圧制御発振器185から成り、積分回路181は抵抗186、187と、コンデンサ188と、ダイオード189とで構成している。抵抗190とコンデンサ191、抵抗192とコンデンサ193はそれぞれマルチバイブレータ175、176の出力パルス幅を決める外付け抵抗とコンデンサである。
【0077】
次に、図18のタイミングチャート図を基づいて動作を説明する。鍋2が載置されていない時は、反射光がなく抵抗102の両端の電圧はほぼ零であり、インバータ171の出力は連続してHighとなり、積分回路181のコンデンサもVddまで充電される(図17の(b))。
【0078】
従って、アナログスイッチ178がONとなり、反射光測定手段としての出力Voも零となる(図17の(f))。鍋2が載置され、反射光による検出電流icにより、抵抗102の両端に電圧VR102のHighパルスが生じると(図17の(a)、時間t13)、インバータ171の出力にLowのパルスが生じると、放電時間を充電時間より長めに設定している積分回路181のコンデンサ188の電圧はアナログスイッチ178のスレッシュド電圧VIH未満に保たれるため、アナログスイッチ178はOFFする。
【0079】
一方、インバータ172のパルス(図17の(c))をDタイプ・フリップフロップ173で1/2分周した矩形波信号にPLL回路174が同期するため、PLL回路174内の電圧制御発振器185の出力矩形波信号(図17の(d))は正確に電圧VR102のHighパルスに同期して、且つ、そのHighパルスを1/2分周した矩形波信号となる。この矩形波信号の立ち上がりマルチバイブレータ175で遅延し(図17の時間t13〜時間t14)、マルチバイブレータ176でアナログスイッチ177をONするコントロール信号パルス(図17の(e))を出力する。
【0080】
このコントロール信号パルスで、反射光電流による電圧VR102をアナログスイッチ177でサンプリングし、コンデンサ179とOPアンプ180で保持する(図17の(f))。反射率算出手段35は反射光に比例した電圧Voを入力することで、鍋2の底面の反射率を算出することが出来る。
【0081】
特に本実施例では、PLL回路で反射光による検出電流icにより、抵抗102の両端に生じる電圧VR102のHighパルスに同期した矩形波信号を生成し、この矩形波信号の立ち上がりに同期してサンプリングするため、電圧VR102のHighパルスに加熱手段によるノイズ等が重畳されても瞬間的に変形しても、正確に電圧VR102の反射光に比例する電圧部分を安定して入力することが可能となる。
【0082】
なお、Dタイプ・フリップフロップ173のCLRとPR端子はVddに接続している。また、ダイオード189にはVの小さいショットキー・バリア・ダイオードを用いている。また、直流電源40はインバータ171、172、フリップフロップ173、PLL174、マルチバイブレータ175、176、アナログスイッチ177、178に、4000シリーズのCMOS−ICを用いているので、12V程度に設定し、反射光電流の検出レンジを広めに取っている。
【0083】
(実施例8)
本実施例は、調理器としての基本構成は実施例1から7と同様であり、基本構成についての説明は省略する。この実施例10は、フォト・ダイオードの逆バイアスを零にすることで暗電流をキャンセルするようにした点が上記の実施例とは異なるものであり、この点を中心に説明する。
【0084】
図19は本実施例におけるゼロ・バイアス型の反射光測定手段の回路図である。図19で195、196はOPアンプ、197〜200は抵抗、201はダイオード、202はコンデンサ、203はリセットスイッチである。抵抗198〜200と、ダイオード201と、コンデンサ202と、OPアンプ196でピーク検出回路204を構成する。205はノイズ対策に反射光測定手段の検出出力にローパスフィルタもしくはバンドパスフィルタである。フォト・ダイオード139から負荷へ流れだす電流Idは、Id=I+I(1−eVd/Vr)となり、入射光に比例した光起電流Iの項と、入射光が零の時の出力電流I(1−eVd/Vr)の項があり、後者を暗電流と呼んでいる。暗電流は測定の誤差となるため、小さければ小さいほど良い。暗電流はフォト・ダイオード139へ印加する逆電圧が大きいほど、大きくなるため、本実施例では、図19に示すように、OPアンプ195の仮想接地点にフォト・ダイオード139を電流源として接続している。従って、フォト・ダイオード139へのバイアスが零のため、暗電流は極めて小さくなる。
【0085】
次に動作を図20のタイミング図に基づいて説明する。発光手段31をパルス駆動手段32で間欠駆動しているため、反射光測定手段33で受光する反射光も間欠して入光し、この入光する反射光による電流出力idをゼロ・バランス型回路で増幅すると図20(a)に示すような波形となる。発光手段31がOFFで参照光が無い時は0となり、発光手段31がONで参照光があり、且つ、鍋のある時はその反射率の応じたマイナスの値となる(反射率が大きいほど、マイナスとなる度合いが大きい)。
【0086】
ここで、リセットスイッチ203をONして、ピーク値ホールド用のコンデンサ202の電荷を充分に放電した後、リセットスイッチ203をt16でOFFすると、コンデンサ202の電圧はゼロ・バランス型増幅回路の出力が零の期間は零を保ち、負になると充電を始め(図20のt17)、ピーク値に達した後は(図20のt18)、その値を保持する。従って、反射率算出手段35はリセットスイッチ203をOFFしてから、所定の時間が経過した後に、反射光測定手段の出力Voを入力すれば、鍋の反射率に応じた安定した信号を入力することが出来る。
【0087】
なお、OPアンプ190の入力電流は誤差になるので、入力バイアス電流の小さいFET入力型のOPアンプを使用する。また、ゼロ・バイアスのため、フォト・ダイオード139の接合容量が大きくなり、速い動作を行えないため、発光手段の駆動パルスはデューティ比を1/2以下にし、OFF期間を長めに取る。
【0088】
なお、フォト・ダイオードは、発光手段31とは光を介して接続されることにより、反射光測定手段の直流電源は、発光手段の直流電源と別電源にすれば完全に絶縁されるため、加熱手段から重畳されてくるスイッチングノイズ等を遮断し、低ノイズな反射光測定を行うことが出来る。また、反射光測定手段の直流電源は、トランスと3端子レギュレータ等を用いた低ノイズタイプの電源を使用する。
【0089】
なお、ノイズ対策に反射光測定手段の検出出力にローパスフィルターもしくはバンドパスフィルターを入れて、加熱手段から重畳されてくる大きなノイズや、反射光測定手段33内で発生する熱雑音や、ショット・ノイズや、フリッカノイズを低減し、より安定した反射率測定を行うた。
【0090】
例えば、ローパスフィルタの遮断周波数は上記のノイズ及び商用電源周波数の1/N成分と同期しない、33Hz等に設定する。従って、上記の各種ノイズはローパスフィルターもしくはバンドパスフィルターで遮断され、反射率に応じた信号のみが反射率算出手段へ入力され、より正確な反射率の測定を行い、より高精度に鍋の温度測定ができる誘導加熱調理器としているものである。
【0091】
(実施例9)
本実施例は、調理器としての基本構成は実施例1と同様であり、基本構成についての説明は省略する。この実施例10は、外乱光をカットするため、鍋およびその照射点近傍から直接反射される赤外線のみを受光する導光部を設けた点が上記の実施例とは異なるものであり、この点を中心に説明する。図21は本実施例における導光部周辺の要部断面図である。図21で205は熱伝導性の高い材料からなる支持部材、206は導光部である。導光部206内面は鏡面仕上げを行い、赤外線を良く反射する材料を均一に塗布してある。
【0092】
また、トッププレート1からの伝導熱を遮断するため、支持部材205及び導光部206とトッププレート1との間に空隙を設け、冷却ファン(図示せず)で左右両側もしくは下部から均一に冷却している。
【0093】
以上の構成により、発光手段31から照射された参照用の赤外線は、鍋2の底面にほぼ全て導かれ、鍋2の底面で反射した反射光もその大部分が受光手段33に導かれると共に、トッププレート1の横面や、鍋2の周囲や、発光手段31、受光手段33の周囲から進入する外乱光を遮断することが可能となり、より高精度に鍋の温度測定ができる誘導加熱調理器としているものである。
【0094】
なお、導光部の先端にレンズ等の集光手段を装着し、所定の角度からの反射光を集光し、光量を高めても良い。
【0095】
【発明の効果】
以上のように本発明の発明は、鍋を加熱する加熱コイルと、前期加熱コイルに電力を供給する加熱手段と、前記加熱コイルの上部で鍋を載置するトッププレートと、前記トッププレート下面に配し鍋底面から放射される赤外線を検知する赤外線センサと、前記赤外線センサの受光面に装着した所定の帯域の波長の光を透過させるバンドパスフィルターと、前記赤外線センサの出力を増幅するアンプと、前記アンプの出力から鍋底面温度を算出する温度算出手段と、前記トッププレート下面に配し前記鍋へ参照用の赤外線を照射する発光手段と、前記発光手段をパルス駆動するパルス駆動手段と、前記鍋からの反射光を測定する反射光測定手段と、前記反射光測定手段の出力から前記鍋の反射率を算出する反射率算出手段と、前記温度算出手段と反射率算出手段の出力に応じて加熱コイルに供給する電力を制御する制御手段を備え、前記発光手段は、パルス駆動を行うことによりIfを大きくし、トッププレートを透過させる参照用の赤外線の照度を向上させることによって、周囲温度に影響されずに、高精度に鍋の温度測定が出来る加熱調理器が実現できるものである。
【0096】
また、反射光測定手段に、二重積分型回路あるいは同期検波型回路あるいはVpp検出型回路や、微弱光パルス検出回路や、PLL回路を用いて、より精度良く反射光を検出することが可能となるものである。
【0097】
また、ゼロ・バイアスを与え、暗電流をキャンセルするようにすることで、精度の良い反射光測定が可能となる。
【0098】
また、反射光測定手段の直流電源は、発光手段の直流電源と別電源とすることで、耐ノイズの高い反射光測定が可能となる。
【0099】
さらに、検出出力にローパスフィルターもしくはバンドパスフィルターを入れたり、外乱光をカットする導光部を設けたりすることで、加熱手段のノイズや外乱光を低減し、よりより精度良く反射光を検出することが可能となるものである。
【図面の簡単な説明】
【図1】本発明の実施例1における本実施例における調理器の構成を示すブロック図
【図2】対象物(鍋2)の反射率と、その反射光による反射光測定手段33の検出出力との関係をグラフ
【図3】本発明の実施例における発光素子と受光素子の取付角度を示す要部断面図
【図4】本発明の実施例2における発光手段及びパルス駆動手段の回路図
【図5】(a)発光手段31内の発光素子のIfDCと周囲温度との関係を示すグラフ
(b)発光手段31内の発光素子のデューティ比とIfpulseとの関係を示すグラフ
【図6】本発明の実施例3における発光手段及びパルス駆動手段の回路図
【図7】本発明の実施例4における発光手段及びパルス駆動手段の回路図
【図8】(a)本発明の実施例における発光素子のVIfの周囲温度による変化量を示すグラフ
(b)本発明の実施例における発光素子の放射束の周囲温度に対する安定度を示すグラフ
【図9】本発明の実施例5における反射光測定手段の回路図
【図10】本発明の実施例5におけるタイミングを示す図
【図11】本発明の実施例5における反射光測定手段の回路図
【図12】本発明の実施例5におけるタイミングを示す図
【図13】本発明の実施例5における反射光測定手段の回路図
【図14】本発明の実施例5におけるタイミングを示す図
【図15】本発明の実施例6における反射光測定手段の回路図
【図16】本発明の実施例6におけるタイミングを示す図
【図17】本発明の実施例7における反射光測定手段の回路図
【図18】本発明の実施例7におけるタイミングを示す図
【図19】本発明の実施例8〜10における反射光測定手段の回路図
【図20】本発明の実施例8〜10におけるタイミングを示す図
【図21】本発明の実施例における発光素子と受光素子と導光部の取付角度を示す要部断面図
【図22】トッププレート及び窓材の赤外線透過特性グラフ
【図23】従来における誘導加熱調理器を示すブロック図
【符号の説明】
1 トッププレート
2 鍋
3 加熱コイル
5 赤外線センサ
28、34 バンドパスフィルタ
29 アンプ
30 温度算出手段
31 発光手段
32 パルス駆動手段
33 反射光測定手段
35 反射率算出手段
36 制御手段
37 冷却手段
55 PTCサーミスタ
70 掛算器
81 ピーク検出回路
80 I−V変換回路
106 OPアンプ

Claims (12)

  1. 鍋を加熱する加熱コイルと、前期加熱コイルに電力を供給する加熱手段と、前記加熱コイルの上部で鍋を載置するトッププレートと、前記トッププレート下面に配し鍋底面から放射される赤外線を検知する赤外線センサと、前記赤外線センサの受光面に装着した所定の帯域の波長の光を透過させるバンドパスフィルターと、前記赤外線センサの出力を増幅するアンプと、前記アンプの出力から鍋底面温度を算出する温度算出手段と、前記トッププレート下面に配し前記鍋へ所定の波長の参照用の赤外線を照射する発光手段と、前記発光手段内の発光素子を駆動するパルス駆動手段と、前記鍋からの反射光を測定する反射光測定手段と、前記反射光測定手段の出力から前記鍋の反射率を算出する反射率算出手段と、前記温度算出手段と反射率算出手段の出力に応じて加熱コイルに供給する電力を制御する制御手段とを備え、前記発光手段は、トッププレートを透過させる参照用の赤外線の照度を大きな順方向電流Ifを流すことで大きくし反射率の検出精度を上げるべく、発光手段に流す電流を間欠的なパルス駆動を行う加熱調理器。
  2. 発光手段のパルス駆動デューティは、略50%で駆動するようにした請求項1に記載の加熱調理器。
  3. 発光手段のパルス駆動デューティは、発光素子の素子温度を検出し、可変するようにした請求項1に記載の加熱調理器。
  4. VfIf一定化手段を備え、VfIf一定化手段は、発光手段の順方向電圧Vfと順方向電流Ifとの積あるいは和あるいは差あるいは比を一定に保つようにとした請求項1から3のいずれか1項に記載の加熱調理器。
  5. 反射光測定手段は、二重積分型検出回路あるいは同期検波型回路あるいはVpp検出型回路のいずれかとした請求項1から4のいずれか1項に記載の加熱調理器。
  6. 反射光測定手段は、微弱光パルス検出回路とした請求項1から4のいずれか1項に記載の加熱調理器。
  7. 反射光測定手段は、PLL回路で受光パルスに同期するようにした請求項1から4のいずれか1項に記載の加熱調理器。
  8. 反射光測定手段内のフォト・ダイオードの逆バイアスを零にすることで暗電流をキャンセルするようにした請求項1から7のいずれか1項に記載の加熱調理器。
  9. 反射光測定手段の直流電源は、発光手段の直流電源と別電源とした請求項1から8のいずれか1項に記載の加熱調理器。
  10. ノイズ対策に検出出力にローパスフィルターもしくはバンドパスフィルターを備えた請求項1から9のいずれか1項に記載の加熱調理器。
  11. 外乱光をカットするため、鍋およびその近傍から直接反射される赤外線のみを受光する導光部を設けた請求項1から10のいずれか1項に記載の加熱調理器。
  12. 発光手段のパルス駆動デューティは、発光素子のIfが最大値となるようなデューティで駆動するようにした請求項1から11のいずれか1項に記載の加熱調理器。
JP2003012244A 2003-01-21 2003-01-21 加熱調理器 Expired - Fee Related JP4089444B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012244A JP4089444B2 (ja) 2003-01-21 2003-01-21 加熱調理器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012244A JP4089444B2 (ja) 2003-01-21 2003-01-21 加熱調理器

Publications (2)

Publication Number Publication Date
JP2004227839A true JP2004227839A (ja) 2004-08-12
JP4089444B2 JP4089444B2 (ja) 2008-05-28

Family

ID=32900917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012244A Expired - Fee Related JP4089444B2 (ja) 2003-01-21 2003-01-21 加熱調理器

Country Status (1)

Country Link
JP (1) JP4089444B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221950A (ja) * 2005-02-10 2006-08-24 Matsushita Electric Ind Co Ltd 加熱調理器
JP2007080701A (ja) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd 加熱調理器
WO2008010435A1 (fr) * 2006-07-21 2008-01-24 Panasonic Corporation Appareil de cuisson à chauffage par induction
WO2008087745A1 (ja) * 2007-01-16 2008-07-24 Panasonic Corporation 誘導加熱装置
WO2008120449A1 (ja) * 2007-03-12 2008-10-09 Panasonic Corporation 誘導加熱調理器
JP2008288085A (ja) * 2007-05-18 2008-11-27 Panasonic Corp 誘導加熱調理器
JP2009277668A (ja) * 2009-08-19 2009-11-26 Panasonic Corp 加熱調理器
EP2175691A1 (en) * 2007-06-22 2010-04-14 Panasonic Corporation Induction cooker
JP2010135191A (ja) * 2008-12-05 2010-06-17 Hitachi Appliances Inc 誘導加熱調理器
JP2010251130A (ja) * 2009-04-16 2010-11-04 Hitachi Appliances Inc 誘導加熱調理器
JP5185454B1 (ja) * 2012-05-31 2013-04-17 三菱電機株式会社 加熱調理器
KR20180099398A (ko) * 2017-02-28 2018-09-05 엘지전자 주식회사 유도 가열 조리기
CN114112913A (zh) * 2021-12-03 2022-03-01 北京星航机电装备有限公司 一种红外光源加权调制系统及方法
WO2022122337A1 (de) * 2020-12-11 2022-06-16 BSH Hausgeräte GmbH Kochsystem

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221950A (ja) * 2005-02-10 2006-08-24 Matsushita Electric Ind Co Ltd 加熱調理器
JP4613628B2 (ja) * 2005-02-10 2011-01-19 パナソニック株式会社 加熱調理器
JP2007080701A (ja) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd 加熱調理器
WO2008010435A1 (fr) * 2006-07-21 2008-01-24 Panasonic Corporation Appareil de cuisson à chauffage par induction
JP2008027730A (ja) * 2006-07-21 2008-02-07 Matsushita Electric Ind Co Ltd 誘導加熱調理器
WO2008087745A1 (ja) * 2007-01-16 2008-07-24 Panasonic Corporation 誘導加熱装置
JP2008176937A (ja) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd 加熱調理器
US8378274B2 (en) 2007-01-16 2013-02-19 Panasonic Corporation Induction heating device
WO2008120449A1 (ja) * 2007-03-12 2008-10-09 Panasonic Corporation 誘導加熱調理器
JP2008288085A (ja) * 2007-05-18 2008-11-27 Panasonic Corp 誘導加熱調理器
EP2175691A1 (en) * 2007-06-22 2010-04-14 Panasonic Corporation Induction cooker
US8389912B2 (en) 2007-06-22 2013-03-05 Panasonic Corporation Induction cooker
EP2175691A4 (en) * 2007-06-22 2012-07-04 Panasonic Corp INDUCTION COOKER
JP2010135191A (ja) * 2008-12-05 2010-06-17 Hitachi Appliances Inc 誘導加熱調理器
JP2010251130A (ja) * 2009-04-16 2010-11-04 Hitachi Appliances Inc 誘導加熱調理器
JP4614008B2 (ja) * 2009-08-19 2011-01-19 パナソニック株式会社 加熱調理器
JP2009277668A (ja) * 2009-08-19 2009-11-26 Panasonic Corp 加熱調理器
JP5185454B1 (ja) * 2012-05-31 2013-04-17 三菱電機株式会社 加熱調理器
KR20180099398A (ko) * 2017-02-28 2018-09-05 엘지전자 주식회사 유도 가열 조리기
WO2018159963A1 (ko) * 2017-02-28 2018-09-07 엘지전자 주식회사 유도 가열 조리기
KR101974263B1 (ko) * 2017-02-28 2019-08-23 엘지전자 주식회사 유도 가열 조리기
US11979963B2 (en) 2017-02-28 2024-05-07 Lg Electronics Inc. Induction-heating cooking apparatus
WO2022122337A1 (de) * 2020-12-11 2022-06-16 BSH Hausgeräte GmbH Kochsystem
CN114112913A (zh) * 2021-12-03 2022-03-01 北京星航机电装备有限公司 一种红外光源加权调制系统及方法
CN114112913B (zh) * 2021-12-03 2023-09-19 北京星航机电装备有限公司 一种红外光源加权调制系统及方法

Also Published As

Publication number Publication date
JP4089444B2 (ja) 2008-05-28

Similar Documents

Publication Publication Date Title
JP4089444B2 (ja) 加熱調理器
JP4123036B2 (ja) 加熱調理器
US6140617A (en) Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop
US6118105A (en) Monitoring and control system for monitoring the boil state of contents of a cooking utensil
US20060215728A1 (en) Forehead thermometer for hygienic measurement
JP5286140B2 (ja) 誘導加熱調理器
JP4277927B2 (ja) 誘導加熱調理器
JP2009295456A (ja) 誘導加熱調理器
JP3975864B2 (ja) 誘導加熱調理器
JPH11225881A (ja) 加熱調理器
JP2004227976A (ja) 誘導加熱調理器
JP2010251332A (ja) 誘導加熱調理器
JP4178966B2 (ja) 加熱調理器
JP6512689B2 (ja) 誘導加熱調理器
JP2003317920A (ja) 誘導加熱調理器
JP2005347000A (ja) 誘導加熱調理器
JP2003347028A (ja) 調理器
JP5372839B2 (ja) 誘導加熱調理器
JP4973673B2 (ja) 誘導加熱調理器
JP4496998B2 (ja) 誘導加熱調理器
JP4929920B2 (ja) 加熱調理器およびプログラム
JP5135386B2 (ja) 誘導加熱調理器
JP4357938B2 (ja) 誘導加熱調理器
JP4444064B2 (ja) 誘導加熱調理器
JP2013127990A (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

R151 Written notification of patent or utility model registration

Ref document number: 4089444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees