JP2004226063A - エンジン駆動式熱ポンプ装置 - Google Patents

エンジン駆動式熱ポンプ装置 Download PDF

Info

Publication number
JP2004226063A
JP2004226063A JP2004138415A JP2004138415A JP2004226063A JP 2004226063 A JP2004226063 A JP 2004226063A JP 2004138415 A JP2004138415 A JP 2004138415A JP 2004138415 A JP2004138415 A JP 2004138415A JP 2004226063 A JP2004226063 A JP 2004226063A
Authority
JP
Japan
Prior art keywords
cooling water
refrigerant
heat exchanger
engine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004138415A
Other languages
English (en)
Other versions
JP4277114B2 (ja
Inventor
Motoyasu Kato
元保 加藤
Shozo Aoshima
正三 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2004138415A priority Critical patent/JP4277114B2/ja
Publication of JP2004226063A publication Critical patent/JP2004226063A/ja
Application granted granted Critical
Publication of JP4277114B2 publication Critical patent/JP4277114B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】 室内熱交換器の運転台数に見合った冷媒とエンジン冷却水との熱交換を実現し冷媒回路内を適切な熱授受バランスに保ち得るエンジン駆動熱ポンプ装置。
【解決手段】エンジンによって駆動される圧縮機によって冷媒を循環させる冷媒回路と、エンジンを冷却する冷却水を循環させる冷却水回路を有し、前記冷媒回路には膨張弁と室内熱交換器及び室外熱交換器を設け、前記冷却水回路には排気ガス熱交換器、ラジエータ及びポンプを設けるとともに、前記ラジエータを分岐する冷却水ラインを設け、冷媒と冷却水の間で熱交換を行わせる冷媒加熱用熱交換器を、冷媒回路と冷却水回路の前記冷却水ラインとの間に設けて成るエンジン駆動式熱ポンプ装置において、前記ラジエータを迂回して前記冷媒加熱用熱交換器へ流れる冷却水の流量を制御するリニア三方弁と、制御条件に応じて前記リニア三方弁の開度をリニアに増減させる制御手段を設けた構成。
【選択図】 図3

Description

本発明は、エンジンの廃熱を回収するための冷媒加熱用熱交換器を備えるエンジン駆動式熱ポンプ装置に関する。
一般に、エンジン駆動式熱ポンプ装置においては、エンジンの廃熱を回収してこれを有効利用するために排気ガス熱交換器及び冷媒加熱用熱交換器が設けられている。
上記冷媒加熱用交換器は、特に暖房運転時の室内熱交換器での放熱量(冷媒から放出される熱量)を効率良く増加させるために設けられるものであって、該冷媒加熱用熱交換器においては、前記排気ガス熱交換器で排気ガスから冷却水に回収された廃熱が冷媒に与えられ、結果的にエンジンから回収された廃熱が室内熱交換器の放熱量に上乗せされることとなる。
ところが、室内熱交換器を複数台有する所謂マルチ運転が可能な熱ポンプ装置においては、暖房運転時に全室内熱交換器を運転しているときの必要性能に見合った熱授受バランスが保たれているため、例えば室内熱交換器を1台のみ運転しているときには、その室内熱交換器の要求性能(放熱量)以上に冷媒加熱用熱交換器での熱交換量(冷却水から冷媒に与えられる熱量)が過大となって、冷媒回路内での熱量バランスが崩れ、冷媒圧力が異常に上昇するという問題があった。
本発明は上記問題に鑑みてなされたもので、その目的とする処は、室内熱交換器の運転台数(冷媒流量)に見合った冷媒と冷却水との熱交換を実現して冷媒回路内を適切な熱授受バランスに保つことができるエンジン駆動式熱ポンプ装置を提供することにある。
上記目的を達成するため、本発明は、エンジンによって駆動される圧縮機によって冷媒を循環させる冷媒回路と、エンジンを冷却する冷却水を循環させる冷却水回路を有し、前記冷媒回路には膨張弁と室内熱交換器及び室外熱交換器を設け、前記冷却水回路には排気ガス熱交換器、ラジエータ及びポンプを設けるとともに、前記ラジエータを分岐する冷却水ラインを設け、冷媒と冷却水の間で熱交換を行わせる冷媒加熱用熱交換器を、冷媒回路と冷却水回路の前記冷却水ラインとの間に設けて成るエンジン駆動式熱ポンプ装置において、前記ラジエータを迂回して前記冷媒加熱用熱交換器へ流れる冷却水の流量を制御するリニア三方弁と、制御条件に応じて前記リニア三方弁の開度をリニアに増減させる制御手段を設けたことを特徴とする。
本発明によれば、例えば暖房運転時に冷却水温度が所定値以下の状態で室内熱交換器の運転台数が減ったために冷媒流量が減少し、冷媒の単位流量当たりの受熱量(二重管熱交換器において冷却水から受け取る熱量)が増えてその圧力が上昇した場合であっても、制御手段は制御条件である少なくとも冷却水温度、冷媒圧力及び室内熱交換器の運転台数等に応じて流量制御弁の開度を制御し、冷媒加熱用熱交換器への冷却水流量を制限するため、冷媒加熱用熱交換器においては、運転中の室内熱交換器に要求される放熱量に見合った熱量が冷却水から冷媒に与えられ、この結果、冷媒回路内の適切な熱授受バランスが実現し、冷媒の過熱に伴う種々の不具合が解消される。
暖房運転時であって、凝縮器として作用する室内熱交換器の運転台数が少ないために冷媒流量が小さいときには、制御手段は制御条件である少なくとも冷却水温度、冷媒圧力及び室内熱交換器の運転台数等に応じて流量制御弁の開度を制御し、冷媒加熱用熱交換器への冷却水流量を制限するため、冷媒加熱用熱交換器においては、運転中の室内熱交換器に要求される放熱量に見合った熱量が冷却水から冷媒に与えられ、この結果、冷媒回路内での適切な熱授受バランスが実現し、冷媒の過熱に伴う種々の不具合が解消されるという効果が得られる。
[参考例]以下に本発明の参考例を添付図面に基づいて説明する。
図1は参考例に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図、図2は冷却水温度による各冷却水ラインへ流れる冷却水量の変化(切換弁の特性)を示す図である。
図1において、1は水冷式ガスエンジン、2はガスエンジン1によって回転駆動される圧縮機であって、ガスエンジン1の出力軸3はプーリ4、ベルト5及びプーリ6を介して圧縮機2の入力軸7に連結されている。
ところで、上記ガスエンジン1の吸気系には吸気管8が接続されており、該吸気管8の途中にはエアクリーナ9及びミキサー10が接続されている。そして、ミキサー10には、不図示の燃料ガス供給源に接続された燃料供給管11が接続されており、該燃料供給管11の途中には2つの燃料ガス電磁弁12とゼロガバナ13が接続されている。
又、ガスエンジン1のクランク室にはオイル供給管14を介してオイルタンク15が接続されている。更に、ガスエンジン1から導出するブリーザ管16にはオイルセパレータ17が接続されており、ガスエンジン1から排出されるブリーザガスはオイルセパレータ17によってオイル分を除去された後、ガスライン18を通って前記燃料供給管11のミキサー10の上流側に戻され、オイル分はオイルライン19を通ってガスエンジン1のクランク室に戻される。
他方、ガスエンジン1の排気系からは排気管20が導出しており、該排気管20の途中には排気ガス熱交換器21が設けられている。
ところで、本熱ポンプ装置には、前記圧縮機2を含んで閉ループを構成する冷媒回路22と前記ガスエンジン1を冷却する冷却水を循環させる冷却水回路23が設けられている。
上記冷媒回路22は圧縮機2によってフロン等の冷媒を循環させる回路であって、これは、圧縮機2の吐出側から導出してオイルセパレータ24に至る冷媒ライン22aと、オイルセパレータ24から導出して四方弁25に至る冷媒ライン22bと、四方弁25から後述の冷媒加熱用熱交換器である二重管熱交換器44を経て第1の室外熱交換器(以下、室外機と略称す)26−1に至る冷媒ライン22cと、冷媒ライン22cの途中から分岐して第2の室外機26−2に至る冷媒ライン22dと、第1の室外機26−1から液ガス熱交換器27、ドライヤ28、サイトグラス29及びストレーナ30を経て膨張弁31に至る冷媒ライン22eと、前記第2の室外機26−2と冷媒ライン22eとを接続する冷媒ライン22fと、前記膨張弁31から複数台(n台)の室内熱交換器(以下、室内機と略称す)32−1、…、32−nに至る冷媒ライン22gと、各室内機32−1、…32−nからストレーナ33を経て前記四方弁25に至る冷媒ライン22hと、四方弁25から前記液ガス熱交換器27及びサイレンサ34を経てアキュームレータ35に至る冷媒ライン22iと、アキュームレータ35から導出して圧縮機2の吸入側に接続される冷媒ライン22jとで構成されている。
尚、前記オイルセパレータ24から導出するオイル戻りライン36は前記冷媒ライン22jに接続されている。又、前記冷媒ライン22bからはバイパスライン22kが分岐しており、該バイパスライン22kとこれから更に分岐するバイパスライン22mは前記サイレンサ34に接続されており、各バイパスライン22k、22mにはバイパス弁37、38がそれぞれ接続されている。
一方、前記冷却水ライン23は、水ポンプ39の吐出側から前記排気ガス熱交換器21を通ってガスエンジン1の冷却水入口に至る冷却水ライン23aと、ガスエンジン1の冷却水出口から導出してサーモスタットを有する切換弁40に至る冷却水ライン23bと、切換弁40から導出してラジエータ42の入口側に接続される冷却水ライン23cと、ラジエータ42の出口側から導出する冷却水ライン23dと、該冷却水ライン23dから前記水ポンプ39の吸入側に至る冷却水ライン23eと、冷却水ライン23dから水タンク43に至る冷却水補給ライン23fと、前記切換弁40から導出して二重管熱交換器44を通って前記冷却水ライン23eに接続される冷却水ライン23g等を含んで構成されている。尚、図1において、23hは空気抜き通路、23iは絞りである。
ところで、本参考例においては、冷媒回路22と冷却水回路23の間に前記二重管熱交換器44が設けられており、この二重管熱交換器44においては冷媒ライン22cを流れる冷媒と冷却水ライン23gを流れる冷却水との間で熱交換が行われる。
而して、本参考例では、冷却水ライン23gを流れる冷却水の一部を二重管熱交換器44をバイパスさせて流すためのバイパス回路45が設けられている。即ち、バイパス回路45は冷却水ライン23gの二重管熱交換器44の上流側から分岐して前記冷却水ライン23cの前記ラジエータ42の上流側に接続されており、該バイパス回路45の途中には水バイパス弁46が設けられている。
尚、前記切換弁40は、これに設けられたサーモスタットの作用によって図2に示すように、冷却水温度が例えば78℃以下であるときには冷却水ライン23cを全閉とするとともに、冷却水ライン23gを全開として一方の冷却水ライン23gのみに冷却水を流し、冷却水温度が例えば78℃を超えると冷却水ライン23cを開き始める一方、冷却水ライン23gを閉じ始めて両冷却水ライン23c、23gに冷却水を流し、冷却水温度が86℃を超えると冷却水ライン23cを全開、冷却水ライン23gを全閉として一方の冷却水ライン23cのみに冷却水を流す。又、前記水バイパス弁46は、暖房運転時であって、且つ、室内機32−1、…、32nの運転台数に応じてその開度が制御される。
次に、本参考例に係る熱ポンプ装置の作用を説明する。
先ず、暖房運転時の作用を説明すると、ガスエンジン1が駆動され、該ガスエンジン1によって圧縮機2が回転駆動されると、該圧縮機2によってガス状の冷媒が圧縮され、高温高圧のガス状冷媒は冷媒ライン22aを経てオイルセパレータ24に至る。オイルセパレータ24においては、冷媒に含まれるオイル分が除去され、オイル分が除去された冷媒は冷媒ライン22bを通って四方弁25に至り、冷媒から分離されたオイルは前記オイル戻りライン36を通って前記冷媒ライン22jに戻される。
ところで、暖房運転時においては、図1に実線にて示すように、四方弁25のポートaとポートcとが連通されており、高温高圧のガス状冷媒は四方弁25を通って冷媒ライン22h側へ流れ、ストレーナ33を経て室内機32−1、…、32−nに至り、ここで凝縮熱を放出して液化し、このとき放出される凝縮熱によって室内の暖房が行われる。
そして、上述のように室内機32−1、…、32−nにおいて凝縮熱を放出して液化した高圧の冷媒は、各膨張弁31に至り、該膨張弁31によって減圧された後、冷媒ライン22gに入り、ストレーナ30及びドライヤ28を通って冷媒ライン22eを流れ、前記液ガス熱交換器27を通過した後、第1及び第2の室外機26−1、26−2に至り、ここで外気から蒸発熱を奪って気化する。尚、液ガス熱交換器27は、主に冷房時に室外機26−1、26−2で凝縮熱を放出して液化した冷媒の残熱を、室内機32−1、…、32−nにおいて蒸発熱を吸収して気化した冷媒に吸収させることによって冷房効率を高めるためのものであって、暖房時には熱交換機能は低い。
一方、水ポンプ39の駆動によって冷却回路23内を循環する冷却水は、水ポンプ39から吐出されて冷却水ライン23aを流れ、その途中で、排気ガス熱交換器21においてガスエンジン1から排気管20に排出される排気ガスの熱を回収して加熱された後、ガスエンジン1の不図示のウォータージャケットを流れて該ガスエンジン1を冷却する。そして、ガスエンジン1の冷却に供された冷却水は、冷却水ライン23bを流れて切換弁40に至る。
ここで、切換弁40は、前述のように冷却水温度が78℃以下のときは一方の冷却水ラインを23c全閉して他方の冷却水ライン23gを全開するため、冷却水は冷却水ライン23gを流れる。
ところで、バイパス回路45に設けられた水バイパス弁46は前述のように室内機32−1、…、32−nの運転台数(熱負荷)によってその開度が制御され、前述のように全ての室内機32−1、…、32−nが運転されているときには閉じられており、冷却水の全ては前記二重管熱交換器44を流れ、暖房運転時に室外機26−1、26−2において蒸発したガス状の冷媒を加熱する。この結果、エンジン1の廃熱(排気ガスが有する熱の一部)が冷媒によって回収され、この廃熱を回収したガス状冷媒は冷媒ライン22cを流れて四方弁25に至る。尚、二重管熱交換器44を通過した冷却水は、冷却水ライン23eを通って水ポンプ39に吸引され、以後同様の作用を繰り返す。
暖房運転時においては、四方弁25は、図1に実線にて示すようにそのポートbとポートdとが連通されているため、冷媒は冷媒ライン22iを流れ、液ガス熱交換器27及びサイレンサ34を通ってアキュームレータ35に至る。
上記アキュームレータ35においては冷媒の気液が分離され、ガス状の冷媒のみが冷媒ライン22jから圧縮機2の吸入口に吸引され、吸引された冷媒は圧縮機2によって再度圧縮されて前述と同様の作用を繰り返す。
而して、本参考例においては、冷却水温度が78℃以下で、且つ、全室内機32−1、…、32−nを運転しているときには、冷却水によって回収されたガスエンジン1の廃熱の全てが冷媒に与えられて各室内機32−1、…、32−nの放熱量に上乗せされるため、暖房効果が高められる。
他方、冷却水温度が78℃以下で、例えば1台の室内機32−1のみが運転されているために冷媒流量が小さいときには、バイパス回路45の水バイパス弁46が開かれる。このため、冷却水ライン23gを流れる冷却水の一部は二重管熱交換器44をバイパスしてバイパス回路45を流れ、冷媒ライン22cを流れる冷媒の加熱に供されず、冷却水ライン23cからラジエータ42に送られて冷却される。
上述のように要求される熱負荷(1台の室内機32−1の放熱量)が小さい場合には、冷却水の一部が二重管熱交換器44をバイパスするため、二重管熱交換器44においては、要求される熱負荷に見合った熱量が冷却水から冷媒に与えられ、この結果、冷媒回路22内での適切な熱授受バランスが実現され、冷媒の過熱に伴う種々の不具合が解消される。
尚、本参考例においては、バイパス回路45はラジエータ42の入口側の冷却水ライン23cに接続したため、バイパス回路45を流れる冷却水はラジエータ42において冷却され、結果的に二重管熱交換器44での伝熱量が減少して目的を達成することができる。又、切換弁40から冷却水ライン22gに流れる冷却水の一部を冷却水ライン23cに流すようにしており、ラジエータ42に回る冷却水流量が増加するため、冷却水をより冷却することができる。尚、バイパス回路45をラジエータ42の出口側の冷却水ライン23dに接続しても良い。
他方、冷却水温度が78℃を超えると、前述のように(図2参照)切換弁40は一方の冷却水ライン23cを開き始める一方、他方の冷却水ライン22gを閉じ始めるため、両冷却水ライン23c、23gを冷却水が流れ、このときにおいても二重管熱交換器44においてガスエンジン1の廃熱の一部が冷却水から冷媒に与えられる。
そして、冷却水温度が86℃を超えると、前述のように(図2参照)、切換弁40は一方の冷却ライン23cを全開として他方の冷却ライン23gを全閉とするため、二重管熱交換器44における冷却水と冷媒間での熱交換は行われず、冷却水の全ては冷却ライン23cを通ってラジエータ42に送られて冷却される。
次に、冷房運転時の作用を概説するが、冷房運転時においては冷却水温度は86℃以上となるため、切換弁40の作用によって冷却水は二重管熱交換器44を流れず、従って、ガスエンジン1の廃熱は冷媒に回収されず、冷却水の全ては冷却水ライン23cからラジエータ42に流れ、冷却水は十分冷却される。
而して、圧縮機2によって圧縮された高温高圧のガス状冷媒は、冷媒ライン22a、オイルセパレータ24及び冷媒ライン22bを通って四方弁25に至る。
ところで、冷房運転時においては、図1に破線にて示すように四方弁25のポートaとポートb、ポートcとポートdがそれぞれ連通されているため、前記高温高圧のガス状冷媒は冷媒ライン22cを通って室外機26−1、26−2に至り、ここで外気によって冷却されて凝縮し、高圧の液状冷媒は冷却ライン22e、22fに沿って流れて液ガス熱交換器27、ドライヤ28及びストレーナ30を通過した後、膨張弁31に至り、該膨張弁31よって減圧される。
そして、減圧された冷媒は室内機32−1、…、32−nにおいて室内の空気から蒸発潜熱を奪って蒸発するため、室内の空気が冷やされて室内が冷房される。蒸発によって気化した冷媒は冷媒ライン22c,22d、四方弁25を通って冷媒ライン22iを流れ、液ガス熱交換器27及びサイレンサ34を通過してアキュームレータ35に至り、ここで気液が分離され、ガス状の冷媒が冷媒ライン22jから圧縮機2に吸引され、圧縮機2に吸引された冷媒は再び圧縮さて前述の作用を繰り返す。
[本発明]次に、本発明の実施例を図3乃至図9に基づいて説明する。尚、図3は本発明に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図、図4はリニア三方弁の制御系の構成を示すブロック図、図5はリニア三方弁の構成を示す断面図、図6はリニア三方弁の開度特性図、図7は冷却水温度tに対する開度係数αの制御特性図、図8は運転室内機容量Qに対する開度係数βの制御特性図、図9は冷媒の吐出側圧力Pに対する開度係数γの制御特性図である。
本発明に係る熱ポンプ装置は、図3に示すように、前記参考例におけるバイパス回路45と水バイパス弁46を廃し、切換弁40(図1参照)に代えてリニア三方弁110を用い、該リニア三方弁110の上流側に、そこを流れる冷却水の温度tを検出するための冷却水温センサ111を設けるとともに、冷媒ライン22aの途中に、リニア三方弁110を制御するために冷媒の吐出側圧力Pを検出する圧力センサ112を設けたものであって、他の構成は参考例と同様であるため、図3においては図1に示したと同一要素には同一符号を付しており、以下、それらについての説明は省略する。
ところで、上記リニア三方弁110、冷却水温センサ111及び圧力センサ112は図4に示す制御装置(以下、CPUと称す)120に接続されており、CPU120は、冷却水温センサ111によって検出された冷却水温度t、室内機32−1、32−2、…、32−nの運転台数(運転室内機容量Q、つまり、室内機32−1、32−2、…、32−nのうち運転されている室内機が設置されている各部屋毎の室内温度と設定温度との差の総和に比例する熱量)、圧力センサ112によって検出された冷媒の吐出側圧力P及び冷暖運転情報(冷房運転であるか暖房運転であるかの情報)の制御条件に基づいてリニア三方弁110の開度を制御する。
ここで、リニア三方弁110の構成と開度特性を図5及び図6に基づいて説明する。
リニア三方弁110は、図5に示すように、ハウジング113内にロータリ式の弁体114を回動自在に組み込んで構成され、ハウジング113には冷却水ライン23gに連なる流路113gと冷却水ライン23cに連なる流路113cが相対向して形成されている。
又、上記弁体114の中央部には、冷却水ライン23bに連なる円孔状の冷却水入口114bが形成されており、該冷却水入口114bの両側には前記流路113g、113cにそれぞれ開口する流路114g、114cが形成されている。
而して、弁体114の上記流路114g、114cの流路113g、113cへの開口面積をそれぞれA、Aとするとき、図6に示すように、開口面積Aは弁開度θ(弁体114の回動角(0°〜90°))の増加と共にリニアに減少し、逆に開口面積Aは弁開度θの増加と共にリニアに増加し、両者の和(A+A)は弁開度θに拘らず常に一定値A(=A+A)に保たれている。
ところで、リニア三方弁110の開口面積A、Aを次式;
=(a/100)×A… (1)
=(a/100)×A… (2)
によって求めるとき、上記係数(以下、開度と称す)a、aはCPU120においてそれぞれ次式によって算出される。
=α・β・γ・ε×100 … (3)
=100−a … (4)
上記(3)式におけるα、β、γ、εは開度係数であって、α(0≦α≦1)は冷却水温センサ111によって検出される冷却水温度tによって図7に示すように変化し、冷却水温度tがt(例えば、60℃)以下(t≦t)の領域ではα=1に保たれ、冷却水温度tがtを超えてt(例えば、80℃)未満の領域(t<t<t)では冷却水温度tの増加と共にリニアに減少し、冷却水温度tがt以上となる領域(t≧t)ではα=0に保たれる。
又、開度係数β(0≦α≦1)は運転室内機容量Qに対して図8に示すように変化し、運転室内機容量Qの増加に比例して増大する。
更に、開度係数γ(0≦α≦1)は圧力センサ112によって検出される冷媒の吐出側圧力Pに対して図9に示すように変化し、圧力Pの増加と共にリニアに減少する。
又、開度係数εは冷房運転時にはε=0、暖房運転時にはε=1にそれぞれ設定される。
而して、(3)、(4)式にて開度a、aがそれぞれ算出され、この開度a、aに基づいて前記(1)、(2)式にてリニア三方弁110の開口面積A、Aが求められると、冷却水ライン23bを流れる流量Iの冷却水はリニア三方弁110によって冷却水ライン23g、23cに流量I、Iの割合で流されるが、流量I、Iはそれぞれ次式によって求められる。
=I×A/(A+A) … (5)
=I×A/(A+A
=I−I … (6)
以上において、冷房運転時には、二重管熱交換器44における冷媒と冷却水との熱交換を必要としないため、開度係数ε=0に設定され、この結果、(3)、(4)式よりa=0、a=100となり、(1)、(2)式よりA=0、A=Aとなる。従って、(5)、(6)式より冷却水ライン23g、23cに流れる冷却水の流量I、IはそれぞれI=0、I=Iとなり、冷却水の全ては冷却水ライン23cを流れ、冷却水は二重管熱交換器44における冷媒の加熱に供されない。
一方、暖房運転時においては、冷却水温度tが所定値t以下(t≦t )である通常運転時(全室内機32−1、32−2、…、32−nが運転されているとき)には、開度係数α、β、γ、εは全て1に設定されている(α=β=γ=ε=1)ため、(3)、(4)式よりa=100、a=0となり、(1)、(2)式よりA=A、A=0となる。従って、(5)、(6)式より冷却水ライン23g、23cに流れる冷却水の流量I、IはそれぞれI=I、I=0となり、冷却水の全ては冷却水ライン23gを流れ、冷却水によって回収されたガスエンジン1の廃熱の全てが二重管熱交換器44において冷媒に与えられて各室内機32−1、32−2、…、32−nの放熱量に上乗せされるため、暖房効果が高められる。
他方、暖房運転時に室内機32−1、32−2、…、32−nの運転台数が減ったために運転室内機容量Qが減少し、これに伴って冷媒回路22を循環する冷媒の流量が減少し、冷媒の単位流量当たりの受熱量(二重管熱交換器44において冷却水から受け取る熱量)が増えてその吐出側圧力Pが上昇した場合には、図8に示すように開度係数β、γが共に小さく設定されるため、(3)式にて求められる開度aと(1)式にて求められる開口面積Aが小さくなり、(4)式にて求められる開度aと(2)式にて求められる開口面積がAが逆に大きくなる。従って、(5)式より求められる冷却水ライン23gを流れる冷却水の流量Iが減少し、二重管熱交換器44への冷却水流量が制限されるめ、二重管熱交換器44においては、室内機32−1、32−2、…、32−nの運転台数に要求される放熱量に見合った熱量が冷却水から冷媒に与えられ、この結果、参考例と同様に冷媒回路22内の適切な熱授受バランスが実現し、冷媒の過熱に伴う種々の不具合が解消される。この場合、冷却水ライン23cを流れる流量Iの冷却水は冷媒の加熱に供されず、ラジエータ42に送られて冷却されるため、冷却水温センサ111にて検出される冷却水温度tが下がり、冷媒回路22内の適切な熱授受バランスが実現される。
尚、冷却水温度tがt<t<tである領域においても、初期状態において冷却水ライン23g、23cの双方に冷却水が流れるという点が異なるのみであって、その他の作動原理はt≦tの場合(α=1)における上述の作動原理と同様である。
以上のように、本発明においても前記参考例と同様な効果が得られるが、特に本発明においては、リニア三方弁110を用いることによって参考例におけるバイパス回路45と水バイパス弁46(図1参照)を省略することができるため、冷却水回路23を簡略化することができるという特有の効果が得られる。
参考例に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図である。 冷却水温度による各冷却水ラインへ流れる冷却水量の変化(切換弁の特性)を示す図である。 本発明に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図である。 リニア三方弁の制御系の構成を示すブロック図である。 リニア三方弁の構成を示す断面図である。 リニア三方弁の開度特性図である。 冷却水温度tに対する開度係数αの制御特性図である。 運転室内機容量Qに対する開度係数βの制御特性図である。 冷媒の吐出側圧力Pに対する開度係数γの制御特性図である。
符号の説明
1 ガスエンジン(エンジン)
2 圧縮機
21 排気ガス熱交換器
22 冷媒回路
23 冷却水回路
26−1,26−2 室外機(室外熱交換器)
31 膨張弁
32−1,32−n 室内機(室内熱交換器)
42 ラジエータ
44 二重管熱交換器
45 バイパス回路
46 水バイパス弁
110 リニア三方弁(流量制御弁)
111 冷却水温センサ
112 圧力センサ
120 CPU(制御手段)

Claims (1)

  1. エンジンによって駆動される圧縮機によって冷媒を循環させる冷媒回路と、エンジンを冷却する冷却水を循環させる冷却水回路を有し、前記冷媒回路には膨張弁と室内熱交換器及び室外熱交換器を設け、前記冷却水回路には排気ガス熱交換器、ラジエータ及びポンプを設けるとともに、前記ラジエータを分岐する冷却水ラインを設け、冷媒と冷却水の間で熱交換を行わせる冷媒加熱用熱交換器を、冷媒回路と冷却水回路の前記冷却水ラインとの間に設けて成るエンジン駆動式熱ポンプ装置において、前記ラジエータを迂回して前記冷媒加熱用熱交換器へ流れる冷却水の流量を制御するリニア三方弁と、制御条件に応じて前記リニア三方弁の開度をリニアに増減させる制御手段を設けたことを特徴とするエンジン駆動式熱ポンプ装置。
JP2004138415A 1994-08-02 2004-05-07 エンジン駆動式熱ポンプ装置 Expired - Fee Related JP4277114B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138415A JP4277114B2 (ja) 1994-08-02 2004-05-07 エンジン駆動式熱ポンプ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18167294 1994-08-02
JP2004138415A JP4277114B2 (ja) 1994-08-02 2004-05-07 エンジン駆動式熱ポンプ装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28017394A Division JP3672109B2 (ja) 1994-08-02 1994-11-15 エンジン駆動式熱ポンプ装置

Publications (2)

Publication Number Publication Date
JP2004226063A true JP2004226063A (ja) 2004-08-12
JP4277114B2 JP4277114B2 (ja) 2009-06-10

Family

ID=32910590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138415A Expired - Fee Related JP4277114B2 (ja) 1994-08-02 2004-05-07 エンジン駆動式熱ポンプ装置

Country Status (1)

Country Link
JP (1) JP4277114B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218789A (ja) * 2012-04-04 2013-10-24 Toyota Motor Corp 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218789A (ja) * 2012-04-04 2013-10-24 Toyota Motor Corp 燃料電池システム

Also Published As

Publication number Publication date
JP4277114B2 (ja) 2009-06-10

Similar Documents

Publication Publication Date Title
JP5030344B2 (ja) ガスヒートポンプ式空気調和装置、エンジン冷却水加熱装置及びガスヒートポンプ式空気調和装置の運転方法
US6883342B2 (en) Multiform gas heat pump type air conditioning system
KR100186526B1 (ko) 히트 펌프의 적상 방지장치
US4510762A (en) Heat recovery method
JP2007225141A (ja) ガスヒートポンプ式空気調和装置及びガスヒートポンプ式空気調和装置の起動方法
JP2003232581A (ja) 空気調和装置
JP2007107860A (ja) 空気調和装置
JP4898025B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
KR100612808B1 (ko) 공기 조화기
JPH03182638A (ja) ガスタービン駆動冷凍機
JP4045914B2 (ja) 廃熱回収式ヒートポンプ
JP3672109B2 (ja) エンジン駆動式熱ポンプ装置
JP4277114B2 (ja) エンジン駆動式熱ポンプ装置
JP2001330341A (ja) 空気調和装置
JP3746471B2 (ja) 給湯暖房ユニットを備えたエンジン駆動ヒートポンプ式空気調和装置及びその運転制御方法
JP2003232577A (ja) 空気調和装置
JP2001141286A (ja) 熱回収発電システムおよびその運転方法
JP2952357B1 (ja) 空気調和装置
JP2002286304A (ja) 冷凍装置
JPS62293066A (ja) エンジン駆動型ヒ−トポンプ式空調機
JP3343623B2 (ja) エンジン駆動熱ポンプ式空調装置
JP4073165B2 (ja) エンジン冷却装置及び冷凍装置
JPH10306954A (ja) エンジン駆動冷媒圧縮循環式熱移動装置
JPH10238891A (ja) エンジン駆動式ヒートポンプ装置
JPH0933115A (ja) ヒートポンプ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees