JP2004220716A - 強誘電体記憶装置 - Google Patents
強誘電体記憶装置 Download PDFInfo
- Publication number
- JP2004220716A JP2004220716A JP2003008461A JP2003008461A JP2004220716A JP 2004220716 A JP2004220716 A JP 2004220716A JP 2003008461 A JP2003008461 A JP 2003008461A JP 2003008461 A JP2003008461 A JP 2003008461A JP 2004220716 A JP2004220716 A JP 2004220716A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- supply line
- voltage supply
- word
- bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/22—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
- Dram (AREA)
Abstract
【課題】高速アクセスが可能な強誘電体記憶装置を提供すること。
【解決手段】複数のワード線40と複数のビット線50との各交点に強誘電体キャパシタ(メモリセル)30を有する。複数のワード線40を駆動するワード線駆動部10には、選択ワード電圧供給線230及び非選択ワード電圧供給線240が接続される。複数のビット線50を駆動するビット線駆動部20には、選択ビット電圧供給線210及び非選択ビット電圧供給線220が接続される。各供給線210〜240の電圧を選択する電圧選択回路300は、選択メモリセルに正又は負の選択電圧を印加するいずれの場合(リード期間とライト期間)も、非選択ワード電圧供給線240及び非選択ビット電圧供給線220の一方の電位を固定とした。
【選択図】 図11
【解決手段】複数のワード線40と複数のビット線50との各交点に強誘電体キャパシタ(メモリセル)30を有する。複数のワード線40を駆動するワード線駆動部10には、選択ワード電圧供給線230及び非選択ワード電圧供給線240が接続される。複数のビット線50を駆動するビット線駆動部20には、選択ビット電圧供給線210及び非選択ビット電圧供給線220が接続される。各供給線210〜240の電圧を選択する電圧選択回路300は、選択メモリセルに正又は負の選択電圧を印加するいずれの場合(リード期間とライト期間)も、非選択ワード電圧供給線240及び非選択ビット電圧供給線220の一方の電位を固定とした。
【選択図】 図11
Description
【0001】
【発明の属する技術分野】
本発明は、強誘電体記憶装置に関する。
【0002】
【背景技術】
強誘電体記憶装置として、各セルにトランジスタおよびキャパシタ(強誘電体を一つずつ配置した1T/1Cセル、あるいは、その各セル毎にさらにリファレンスセルを配置した2T/2Cセルを有するアクティブ型強誘電体メモリが知られている。
【0003】
しかし、このアクティブ型強誘電体記憶装置は、メモリセルが1個の素子から構成される他の不揮発性記憶装置として知られるフラッシュメモリ、EEPROMなどと比較して、メモリ面積が大きくなり、大容量化できない。
【0004】
大容量化に適した不揮発性記憶装置として、各メモリセルを1個の強誘電体キャパシタとした強誘電体記憶装置がある。(特許文献1参照)
【0005】
【特許文献1】
特開平9−116107号公報
【0006】
【発明が解決しようとする課題】
各メモリセルを1個の強誘電体キャパシタとした強誘電体記憶装置では、複数種の電圧を切り換えて選択ワード線、非選択ワード線、選択ビット線及び非選択ビット線に供給する必要がある。このとき、選択ワード線及び選択ビット線に接続される選択メモリセルの数と比べて、非選択メモリセルの数は格段に多く、各線の配線負荷に大きな差がある。
【0007】
特に、非選択ワード線及び非選択ビット線の配線負荷が大きく、両者の電位を変化させるのに、比較的長い時間を要し、そのためにアクセススピードが低下していた。
【0008】
本発明の目的は、アクセスタイムを短縮できる強誘電体記憶装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明に係る強誘電体記憶装置は、互いに平行に配設された複数のワード線と、前記複数のワード線と交差して、互いに平行に配設された複数のビット線と、前記複数のワード線および前記複数のビット線の各交点に配置された複数の強誘電体メモリセルと、前記複数のワード線を駆動するワード線駆動部と、前記複数のビット線を駆動するビット線駆動部と、前記ワード線駆動部に接続された選択ワード電圧供給線及び非選択ワード電圧供給線と、前記ビット線駆動部に接続された選択ビット電圧供給線及び非選択ビット電圧供給線と、複数種の電圧を発生する電源回路と、前記電源回路が発生する前記複数種の電圧を、前記選択ワード電圧供給線、前記非選択ワード電圧供給線、前記選択ビット電圧供給線及び前記非選択ビット電圧供給線に選択出力する電圧選択回路とを有する。前記ワード線駆動部及び前記ビット線駆動部は、前記複数の強誘電体メモリセルのうちの選択メモリセルに、正または負の選択電圧を、残りの非選択メモリセルには非選択電圧を印加する。前記電圧選択回路は、前記選択メモリセルに前記正又は負の選択電圧を印加するいずれの場合も、前記非選択ワード電圧供給線及び前記非選択ビット電圧供給線の一方の電位を固定とした。
【0010】
本発明では、接続負荷が大きく充放電速度の遅い非選択ワード電圧供給線及び非選択ビット電圧供給線の一方の電位を固定とすることで、メモリアクセススピードを向上させることができる。
【0011】
前記電源回路は、V0<V1<V2<V3<V4の関係を有する5種類の電圧を生成することができる。この場合、前記電圧選択回路は、一例として、前記非選択ワード電圧供給線を電圧V2に固定とすることができる。そして、前記選択メモリセルに前記正の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V4を、前記非選択ビット電圧供給線には電圧V3を、前記選択ビット電圧供給線には電圧V1をそれぞれ供給する。前記選択メモリセルに前記負の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V0を、前記非選択ビット電圧供給線には電圧V1を、前記選択ビット電圧供給線には電圧V3をそれぞれ供給する。
【0012】
この複数種の電圧を、前記選択ワード電圧供給線、非選択ワード電圧供給線、選択ビット電圧供給線及び非選択ビット電圧供給線に切り換え出力するタイミング信号を、前記電圧選択回路に出力する制御回路をさらに設けることができる。
【0013】
この制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V4を電圧V2に切り換える信号を出力することができる。さらに、その後、制御回路は、前記選択ワード電圧供給線の電圧V2を電圧V0に、前記非選択ビット電圧供給線の電圧V3を電圧V1に、前記選択ビット電圧供給線の電圧V1を電圧V2に、それぞれ実質的に同時に切り換える信号を出力することができる。
【0014】
この制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V4を電圧V2に切り換える信号を出力し、その後、前記非選択ビット電圧供給線の電圧V3を電圧V1に、前記選択ビット電圧供給線の電圧V1を電圧V3に、それぞれ実質的に同時に切り換える信号を出力することもできる。
【0015】
前記電圧選択回路は、他の例として、前記非選択ワード電圧供給線に代えて、前記非選択ビット電圧供給線を電圧V2に固定してもよい。この場合、前記選択メモリセルに前記正の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V3を、前記非選択ワード電圧供給線には電圧V1を、前記選択ビット電圧供給線には電圧V0をそれぞれ供給する。また、前記選択メモリセルに前記負の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V1を、前記非選択ワード電圧供給線には電圧V3を、前記選択ビット電圧供給線には電圧V4をそれぞれ供給する。
【0016】
前記制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V3を電圧V1に切り換える信号を出力することができる。その後、制御回路は、前記非選択ワード電圧供給線の電圧V1を電圧V3に、前記選択ビット電圧供給線の電圧V0を電圧V2に、それぞれ実質的に同時に切り換える信号を出力することができる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照して説明する。
【0018】
(強誘電体記憶装置の基本構成)
まず、強誘電体記憶装置の基本動作を説明する。図1は、本発明に係る強誘電体記憶装置の全体図である。
【0019】
図1にある強誘電体記憶装置は、マトリックス状に配設された複数のワード線40および複数のビット線50の交点に、強誘電体キャパシタ(メモリセル)30が複数配置される構造となっている。複数のメモリセル30の中から特定のメモリセル30を選択するためには、ワード線40およびビット線50を選択すればよい。
【0020】
コンピューターにおいて1ビットは、2通りの状態を表現できる量と考えることができ、強誘電体記憶装置は、強誘電体キャパシタ30のヒステリシス現象に現れる2通りの状態を1ビットとして利用した記憶装置である。
【0021】
ヒステレシス現象について、強誘電体に印加される電圧と強誘電体の分極値との相関を図2に示した。図2の縦軸P(Q)は、強誘電体の分極値(電荷量)を示し、横軸Vは、強誘電体に印加される電圧を表す。図2の曲線は、強誘電体キャパシタ50に印加される電圧の変化に応じて、強誘電体キャパシタ30の分極状態が循環する特性を示す。例えば、今B点の状態(論理値0の記憶状態)またはD点の状態(論理値1の記憶状態)にある強誘電体キャパシタ50に正の選択電圧Vddを印加すると、分極状態はA点に移る(論理値0,1の読み出し)。
印加される電圧が0になると、B点に移行する。つまり、元々D点にあった分極状態も、A点を経由してB点に移行する。その後、さらに強誘電体キャパシタ50に負の選択電圧(−Vdd)を印加すると状態はC点に移る。(論理値1の書き込み)。印加される電圧が0になると、今度は、D点に状態が移る(論理値1の記憶状態)。
【0022】
ここで、B点またはD点の分極状態にある強誘電体キャパシタ30に非選択電圧(±Vdd/3)を印加したとする。その後印加される電圧が0になると、状態は、元のB点またはD点に戻るのである。これは、ある強誘電体キャパシタ50の選択時に、非選択の強誘電体キャパシタ50に非選択電圧(±Vdd/3)が印加されても、記憶状態は維持されることを示す。
【0023】
次に、強誘電体記憶装置のデータの読み書きを説明する。
【0024】
まず、データ書き込み時には、“0”データ書き込み・“1”データ書き込みを要する。強誘電体キャパシタ30の特性上、“0”データを書き込むときと“1”データを書き込むときとでは電圧の印加方向の反転が必要であるので、“0”データ書き込み・“1”データ書き込みの2工程を要する。
【0025】
また、この強誘電体記憶装置は、破壊読み出し方式なので、読み出し後に再書き込み作業が必要である。よって、データ読み出しの時は、読み出し・再書き込みを要する。最初の読み出し工程は、“0”データ書き込みと同じ印加方向に電圧を印加することで、強誘電体キャパシタ30内の移動電荷量から保持されている状態を読み出す。その後の再書き込みは、元々“1”データを記憶していたメモリセルにのみ、“1”データを再書き込みしている。
【0026】
以上のことから、データの読み出しとデータの書き込みのそれぞれにおいて、“0”データ書き込みと、“1”データ書き込みが必要である。
【0027】
本明細書において、正の選択電圧(Vdd)を選択メモリセルに印加する“0”データ書き込みを「リード」、負の選択電圧(−Vdd)を選択メモリセルに印加して“1”データ書き込みを「ライト」と定義する。
【0028】
(メモリセルアレイの周辺回路構成)
図1のメモリアレイ90には、複数のワード線40と複数のビット線50がマトリックス状に配設され、それぞれの交点に強誘電体キャパシタ(メモリセル)30が複数配置されている。
【0029】
図1の電源回路400は、5種類の電圧V0〜V4(V4=4Vdd/3、V3=Vdd、V2=2Vdd/3、V1=Vdd/3、V0=0)を発生し、通常の1/3バイアス駆動法に用いる4種類の電圧V0〜V3と比較して、電圧V4(4Vdd/3)が追加されている。本実施形態では、電圧V4(4Vdd/3)を、電源電圧Vddを昇圧して生成しているが、これに限定されない。また、電源回路400には、5種類の電圧V0〜V4を電圧選択回路300へ出力するための電圧出力線410〜450を備えている。
【0030】
選択ビット電圧供給線210および非選択ビット電圧供給線220は、ビット線駆動部20と電圧選択回路300とを接続する。また、選択ワード電圧供給線230および非選択ワード電圧供給線240は、ワード線駆動部10と電圧選択回路300とを接続する。
【0031】
電圧選択回路300は、制御回路510からの信号に従って、5種類の電圧V0〜V4の中から選ばれた4種類の電圧を選択して、選択ビット電圧供給線210,非選択ビット電圧供給線220,選択ワード電圧供給線230および非選択ワード電圧供給線240に出力する。
【0032】
ワード線駆動部10およびビット線駆動部20は、複数のメモリセル30のそれぞれに接続される各電圧供給線210〜240を切り換えて、ワード線40及びビット線50に接続する。
【0033】
(リードとライト)
次に、リード(0書き込み)およびライト(1書き込み)の動作を説明する。図3にリード時のメモリセル30に印加される電圧を、図4にライト時のメモリセル30に印加される電圧をそれぞれ示した。
【0034】
図3及び図4の選択メモリセル30aは、リードまたはライトの対象となるメモリセル30である。図3及び図4の符号SBLは選択ビット線を、符号USBLは非選択ビット線を、符号SWLは選択ワード線を、符号USWLは非選択ワード線を、それぞれ表す。以下、すべての図面において、符号SBL、USBL、SWLおよびUSWLは同様の意味を表すこととする。
【0035】
図3のリード時には、選択メモリセル30aには、選択ワード電圧供給線230の電圧V4(4Vdd/3)および選択ビット電圧供給線210から電圧V1(Vdd/3)が供給され、正の選択電圧(Vdd)が印加される。よって、図2に示すように“0”書き込みが実施されてデータが読み出される。
【0036】
図4のライト時には、選択メモリセル30aには、選択ワード電圧供給線230の電圧V0(0V)および選択ビット電圧供給線210から電圧V3(Vdd)が供給され、負の選択電圧(−Vdd)が印加される。よって、図2に示すように“1”書き込みが実施されてデータが書き込まれる。
【0037】
図3及び図4の非選択メモリセル30bはリード及びライトの対象とならない残りの複数のメモリセル30を表す。図3及び図4のいずれでも、非選択メモリセル30bには、非選択電圧(±Vdd/3)が印加される。
【0038】
ここで注目すべきは、本実施形態では、図3のリード時及びそれに引き続き実施される図4のライト時のいずれの場合も、非選択ワード線USWLは電圧V2(2Vdd/3)にて固定されている。よって、非選択ワード線USWLに接続される非選択ワード電圧供給線240の電圧を、リード時からライト時に亘って固定できる。
【0039】
本実施形態では、大きな負荷が接続される非選択ワード電圧供給線240の電圧を固定とすることで、アクセスタイムを短縮しようとするものである。なお、後述する通り、非選択ワード電圧供給線240に代えて、同様に大きな負荷が接続される非選択ビット電圧供給線220の電圧を固定としても良い(図14参照のこと)。
【0040】
(制御回路および電圧選択回路)
次に、図1の電圧選択回路300及び制御回路510の構成及び動作について説明する。
【0041】
図5は制御回路510の一例を示した。制御回路510は、6つの遅延回路511〜516を有する。各遅延回路511〜516はそれぞれ、図6に示す複数個のインバータINVから成り、図11に示す一定の遅延時間T1〜T6を作り出すものである。
【0042】
選択メモリセルにアクセスしたときに出力されるtrig信号が、図5の制御回路510に入力されると、遅延回路511〜516の働きにより、各電圧供給線210〜240の出力電圧を制御する信号SW4,SB1,UB3,SW0,UB1が、電圧選択回路300へ順次送られる。電圧選択回路300は、受け取った信号をもとに、各電圧供給線210〜240に出力する電圧を決定する。さらに電圧選択回路300には、受け取った信号を処理するためのスイッチ回路が各電圧供給線210〜240毎に設けられている。設けられている各スイッチ回路をそれぞれ示したのが図7、図8、図9である。
【0043】
選択ワード電圧供給線230には図7の電源スイッチ回路350が設けられている。選択ビット電圧供給線210には図8の電源スイッチ回路360が設けられている。非選択ビット電圧供給線220には図9の電源スイッチ回路370設けられている。本実施形態の特徴として、非選択ワード電圧供給線240には一定の電圧が供給されるので、電源スイッチ回路は不要である。なお、図8のパルス回路331の等価回路を図10に示した。
【0044】
図7の入力10に図5の信号SW4が入力されると、選択ワード電圧供給線230には、電圧4Vdd/3が出力される。また、図7の入力11に図5の信号SW0が入力されると、選択ワード電圧供給線230には、電圧0が出力される。さらに、図7の入力10および入力11に信号が入力されないときは、選択ワード電圧供給線230には、電圧2Vdd/3が出力される。
【0045】
図8の入力12に図5の信号SB3が入力されると、選択ビット電圧供給線210には、電圧Vddが出力される。また、図8の入力13に図5の信号SB1が入力されると、図8のパルス回路331によって、選択ビット電圧供給線210には一時的に電圧Vdd/3が出力される。さらに、図8の入力12および入力13に信号が入力されないときは、選択ビット電圧供給線210には、電圧2Vdd/3が出力される。
【0046】
図9の入力14に図5の信号UB3が入力されると非選択ビット電圧供給線220には、電圧Vddが出力される。また、図9の入力15に図5の信号UB1が入力されると非選択ビット電圧供給線220には、電圧Vdd/3が出力される。さらに図9の入力14および入力15に信号が入力されないときは、非選択ビット電圧供給線220には、電圧2Vdd/3が出力される。
【0047】
図5の制御回路510から出力される各信号(SW4、SW0、SB3、SB1、UB3、UB1)のタイミングチャートと電圧選択回路300が各電圧供給線210〜240へ出力する電圧の波形図を同時系列に示したものが、図11である。図11において、符号t0〜t6はタイミングを表す。
【0048】
図11によると、タイミングt0の時に図5の制御回路510にtrig信号が入力されると、同時に、信号SB1、信号UB3が立ち上がる。このとき、選択ビット電圧供給線210を介して選択ビット線SBLには電圧Vdd/3が供給され、非選択ビット電圧供給線220を介して非選択ビット線USBLには電圧Vddが供給される。時間間隔T1の期間に、図11の通り選択ビット線SBL及び非選択ビット線USBLの電圧が安定する。
【0049】
次に、タイミングt1の時に信号SW4が立ち上がり、選択ワード電圧供給線230を介して選択ワード線SWLに電圧4Vdd/3が供給される。そしてタイミングt2の時に信号SW4が立ち下がり、電源スイッチ回路350に信号が入力されていない状態になると同時に、選択ワード電圧供給線230を介して選択ワード線SWLに電圧2Vdd/3が供給される。
【0050】
タイミングt1−t2間の時間間隔T2にて、図3に示すように、選択メモリセル30aに正の選択電圧(Vdd)が印加され、リード(“0”書き込み)が実施される。時間間隔T3の期間では、立下げられた選択ワード線SWLの電圧が安定する。タイミングt0からタイミングt3までの期間T1〜T3が、リード動作期間である。
【0051】
次の時間間隔T4の期間での電圧変更に特徴がある。まず、タイミングt3にて信号SB1が立ち上がり、信号UB3が立ち下がる。よって、電源スイッチ回路360に信号が入力されていない状態になり、選択ビット電圧供給線210を介して選択ビット線SBLには電圧2Vdd/3が供給される。一方、信号UB1が立ち上がることで、非選択ビット電圧供給線220を介して非選択ビット線USBLには電圧Vdd/3が出力される。
【0052】
さらに、タイミングt3の時、信号SB1および信号UB3が立ち下がると同時に、信号SW0、UB1が立ち上がる。このとき、選択ワード電圧供給線230を介して選択ワード線SWLには電圧0が供給される。
【0053】
このように、本実施形態では、図11に示すように、時間間隔T4の期間で、選択ワード線SWL及び非選択ビット線USBLの電圧の立下げと、選択ビット線SBLの電圧の立ち上げとを同時に実施している。
【0054】
次に、タイミングt4の時に、信号SB3が立ち上がり、このとき、選択ビット電圧供給線210を介して選択ビット線SBLには、電圧Vddが供給される。時間T5経過後のタイミングt5にて信号SB3立ち下がり、電源スイッチ回路360に信号が入力されていない状態になる。よって、選択ビット電圧供給線210を介して選択ビット線SWLには、電圧2Vdd/3が供給される。
【0055】
タイミングt4−t5間の時間間隔T5にて、図4に示すように、選択メモリセル30aに負の選択電圧(−Vdd)が印加され、ライト(“1”書き込み)が実施される。その後の時間間隔T6にて、選択ビット線SBLの電圧が安定する。タイミングt3−t6の期間T4〜T6がライト動作を表す。
【0056】
その後、信号SW0および信号UB1が、タイミングt6の時に立ち下がり、全ての線が電圧2Vdd/3に設定される(スタンバイ状態)。
【0057】
図12は、電圧の関係を見やすくするため、図11の4つの波形図を重ねて表記したものである。図12において、非選択ワード線USWLに供給する電圧を固定したため、非選択系についての電圧切換は非選択ビット線USBLだけで良い。よって、配線容量の大きい非選択ビット線USBLの電圧を安定させる期間を排除でき、アクセススピードが向上する。
【0058】
また、図13に示すように、リード期間後選択ビット線SBLに電圧Vddを印加し、その後、選択ワード線SWLに電圧GNDを印加するように電圧印加を制御しても同様の効果が得られる。
【0059】
本実施例では、非選択ワード線USWLに供給する電圧を固定したが、非選択ビット線USBLに供給する電圧を固定しても、同様の効果が得られる。この場合の選択ワード線SWL、非選択ワード線USWL、選択ビット線SBL非選択ビット線USBLに印加される電圧の波形図を図14に示した。
【0060】
図14では、選択メモリセルに正の選択電圧(Vdd)を印加するリード期間(T2)では、選択ワード電圧供給線230に電圧2Vdd/3を、非選択ワード電圧供給線240には電圧Vdd/3を、選択ビット電圧供給線210には電圧0をそれぞれ供給している。選択メモリセルに負の選択電圧(−Vdd)を印加するライト期間(T5)では、選択ワード電圧供給線230に電圧Vdd/3を、非選択ワード電圧供給線240には電圧Vddを、選択ビット電圧供給線210には電圧4Vdd/3をそれぞれ供給している。
【0061】
また、選択メモリセルに正の選択電圧(Vdd)を印加した時間T2の経過後に、選択ワード電圧供給線230の電圧Vddを電圧Vdd/3に切り換え、その後の時間間隔T3のときに、非選択ワード電圧供給線240の電圧Vdd/3を電圧Vddに、選択ビット電圧供給線210の電圧0を電圧2Vdd/3に、それぞれ実質的に同時に切り換えている。
【0062】
(本実施形態と比較例との対比)
本実施形態の効果を説明するために、比較例を示す。図15に、比較例に係る制御回路500を示した。図15の制御回路500は、図5のものより一つ多い7つの遅延回路501〜507を有する。遅延回路501〜507の各々の構成は、図6に示されたものと同等である。従って、比較例のアクセスタイムは、本実施形態のアクセスタイムよりも、遅延回路一つ分の時間だけ長くなることが分かる。
【0063】
この制御回路500により制御される電圧選択回路内の電源スイッチ回路も、図7〜図9のものとは異なり、図16〜図19に示す4つの電源スイッチ回路310,320,330,340を有する。なお、図18のパルス回路331は図10に示されているものと同等のものである。
【0064】
図20は、図15の制御回路500から出力される各信号のタイミングチャートと、電圧選択回路300が各電圧供給線210〜240へ出力する電圧の波形図を同時系列に表したものである。制御回路500から出力される各信号(SB0、UB2、SW3、SW0、UW2、SB3)によって、選択ワード線SWL、非選択ワード線USWL、選択ビット線SBL、非選択ビット線USBLに印加される電圧が図20の波形図のようになる。図21は、電圧の関係を見やすくするため、図20の4つの波形を重ねて表記したものである。
【0065】
図20及び図21より分かる通り、比較例においては、接続負荷の多く充放電速度の遅い非選択ビット線USBLの電圧を変更する期間T4と、同様に接続負荷の多く充放電速度の遅い非選択ワード線UWBLの電圧を変更する期間T5とを、別個に設ける必要がある。よって、この比較例では、アクセススピードが遅くなってしまう欠点がある。
【0066】
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る強誘電体記憶装置のブロック図である。
【図2】強誘電体のヒステレシス現象を示す図である。
【図3】本発明の一実施形態に係る強誘電体記憶装置のリード動作時の電圧印加状態を示す図である。
【図4】本発明の一実施形態に係る強誘電体記憶装置のライト動作時の電圧印加状態を示す図である。
【図5】図1に示す制御回路の一例を示す図である。
【図6】図5に示す各遅延回路の共通構成を示す図である。
【図7】図1中の電圧選択回路に設けられる電源スイッチ回路を示す図である。
【図8】図1中の電圧選択回路に設けられる他の電源スイッチ回路を示す図である。
【図9】図1中の電圧選択回路に設けられるさらに他の電源スイッチ回路を示す図である。
【図10】図8の電源スイッチ回路に用いられるパルス回路を表す図である。
【図11】本発明の一実施形態の動作を説明するためのタイミングチャートである。
【図12】図11に示されている4種類の波形を重ねて記載した図である。
【図13】図12に示されている波形の他の一例を記載した図である。
【図14】本発明の他の実施形態の電圧印加波形図を示した図である。
【図15】比較例の制御回路を示す図である。
【図16】比較例に用いられる電源スイッチ回路を示す図である。
【図17】比較例に用いられる他の電源スイッチ回路を示す図である。
【図18】比較例に用いられるさらに他の電源スイッチ回路を示す図である。
【図19】比較例に用いられるさらに他の電源スイッチ回路を示す図である。
【図20】比較例の動作を説明するためのタイミングチャートである。
【図21】図20に示されている4種類の波形を重ねて記載した図である。
【符号の説明】
10 ワード線駆動部、 20 ビット線駆動部、 30 強誘電体キャパシタ、 40 ワード線、 50 ビット線、 210 選択ビット電圧供給線、220 非選択ビット電圧供給線、 230 選択ワード電圧供給線、 240非選択ワード電圧供給線、 300 電圧選択回路、 400 電源回路、 500 制御回路
【発明の属する技術分野】
本発明は、強誘電体記憶装置に関する。
【0002】
【背景技術】
強誘電体記憶装置として、各セルにトランジスタおよびキャパシタ(強誘電体を一つずつ配置した1T/1Cセル、あるいは、その各セル毎にさらにリファレンスセルを配置した2T/2Cセルを有するアクティブ型強誘電体メモリが知られている。
【0003】
しかし、このアクティブ型強誘電体記憶装置は、メモリセルが1個の素子から構成される他の不揮発性記憶装置として知られるフラッシュメモリ、EEPROMなどと比較して、メモリ面積が大きくなり、大容量化できない。
【0004】
大容量化に適した不揮発性記憶装置として、各メモリセルを1個の強誘電体キャパシタとした強誘電体記憶装置がある。(特許文献1参照)
【0005】
【特許文献1】
特開平9−116107号公報
【0006】
【発明が解決しようとする課題】
各メモリセルを1個の強誘電体キャパシタとした強誘電体記憶装置では、複数種の電圧を切り換えて選択ワード線、非選択ワード線、選択ビット線及び非選択ビット線に供給する必要がある。このとき、選択ワード線及び選択ビット線に接続される選択メモリセルの数と比べて、非選択メモリセルの数は格段に多く、各線の配線負荷に大きな差がある。
【0007】
特に、非選択ワード線及び非選択ビット線の配線負荷が大きく、両者の電位を変化させるのに、比較的長い時間を要し、そのためにアクセススピードが低下していた。
【0008】
本発明の目的は、アクセスタイムを短縮できる強誘電体記憶装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明に係る強誘電体記憶装置は、互いに平行に配設された複数のワード線と、前記複数のワード線と交差して、互いに平行に配設された複数のビット線と、前記複数のワード線および前記複数のビット線の各交点に配置された複数の強誘電体メモリセルと、前記複数のワード線を駆動するワード線駆動部と、前記複数のビット線を駆動するビット線駆動部と、前記ワード線駆動部に接続された選択ワード電圧供給線及び非選択ワード電圧供給線と、前記ビット線駆動部に接続された選択ビット電圧供給線及び非選択ビット電圧供給線と、複数種の電圧を発生する電源回路と、前記電源回路が発生する前記複数種の電圧を、前記選択ワード電圧供給線、前記非選択ワード電圧供給線、前記選択ビット電圧供給線及び前記非選択ビット電圧供給線に選択出力する電圧選択回路とを有する。前記ワード線駆動部及び前記ビット線駆動部は、前記複数の強誘電体メモリセルのうちの選択メモリセルに、正または負の選択電圧を、残りの非選択メモリセルには非選択電圧を印加する。前記電圧選択回路は、前記選択メモリセルに前記正又は負の選択電圧を印加するいずれの場合も、前記非選択ワード電圧供給線及び前記非選択ビット電圧供給線の一方の電位を固定とした。
【0010】
本発明では、接続負荷が大きく充放電速度の遅い非選択ワード電圧供給線及び非選択ビット電圧供給線の一方の電位を固定とすることで、メモリアクセススピードを向上させることができる。
【0011】
前記電源回路は、V0<V1<V2<V3<V4の関係を有する5種類の電圧を生成することができる。この場合、前記電圧選択回路は、一例として、前記非選択ワード電圧供給線を電圧V2に固定とすることができる。そして、前記選択メモリセルに前記正の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V4を、前記非選択ビット電圧供給線には電圧V3を、前記選択ビット電圧供給線には電圧V1をそれぞれ供給する。前記選択メモリセルに前記負の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V0を、前記非選択ビット電圧供給線には電圧V1を、前記選択ビット電圧供給線には電圧V3をそれぞれ供給する。
【0012】
この複数種の電圧を、前記選択ワード電圧供給線、非選択ワード電圧供給線、選択ビット電圧供給線及び非選択ビット電圧供給線に切り換え出力するタイミング信号を、前記電圧選択回路に出力する制御回路をさらに設けることができる。
【0013】
この制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V4を電圧V2に切り換える信号を出力することができる。さらに、その後、制御回路は、前記選択ワード電圧供給線の電圧V2を電圧V0に、前記非選択ビット電圧供給線の電圧V3を電圧V1に、前記選択ビット電圧供給線の電圧V1を電圧V2に、それぞれ実質的に同時に切り換える信号を出力することができる。
【0014】
この制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V4を電圧V2に切り換える信号を出力し、その後、前記非選択ビット電圧供給線の電圧V3を電圧V1に、前記選択ビット電圧供給線の電圧V1を電圧V3に、それぞれ実質的に同時に切り換える信号を出力することもできる。
【0015】
前記電圧選択回路は、他の例として、前記非選択ワード電圧供給線に代えて、前記非選択ビット電圧供給線を電圧V2に固定してもよい。この場合、前記選択メモリセルに前記正の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V3を、前記非選択ワード電圧供給線には電圧V1を、前記選択ビット電圧供給線には電圧V0をそれぞれ供給する。また、前記選択メモリセルに前記負の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V1を、前記非選択ワード電圧供給線には電圧V3を、前記選択ビット電圧供給線には電圧V4をそれぞれ供給する。
【0016】
前記制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V3を電圧V1に切り換える信号を出力することができる。その後、制御回路は、前記非選択ワード電圧供給線の電圧V1を電圧V3に、前記選択ビット電圧供給線の電圧V0を電圧V2に、それぞれ実質的に同時に切り換える信号を出力することができる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照して説明する。
【0018】
(強誘電体記憶装置の基本構成)
まず、強誘電体記憶装置の基本動作を説明する。図1は、本発明に係る強誘電体記憶装置の全体図である。
【0019】
図1にある強誘電体記憶装置は、マトリックス状に配設された複数のワード線40および複数のビット線50の交点に、強誘電体キャパシタ(メモリセル)30が複数配置される構造となっている。複数のメモリセル30の中から特定のメモリセル30を選択するためには、ワード線40およびビット線50を選択すればよい。
【0020】
コンピューターにおいて1ビットは、2通りの状態を表現できる量と考えることができ、強誘電体記憶装置は、強誘電体キャパシタ30のヒステリシス現象に現れる2通りの状態を1ビットとして利用した記憶装置である。
【0021】
ヒステレシス現象について、強誘電体に印加される電圧と強誘電体の分極値との相関を図2に示した。図2の縦軸P(Q)は、強誘電体の分極値(電荷量)を示し、横軸Vは、強誘電体に印加される電圧を表す。図2の曲線は、強誘電体キャパシタ50に印加される電圧の変化に応じて、強誘電体キャパシタ30の分極状態が循環する特性を示す。例えば、今B点の状態(論理値0の記憶状態)またはD点の状態(論理値1の記憶状態)にある強誘電体キャパシタ50に正の選択電圧Vddを印加すると、分極状態はA点に移る(論理値0,1の読み出し)。
印加される電圧が0になると、B点に移行する。つまり、元々D点にあった分極状態も、A点を経由してB点に移行する。その後、さらに強誘電体キャパシタ50に負の選択電圧(−Vdd)を印加すると状態はC点に移る。(論理値1の書き込み)。印加される電圧が0になると、今度は、D点に状態が移る(論理値1の記憶状態)。
【0022】
ここで、B点またはD点の分極状態にある強誘電体キャパシタ30に非選択電圧(±Vdd/3)を印加したとする。その後印加される電圧が0になると、状態は、元のB点またはD点に戻るのである。これは、ある強誘電体キャパシタ50の選択時に、非選択の強誘電体キャパシタ50に非選択電圧(±Vdd/3)が印加されても、記憶状態は維持されることを示す。
【0023】
次に、強誘電体記憶装置のデータの読み書きを説明する。
【0024】
まず、データ書き込み時には、“0”データ書き込み・“1”データ書き込みを要する。強誘電体キャパシタ30の特性上、“0”データを書き込むときと“1”データを書き込むときとでは電圧の印加方向の反転が必要であるので、“0”データ書き込み・“1”データ書き込みの2工程を要する。
【0025】
また、この強誘電体記憶装置は、破壊読み出し方式なので、読み出し後に再書き込み作業が必要である。よって、データ読み出しの時は、読み出し・再書き込みを要する。最初の読み出し工程は、“0”データ書き込みと同じ印加方向に電圧を印加することで、強誘電体キャパシタ30内の移動電荷量から保持されている状態を読み出す。その後の再書き込みは、元々“1”データを記憶していたメモリセルにのみ、“1”データを再書き込みしている。
【0026】
以上のことから、データの読み出しとデータの書き込みのそれぞれにおいて、“0”データ書き込みと、“1”データ書き込みが必要である。
【0027】
本明細書において、正の選択電圧(Vdd)を選択メモリセルに印加する“0”データ書き込みを「リード」、負の選択電圧(−Vdd)を選択メモリセルに印加して“1”データ書き込みを「ライト」と定義する。
【0028】
(メモリセルアレイの周辺回路構成)
図1のメモリアレイ90には、複数のワード線40と複数のビット線50がマトリックス状に配設され、それぞれの交点に強誘電体キャパシタ(メモリセル)30が複数配置されている。
【0029】
図1の電源回路400は、5種類の電圧V0〜V4(V4=4Vdd/3、V3=Vdd、V2=2Vdd/3、V1=Vdd/3、V0=0)を発生し、通常の1/3バイアス駆動法に用いる4種類の電圧V0〜V3と比較して、電圧V4(4Vdd/3)が追加されている。本実施形態では、電圧V4(4Vdd/3)を、電源電圧Vddを昇圧して生成しているが、これに限定されない。また、電源回路400には、5種類の電圧V0〜V4を電圧選択回路300へ出力するための電圧出力線410〜450を備えている。
【0030】
選択ビット電圧供給線210および非選択ビット電圧供給線220は、ビット線駆動部20と電圧選択回路300とを接続する。また、選択ワード電圧供給線230および非選択ワード電圧供給線240は、ワード線駆動部10と電圧選択回路300とを接続する。
【0031】
電圧選択回路300は、制御回路510からの信号に従って、5種類の電圧V0〜V4の中から選ばれた4種類の電圧を選択して、選択ビット電圧供給線210,非選択ビット電圧供給線220,選択ワード電圧供給線230および非選択ワード電圧供給線240に出力する。
【0032】
ワード線駆動部10およびビット線駆動部20は、複数のメモリセル30のそれぞれに接続される各電圧供給線210〜240を切り換えて、ワード線40及びビット線50に接続する。
【0033】
(リードとライト)
次に、リード(0書き込み)およびライト(1書き込み)の動作を説明する。図3にリード時のメモリセル30に印加される電圧を、図4にライト時のメモリセル30に印加される電圧をそれぞれ示した。
【0034】
図3及び図4の選択メモリセル30aは、リードまたはライトの対象となるメモリセル30である。図3及び図4の符号SBLは選択ビット線を、符号USBLは非選択ビット線を、符号SWLは選択ワード線を、符号USWLは非選択ワード線を、それぞれ表す。以下、すべての図面において、符号SBL、USBL、SWLおよびUSWLは同様の意味を表すこととする。
【0035】
図3のリード時には、選択メモリセル30aには、選択ワード電圧供給線230の電圧V4(4Vdd/3)および選択ビット電圧供給線210から電圧V1(Vdd/3)が供給され、正の選択電圧(Vdd)が印加される。よって、図2に示すように“0”書き込みが実施されてデータが読み出される。
【0036】
図4のライト時には、選択メモリセル30aには、選択ワード電圧供給線230の電圧V0(0V)および選択ビット電圧供給線210から電圧V3(Vdd)が供給され、負の選択電圧(−Vdd)が印加される。よって、図2に示すように“1”書き込みが実施されてデータが書き込まれる。
【0037】
図3及び図4の非選択メモリセル30bはリード及びライトの対象とならない残りの複数のメモリセル30を表す。図3及び図4のいずれでも、非選択メモリセル30bには、非選択電圧(±Vdd/3)が印加される。
【0038】
ここで注目すべきは、本実施形態では、図3のリード時及びそれに引き続き実施される図4のライト時のいずれの場合も、非選択ワード線USWLは電圧V2(2Vdd/3)にて固定されている。よって、非選択ワード線USWLに接続される非選択ワード電圧供給線240の電圧を、リード時からライト時に亘って固定できる。
【0039】
本実施形態では、大きな負荷が接続される非選択ワード電圧供給線240の電圧を固定とすることで、アクセスタイムを短縮しようとするものである。なお、後述する通り、非選択ワード電圧供給線240に代えて、同様に大きな負荷が接続される非選択ビット電圧供給線220の電圧を固定としても良い(図14参照のこと)。
【0040】
(制御回路および電圧選択回路)
次に、図1の電圧選択回路300及び制御回路510の構成及び動作について説明する。
【0041】
図5は制御回路510の一例を示した。制御回路510は、6つの遅延回路511〜516を有する。各遅延回路511〜516はそれぞれ、図6に示す複数個のインバータINVから成り、図11に示す一定の遅延時間T1〜T6を作り出すものである。
【0042】
選択メモリセルにアクセスしたときに出力されるtrig信号が、図5の制御回路510に入力されると、遅延回路511〜516の働きにより、各電圧供給線210〜240の出力電圧を制御する信号SW4,SB1,UB3,SW0,UB1が、電圧選択回路300へ順次送られる。電圧選択回路300は、受け取った信号をもとに、各電圧供給線210〜240に出力する電圧を決定する。さらに電圧選択回路300には、受け取った信号を処理するためのスイッチ回路が各電圧供給線210〜240毎に設けられている。設けられている各スイッチ回路をそれぞれ示したのが図7、図8、図9である。
【0043】
選択ワード電圧供給線230には図7の電源スイッチ回路350が設けられている。選択ビット電圧供給線210には図8の電源スイッチ回路360が設けられている。非選択ビット電圧供給線220には図9の電源スイッチ回路370設けられている。本実施形態の特徴として、非選択ワード電圧供給線240には一定の電圧が供給されるので、電源スイッチ回路は不要である。なお、図8のパルス回路331の等価回路を図10に示した。
【0044】
図7の入力10に図5の信号SW4が入力されると、選択ワード電圧供給線230には、電圧4Vdd/3が出力される。また、図7の入力11に図5の信号SW0が入力されると、選択ワード電圧供給線230には、電圧0が出力される。さらに、図7の入力10および入力11に信号が入力されないときは、選択ワード電圧供給線230には、電圧2Vdd/3が出力される。
【0045】
図8の入力12に図5の信号SB3が入力されると、選択ビット電圧供給線210には、電圧Vddが出力される。また、図8の入力13に図5の信号SB1が入力されると、図8のパルス回路331によって、選択ビット電圧供給線210には一時的に電圧Vdd/3が出力される。さらに、図8の入力12および入力13に信号が入力されないときは、選択ビット電圧供給線210には、電圧2Vdd/3が出力される。
【0046】
図9の入力14に図5の信号UB3が入力されると非選択ビット電圧供給線220には、電圧Vddが出力される。また、図9の入力15に図5の信号UB1が入力されると非選択ビット電圧供給線220には、電圧Vdd/3が出力される。さらに図9の入力14および入力15に信号が入力されないときは、非選択ビット電圧供給線220には、電圧2Vdd/3が出力される。
【0047】
図5の制御回路510から出力される各信号(SW4、SW0、SB3、SB1、UB3、UB1)のタイミングチャートと電圧選択回路300が各電圧供給線210〜240へ出力する電圧の波形図を同時系列に示したものが、図11である。図11において、符号t0〜t6はタイミングを表す。
【0048】
図11によると、タイミングt0の時に図5の制御回路510にtrig信号が入力されると、同時に、信号SB1、信号UB3が立ち上がる。このとき、選択ビット電圧供給線210を介して選択ビット線SBLには電圧Vdd/3が供給され、非選択ビット電圧供給線220を介して非選択ビット線USBLには電圧Vddが供給される。時間間隔T1の期間に、図11の通り選択ビット線SBL及び非選択ビット線USBLの電圧が安定する。
【0049】
次に、タイミングt1の時に信号SW4が立ち上がり、選択ワード電圧供給線230を介して選択ワード線SWLに電圧4Vdd/3が供給される。そしてタイミングt2の時に信号SW4が立ち下がり、電源スイッチ回路350に信号が入力されていない状態になると同時に、選択ワード電圧供給線230を介して選択ワード線SWLに電圧2Vdd/3が供給される。
【0050】
タイミングt1−t2間の時間間隔T2にて、図3に示すように、選択メモリセル30aに正の選択電圧(Vdd)が印加され、リード(“0”書き込み)が実施される。時間間隔T3の期間では、立下げられた選択ワード線SWLの電圧が安定する。タイミングt0からタイミングt3までの期間T1〜T3が、リード動作期間である。
【0051】
次の時間間隔T4の期間での電圧変更に特徴がある。まず、タイミングt3にて信号SB1が立ち上がり、信号UB3が立ち下がる。よって、電源スイッチ回路360に信号が入力されていない状態になり、選択ビット電圧供給線210を介して選択ビット線SBLには電圧2Vdd/3が供給される。一方、信号UB1が立ち上がることで、非選択ビット電圧供給線220を介して非選択ビット線USBLには電圧Vdd/3が出力される。
【0052】
さらに、タイミングt3の時、信号SB1および信号UB3が立ち下がると同時に、信号SW0、UB1が立ち上がる。このとき、選択ワード電圧供給線230を介して選択ワード線SWLには電圧0が供給される。
【0053】
このように、本実施形態では、図11に示すように、時間間隔T4の期間で、選択ワード線SWL及び非選択ビット線USBLの電圧の立下げと、選択ビット線SBLの電圧の立ち上げとを同時に実施している。
【0054】
次に、タイミングt4の時に、信号SB3が立ち上がり、このとき、選択ビット電圧供給線210を介して選択ビット線SBLには、電圧Vddが供給される。時間T5経過後のタイミングt5にて信号SB3立ち下がり、電源スイッチ回路360に信号が入力されていない状態になる。よって、選択ビット電圧供給線210を介して選択ビット線SWLには、電圧2Vdd/3が供給される。
【0055】
タイミングt4−t5間の時間間隔T5にて、図4に示すように、選択メモリセル30aに負の選択電圧(−Vdd)が印加され、ライト(“1”書き込み)が実施される。その後の時間間隔T6にて、選択ビット線SBLの電圧が安定する。タイミングt3−t6の期間T4〜T6がライト動作を表す。
【0056】
その後、信号SW0および信号UB1が、タイミングt6の時に立ち下がり、全ての線が電圧2Vdd/3に設定される(スタンバイ状態)。
【0057】
図12は、電圧の関係を見やすくするため、図11の4つの波形図を重ねて表記したものである。図12において、非選択ワード線USWLに供給する電圧を固定したため、非選択系についての電圧切換は非選択ビット線USBLだけで良い。よって、配線容量の大きい非選択ビット線USBLの電圧を安定させる期間を排除でき、アクセススピードが向上する。
【0058】
また、図13に示すように、リード期間後選択ビット線SBLに電圧Vddを印加し、その後、選択ワード線SWLに電圧GNDを印加するように電圧印加を制御しても同様の効果が得られる。
【0059】
本実施例では、非選択ワード線USWLに供給する電圧を固定したが、非選択ビット線USBLに供給する電圧を固定しても、同様の効果が得られる。この場合の選択ワード線SWL、非選択ワード線USWL、選択ビット線SBL非選択ビット線USBLに印加される電圧の波形図を図14に示した。
【0060】
図14では、選択メモリセルに正の選択電圧(Vdd)を印加するリード期間(T2)では、選択ワード電圧供給線230に電圧2Vdd/3を、非選択ワード電圧供給線240には電圧Vdd/3を、選択ビット電圧供給線210には電圧0をそれぞれ供給している。選択メモリセルに負の選択電圧(−Vdd)を印加するライト期間(T5)では、選択ワード電圧供給線230に電圧Vdd/3を、非選択ワード電圧供給線240には電圧Vddを、選択ビット電圧供給線210には電圧4Vdd/3をそれぞれ供給している。
【0061】
また、選択メモリセルに正の選択電圧(Vdd)を印加した時間T2の経過後に、選択ワード電圧供給線230の電圧Vddを電圧Vdd/3に切り換え、その後の時間間隔T3のときに、非選択ワード電圧供給線240の電圧Vdd/3を電圧Vddに、選択ビット電圧供給線210の電圧0を電圧2Vdd/3に、それぞれ実質的に同時に切り換えている。
【0062】
(本実施形態と比較例との対比)
本実施形態の効果を説明するために、比較例を示す。図15に、比較例に係る制御回路500を示した。図15の制御回路500は、図5のものより一つ多い7つの遅延回路501〜507を有する。遅延回路501〜507の各々の構成は、図6に示されたものと同等である。従って、比較例のアクセスタイムは、本実施形態のアクセスタイムよりも、遅延回路一つ分の時間だけ長くなることが分かる。
【0063】
この制御回路500により制御される電圧選択回路内の電源スイッチ回路も、図7〜図9のものとは異なり、図16〜図19に示す4つの電源スイッチ回路310,320,330,340を有する。なお、図18のパルス回路331は図10に示されているものと同等のものである。
【0064】
図20は、図15の制御回路500から出力される各信号のタイミングチャートと、電圧選択回路300が各電圧供給線210〜240へ出力する電圧の波形図を同時系列に表したものである。制御回路500から出力される各信号(SB0、UB2、SW3、SW0、UW2、SB3)によって、選択ワード線SWL、非選択ワード線USWL、選択ビット線SBL、非選択ビット線USBLに印加される電圧が図20の波形図のようになる。図21は、電圧の関係を見やすくするため、図20の4つの波形を重ねて表記したものである。
【0065】
図20及び図21より分かる通り、比較例においては、接続負荷の多く充放電速度の遅い非選択ビット線USBLの電圧を変更する期間T4と、同様に接続負荷の多く充放電速度の遅い非選択ワード線UWBLの電圧を変更する期間T5とを、別個に設ける必要がある。よって、この比較例では、アクセススピードが遅くなってしまう欠点がある。
【0066】
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る強誘電体記憶装置のブロック図である。
【図2】強誘電体のヒステレシス現象を示す図である。
【図3】本発明の一実施形態に係る強誘電体記憶装置のリード動作時の電圧印加状態を示す図である。
【図4】本発明の一実施形態に係る強誘電体記憶装置のライト動作時の電圧印加状態を示す図である。
【図5】図1に示す制御回路の一例を示す図である。
【図6】図5に示す各遅延回路の共通構成を示す図である。
【図7】図1中の電圧選択回路に設けられる電源スイッチ回路を示す図である。
【図8】図1中の電圧選択回路に設けられる他の電源スイッチ回路を示す図である。
【図9】図1中の電圧選択回路に設けられるさらに他の電源スイッチ回路を示す図である。
【図10】図8の電源スイッチ回路に用いられるパルス回路を表す図である。
【図11】本発明の一実施形態の動作を説明するためのタイミングチャートである。
【図12】図11に示されている4種類の波形を重ねて記載した図である。
【図13】図12に示されている波形の他の一例を記載した図である。
【図14】本発明の他の実施形態の電圧印加波形図を示した図である。
【図15】比較例の制御回路を示す図である。
【図16】比較例に用いられる電源スイッチ回路を示す図である。
【図17】比較例に用いられる他の電源スイッチ回路を示す図である。
【図18】比較例に用いられるさらに他の電源スイッチ回路を示す図である。
【図19】比較例に用いられるさらに他の電源スイッチ回路を示す図である。
【図20】比較例の動作を説明するためのタイミングチャートである。
【図21】図20に示されている4種類の波形を重ねて記載した図である。
【符号の説明】
10 ワード線駆動部、 20 ビット線駆動部、 30 強誘電体キャパシタ、 40 ワード線、 50 ビット線、 210 選択ビット電圧供給線、220 非選択ビット電圧供給線、 230 選択ワード電圧供給線、 240非選択ワード電圧供給線、 300 電圧選択回路、 400 電源回路、 500 制御回路
Claims (6)
- 互いに平行に配設された複数のワード線と、
前記複数のワード線と交差して、互いに平行に配設された複数のビット線と、前記複数のワード線および前記複数のビット線の各交点に配置された複数の強誘電体メモリセルと、
前記複数のワード線を駆動するワード線駆動部と、
前記複数のビット線を駆動するビット線駆動部と、
前記ワード線駆動部に接続された選択ワード電圧供給線及び非選択ワード電圧供給線と、
前記ビット線駆動部に接続された選択ビット電圧供給線及び非選択ビット電圧供給線と、
複数種の電圧を発生する電源回路と、
前記電源回路が発生する前記複数種の電圧を、前記選択ワード電圧供給線、前記非選択ワード電圧供給線、前記選択ビット電圧供給線及び前記非選択ビット電圧供給線に選択出力する電圧選択回路と、を有し、
前記ワード線駆動部及び前記ビット線駆動部は、前記複数の強誘電体メモリセルのうちの選択メモリセルに、正または負の選択電圧を、残りの非選択メモリセルには非選択電圧を印加し、
前記電圧選択回路は、前記選択メモリセルに前記正又は負の選択電圧を印加するいずれの場合も、前記非選択ワード電圧供給線及び前記非選択ビット電圧供給線の一方の電位を固定としたことを特徴とする強誘電体記憶装置。 - 請求項1において、
前記電源回路は、V0<V1<V2<V3<V4の関係を有する5種類の電圧を生成し、
前記電圧選択回路は、前記非選択ワード電圧供給線を電圧V2に固定し、前記選択メモリセルに前記正の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V4を、前記非選択ビット電圧供給線には電圧V3を、前記選択ビット電圧供給線には電圧V1をそれぞれ供給し、前記選択メモリセルに前記負の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V0を、前記非選択ビット電圧供給線には電圧V1を、前記選択ビット電圧供給線には電圧V3をそれぞれ供給することを特徴とする強誘電体記憶装置。 - 請求項2において、
前記複数種の電圧を、前記選択ワード電圧供給線、非選択ワード電圧供給線、選択ビット電圧供給線及び非選択ビット電圧供給線に切り換え出力するタイミング信号を、前記電圧選択回路に出力する制御回路をさらに有し、
前記制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V4を電圧V2に切り換える信号を出力し、その後、前記選択ワード電圧供給線の電圧V2を電圧V0に、前記非選択ビット電圧供給線の電圧V3を電圧V1に、前記選択ビット電圧供給線の電圧V1を電圧V2に、それぞれ実質的に同時に切り換える信号を出力することを特徴とする強誘電体記憶装置。 - 請求項2において、
前記複数種の電圧を、前記選択ワード電圧供給線、非選択ワード電圧供給線、選択ビット電圧供給線及び非選択ビット電圧供給線に切り換え出力するタイミング信号を、前記電圧選択回路に出力する制御回路をさらに有し、
前記制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V4を電圧V2に切り換える信号を出力し、その後、前記非選択ビット電圧供給線の電圧V3を電圧V1に、前記選択ビット電圧供給線の電圧V1を電圧V3に、それぞれ実質的に同時に切り換える信号を出力することを特徴とする強誘電体記憶装置。 - 請求項1において、
前記電源回路は、V0<V1<V2<V3<V4の関係を有する5種類の電圧を生成し、
前記電圧選択回路は、前記非選択ビット電圧供給線を電圧V2に固定し、前記選択メモリセルに前記正の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V3を、前記非選択ワード電圧供給線には電圧V1を、前記選択ビット電圧供給線には電圧V0をそれぞれ供給し、前記選択メモリセルに前記負の選択電圧を印加するときは、前記選択ワード電圧供給線に電圧V1を、前記非選択ワード電圧供給線には電圧V3を、前記選択ビット電圧供給線には電圧V4をそれぞれ供給することを特徴とする強誘電体記憶装置。 - 請求項5において、
前記複数種の電圧を、前記選択ワード電圧供給線、非選択ワード電圧供給線、選択ビット電圧供給線及び非選択ビット電圧供給線に切り換え出力するタイミング信号を、前記電圧選択回路に出力する制御回路をさらに有し、
前記制御回路は、前記選択メモリセルに前記正の選択電圧を印加した後に、前記選択ワード電圧供給線の電圧V3を電圧V1に切り換える信号を出力し、その後、前記非選択ワード電圧供給線の電圧V1を電圧V3に、前記選択ビット電圧供給線の電圧V0を電圧V2に、それぞれ実質的に同時に切り換える信号を出力することを特徴とする強誘電体記憶装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003008461A JP2004220716A (ja) | 2003-01-16 | 2003-01-16 | 強誘電体記憶装置 |
US10/754,691 US6927994B2 (en) | 2003-01-16 | 2004-01-12 | Ferroelectric memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003008461A JP2004220716A (ja) | 2003-01-16 | 2003-01-16 | 強誘電体記憶装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004220716A true JP2004220716A (ja) | 2004-08-05 |
Family
ID=32898246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003008461A Withdrawn JP2004220716A (ja) | 2003-01-16 | 2003-01-16 | 強誘電体記憶装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6927994B2 (ja) |
JP (1) | JP2004220716A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007149295A (ja) * | 2005-11-30 | 2007-06-14 | Seiko Epson Corp | 半導体記憶装置 |
JP2007265463A (ja) * | 2006-03-27 | 2007-10-11 | Sanyo Electric Co Ltd | メモリ |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004220740A (ja) * | 2003-01-17 | 2004-08-05 | Seiko Epson Corp | 強誘電体記憶装置 |
US10762944B2 (en) * | 2017-12-18 | 2020-09-01 | Micron Technology, Inc. | Single plate configuration and memory array operation |
US10529410B2 (en) | 2017-12-18 | 2020-01-07 | Micron Technology, Inc. | Techniques for accessing an array of memory cells to reduce parasitic coupling |
US11594271B2 (en) * | 2019-05-08 | 2023-02-28 | Ferroelectric Memory Gmbh | Memory cell driver, memory cell arrangement, and methods thereof |
US11017831B2 (en) | 2019-07-15 | 2021-05-25 | Micron Technology, Inc. | Ferroelectric memory cell access |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373463A (en) * | 1993-07-06 | 1994-12-13 | Motorola Inc. | Ferroelectric nonvolatile random access memory having drive line segments |
JP3337564B2 (ja) * | 1994-09-16 | 2002-10-21 | 松下電器産業株式会社 | 半導体記憶装置 |
JP3327071B2 (ja) | 1995-10-16 | 2002-09-24 | ソニー株式会社 | 強誘電体記憶装置 |
-
2003
- 2003-01-16 JP JP2003008461A patent/JP2004220716A/ja not_active Withdrawn
-
2004
- 2004-01-12 US US10/754,691 patent/US6927994B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007149295A (ja) * | 2005-11-30 | 2007-06-14 | Seiko Epson Corp | 半導体記憶装置 |
JP2007265463A (ja) * | 2006-03-27 | 2007-10-11 | Sanyo Electric Co Ltd | メモリ |
JP4718354B2 (ja) * | 2006-03-27 | 2011-07-06 | パトレネラ キャピタル リミテッド, エルエルシー | メモリ |
Also Published As
Publication number | Publication date |
---|---|
US20040213033A1 (en) | 2004-10-28 |
US6927994B2 (en) | 2005-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5373463A (en) | Ferroelectric nonvolatile random access memory having drive line segments | |
US7113419B2 (en) | Ferroelectric memory device and method of reading a ferroelectric memory | |
JP2004220740A (ja) | 強誘電体記憶装置 | |
US7692947B2 (en) | Nonvolatile ferroelectric memory and control device using the same | |
JP3226433B2 (ja) | 強誘電体メモリ装置 | |
KR20050072838A (ko) | 저전력 반도체 메모리 장치 | |
US6104635A (en) | Non-volatile memory device readable write data latch, and internal control thereof | |
JP2013191256A (ja) | 半導体装置 | |
JP2000251488A (ja) | ワード線駆動回路及び半導体記憶装置 | |
JP3928720B2 (ja) | 強誘電体記憶装置 | |
JP2004220716A (ja) | 強誘電体記憶装置 | |
KR19990080861A (ko) | 비휘발성 강유전체 메모리소자 | |
US7245518B2 (en) | Ferroelectric memory | |
JP3717097B2 (ja) | 強誘電体メモリ | |
US7218546B2 (en) | Integrated circuit device provided with series-connected TC parallel unit ferroelectric memory and method for testing the same | |
US5812464A (en) | Column select signal control circuits and methods for integrated circuit memory devices | |
US7262988B2 (en) | Memory device and semiconductor device | |
JP2004220705A (ja) | 強誘電体記憶装置 | |
US7099177B2 (en) | Nonvolatile ferroelectric memory device having power control function | |
US6115317A (en) | Semiconductor memory device for masking data by controlling column select line signals | |
JP2014203505A (ja) | 半導体装置 | |
CN110600063A (zh) | 电压生成电路、半导体存储装置、以及电压生成方法 | |
JP4154583B2 (ja) | 強誘電体記憶装置 | |
JPH07287999A (ja) | 半導体記憶装置 | |
WO2014168144A1 (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20051221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060524 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20060721 |