JP2004207511A - 炭化珪素半導体装置 - Google Patents
炭化珪素半導体装置 Download PDFInfo
- Publication number
- JP2004207511A JP2004207511A JP2002375266A JP2002375266A JP2004207511A JP 2004207511 A JP2004207511 A JP 2004207511A JP 2002375266 A JP2002375266 A JP 2002375266A JP 2002375266 A JP2002375266 A JP 2002375266A JP 2004207511 A JP2004207511 A JP 2004207511A
- Authority
- JP
- Japan
- Prior art keywords
- plane
- semiconductor device
- respect
- silicon carbide
- carbide semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 92
- 239000004065 semiconductor Substances 0.000 title claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 84
- 230000005669 field effect Effects 0.000 claims description 12
- 238000002128 reflection high energy electron diffraction Methods 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000003763 carbonization Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000002344 surface layer Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
- H01L29/7828—Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
- H01L21/3247—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/66068—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7838—Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41766—Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
【解決手段】p型SiC基板1の主表面は(0001)Si面に対して10〜16°を成す面となっている。p型SiC基板1の主表面での表層部にはn+ソース領域2とn+ドレイン領域3が離間して形成されている。p型SiC基板1の主表面の上にはゲート酸化膜4を介してゲート電極5が形成されている。
【選択図】 図2
Description
【発明の属する技術分野】
本発明は、炭化珪素半導体材料を用いた炭化珪素半導体装置に関するものである。
【0002】
【従来の技術】
SiC基板の表面にチャネルが形成される構造のMOSFET等の電界効果型トランジスタにおいて、特許文献1には、素子に高いキャリア移動度と優れた素子特性を持たせるための技術が示されている。この技術は、基板の高温アニール時に生じるバンチングステップの間の平坦な部分をMOSFET等の電界効果型トランジスタのチャネル部分に利用するとともにチャネルのキャリアの移動方向がバンチングステップを横切らないようなチャネルの方向を持つ構造としている。
【0003】
しかしながら、SiCとゲート絶縁膜との界面に関して実用化のための詳細な開示がなされていない。
【0004】
【特許文献1】
特開2000−294777号公報
【0005】
【発明が解決しようとする課題】
本発明はこのような背景の下になされたものであり、その目的は、SiCとゲート絶縁膜との界面に関して実用性に優れた炭化珪素半導体装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に記載の炭化珪素半導体装置は、少なくとも(0001)Si面に対して10〜16°を成す面を主表面とするSiC基板に形成され、主表面が電界効果型MOSトランジスタのチャネル面であることを特徴としている。これにより、界面準位密度を低減してチャネルのキャリア移動度を向上させることができる。
【0007】
請求項2に記載の炭化珪素半導体装置は、(0001)Si面と、(0001)Si面に対して10〜16°を成す面との、少なくとも2面によって主表面が構成されるSiC基板に形成され、主表面が電界効果型MOSトランジスタのチャネル面であることを特徴としている。これにより、界面準位密度を低減してチャネルのキャリア移動度を向上させることができる。
【0008】
請求項3に記載のように、請求項2に記載の炭化珪素半導体装置において、(0001)Si面の面積と、(0001)Si面に対して10〜16°を成す面の面積は、(0001)Si面に対して10〜16°を成す面の方が大きいとよい。
【0009】
請求項4に記載のように、請求項2または3に記載の炭化珪素半導体装置において、(0001)Si面に対して10〜16°を成す面の幅は5nm以上であるとよい。
【0010】
請求項5に記載のように、請求項2〜4のいずれか1項に記載の炭化珪素半導体装置において、チャネルの構造として、(0001)Si面と、(0001)Si面に対して10〜16°を成す面の交線に対して平行となるキャリアの移動方向となっていると、キャリアを移動しやすくすることができる。
【0011】
請求項6に記載のように、請求項2〜5のいずれか1項に記載の炭化珪素半導体装置において、(0001)Si面に対して13〜16°を成す面において、ステップ高さを「Hs」、テラス長を「Lt」、[11−20]方向のSiC単位胞の長さを「La」、[0001]方向のSiC単位胞の長さを「Lb」、「n」を正の整数としたとき、
Lt=3・n・La
Hs=n・Lb
を満たすとともに、1段分のステップとテラスの関係として、
Lt:Hs=3・La:Lb
を満足するとよい。
【0012】
請求項7に記載のように、請求項1〜6のいずれか1項に記載の炭化珪素半導体装置において、SiC基板の主表面は、表面のRHEED図形において、(0001)Si面から10〜16°の方向に回折パターンが現れるとよい。つまり、ステップバンチングを有するSiC基板の主表面を反射高速電子線回折(RHEED)で観察したとき(0001)Si面から10〜16°の方向に回折パターンが現れる基板を用いて電界効果型MOSトランジスタを形成するとよい。
【0013】
請求項8に記載のように、請求項1〜7のいずれか1項に記載の炭化珪素半導体装置において、(0001)Si面に対して10〜16°を成す面とは(11−2n)面であり、45≦n≦74であるとよい。
【0014】
なお、本明細書においては、単結晶炭化珪素の面を表す場合、本来ならば図面(図8等)に記載されているように、所要の数字の上にバーを付した表現をとるべきであるが、表現手段に制約があるために、前記所要の数字の上にバーを付す表現の代わりに、前記所要数字の前に「−」を付して表現している。
【0015】
【発明の実施の形態】
(第1の実施の形態)
以下、この発明を具体化した第1の実施の形態を図面に従って説明する。
【0016】
図1には、本実施の形態における炭化珪素半導体装置の斜視図を示す。図2には炭化珪素半導体装置の縦断面図を示す。
p型SiC基板1は、4H、6H、3Cもしくは15Rの結晶で構成されている。このp型SiC基板1の主表面は(0001)Si面に対して10〜16°を成す面となっている。
【0017】
p型SiC基板1の主表面での表層部にはn+ソース領域2とn+ドレイン領域3が離間して形成されている。p型SiC基板1の主表面の上にはゲート酸化膜(広義にはゲート絶縁膜)4を介してゲート電極5が形成されている。
【0018】
このように本半導体装置は、nチャネルタイプのプレーナー型MOSFETであり、さらに、ゲート酸化膜4とチャネル部の界面が(0001)Si面に対して10〜16°を成す面によって構成されている。これにより、高いキャリア移動度を実現している。
【0019】
次に、炭化珪素半導体装置(MOSFET)の製造方法を、図3,4を用いて説明する。
図3(a)に示すように、主表面が(0001)Si面に対して10〜16°を成す面となっているp型SiC基板1を用意する。具体的には、オフ角0°または8°のSiC基板を切り出し(研磨・研削)により、主表面が(0001)Si面に対して10〜16°を成す面となっているp型SiC基板1を得る。そして、図3(b)に示すように、p型SiC基板1の上にマスク10を配置し、p型SiC基板1に対し窒素をイオン注入してn+ソース領域2およびn+ドレイン領域3を形成する。
【0020】
その後、マスク10を除去して図3(c)に示す状態から、図4(a)に示すように、熱酸化によりp型SiC基板1の上面にゲート酸化膜4を形成する。さらに、図4(b)に示すように、マスキング技術およびエッチング技術を用いてゲート酸化膜4における不要な部分を除去する。そして、図4(c)に示すように、ゲート電極5を形成する。
【0021】
このようにして炭化珪素半導体装置(MOSFET)が完成する。この製造工程において、p型SiC基板1は、4H、6H、3Cもしくは15Rの結晶で構成され、その主表面が(0001)Si面に対して10〜16°を成す面となっている。つまり、図3(c)におけるゲート酸化膜4を形成する前の基板表面が(0001)Si面に対して10〜16°をなす面となっている。
【0022】
以上のように本実施形態においては、電界効果型トランジスタのゲート酸化膜4とチャネル部の界面が(0001)Si面に対して10〜16°を成す面によって構成している。このようにすることにより、オフ角0°または8°のSiC基板をそのまま用いた場合に比べ、界面準位密度を低減でき、チャネルのキャリア移動度を向上させることができる。その結果、SiCとゲート絶縁膜との界面に関して実用性に優れたものとなる。
【0023】
なお、SiC基板1に関して、図5(a)に示すように、(0001)Si面に対して10〜16°を成す面F1を主表面とするものを用いた場合について説明した。しかし、図5(b)に示すように、(0001)Si面に対して10〜16°を成す面F1のみならず、その他の面F2(例えば、(0001)Si面)が残っており、これらの面F1,F2により主表面を構成する場合であってもよい。要は、少なくとも(0001)Si面に対して10〜16°を成す面を主表面とするSiC基板に形成され、その主表面が電界効果型MOSトランジスタのチャネル面であればよい。これにより、界面準位密度を低減してチャネルのキャリア移動度を向上させることができる。
【0024】
また、(0001)Si面に対して10〜16°を成す面とは(11−2n)面であり、45≦n≦74である。
(第2の実施の形態)
次に、第2の実施の形態を説明する。
【0025】
図6には、本実施の形態における炭化珪素半導体装置の斜視図を示す。
p型SiC基板11は、4H、6H、3Cもしくは15Rの結晶で構成されている。このp型SiC基板11の主表面は、符号F11にて示す(0001)Si面と、符号F12にて示すごとく(0001)Si面に対して10〜16°を成す面との2面で形成されている。この面は、超高真空下での加熱によるステップバンチングにより得たものである。
【0026】
p型SiC基板11の主表面での表層部にはn+ソース領域12とn+ドレイン領域13が離間して形成されている。p型SiC基板11の主表面の上にはゲート酸化膜(広義にはゲート絶縁膜)14を介してゲート電極15が形成されている。
【0027】
また、チャネルの構造として、(0001)Si面と、(0001)Si面に対して10〜16°を成す面の交線CLに対して平行となるキャリアの移動方向となっている。これにより、キャリアの移動方向とバンチングステップを平行にすることができる。
【0028】
第2の実施の形態は、製造プロセスが、第1の実施の形態での製造プロセスとほぼ同様であるが、ゲート酸化膜を形成する前の表面が、(0001)Si面と、(0001)Si面に対して10〜16°を成す面との2面で形成されていることが第1の実施の形態と異なっている。
【0029】
このような面は、上述したように例えば(0001)Si面を超高真空下で加熱することにより得られる。即ち、第1の実施の形態では基板として初めから(0001)Si面に対して10〜16°を成す面を主表面とした基板を用いているが、第2の実施の形態では、初めに用いるSiC基板の面が(0001)Si面から任意の傾きを持っている。具体的には、8°オフ基板を用いている。そして、この基板を熱処理することにより表面チャネル層となる部位(表面)にステップバンチングを形成し、(0001)Si面に対して10〜16°を成す面を得るようにしている。
【0030】
以下に、表面チャネル層となる部位(表面)にステップバンチングを形成する方法について詳細に説明する。
図7(a)に示すように、(0001)Si面からの任意の傾きを持った面を主表面としたSiC基板11、即ち、8°オフ基板を用意する。そして、基板11の表面にLTO膜20を形成する。そして、LTO膜20を除去して図7(b)のようにする。その後、SiC基板11の表面を洗浄する。
【0031】
さらに、図7(c)に示すように、SiC基板11の表面に蒸着等によってSi層21を約5nmの厚さで成膜する。引き続き、超高真空チャンバ内を加熱してSiC基板11を500〜1100℃の範囲での一定の温度にする(高温化する)。このとき、好ましくは1050℃にするのがよい。この高温化により、基板表面に、図7(d)に示すように、ステップバンチングが形成される。
【0032】
詳しくは次のとおりである。図7(c)の基板表面(A1で示す部位)を拡大した図8に示すように、8°オフ基板においては、図9に示すような表面構造となっている。この状態から高温化処理を施すことにより、図7(d)の基板表面(A2で示す部位)を拡大した図10に示すように、ステップバンチングが形成され、図11に示すような表面構造となる。つまり、c面、即ち、(0001)Si面に対して、tan-1(b/a)=10〜16°となるステップバンチングが形成される。即ち、バンチングの新しい面はc面に対して10〜16°傾いている。
【0033】
このとき、(0001)Si面の面積と、(0001)Si面に対して10〜16°を成す面の面積については次のようにする。図12(a)に示すように、(0001)Si面の面積に比べて、(0001)Si面に対して10〜16°を成す面の面積が小さいよりも、図12(b)に示すように、(0001)Si面の面積に比べて、(0001)Si面に対して10〜16°を成す面の面積が大きい方が好ましい。つまり、図6において符号F11にて示す(0001)Si面の面積と、符号F12にて示すごとく(0001)Si面に対して10〜16°を成す面の面積は、(0001)Si面に対して10〜16°を成す面の方が大きくなっているとよい。
【0034】
また、キャリアはチャネル面の凹凸による散乱の影響を受けやすいので、単位長さあたりの凹凸の数は図13での上側に示すように多いよりも図13での下側に示すように少ない方がよい。詳しくは、図6において、(0001)Si面に対して10〜16°を成す面の幅W1は5nm以上であるとよい。
【0035】
なお、図7(c)に示すように高温化に先立ち基板表面にSi層21を成膜するのは、超高真空中で基板を高温化する時に基板表面がC化することを抑制するためである。表面にSiを成膜する方法の他に、Siフラックスなどで試料表面近傍のSiの蒸気圧を高める方法を用いてもよい。
【0036】
このようにして得られたSiC基板11を用いて、図3,4を用いて説明した製造工程を適用することで本実施形態のMOS構造を得ることができる。
また、超高真空チャンバ内での高温化工程は、2種類以上の温度の工程を組み合わせて、上述した10〜16°のステップバンチングを形成し、形成面比率を制御してもよい。具体的には、一例として、1050℃と950℃とにする場合を挙げることができる。
【0037】
図14は、オフ角8°のSiC基板を用いて、(0001)Si面と、(0001)Si面に対して10〜16°を成す面とから成るステップバンチングを有する表面を、反射高速電子線回折(RHEED)で観察した例を示すものである。
【0038】
図14において黒丸で示した点は、SiCの基本格子反射によるスポットである。用いた基板がオフ角のないSiC基板で、かつ、主表面が(0001)Si面であれば、SiCの基本格子反射によるスポットは、反射スポットを通るシャドウエッジの垂線L1に対して対称となる。図14の図形では、垂線L1と、反射スポットとダイレクトスポット(00)を結ぶ直線L2とが、約8度ずれている。これは、8度オフ基板を用いたことを意味している。この時、回折パターンP1が現れ、この回折パターンP1は線状をなし、かつ、直線L2に対し10〜16°の方向に延びている。この回折パターンP1が現れることは、(0001)Si面に対して10〜16°を成す面があることを意味している。この回折パターンP1は「点」となることもあるが、(0001)Si面に対して10〜16°を成す面が複数のステップ(狭いテラス)で形成されている場合は、ストリーク状(直線)になる。
【0039】
このように、SiC基板の主表面は、表面のRHEED図形において、(0001)Si面から10〜16°の方向に回折パターンP1が現れる。つまり、ステップバンチングを有するSiC基板の主表面を反射高速電子線回折(RHEED)で観察したとき(0001)Si面から10〜16°の方向に回折パターンP1が現れる基板を用いて電界効果型MOSトランジスタを形成するとよい。
【0040】
なお、(0001)Si面から10〜16°の方向に回折パターンが現れる現象を、X線回折を用いて確認してもよい。つまり、SiC基板の主表面は、表面のRHEED図形またはX線回折図形において、(0001)Si面から10〜16°の方向に回折パターンが現れるものとする。
【0041】
図15には、界面準位密度と、(0001)Si面に対する角度との関係についての測定結果を示す。
図15の界面準位密度Nitは次のように求めたものである。SiC基板として、(0001)Si面と、(0001)Si面に対してある角度に傾斜した面との2つの面を有するものを用い、この基板上にMOSダイオードを形成して界面準位密度を評価した。ここで、界面準位密度Nitとは単位面積あたりの界面準位密度であり、Dit(単位面積かつ単位エネルギーあたりの界面準位密度)をエネルギーで積分した界面品質の指標のことである。この図15から、(0001)Si面に対する角度が13〜16°であれば界面準位密度Nitが最も低い状態であることが分かる。
【0042】
図16に示すSiC基板の表面構造おいて、(0001)Si面に対して13〜16°を成す面は、図17に示すように、ステップ高さとテラス長が次のようになっているとよい。ステップ高さが、[0001]方向のSiC単位胞の長さ(=0.252nm)の整数倍であるともに、テラス長が、[11−20]方向のSiC単位胞の長さ(=0.309nm)の3倍の整数倍であり、かつ、テラス長とステップ高さとは一定の比となっている。詳しくは、図17において、ステップ高さが0.252nmかつテラス長が0.309nm×3であったり、ステップ高さが0.252nm×2かつテラス長が0.309nm×6であったりする。つまり、(0001)Si面に対して13〜16°を成す面において、ステップ高さを「Hs」、テラス長を「Lt」、[11−20]方向のSiC単位胞の長さを「La」、[0001]方向のSiC単位胞の長さを「Lb」、「n」を正の整数としたとき、次のことを満足させるとよい。
Lt=3・n・La
Hs=n・Lb
1段分のステップとテラスの関係において、Lt:Hs=3・La:Lb
また、(0001)Si面に対して10〜16°を成す面とは(11−2n)面であり、45≦n≦74である。
【0043】
以上のように本実施形態の炭化珪素半導体装置においては、(0001)Si面と、(0001)Si面に対して10〜16°を成す面との、少なくとも2面によって主表面が構成されるSiC基板に形成され、主表面が電界効果型MOSトランジスタのチャネル面である。一般的にキャリアは、チャネル面の凹凸により散乱を受け、その移動度が制限されるとされている。しかし、本実施形態のように、ゲート酸化膜を形成する前の表面を、(0001)Si面と、(0001)Si面に対して10〜16°を成す面との2面で形成することにより、オフ角0°または8°のSiC基板をそのまま用いた場合に比べて格段に移動度を向上させることができる。このようにして、界面準位密度を低減してチャネルのキャリア移動度を向上させることができる。その結果、SiCとゲート絶縁膜との界面に関して実用性に優れたものとなる。特に、(0001)Si面に対して13〜16°を成す面を用いるとよい。
【0044】
さらに、チャネルの構造として、図6に示すごとく、(0001)Si面と、(0001)Si面に対して10〜16°を成す面の交線CLに対して平行となるキャリアの移動方向となっているので、キャリアの移動方向とバンチングステップを平行にすることができる。これにより、キャリアを移動しやすくすることができる。
【0045】
つまり、SiC基板の結晶軸を傾ける方位を示す基板のオフ方向と、垂直な方向が、キャリアの移動方向になるようチャネルを構成することにより、オフ方向と垂直な方向に形成されるバンチングステップの段差は、チャネルのキャリア移動方向と平行になる。このため、電界効果型トランジスタのチャネルのキャリアの移動方向が、上記バンチングステップを横切らない方向である構造となり、よりキャリアの移動度が向上し、チャネル全体の抵抗も低減できる。
(第3実施形態)
次に、第3の実施の形態を、第1,2の実施の形態との相違点を中心に説明する。
【0046】
図18には、第3の実施の形態における炭化珪素半導体装置の縦断面図を示す。図2の反転型MOSトランジスタに対して、本半導体装置は、チャネル領域に低濃度層50を有する蓄積型MOSトランジスタである。
【0047】
製造方法は図示しないが、一般的なMOS製造工程で製造することが可能である。該構造も第1の実施の形態と同様に、ゲート酸化膜4とチャネル部の界面が(0001)Si面に対して10〜16°を成す面によって構成されるように形成する。あるいは、第2の実施の形態に示したように、ゲート酸化膜4を形成する前の表面が、(0001)Si面と、(0001)Si面に対して10〜16°を成す面との2面で形成されているようにしてもよい。
(第4実施形態)
次に、第4の実施の形態を、第1,2の実施の形態との相違点を中心に説明する。
【0048】
図19には、第4の実施の形態における炭化珪素半導体装置の縦断面図を示す。本半導体装置は、縦型MOSである。詳しくは、n+型SiC基板60の上にn-領域61がエピ成長にて形成されている。基板の主表面(n-領域61の上面)での表層部にはp-領域62が形成されるとともにp-領域62での表層部にはn+ソース領域63が形成され、さらに、n-領域61の表層部でのチャネル領域には低濃度層64が形成されている。低濃度層64の上にはゲート酸化膜(広義にはゲート絶縁膜)65を介してゲート電極66が形成されている。ゲート電極66の上には絶縁膜67を介してソース電極68が形成され、ソース電極68はn+ソース領域63およびp-領域62と接している。一方、n+型SiC基板60の下面(裏面)にはドレイン電極69が形成されている。
【0049】
本実施形態の構造も第1の実施の形態と同様に、ゲート酸化膜65とチャネル部の界面が(0001)Si面に対して10〜16°を成す面によって構成されるように形成する。あるいは、第2の実施の形態に示したように、ゲート酸化膜65を形成する前の表面が、(0001)Si面と、(0001)Si面に対して10〜16°を成す面との2面で形成されているようにしてもよい。
【図面の簡単な説明】
【図1】第1の実施の形態における炭化珪素半導体装置の斜視図。
【図2】炭化珪素半導体装置の縦断面図。
【図3】(a)〜(c)は製造工程を説明するための炭化珪素半導体装置の縦断面図。
【図4】(a)〜(c)は製造工程を説明するための炭化珪素半導体装置の縦断面図。
【図5】(a),(b)は基板表面の構造を説明するための断面図。
【図6】第2の実施の形態における炭化珪素半導体装置の斜視図。
【図7】(a)〜(d)は製造工程を説明するための縦断面図。
【図8】基板表面の構造を説明するための断面図。
【図9】基板表面の構造を説明するための断面図。
【図10】基板表面の構造を説明するための断面図。
【図11】基板表面の構造を説明するための断面図。
【図12】(a),(b)は基板表面の構造を説明するための断面図。
【図13】基板表面の構造を説明するための断面図。
【図14】基板表面を反射高速電子線回折(RHEED)で観察した図。
【図15】界面準位密度と、(0001)Si面に対する角度との関係についての測定結果を示す図。
【図16】基板表面の構造を説明するための断面図。
【図17】基板表面の構造を説明するための断面図。
【図18】第3の実施の形態における炭化珪素半導体装置の断面図。
【図19】第4の実施の形態における炭化珪素半導体装置の断面図。
【符号の説明】
1…p型SiC基板、2…n+ソース領域、3…n+ドレイン領域、4…ゲート酸化膜、5…ゲート電極、11…p型SiC基板、12…n+ソース領域、13…n+ドレイン領域、14…ゲート酸化膜、15…ゲート電極、60…n+型SiC基板、61…n-層、63…n+ソース領域、65…ゲート酸化膜、66…ゲート電極。
Claims (8)
- 少なくとも(0001)Si面に対して10〜16°を成す面を主表面とするSiC基板に形成され、前記主表面が電界効果型MOSトランジスタのチャネル面であることを特徴とする炭化珪素半導体装置。
- (0001)Si面と、前記(0001)Si面に対して10〜16°を成す面との、少なくとも2面によって主表面が構成されるSiC基板に形成され、前記主表面が電界効果型MOSトランジスタのチャネル面であることを特徴とする炭化珪素半導体装置。
- 前記(0001)Si面の面積と、前記(0001)Si面に対して10〜16°を成す面の面積は、前記(0001)Si面に対して10〜16°を成す面の方が大きいことを特徴とする請求項2に記載の炭化珪素半導体装置。
- 前記(0001)Si面に対して10〜16°を成す面の幅は5nm以上であることを特徴とする請求項2または3に記載の炭化珪素半導体装置。
- チャネルの構造として、前記(0001)Si面と、前記(0001)Si面に対して10〜16°を成す面の交線に対して平行となるキャリアの移動方向となっていることを特徴とする請求項2〜4のいずれか1項に記載の炭化珪素半導体装置。
- 前記(0001)Si面に対して13〜16°を成す面において、ステップ高さを「Hs」、テラス長を「Lt」、[11−20]方向のSiC単位胞の長さを「La」、[0001]方向のSiC単位胞の長さを「Lb」、「n」を正の整数としたとき、
Lt=3・n・La
Hs=n・Lb
を満たすとともに、1段分のステップとテラスの関係として、
Lt:Hs=3・La:Lb
を満足することを特徴とする請求項2〜5のいずれか1項に記載の炭化珪素半導体装置。 - 前記SiC基板の主表面は、表面のRHEED図形において、(0001)Si面から10〜16°の方向に回折パターンが現れることを特徴とする請求項1〜6のいずれか1項に記載の炭化珪素半導体装置。
- 前記(0001)Si面に対して10〜16°を成す面とは(11−2n)面であり、45≦n≦74であることを特徴とする請求項1〜7のいずれか1項に記載の炭化珪素半導体装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002375266A JP4360085B2 (ja) | 2002-12-25 | 2002-12-25 | 炭化珪素半導体装置 |
SE0303259A SE525949C2 (sv) | 2002-12-25 | 2003-12-04 | Kiselkarbidtransistor med ökad bärarrörlighet |
US10/744,071 US7045879B2 (en) | 2002-12-25 | 2003-12-24 | Silicon carbide semiconductor device having enhanced carrier mobility |
DE10361256.4A DE10361256B4 (de) | 2002-12-25 | 2003-12-24 | Siliciumcarbidhalbleiteranordnung mit erhöhter Trägerbeweglichkeit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002375266A JP4360085B2 (ja) | 2002-12-25 | 2002-12-25 | 炭化珪素半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004207511A true JP2004207511A (ja) | 2004-07-22 |
JP4360085B2 JP4360085B2 (ja) | 2009-11-11 |
Family
ID=29728576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002375266A Expired - Fee Related JP4360085B2 (ja) | 2002-12-25 | 2002-12-25 | 炭化珪素半導体装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7045879B2 (ja) |
JP (1) | JP4360085B2 (ja) |
DE (1) | DE10361256B4 (ja) |
SE (1) | SE525949C2 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006344942A (ja) * | 2005-05-09 | 2006-12-21 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
WO2009063844A1 (ja) * | 2007-11-12 | 2009-05-22 | Hoya Corporation | 半導体素子ならびに半導体素子製造法 |
JP2009188030A (ja) * | 2008-02-04 | 2009-08-20 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
JP2010062252A (ja) * | 2008-09-02 | 2010-03-18 | Kansai Electric Power Co Inc:The | バイポーラ型半導体装置 |
JP2011181949A (ja) * | 2005-05-09 | 2011-09-15 | Sumitomo Electric Ind Ltd | 半導体装置の製造方法 |
JP2014031313A (ja) * | 2013-09-26 | 2014-02-20 | Denso Corp | 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ |
JP2014154667A (ja) * | 2013-02-07 | 2014-08-25 | Sumitomo Electric Ind Ltd | 半導体装置 |
JP2016052994A (ja) * | 2015-11-13 | 2016-04-14 | 株式会社デンソー | 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005053034A1 (ja) * | 2003-11-25 | 2005-06-09 | Matsushita Electric Industrial Co., Ltd. | 半導体素子 |
DE102005017814B4 (de) * | 2004-04-19 | 2016-08-11 | Denso Corporation | Siliziumkarbid-Halbleiterbauelement und Verfahren zu dessen Herstellung |
CN101542739B (zh) * | 2006-11-21 | 2011-03-23 | 住友电气工业株式会社 | 碳化硅半导体器件及其制造方法 |
US7981709B2 (en) * | 2007-04-05 | 2011-07-19 | Sumitomo Electric Industries, Ltd. | Semiconductor device and method for fabricating the same |
JP2010184833A (ja) * | 2009-02-12 | 2010-08-26 | Denso Corp | 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ |
US9117740B2 (en) * | 2010-08-27 | 2015-08-25 | National University Corporation NARA Institute of Science and Technology | SiC semiconductor element |
JP6173493B2 (ja) * | 2014-10-03 | 2017-08-02 | 日本碍子株式会社 | 半導体素子用のエピタキシャル基板およびその製造方法 |
CN114530506B (zh) * | 2021-11-02 | 2023-03-17 | 浙江芯科半导体有限公司 | 用于SiC基场效应晶体管的栅介质薄膜晶体管及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19712561C1 (de) * | 1997-03-25 | 1998-04-30 | Siemens Ag | SiC-Halbleiteranordnung mit hoher Kanalbeweglichkeit |
US6384428B1 (en) * | 1998-03-19 | 2002-05-07 | Hitachi, Ltd. | Silicon carbide semiconductor switching device |
JP2000294777A (ja) | 1999-04-08 | 2000-10-20 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
US6504176B2 (en) * | 2000-04-06 | 2003-01-07 | Matshushita Electric Industrial Co., Ltd. | Field effect transistor and method of manufacturing the same |
EP1306890A2 (en) * | 2001-10-25 | 2003-05-02 | Matsushita Electric Industrial Co., Ltd. | Semiconductor substrate and device comprising SiC and method for fabricating the same |
-
2002
- 2002-12-25 JP JP2002375266A patent/JP4360085B2/ja not_active Expired - Fee Related
-
2003
- 2003-12-04 SE SE0303259A patent/SE525949C2/sv not_active IP Right Cessation
- 2003-12-24 US US10/744,071 patent/US7045879B2/en not_active Expired - Lifetime
- 2003-12-24 DE DE10361256.4A patent/DE10361256B4/de not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006344942A (ja) * | 2005-05-09 | 2006-12-21 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
JP2011181949A (ja) * | 2005-05-09 | 2011-09-15 | Sumitomo Electric Ind Ltd | 半導体装置の製造方法 |
KR100983852B1 (ko) * | 2006-04-28 | 2010-09-27 | 스미토모덴키고교가부시키가이샤 | 반도체 장치 및 그 제조 방법 |
WO2007125617A1 (ja) * | 2006-04-28 | 2007-11-08 | Sumitomo Electric Industries, Ltd. | 半導体装置およびその製造方法 |
US8283674B2 (en) | 2006-04-28 | 2012-10-09 | Sumitomo Electric Industries, Ltd. | Semiconductor device with silicon carbide channel |
JP2009123753A (ja) * | 2007-11-12 | 2009-06-04 | Hoya Corp | 半導体素子ならびに半導体素子製造法 |
WO2009063844A1 (ja) * | 2007-11-12 | 2009-05-22 | Hoya Corporation | 半導体素子ならびに半導体素子製造法 |
JP2009188030A (ja) * | 2008-02-04 | 2009-08-20 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
JP2010062252A (ja) * | 2008-09-02 | 2010-03-18 | Kansai Electric Power Co Inc:The | バイポーラ型半導体装置 |
JP2014154667A (ja) * | 2013-02-07 | 2014-08-25 | Sumitomo Electric Ind Ltd | 半導体装置 |
US9484414B2 (en) | 2013-02-07 | 2016-11-01 | Sumitomo Electric Industries, Ltd. | Semiconductor device |
JP2014031313A (ja) * | 2013-09-26 | 2014-02-20 | Denso Corp | 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ |
JP2016052994A (ja) * | 2015-11-13 | 2016-04-14 | 株式会社デンソー | 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ |
Also Published As
Publication number | Publication date |
---|---|
DE10361256B4 (de) | 2017-03-23 |
JP4360085B2 (ja) | 2009-11-11 |
DE10361256A1 (de) | 2004-07-08 |
US7045879B2 (en) | 2006-05-16 |
US20040159841A1 (en) | 2004-08-19 |
SE525949C2 (sv) | 2005-05-31 |
SE0303259D0 (sv) | 2003-12-04 |
SE0303259L (sv) | 2004-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7001364B2 (ja) | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 | |
JP4360085B2 (ja) | 炭化珪素半導体装置 | |
US6940110B2 (en) | SiC-MISFET and method for fabricating the same | |
US7365363B2 (en) | Silicon carbide semiconductor device and method for manufacturing the same | |
JP5192615B2 (ja) | 炭化珪素半導体素子及びその製造方法 | |
US8431974B2 (en) | Silicon carbide semiconductor device | |
KR101245899B1 (ko) | 탄화규소 반도체 장치의 제조 방법 | |
US20110006310A1 (en) | Semiconductor device and semiconductor device manufacturing method | |
JP2006216918A (ja) | 半導体素子の製造方法 | |
JP2003234301A (ja) | 半導体基板、半導体素子及びその製造方法 | |
JP2008205296A (ja) | 炭化珪素半導体素子及びその製造方法 | |
JP4929621B2 (ja) | Mosゲート型炭化珪素半導体装置 | |
US10020368B2 (en) | Silicon carbide semiconductor element and manufacturing method thereof | |
JP4532853B2 (ja) | 半導体装置 | |
JP7196458B2 (ja) | 絶縁ゲート型半導体装置の製造方法 | |
JP3637052B2 (ja) | SiC−MISFET及びその製造方法 | |
CN115842057A (zh) | 半导体结构及形成方法 | |
TW201717324A (zh) | 具有漂移區的高壓無接面場效元件及其製造方法 | |
JP2002280573A (ja) | 炭化珪素半導体素子およびその製造方法 | |
Silk et al. | Manufacturing Processes | |
JP2023000604A (ja) | 絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法 | |
JP2004253427A (ja) | 炭化珪素半導体素子 | |
JP2005085872A (ja) | 半導体素子及びその製造方法 | |
JP2004221263A (ja) | 半導体装置およびその製造方法 | |
JP5194437B2 (ja) | 半導体装置および半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090803 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120821 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130821 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |