JP2004192715A - 光ディスク装置 - Google Patents

光ディスク装置 Download PDF

Info

Publication number
JP2004192715A
JP2004192715A JP2002358646A JP2002358646A JP2004192715A JP 2004192715 A JP2004192715 A JP 2004192715A JP 2002358646 A JP2002358646 A JP 2002358646A JP 2002358646 A JP2002358646 A JP 2002358646A JP 2004192715 A JP2004192715 A JP 2004192715A
Authority
JP
Japan
Prior art keywords
circuit
signal
output
detection circuit
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002358646A
Other languages
English (en)
Other versions
JP2004192715A5 (ja
Inventor
Takayuki Sakabayashi
貴之 坂林
Takeshi Okada
雄 岡田
Tadamasa Takahashi
正将 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002358646A priority Critical patent/JP2004192715A/ja
Publication of JP2004192715A publication Critical patent/JP2004192715A/ja
Publication of JP2004192715A5 publication Critical patent/JP2004192715A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

【課題】ランドプリピット信号とウォブル信号とを高精度に検出することができる光ディスク装置を提供する。
【解決手段】光ディスク装置は、フォトディテクタと、フォトディテクタによって生成された一対の差分信号に基づいて第1ラジアルプッシュプル信号を検出する第1プッシュプル信号検出回路と、第1ラジアルプッシュプル信号に基づいてウォブル信号を検出するウォブル検出回路と、一対の差分信号に基づいて第2ラジアルプッシュプル信号を検出する第2プッシュプル信号検出回路と、第2ラジアルプッシュプル信号に基づいてランドプリピット信号を検出するプリピット検出回路とを具備することを特徴とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、所定の周期によってウォブリングして形成されたランドトラックにランドプリピットが形成された光ディスクに情報を記録再生する光ディスク装置に関する。
【0002】
【従来の技術】
近年、情報記録媒体として用いられる光ディスクの高密度化が進み、当初音楽用として開発されたCD(コンパクトディスク)等よりもさらに記憶密度が向上したDVD(ディジタルバーサタイルディスク)が開発され、映像記録用等に使用されている。
【0003】
このような高密度記録媒体のうち、情報を記録可能な光ディスクとして、DVD−R/RWが使用されている。このような光ディスクには、情報を記録する時の記録位置を検出するために必要なアドレス情報等のプリ情報があらかじめ記録されている。
【0004】
このようなDVD−R/RWに予め記録されたプリ情報は、トラックを揺動(ウォブリング)することによって形成されたウォブルと、ランドトラックに形成されたランドプリピットに基づいて検出することができる。
【0005】
ウォブルに基づいて検出されるウォブル信号は、記録クロックを生成するため、及び光ディスクの回転数を制御するために使用される。このため、光ディスク装置においてウォブル信号の検出精度を確保することは非常に重要である。
【0006】
また、ランドプリピットに基づいて検出されるランドプリピット信号は、アドレス情報を検出するため、および記録クロックを生成するために使用される。このため、ランドプリピット信号の検出精度を確保することは非常に重要である。
【0007】
DVD−R/RWにおける従来のランドプリピット信号の検出方法を説明する。まず、光ディスクに形成されたグループトラックにレーザー光を照射して、その反射光をグループトラックの接線方向に沿って光学的に2分割されたフォトディテクターによって受光する。そして、反射光を受光したフォトディテクターからの2つの出力信号の差分信号であるラジアルプッシュプル信号に基づいてランドプリピット信号を検出する。従って、ランドプリピット信号の検出精度を確保するためには、ラジアルプッシュプル信号の品位を向上させることが必要である。
【0008】
しかしながら、DVD−R/RW等の光ディスクにおいては、CD等よりも記録密度が飛躍的に向上している一方で、光ディスクの記録面を照射するレーザースポット径は小さくなったものの、トラックピッチほどには小さくなっていないため、記録再生中のラジアルチルト等の影響を受けて、ラジアルプッシュプル信号の品位が損なわれるおそれがあった。
【0009】
記録再生中において、2分割されたフォトディテクターにより検出された、記録マークにより変調される反射光におけるRF信号成分のバランスがラジアルチルト等により崩れて、ラジアルプッシュプル信号に混入するノイズ成分が増加する。しかし、ラジアルチルトに対して機械的な設計や調整精度の向上、フィードバック制御により対処したとしても、ラジアルプッシュプル信号に混入するノイズ成分を除去することが出来ず、ランドプリピットの誤検出、ウォブル信号におけるジッタ増加等の問題があった。
【0010】
そこで、2分割されたフォトディテクターからの各検出信号の振幅を一定量として、その差分を取ってラジアルプッシュプル信号とし、ラジアルプッシュプル信号に混入するRF信号成分を低減する対策も提案されている。
【0011】
図16は、従来の光ディスク装置90の構成を示すブロック図である。従来の光ディスク装置90は、モータ102を備えている。モータ102は、光ディスク101を所定の回転数に従って回転させる。
【0012】
光ディスク装置90には、ピックアップ122が設けられている。ピックアップ122は、レーザ発振器105を有している。レーザ発振器105は、レーザビームAをハーフミラー104へ向かって出射する。レーザ発振器105から出射したレーザビームAは、ハーフミラー104によって反射され、対物レンズ103を通り抜けて光ディスク101の表面に収束する。
【0013】
図17は、光ディスク101に形成された記録領域を拡大して示した斜視図である。光ディスク101の表面には、グルーブトラック202とランドトラック203とが形成されている。グルーブトラック202とランドトラック203とは、所定の周期によってウォブリングして形成されている。ランドトラック203には、ランドプリピット206が形成されている。図17に示す例では、レーザビームAはグルーブトラック202の上に収束している。
【0014】
グルーブトラック202の上において反射したレーザビームAは対物レンズ103およびハーフミラー104を通り抜けてフォトディテクタ14へ入射する。フォトディテクタ14は、グルーブトラック202の接線方向に対して光学的に平行な方向に沿って2個の領域に分割されており、入射したレーザビームAに基づいて、プッシュプル法に従って一対の差分信号を生成してプッシュプル信号検出回路12へ出力する。
【0015】
プッシュプル信号検出回路12は、AGC回路150AおよびAGC回路150Bを有している。AGC回路150AおよびAGC回路150Bは、互いに実質的に同一の構成を有している。AGC回路150Aは、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路150Cへ出力する。AGC回路150Bは、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路150Cへ出力する。
【0016】
図18は、AGC回路150Aの構成を示すブロック図である。AGC回路150BはAGC回路150Aと実質的に同一の構成を有している。従って、AGC回路150Bの構成の詳細な説明は省略する。
【0017】
AGC回路150Aには、可変ゲイン増幅器(VGA)301が設けられている。可変ゲイン増幅器301は、フォトディテクタ14によって生成された一対の差分信号の一方を、増幅器307から供給されるゲイン制御信号に基づいて増幅して、サンプルホールド回路(SH)302へ供給する。
【0018】
サンプルホールド回路302は、可変ゲイン増幅器301によって増幅された一対の差分信号の一方をサンプルホールド制御信号に応じてホールドしてエンベロープ検出回路(ENV)304へ供給する。エンベロープ検出回路304は、サンプルホールド回路304によってホールドされた差分信号のエンベロープ波形を検出してローパスフィルタ(LPF)305へ供給する。
【0019】
ローパスフィルタ305は、エンベロープ検出回路304によって検出された差分信号のエンベロープ波形を平滑化して差動回路306へ供給する。差動回路306は、ローパスフィルタ305によって平滑化された差分信号のエンベロープ波形と所定の基準電圧との間の差を増幅器307へ出力する。
【0020】
増幅器307は、差動回路306からの出力を増幅して前述したゲイン制御信号として可変ゲイン増幅器301へ供給する。増幅器307から供給されたゲイン制御信号に基づいて可変ゲイン増幅器301によって増幅された一対の差分信号の一方は、プッシュプル信号検出回路12に設けられた差動回路150Cへ供給される。
【0021】
AGC回路150Bは、フォトディテクタ14によって生成された一対の差分信号の他方を、AGC回路150Aと同様に増幅して差動回路150Cへ供給する。
【0022】
差動回路150Cは、AGC回路150Aによって増幅された一対の差分信号の一方とAGC回路150Bによって増幅された一対の差分信号の他方との間の差を検出してウォブル検出回路13およびプリピット検出回路11へ出力する。
【0023】
ウォブル検出回路13は、差動回路150Cからの出力に基づいてウォブル信号を検出して、アドレス検出器115とPLL116と位相比較器120とへ供給する。プリピット検出回路11は、差動回路150Cからの出力に基づいてランドプリピット信号を検出してアドレス検出器115とPLL116とへ供給する。
【0024】
アドレス検出器115は、ウォブル検出回路13によって検出されたウォブル信号とプリピット検出回路11によって検出されたランドプリピット信号とに基づいて、フォトディテクタ14によって受光された反射光の光ディスク101上における位置を表すアドレス情報を検出してシステムコントローラ117へ供給する。
【0025】
PLL116は、ウォブル検出回路13によって検出されたウォブル信号とプリピット検出回路11によって検出されたランドプリピット信号とに基づいて、光ディスク101にデータを記録するためのクロック信号を生成して、エンコーダ119およびパワー制御回路107へ供給する。
【0026】
インターフェース118は、図示しないホストコンピュータからの指令指令信号を受け取り、および光ディスク装置90において記録再生したデータの受け渡しを行う。システムコントローラ117は、インターフェース118を介して入力された指令信号とアドレス検出器115によって検出されたアドレス情報とに基づいて、デコーダ110に再生指示を与え、またエンコーダ119に記録指示を与える。
【0027】
エンコーダ119は、システムコントローラ117からの記録指示に基づいて、データバッファ111に格納されている記録データに対してエラー訂正符号を付加した後、符号変換し、記録変調を行い、パワー制御回路107に供給する。
【0028】
パワー制御回路107は、エンコーダ119から供給された記録データとPLL116から供給されたクロック信号とに基づいて、ピックアップ122に設けられたレーザ発振器105における発光パワーを制御するための信号をレーザ駆動回路106へ供給する。レーザ駆動回路106は、レーザ発振器105における発光パワーを制御するようにレーザ発振器105を駆動する。
【0029】
フォトディテクタ14は、光ディスク101からの反射光を受光して、プリピット206からのプリピット信号とグルーブトラック202からのウォブル信号とを含む記録情報データなどを有する検出信号を生成してヘッドアンプ109へ供給する。ヘッドアンプ109は、フォトディテクタ14から供給されたプリピット信号及びウォブル信号を増幅し、その増幅信号をデコーダ110へ供給する。デコーダ110は、供給された増幅信号をデコードして復調信号を生成しデータバッファ111へ格納する。
【0030】
位相比較器120は、ウォブル検出回路13によって検出されたウォブル信号と所定の回転基準信号との間の位相差をスピンドルドライバ121へ供給する。スピンドルドライバ121は、位相比較器120から供給された位相差に基づいて、ディスク101を一定速度で回転させるようにスピンドルモータ102を駆動する。
【0031】
このように構成された光ディスク装置90の動作を説明する。まず、スピンドルモータ102がディスク101を一定速度で回転させる。そして、レーザ発振器105は、レーザビームAをハーフミラー104へ向かって出射する。次に、レーザビームAはハーフミラー104によって反射され、対物レンズ103を通り抜けて光ディスク101の表面によって反射され、フォトディテクタ14へ入射する。その後、フォトディテクタ14は、入射したレーザビームAに基づいてプッシュプル法に従って一対の差分信号を生成してプッシュプル信号検出回路12へ供給する。
【0032】
図19(a)〜図19(h)は、従来の光ディスク装置90に設けられたプッシュプル信号検出回路12の動作を説明するための波形図である。
【0033】
図19(a)は、プッシュプル信号検出回路12のAGC回路150Aに設けられた可変ゲイン増幅器301へ入力される差分信号の波形図である。図19(a)に示す差分信号においては、ランドプリピットに対応したパルス信号が140kHzのサイン波成分に重畳されている。さらに、記録済ディスク101においては、図19(a)においてクロスハッチングした領域がRF変調されている。
【0034】
図19(b)は、AGC回路150Aに設けられたサンプルホールド回路302へ供給されるサンプルホールド制御信号の波形図である。図19(b)に示すように、サンプルホールド制御信号は、ランドプリピット領域の周辺に対応する期間の間でホールドレベルとなる信号である。
【0035】
図19(c)は、サンプルホールド回路302から出力される信号の波形図である。サンプルホールド回路302から出力される信号においては、図19(a)において重畳されていたランドプリピットに対応したパルス信号が、除去されている。
【0036】
図19(d)は、エンベロープ検出回路304から出力される信号の波形図である。エンベロープ検出回路304から出力される信号においては、RF信号成分が除かれており、非マーク部における反射レベルが検出される。
【0037】
図19(e)は、ローパスフィルタ305から出力される信号の波形図である。ローパスフィルタ305から出力される信号は、実線によって示されており、一点鎖線によって示されたエンベロープ検出回路304から出力される信号を平滑化した信号である。破線によって示される信号は、基準レベルを表す信号を示している。差動回路306は、破線によって示される基準レベルを示す信号と実線によって示されるローパスフィルタ305から出力される信号との間の差を出力する。
【0038】
図19(f)は、フォトディテクタ14によって生成された一対の差分信号の一方が入力されるAGC回路150Aに設けられた可変ゲイン増幅器301において、ゲイン調整されて差動回路150Cへ供給される信号の波形図である。
【0039】
図19(g)は、一対の差分信号の他方が入力されるAGC回路150Bに設けられた可変ゲイン増幅器301において、ゲイン調整されて差動回路150Cへ供給される信号の波形図である。
【0040】
AGC回路150AおよびAGC回路150Bに設けられた差動回路306に入力された基準信号とLPF305からの入力信号の平均レベルとの間の差が増幅されて、可変ゲイン増幅器301に入力されるゲイン制御信号に加算される。可変ゲイン増幅器301において、加算されたゲイン制御信号が入力されることによって、可変ゲイン増幅器301の出力レベルの平均値が基準レベルになるように制御される。
【0041】
図19(h)は、プッシュプル信号検出回路12が出力する信号の波形図である。従来の光ディスク装置90に搭載されるプッシュプル信号検出回路12では、AGC後の各RF信号成分の平均値が基準レベルとなるため、図19(h)に示すように、ウォブル信号およびランドプリピット信号を損なうことなく、RF信号の混入を抑制することが可能である。
【0042】
【特許文献1】
特開2002−117536号公報
【0043】
【発明が解決しようとする課題】
しかしながら、2分割されたフォトディテクタの各検出信号のDC成分に、オフトラック、記録マーキングずれおよび回路オフセットなどの影響によりオフセットが生じた場合には、前述した従来技術の構成に従って各検出信号に対して振幅調整を実施しても、RF信号成分を完全に除去することができない。このため、ランドプリピット信号の検出精度が低下するという問題がある。
【0044】
図20は、従来の光ディスク装置90に設けられたプッシュプル信号検出回路12の他の動作を説明するための波形図である。
【0045】
図20(a)は、プッシュプル信号検出回路12のAGC回路150Aに設けられた可変ゲイン増幅器301へ入力される一対の差分信号の一方の波形図である。図20(a)においては、DC成分にオフセットが生じた場合の波形を示している。0V基準とクロスハッチングしたRF領域との間においてDC成分のオフセットが生じていることを示している。
【0046】
図20(b)は、プッシュプル信号検出回路12のAGC回路150Bに設けられた可変ゲイン増幅器301へ入力される一対の差分信号他方の波形図である。図20(b)においては、DC成分にオフセットが生じていない場合の波形を示している。
【0047】
図20(c)は、フォトディテクタ14によって生成された一対の差分信号の一方が入力されるAGC回路150Aに設けられた可変ゲイン増幅器301においてゲイン調整されて差動回路150Cへ供給される信号の波形図である。
【0048】
図20(d)は、フォトディテクタ14によって生成された一対の差分信号の他方が入力されるAGC回路150Bに設けられた可変ゲイン増幅器301においてゲイン調整されて差動回路150Cへ供給される信号の波形図である。
【0049】
図20(c)および図20(d)に示す波形は、いずれも、前述した従来技術に示すとおり基準レベルに調整されている。
【0050】
図20(e)は、プッシュプル信号検出回路12が出力する信号の波形図である。図20(e)に示すように、2分割されたフォトディテクタ14の各検出信号のDC成分に、オフトラック、記録マーキングずれおよび回路オフセットなどの影響によりオフセットが生じた場合には、前述した従来技術の構成に従って各検出信号に対して振幅調整を実施しても、RF信号成分が残留している。
【0051】
本発明は係る問題を解決するためになされたものであり、その目的は、ランドプリピット信号とウォブル信号とを高精度に検出することができる光ディスク装置を提供することにある。
【0052】
【課題を解決するための手段】
本発明に係る光ディスク装置は、所定の周期によってウォブリングして形成されたランドトラックにランドプリピットが形成された光ディスクによって反射された反射光を受光し、前記受光した反射光に基づいて、プッシュプル法に従って一対の差分信号を生成するフォトディテクタと、前記フォトディテクタによって生成された前記一対の差分信号に基づいて第1ラジアルプッシュプル信号を検出する第1プッシュプル信号検出回路と、前記第1プッシュプル信号検出回路によって検出された前記第1ラジアルプッシュプル信号に基づいてウォブル信号を検出するウォブル検出回路と、前記フォトディテクタによって生成された前記一対の差分信号に基づいて第2ラジアルプッシュプル信号を検出する第2プッシュプル信号検出回路と、前記第2プッシュプル信号検出回路によって検出された前記第2ラジアルプッシュプル信号に基づいてランドプリピット信号を検出するプリピット検出回路とを具備することを特徴とする。
【0053】
【発明の実施の形態】
本実施の形態に係る光ディスク装置においては、第1プッシュプル信号検出回路が、フォトディテクタによって生成された一対の差分信号に基づいて第1ラジアルプッシュプル信号を検出し、第1プッシュプル信号検出回路によって検出された第1ラジアルプッシュプル信号に基づいてウォブル検出回路がウォブル信号を検出し、第2プッシュプル信号検出回路が、フォトディテクタによって生成された一対の差分信号に基づいて第2ラジアルプッシュプル信号を検出し、第2プッシュプル信号検出回路によって検出された第2ラジアルプッシュプル信号に基づいてプリピット検出回路がランドプリピット信号を検出する。
【0054】
このため、フォトディテクタによって生成された一対の差分信号にオフセット成分が生じた場合であっても、第2プッシュプル信号検出回路によってRF信号成分を完全に除去するように第2ラジアルプッシュプル信号を検出することができる。その結果、ランドプリピット信号の検出精度を向上させることができる。
【0055】
前記第2プッシュプル信号検出回路は、前記フォトディテクタによって生成された前記一対の差分信号の一方の振幅を調整する第1AGC回路と、前記フォトディテクタによって生成された前記一対の差分信号の他方の振幅を調整する第2AGC回路と、前記第1AGC回路によって振幅を調整された前記一対の差分信号の前記一方と前記第2AGC回路によって振幅を調整された前記一対の差分信号の前記他方との間の差を検出する差動回路とを有していることが好ましい。
【0056】
前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するするサンプルホールド回路と、前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、前記ハイパスフィルタの出力のエンベロープ波形を検出して出力するエンベロープ検出回路と、前記エンベロープ検出回路の出力を平滑化するローパスフィルタと、前記ローパスフィルタの出力電圧と所定の基準電圧との間の差を出力する差動回路と、前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有していることが好ましい。
【0057】
前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するするサンプルホールド回路と、前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、前記ハイパスフィルタの出力のエンベロープ波形を検出して出力するエンベロープ検出回路と、前記エンベロープ検出回路の出力と所定の基準電圧との間の差を出力する差動回路と、前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有していることが好ましい。
【0058】
前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するするサンプルホールド回路と、前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、前記ハイパスフィルタの出力を整流して出力する全波整流回路と、前記全波整流回路の出力を平滑化して出力するローパスフィルタと、前記ローパスフィルタの出力と所定の基準電圧との間の差を出力する差動回路と、前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有していることが好ましい。
【0059】
前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するするサンプルホールド回路と、前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、前記ハイパスフィルタの出力を整流して出力する半波整流回路と、前記半波整流回路の出力のエンベロープ波形を検出して出力するエンベロープ検出回路と、前記エンベロープ検出回路の出力を平滑化して出力するローパスフィルタと、前記ローパスフィルタの出力と所定の基準電圧との間の差を出力する差動回路と、前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有していることが好ましい。
【0060】
前記基準電圧は、前記一対の差分信号の一方の電圧と前記一対の差分信号の他方の電圧との平均電圧になっていることが好ましい。
【0061】
前記第1AGC回路は、前記一対の差分信号の一方を第1ゲイン制御信号に基づいて増幅する第1可変ゲイン増幅器と、前記可変ゲイン増幅器によって増幅された前記一対の差分信号の一方をサンプルホールド制御信号に応じてホールドして出力するする第1サンプルホールド回路と、前記第1サンプルホールド回路の出力からRF信号成分を抽出して出力する第1ハイパスフィルタと、前記第1ハイパスフィルタの出力のエンベロープ波形を検出して出力する第1エンベロープ検出回路と、前記第1エンベロープ検出回路の出力におけるピークレベルを検波して出力するピーク検波回路と、前記ピーク検波回路の出力と所定の第1基準電圧との間の差を出力する第1差動回路と、前記第1差動回路の出力を増幅して前記第1ゲイン制御信号として前記第1可変ゲイン増幅器へ出力する第1増幅器とを有しており、前記第2AGC回路は、前記一対の差分信号の他方を第2ゲイン制御信号に基づいて増幅する第2可変ゲイン増幅器と、前記第2可変ゲイン増幅器によって増幅された前記一対の差分信号の他方を前記サンプルホールド制御信号に応じてホールドして出力するする第2サンプルホールド回路と、前記第2サンプルホールド回路の出力からRF信号成分を抽出して出力する第2ハイパスフィルタと、前記第2ハイパスフィルタの出力のエンベロープ波形を検出して出力する第2エンベロープ検出回路と、前記第2エンベロープ検出回路の出力におけるボトムレベルを検波して出力するボトム検波回路と、前記ボトム検波回路の出力と所定の第2基準電圧との間の差を出力する第2差動回路と、前記第2差動回路の出力を増幅して前記第2ゲイン制御信号として前記第2可変ゲイン増幅器へ出力する第2増幅器とを有していることが好ましい。
【0062】
前記第1基準電圧と前記第2基準電圧とは、互いに等しくなっていることが好ましい。
【0063】
前記第1基準電圧と前記第2基準電圧とは、前記一対の差分信号の一方の電圧と前記一対の差分信号の他方の電圧との平均電圧になっていることが好ましい。
【0064】
前記ウォブル検出回路によって検出された前記ウォブル信号と前記プリピット検出回路によって検出された前記ランドプリピット信号とに基づいて、前記フォトディテクタによって受光された前記反射光の前記光ディスク上における位置を表すアドレス情報を検出するアドレス検出器と、前記ウォブル信号と前記ランドプリピット信号とに基づいて、前記光ディスクにデータを記録するためのクロック信号を生成するPLLとをさらに具備していることが好ましい。
【0065】
以下、図面を参照して本発明の実施の形態を説明する。
【0066】
(実施の形態1)
図1は、実施の形態1に係る光ディスク装置100の構成を示すブロック図である。光ディスク装置100は、モータ102を備えている。モータ102は、光ディスク101を所定の回転数に従って回転させる。
【0067】
光ディスク装置100には、ピックアップ122が設けられている。ピックアップ122は、レーザ発振器105を有している。レーザ発振器105は、レーザビームAをハーフミラー104へ向かって出射する。レーザ発振器105から出射したレーザビームAは、ハーフミラー104によって反射され、対物レンズ103を通り抜けて光ディスク101の表面に収束する。
【0068】
図17は、光ディスク101に形成された記録領域を拡大して示した斜視図である。光ディスク101の表面には、グルーブトラック202とランドトラック203とが形成されている。グルーブトラック202とランドトラック203とは、所定の周期によってウォブリングして形成されている。ランドトラック203には、ランドプリピット206が形成されている。図17に示す例では、レーザビームAはグルーブトラック202の上に収束している。
【0069】
グルーブトラック202の上において反射したレーザビームAは対物レンズ103およびハーフミラー104を通り抜けてフォトディテクタ14へ入射する。フォトディテクタ14は、グルーブトラック202の接線方向に対して光学的に平行な方向に沿って2個の領域に分割されており、入射したレーザビームAに基づいて、プッシュプル法に従って一対の差分信号を生成して、生成した一対の差分信号をプッシュプル信号検出回路12およびプッシュプル信号検出回路1へそれぞれ出力する。
【0070】
プッシュプル信号検出回路12は、AGC回路150AおよびAGC回路150Bを有している。AGC回路150AおよびAGC回路150Bは、互いに実質的に同一の構成を有している。AGC回路150Aは、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路150Cへ出力する。AGC回路150Bは、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路150Cへ出力する。AGC回路150AおよびAGC回路150Bの構成は、従来の技術において図18を参照して前述した構成と同一である。従って、AGC回路150AおよびAGC回路150Bの構成の詳細な説明は省略する。
【0071】
差動回路150Cは、AGC回路150Aによって振幅を調整された一対の差分信号の一方とAGC回路150Bによって振幅を調整された一対の差分信号の他方との間の差を検出してウォブル検出回路13へ出力する。
【0072】
プッシュプル信号検出回路1は、2個のAGC回路2を有している。AGC回路2の一方は、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路10へ出力する。AGC回路2の他方は、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路10へ出力する。
【0073】
図2は、プッシュプル信号検出回路1に設けられたAGC回路2の構成を示すブロック図である。
【0074】
AGC回路1には、可変ゲイン増幅器(VGA)4が設けられている。可変ゲイン増幅器4は、フォトディテクタ14によって生成された差分信号を、増幅器9から供給されるゲイン制御信号に基づいて増幅して、サンプルホールド回路(SH)5へ供給する。
【0075】
サンプルホールド回路5は、可変ゲイン増幅器4によって増幅された差分信号をサンプルホールド制御信号に応じてホールドしてハイパスフィルタ3へ出力する。ハイパスフィルタ3は、サンプルホールド回路5の出力からRF信号成分を抽出してエンベロープ検出回路(ENV)6へ出力する。
【0076】
エンベロープ検出回路6は、ハイパスフィルタ3の出力のエンベロープ波形を検出してローパスフィルタ(LPF)7へ出力する。ローパスフィルタ7は、エンベロープ検出回路6の出力を平滑化して差動回路8へ出力する。差動回路8は、ローパスフィルタ7の出力電圧と所定の基準電圧との間の差を増幅器9へ出力する。
【0077】
増幅器9は、差動回路8の出力を増幅してゲイン制御信号として可変ゲイン増幅器4へ出力する。増幅器9から出力されたゲイン制御信号に基づいて可変ゲイン増幅器4によって増幅された差分信号は、プッシュプル信号検出回路1に設けられた差動回路10へ供給される。
【0078】
差動回路10は、AGC回路2の一方によって増幅された一対の差分信号の一方とAGC回路2の他方によって増幅された一対の差分信号の他方との間の差を検出してプリピット検出回路11へ出力する。
【0079】
ウォブル検出回路13は、プッシュプル信号検出回路12に設けられた差動回路150Cからの出力に基づいてウォブル信号を検出して、アドレス検出器115とPLL116と位相比較器120とへ供給する。プリピット検出回路11は、プッシュプル信号検出回路1に設けられた差動回路10からの出力に基づいてランドプリピット信号を検出してアドレス検出器115とPLL116とへ供給する。
【0080】
アドレス検出器115は、ウォブル検出回路13によって検出されたウォブル信号とプリピット検出回路11によって検出されたランドプリピット信号とに基づいて、フォトディテクタ14によって受光された反射光の光ディスク101上における位置を表すアドレス情報を検出してシステムコントローラ117へ供給する。
【0081】
PLL116は、ウォブル検出回路13によって検出されたウォブル信号とプリピット検出回路11によって検出されたランドプリピット信号とに基づいて、光ディスク101にデータを記録するためのクロック信号を生成して、エンコーダ119およびパワー制御回路107へ供給する。
【0082】
インターフェース118は、図示しないホストコンピュータからの指令指令信号を受け取り、および光ディスク装置100において記録再生したデータの受け渡しを行う。システムコントローラ117は、インターフェース118を介して入力された指令信号とアドレス検出器115によって検出されたアドレス情報とに基づいて、デコーダ110に再生指示を与え、またエンコーダ119に記録指示を与える。
【0083】
エンコーダ119は、システムコントローラ117からの記録指示に基づいて、データバッファ111に格納されている記録データに対してエラー訂正符号を付加した後、符号変換し、記録変調を行い、パワー制御回路107に供給する。
【0084】
パワー制御回路107は、エンコーダ119から供給された記録データとPLL116から供給されたクロック信号とに基づいて、ピックアップ122に設けられたレーザ発振器105における発光パワーを制御するための信号をレーザ駆動回路106へ供給する。レーザ駆動回路106は、レーザ発振器105における発光パワーを制御するようにレーザ発振器105を駆動する。
【0085】
フォトディテクタ14は、光ディスク101からの反射光を受光して、プリピット206からのプリピット信号とグルーブトラック202からのウォブル信号とを含む記録情報データなどを有する検出信号を生成してヘッドアンプ109へ供給する。ヘッドアンプ109は、フォトディテクタ14から供給されたプリピット信号及びウォブル信号を増幅し、その増幅信号をデコーダ110へ供給する。デコーダ110は、供給された増幅信号をデコードして復調信号を生成しデータバッファ111へ格納する。
【0086】
位相比較器120は、ウォブル検出回路13によって検出されたウォブル信号と所定の回転基準信号との間の位相差をスピンドルドライバ121へ供給する。スピンドルドライバ121は、位相比較器120から供給された位相差に基づいて、ディスク101を一定速度で回転させるようにスピンドルモータ102を駆動する。
【0087】
このように構成された光ディスク装置100の動作を説明する。まず、スピンドルモータ102がディスク101を一定速度で回転させる。そして、レーザ発振器105は、レーザビームAをハーフミラー104へ向かって出射する。次に、レーザビームAはハーフミラー104によって反射され、対物レンズ103を通り抜けて光ディスク101の表面によって反射され、フォトディテクタ14へ入射する。その後、フォトディテクタ14は、入射したレーザビームAに基づいてプッシュプル法に従って一対の差分信号を生成して、生成した一対の差分信号をプッシュプル信号検出回路12とプッシュプル信号検出回路1へそれぞれ供給する。
【0088】
プッシュプル信号検出回路12に設けられたAGC回路150Aは、従来の技術において前述した動作と同様にして、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路150Cへ出力する。プッシュプル信号検出回路12に設けられたAGC回路150Bは、従来の技術において前述した動作と同様にして、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路150Cへ出力する。
【0089】
差動回路150Cは、AGC回路150Aによって増幅された一対の差分信号の一方とAGC回路150Bによって増幅された一対の差分信号の他方との間の差を検出してウォブル検出回路13へ出力する。
【0090】
図3(a)〜図3(h)は、実施の形態1に係る光ディスク装置100に設けられたプッシュプル信号検出回路1の動作を説明するための波形図である。
【0091】
図3(a)は、プッシュプル信号検出回路1のAGC回路2に設けられた可変ゲイン増幅器4へ入力される差分信号の波形図である。図3(a)においては、DC成分にオフセットが生じた場合の波形を示している。0V基準とクロスハッチングしたRF領域との間においてDC成分のオフセットが生じていることを示している。
【0092】
図3(b)は、AGC回路2に設けられたサンプルホールド回路5へ供給されるサンプルホールド制御信号の波形図である。図3(b)に示すように、サンプルホールド制御信号は、ランドプリピット領域の周辺に対応する期間の間でホールドレベルとなる信号である。
【0093】
図3(c)は、サンプルホールド回路5から出力される信号の波形図である。サンプルホールド回路5から出力される信号においては、図3(a)において重畳されていたランドプリピットに対応したパルス信号が、除去されている。
【0094】
図3(d)は、ハイパスフィルタ3から出力される信号の波形図である。図3(d)に示すように、ハイパスフィルタ3から出力される信号においてはRF信号成分が抽出されている。
【0095】
図3(e)は、エンベロープ検出回路6から出力される信号の波形図である。エンベロープ検出回路6から出力される信号は、RF信号成分の包絡線、つまりRF信号の振幅を示している。
【0096】
図3(f)は、ローパスフィルタ7から出力される信号の波形図である。ローパスフィルタ7から出力される信号は、実線によって示されており、一点鎖線によって示されたエンベロープ検出回路6から出力される信号を平滑化した信号である。破線によって示される信号は、基準レベルを表す信号を示している。差動回路8は、破線によって示される基準レベルを示す信号と実線によって示されるローパスフィルタ7から出力される信号との間の差を出力する。
【0097】
図3(g)は、フォトディテクタ14によって生成された差分信号が入力されるAGC回路2に設けられた可変ゲイン増幅器4において、ゲイン調整されて差動回路10へ供給される信号の波形図である。図3(h)は、プッシュプル信号検出回路1に設けられた差動回路10が出力するプッシュプル信号の波形図である。
【0098】
ローパスフィルタ7から差動回路8へ入力される信号の平均レベルと差動回路8へ入力される基準電圧との間の差が増幅器9によって増幅されゲイン制御信号に加算されて可変ゲイン増幅器4へ供給される。可変ゲイン増幅器4へ供給されるゲイン制御信号には増幅器9によって増幅された差動回路8からの出力が加算されているため、可変ゲイン増幅器4の出力レベルの平均値が基準レベルになるように制御される。その結果、図3(h)に示すように、プッシュプル信号検出回路1が出力するプッシュプル信号の波形からRF信号成分が除去される。
【0099】
このように、フォトディテクタ14からの差分信号の振幅を調整するAGC回路2から出力される信号においては、各RF信号成分の振幅の平均値が基準レベルとなるので、ウォブル信号およびランドプリピット信号を損なうことなくRF信号の混入を抑制することができる。
【0100】
仮にオフトラックまたは記録マーキングずれによって、2分割されたフォトディテクタ14の出力にアンバランスが生じても、RF信号の混入を抑制することができる。
【0101】
また、光ディスク101上の未記録領域において記録再生をしている場合においても、つまりRF信号の混入がない場合であっても、ローパスフィルタ7により平滑化を行うことで、可変ゲイン増幅器4の出力レベルは所望のレベルに収束する。このため、ランドプリピット信号を精度よく検出することができる。
【0102】
以上のように実施の形態1によれば、プッシュプル信号検出回路12が、フォトディテクタ14によって生成された一対の差分信号に基づいて第1ラジアルプッシュプル信号を検出し、プッシュプル信号検出回路12によって検出された第1ラジアルプッシュプル信号に基づいてウォブル検出回路13がウォブル信号を検出し、プッシュプル信号検出回路1が、フォトディテクタ14によって生成された一対の差分信号に基づいて第2ラジアルプッシュプル信号を検出し、プッシュプル信号検出回路1によって検出された第2ラジアルプッシュプル信号に基づいてプリピット検出回路11がランドプリピット信号を検出する。
【0103】
このため、フォトディテクタ14によって生成された一対の差分信号にオフセット成分が生じた場合であっても、プッシュプル信号検出回路1によってRF信号成分を完全に除去するように第2ラジアルプッシュプル信号を検出することができる。その結果、ランドプリピット信号の検出精度を向上させることができる。
【0104】
(実施の形態2)
図4は、実施の形態2に係る光ディスク装置100Aの構成を示すブロック図である。前述した実施の形態1において図1を参照して説明した光ディスク装置100の構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。前述した光ディスク装置100と異なる点は、プッシュプル信号検出回路1の替わりにプッシュプル信号検出回路1Aを備えている点である。
【0105】
プッシュプル信号検出回路1Aは、2個のAGC回路2Aを有している。AGC回路2Aの一方は、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路10へ出力する。AGC回路2Aの他方は、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路10へ出力する。
【0106】
図5は、プッシュプル信号検出回路1Aに設けられたAGC回路2Aの構成を示すブロック図である。
【0107】
AGC回路1Aには、可変ゲイン増幅器(VGA)4が設けられている。可変ゲイン増幅器4は、フォトディテクタ14によって生成された差分信号を、増幅器9Aから供給されるゲイン制御信号に基づいて増幅してサンプルホールド回路(SH)5へ供給する。
【0108】
サンプルホールド回路5は、可変ゲイン増幅器4によって増幅された差分信号をサンプルホールド制御信号に応じてホールドしてハイパスフィルタ3へ出力する。ハイパスフィルタ3は、サンプルホールド回路5の出力からRF信号成分を抽出してエンベロープ検出回路(ENV)6へ出力する。
【0109】
エンベロープ検出回路6は、ハイパスフィルタ3の出力のエンベロープ波形を検出して差動回路8Aへ出力する。差動回路8Aは、エンベロープ検出回路6の出力電圧と所定の基準電圧との間の差を増幅器9Aへ出力する。
【0110】
増幅器9Aは、差動回路8Aの出力を増幅してゲイン制御信号として可変ゲイン増幅器4へ出力する。増幅器9Aから出力されたゲイン制御信号に基づいて可変ゲイン増幅器4によって増幅された差分信号は、プッシュプル信号検出回路1Aに設けられた差動回路10へ供給される。
【0111】
差動回路10は、AGC回路2Aの一方によって増幅された一対の差分信号の一方とAGC回路2Aの他方によって増幅された一対の差分信号の他方との間の差を検出してプリピット検出回路11へ出力する。
【0112】
ウォブル検出回路13は、プッシュプル信号検出回路12に設けられた差動回路150Cからの出力に基づいてウォブル信号を検出して、アドレス検出器115とPLL116と位相比較器120とへ供給する。プリピット検出回路11は、プッシュプル信号検出回路1Aに設けられた差動回路10からの出力に基づいてランドプリピット信号を検出してアドレス検出器115とPLL116とへ供給する。
【0113】
このように構成された光ディスク装置100Aの動作を説明する。まず、スピンドルモータ102がディスク101を一定速度で回転させる。そして、レーザ発振器105は、レーザビームAをハーフミラー104へ向かって出射する。次に、レーザビームAは、ハーフミラー104によって反射され、対物レンズ103を通り抜けて光ディスク101の表面によって反射され、フォトディテクタ14へ入射する。その後、フォトディテクタ14は、入射したレーザビームAに基づいてプッシュプル法に従って一対の差分信号を生成して、生成した一対の差分信号をプッシュプル信号検出回路12とプッシュプル信号検出回路1Aへそれぞれ供給する。
【0114】
プッシュプル信号検出回路12に設けられたAGC回路150Aは、実施の形態1において前述した動作と同様にして、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路150Cへ出力する。プッシュプル信号検出回路12に設けられたAGC回路150Bは、実施の形態1において前述した動作と同様にして、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路150Cへ出力する。
【0115】
差動回路150Cは、AGC回路150Aによって増幅された一対の差分信号の一方とAGC回路150Bによって増幅された一対の差分信号の他方との間の差を検出してウォブル検出回路13へ出力する。
【0116】
図6(a)〜図6(g)は、実施の形態2に係る光ディスク装置100Aに設けられたプッシュプル信号検出回路1Aの動作を説明するための波形図である。
【0117】
図6(a)は、プッシュプル信号検出回路1AのAGC回路2Aに設けられた可変ゲイン増幅器4へ入力される差分信号の波形図である。差分信号においては、140kHzのサイン波成分にランドプリピットに対応したパルス信号が重畳されている。図6(a)においては、DC成分にオフセットが生じた場合の波形を示している。0V基準とクロスハッチングしたRF変調された領域との間においてDC成分のオフセットが生じていることを示している。
【0118】
図6(b)は、AGC回路2Aに設けられたサンプルホールド回路5へ供給されるサンプルホールド制御信号の波形図である。図6(b)に示すように、サンプルホールド制御信号は、ランドプリピット領域の周辺に対応する期間の間でホールドレベルとなる信号である。
【0119】
図6(c)は、サンプルホールド回路5から出力される信号の波形図である。サンプルホールド回路5から出力される信号においては、図6(a)において重畳されていたランドプリピットに対応したパルス信号が除去されている。
【0120】
図6(d)は、ハイパスフィルタ3から出力される信号の波形図である。図6(d)に示すように、ハイパスフィルタ3から出力される信号においてはRF信号成分が抽出されている。
【0121】
図6(e)は、エンベロープ検出回路6から出力される信号の波形図である。エンベロープ検出回路6から出力される信号は、RF信号成分の包絡線、つまりRF信号の振幅を示している。エンベロープ検出回路6から出力される信号の振幅は、ウォブルの揺動に対応している。差動回路8Aは、図6(e)における破線によって示される基準電圧と実線によって示されるエンベロープ検出回路6から出力される信号電圧との間の差を出力する。
【0122】
図6(f)は、フォトディテクタ14によって生成された差分信号が入力されるAGC回路2Aに設けられた可変ゲイン増幅器4において、ゲイン調整されて差動回路10へ供給される信号の波形図である。図6(g)は、プッシュプル信号検出回路1Aに設けられた差動回路10が出力するプッシュプル信号の波形図である。
【0123】
エンベロープ検出回路6から差動回路8Aへ入力される信号の平均レベルと差動回路8Aへ入力される基準電圧との間の差が、増幅器9Aによって増幅されゲイン制御信号に加算されて可変ゲイン増幅器4へ供給される。可変ゲイン増幅器4へ供給されるゲイン制御信号には増幅器9Aによって増幅された差動回路8Aからの出力が加算されているため、可変ゲイン増幅器4の出力レベルの平均値が基準レベルになるように制御される。その結果、図6(g)に示すように、プッシュプル信号検出回路1Aが出力するプッシュプル信号の波形からRF信号成分が除去される。
【0124】
このように、プッシュプル信号検出回路1Aにおいては、AGC回路2Aの後の各RF信号成分の振幅が基準レベルとなる。このため、RF信号の混入を抑制することができるとともに、ウォブル成分も除去される。RF信号成分が除去されることで、仮にオフトラックや記録マーキングずれによって、2分割されたフォトディテクタ14の出力にアンバランスが生じても、RF信号の混入が抑制される。
【0125】
さらに、前述した実施の形態1と異なり、プッシュプル信号検出回路1Aの各AGC回路2Aにはローパスフィルタ回路が設けられていない。このため、回路規模を削減することができる。
【0126】
(実施の形態3)
図7は、実施の形態3に係る光ディスク装置100Bの構成を示すブロック図である。前述した実施の形態1において図1を参照して説明した光ディスク装置100の構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。前述した光ディスク装置100と異なる点は、プッシュプル信号検出回路1の替わりにプッシュプル信号検出回路1Bを備えている点である。
【0127】
プッシュプル信号検出回路1Bは、AGC回路2BおよびAGC回路2Cを有している。AGC回路2Bは、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路10へ出力する。AGC回路2Cは、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路10へ出力する。
【0128】
図8(a)はプッシュプル信号検出回路1Bに設けられたAGC回路2Bの構成を示すブロック図であり、図8(b)はプッシュプル信号検出回路1Bに設けられたAGC回路2Cの構成を示すブロック図である。
【0129】
AGC回路2Bには、可変ゲイン増幅器(VGA)4Bが設けられている。可変ゲイン増幅器4Bは、フォトディテクタ14によって生成された差分信号の一方を、増幅器9Bから供給されるゲイン制御信号に基づいて増幅して、サンプルホールド回路(SH)5Bへ供給する。
【0130】
サンプルホールド回路5Bは、可変ゲイン増幅器4Bによって増幅された差分信号をサンプルホールド制御信号に応じてホールドしてハイパスフィルタ3Bへ出力する。ハイパスフィルタ3Bは、サンプルホールド回路5Bの出力からRF信号成分を抽出してエンベロープ検出回路(ENV)6Bへ出力する。
【0131】
エンベロープ検出回路6Bは、ハイパスフィルタ3Bの出力のエンベロープ波形を検出してピーク検波回路19へ出力する。ピーク検波回路19は、エンベロープ検出回路6Bの出力におけるピークレベルを検波して差動回路8Bへ出力する。差動回路8Bは、ピーク検波回路19からの出力電圧と所定の基準電圧との間の差を増幅器9Bへ出力する。
【0132】
増幅器9Bは、差動回路8Bからの出力を増幅してゲイン制御信号として可変ゲイン増幅器4Bへ出力する。増幅器9Bから出力されたゲイン制御信号に基づいて可変ゲイン増幅器4Bによって増幅された差分信号は、プッシュプル信号検出回路1Bに設けられた差動回路10へ供給される。
【0133】
AGC回路2Cには、可変ゲイン増幅器(VGA)4Cが設けられている。可変ゲイン増幅器4Cは、フォトディテクタ14によって生成された差分信号の他方を、増幅器9Cから供給されるゲイン制御信号に基づいて増幅してサンプルホールド回路(SH)5Cへ供給する。
【0134】
サンプルホールド回路5Cは、可変ゲイン増幅器4Cによって増幅された差分信号をサンプルホールド制御信号に応じてホールドしてハイパスフィルタ3Cへ出力する。ハイパスフィルタ3Cは、サンプルホールド回路5Cの出力からRF信号成分を抽出してエンベロープ検出回路(ENV)6Cへ出力する。
【0135】
エンベロープ検出回路6Cは、ハイパスフィルタ3Cの出力のエンベロープ波形を検出してボトム検波回路20へ出力する。ボトム検波回路20は、エンベロープ検出回路6Cの出力におけるボトムレベルを検波して差動回路8Cへ出力する。差動回路8Cは、ボトム検波回路20からの出力電圧と所定の基準電圧との間の差を増幅器9Cへ出力する。
【0136】
増幅器9Cは、差動回路8Cからの出力を増幅してゲイン制御信号として可変ゲイン増幅器4Cへ出力する。増幅器9Cから出力されたゲイン制御信号に基づいて可変ゲイン増幅器4Cによって増幅された差分信号は、プッシュプル信号検出回路1Bに設けられた差動回路10へ供給される。
【0137】
差動回路10は、AGC回路2Bによって増幅された一対の差分信号の一方とAGC回路2Cによって増幅された一対の差分信号の他方との間の差を検出してプリピット検出回路11へ出力する。プリピット検出回路11は、プッシュプル信号検出回路1Bに設けられた差動回路10からの出力に基づいてランドプリピット信号を検出してアドレス検出器115とPLL116とへ供給する。
【0138】
このように構成された光ディスク装置100Bの動作を説明する。図9(a)〜図9(e)は、実施の形態3に係る光ディスク装置100Bに設けられたプッシュプル信号検出回路1Bの動作を説明するための波形図である。
【0139】
図9(a)はプッシュプル信号検出回路1BのAGC回路2Bに設けられた可変ゲイン増幅器4Bへ入力される差分信号の一方の波形図であり、図9(b)はプッシュプル信号検出回路1BのAGC回路2Cに設けられた可変ゲイン増幅器4Cへ入力される差分信号の他方の波形図である。図9(a)に示す差分信号の一方は、フォトディテクタ14における光ディスク101の外周側において検出された信号である。差分信号の一方においては、140kHzのサイン波成分にランドプリピットに対応したパルス信号が重畳されている。図9(a)においては、DC成分にオフセットが生じた場合の波形を示している。0V基準とクロスハッチングしたRF変調された領域との間においてDC成分のオフセットが生じていることを示している。
【0140】
図9(c)は、フォトディテクタ14によって生成された差分信号の一方が入力されるAGC回路2Bに設けられた可変ゲイン増幅器4Bにおいて、ゲイン調整されて差動回路10へ供給される信号の波形図である。図9(c)に示す可変ゲイン増幅器4Bにおいてゲイン調整された信号は、RF信号振幅のピークが基準電位になるように調整されている。
【0141】
図9(d)は、フォトディテクタ14によって生成された差分信号の他方が入力されるAGC回路2Cに設けられた可変ゲイン増幅器4Cにおいて、ゲイン調整されて差動回路10へ供給される信号の波形図である。図9(d)に示す可変ゲイン増幅器4Cにおいてゲイン調整された信号は、RF信号振幅のボトムが基準電位になるように調整されている。
【0142】
図9(e)は、プッシュプル信号検出回路1Bに設けられた差動回路10が出力するプッシュプル信号の波形図である。プッシュプル信号検出回路1Bにおいては、AGC回路2BおよびAGC回路2Cによって処理された後の信号におけるRF信号成分がランドプリピット領域において基準信号レベルになる。このため、差分をとった後のラジアルプッシュプル信号に混入するRF信号成分はランドプリピット領域において最小となる。この結果、実施の形態3に係る光ディスク装置100Bにおいてはランドプリピット信号の検出性能が飛躍的に向上する。このため、実施の形態3に係る光ディスク装置100Bは、オフトラックなどのようなストレスや、記録マーキングずれが発生しても、ウォブル信号及びランドプリピット信号を安定して検出することが可能となる。
【0143】
(実施の形態4)
図10は、実施の形態4に係る光ディスク装置100Dの構成を示すブロック図である。前述した実施の形態1において図1を参照して説明した光ディスク装置100の構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。前述した光ディスク装置100と異なる点は、プッシュプル信号検出回路1の替わりにプッシュプル信号検出回路1Dを備えている点である。
【0144】
プッシュプル信号検出回路1Dは、2個のAGC回路2Dを有している。AGC回路2Dの一方は、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路10へ出力する。AGC回路2Dの他方は、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路10へ出力する。
【0145】
図11は、プッシュプル信号検出回路1Dに設けられたAGC回路2Dの構成を示すブロック図である。
【0146】
AGC回路2Dには、可変ゲイン増幅器(VGA)4Dが設けられている。可変ゲイン増幅器4Dは、フォトディテクタ14によって生成された差分信号を、増幅器9Dから供給されるゲイン制御信号に基づいて増幅してサンプルホールド回路(SH)5Dへ供給する。
【0147】
サンプルホールド回路5Dは、可変ゲイン増幅器4Dによって増幅された差分信号をサンプルホールド制御信号に応じてホールドしてハイパスフィルタ3Dへ出力する。ハイパスフィルタ3Dは、サンプルホールド回路5Dの出力からRF信号成分を抽出して全波整流器17へ出力する。
【0148】
全波整流器17は、ハイパスフィルタ3Dによって抽出されたRF信号成分を全波整流してローパスフィルタ7Dへ出力する。ローパスフィルタ7Dは、全波整流器17によって全波整流されたRF信号成分を平滑化して差動回路8Dへ出力する。差動回路8Dは、ローパスフィルタ7Dによって平滑化されたRF信号成分と所定の基準電圧との間の差を増幅器9Dへ出力する。
【0149】
増幅器9Dは、差動回路8Dの出力を増幅してゲイン制御信号として可変ゲイン増幅器4Dへ出力する。増幅器9Dから出力されたゲイン制御信号に基づいて可変ゲイン増幅器4Dによって増幅された差分信号は、プッシュプル信号検出回路1Dに設けられた差動回路10へ供給される。
【0150】
このように構成された光ディスク装置100Dの動作を説明する。図12(a)〜図12(e)は、実施の形態4に係る光ディスク装置100Dに設けられたプッシュプル信号検出回路1Dの動作を説明するための波形図である。
【0151】
図12(a)は、プッシュプル信号検出回路1DのAGC回路2Dに設けられた可変ゲイン増幅器4Dへ入力される差分信号の波形図である。差分信号においては、140kHzのサイン波成分にランドプリピットに対応したパルス信号が重畳されている。図12(a)においては、DC成分にオフセットが生じた場合の波形を示している。0V基準とクロスハッチングしたRF変調された領域との間においてDC成分のオフセットが生じていることを示している。
【0152】
図12(b)は、ハイパスフィルタ3Dから出力される信号の波形図である。図12(b)に示すように、ハイパスフィルタ3Dから出力される信号においてはRF信号成分が抽出されている。
【0153】
図12(c)は、全波整流器17から出力される信号の波形図である。全波整流器17から出力される信号は、全波整流されたRF信号である。
【0154】
図12(d)は、ローパスフィルタ7Dから出力される信号の波形図である。ローパスフィルタ7Dから出力される信号は、全波整流されたRF信号を平均化した信号である。差動回路8Dは、図12(d)において破線によって示される基準レベルと図12(d)において実線によって示されるローパスフィルタ7Dから出力される信号との間の差を出力する。
【0155】
図12(e)は、フォトディテクタ14によって生成された差分信号が入力されるAGC回路2Dに設けられた可変ゲイン増幅器4Dにおいて、ゲイン調整されて差動回路10へ供給される信号の波形図である。ローパスフィルタ7Dから差動回路8Dへ入力される信号の平均レベルと差動回路8Dへ入力される基準電圧との間の差が、増幅器9Dによって増幅されゲイン制御信号に加算されて可変ゲイン増幅器4Dへ供給される。可変ゲイン増幅器4Dへ供給されるゲイン制御信号には増幅器9Dによって増幅された差動回路8Dからの出力が加算されているため、可変ゲイン増幅器4Dの出力レベルの平均値が基準レベルになるように制御される。その結果、プッシュプル信号検出回路1Dの出力からRF信号成分を除去することができる。
【0156】
このように実施の形態4に係るプッシュプル信号検出回路1Dにおいては、AGC回路2Dの後における各RF信号成分の振幅が基準レベルとなる。このため、RF信号の混入を抑制することが可能である。RF信号成分が除去されることで、仮オフトラックや記録マーキングずれによって、2分割されたフォトディテクタ14からの出力にアンバランスが生じても、RF信号の混入が抑制される。さらに、前述した実施の形態1と比較して、プッシュプル信号検出回路1DのAGC回路2Dにはエンベロープ検出回路が設けられていない替わりに全波整流器が設けられている。
【0157】
(実施の形態5)
図13は、実施の形態5に係る光ディスク装置100Eの構成を示すブロック図である。前述した実施の形態1において図1を参照して説明した光ディスク装置100の構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。前述した光ディスク装置100と異なる点は、プッシュプル信号検出回路1の替わりにプッシュプル信号検出回路1Eを備えている点である。
【0158】
プッシュプル信号検出回路1Eは、2個のAGC回路2Eを有している。AGC回路2Eの一方は、フォトディテクタ14によって生成された一対の差分信号の一方の振幅を調整して差動回路10へ出力する。AGC回路2Eの他方は、フォトディテクタ14によって生成された一対の差分信号の他方の振幅を調整して差動回路10へ出力する。
【0159】
図14は、プッシュプル信号検出回路1Eに設けられたAGC回路2Eの構成を示すブロック図である。
【0160】
AGC回路2Eには、可変ゲイン増幅器(VGA)4Eが設けられている。可変ゲイン増幅器4Eは、フォトディテクタ14によって生成された差分信号を、増幅器9Eから供給されるゲイン制御信号に基づいて増幅して、サンプルホールド回路(SH)5Eへ供給する。
【0161】
サンプルホールド回路5Eは、可変ゲイン増幅器4Eによって増幅された差分信号をサンプルホールド制御信号に応じてホールドしてハイパスフィルタ3Eへ出力する。ハイパスフィルタ3Eは、サンプルホールド回路5Eの出力からRF信号成分を抽出して半波整流器18へ出力する。
【0162】
半波整流器18は、ハイパスフィルタ3Eによって抽出されたRF信号成分を半波整流してエンベロープ検出回路6Eへ出力する。エンベロープ検出回路6Eは、半波整流器18によって半波整流されたRF信号成分のエンベロープ波形を検出してローパスフィルタ7Eへ出力する。ローパスフィルタ7Eは、エンベロープ検出回路6Eからの出力を平滑化して差動回路8Eへ出力する。差動回路8Eは、ローパスフィルタ7Eによって平滑化されたRF信号成分と所定の基準電圧との間の差を増幅器9Eへ出力する。
【0163】
増幅器9Eは、差動回路8Eの出力を増幅してゲイン制御信号として可変ゲイン増幅器4Eへ出力する。増幅器9Eから出力されたゲイン制御信号に基づいて可変ゲイン増幅器4Eによって増幅された差分信号は、プッシュプル信号検出回路1Eに設けられた差動回路10へ供給される。
【0164】
このように構成された光ディスク装置100Eの動作を説明する。図15(a)〜図15(f)は、実施の形態5に係る光ディスク装置100Eに設けられたプッシュプル信号検出回路1Eの動作を説明するための波形図である。
【0165】
図15(a)は、プッシュプル信号検出回路1EのAGC回路2Eに設けられた可変ゲイン増幅器4Eへ入力される差分信号の波形図である。差分信号においては、140kHzのサイン波成分にランドプリピットに対応したパルス信号が重畳されている。図15(a)においては、DC成分にオフセットが生じた場合の波形を示している。0V基準とクロスハッチングしたRF変調された領域との間においてDC成分のオフセットが生じていることを示している。
【0166】
図15(b)は、ハイパスフィルタ3Eから出力される信号の波形図である。図15(b)に示すように、ハイパスフィルタ3Eから出力される信号においてはRF信号成分が抽出されている。
【0167】
図15(c)は、半波整流器18から出力される信号の波形図である。半波整流器18から出力される信号は、半波整流されたRF信号である。
【0168】
図16(d)は、エンベロープ検出回路6Eから出力される信号の波形図である。エンベロープ検出回路6Eから出力される信号は、RF信号成分の包絡線、つまりRF信号の振幅を示している。
【0169】
図16(e)は、ローパスフィルタ7Eから出力される信号の波形図である。ローパスフィルタ7Eから出力される実線によって示された信号は、一点鎖線によって示されたエンベロープ検出回路6Eから出力される信号を平滑化した信号である。差動回路8Eは、図16(e)において破線によって示される基準レベルと図16(e)において実線によって示されるローパスフィルタ7Eから出力される信号との間の差を出力する。
【0170】
図16(f)は、フォトディテクタ14によって生成された差分信号が入力されるAGC回路2Eに設けられた可変ゲイン増幅器4Eにおいて、ゲイン調整されて差動回路10へ供給される信号の波形図である。ローパスフィルタ7Eから差動回路8Eへ入力される信号の平均レベルと差動回路8Eへ入力される基準電圧との間の差が、増幅器9によって増幅されゲイン制御信号に加算されて可変ゲイン増幅器4Eへ供給される。可変ゲイン増幅器4Eへ供給されるゲイン制御信号には増幅器9Eによって増幅された差動回路8Eからの出力が加算されているため、可変ゲイン増幅器4Eの出力レベルの平均値が基準レベルになるように制御される。その結果、プッシュプル信号検出回路1Eの出力からRF信号成分を除去することができる。
【0171】
このようにプッシュプル信号検出回路1Eにおいては、AGC回路2Eの後の各RF信号成分の振幅が基準レベルとなるため、RF信号の混入を抑制することが可能である。RF信号成分が除去されることで、仮にオフトラックや記録マーキングずれによって、2分割されたフォトディテクタ14の出力にアンバランスが生じても、RF信号の混入を抑制することができる。
【0172】
以上のように実施の形態1〜実施の形態5に係るプッシュプル信号検出回路を備えた光ディスク装置は、記録再生中のオフトラックおよびディスク上の記録マーキングずれによって発生し、ラジアルプッシュプル信号に漏れ込む記録マークによる反射光の変調レベルを低減することができる。このため、ランドプリピット信号を高精度に検出することができる。これにより、信頼性の高い光ディスク装置を得ることができる。
【0173】
【発明の効果】
以上のように本発明によれば、ランドプリピット信号とウォブル信号とを高精度に検出することができる光ディスク装置を提供することができる。
【図面の簡単な説明】
【図1】実施の形態1に係る光ディスク装置の構成を示すブロック図である。
【図2】実施の形態1に係る光ディスク装置のプッシュプル信号検出回路に設けられたAGC回路の構成を示すブロック図である。
【図3】実施の形態1に係る光ディスク装置に設けられたプッシュプル信号検出回路の動作を説明するための波形図である。(a)はプッシュプル信号検出回路に設けられた可変ゲイン増幅器へ入力され
る信号の波形図であり、
(b)はプッシュプル信号検出回路に設けられたサンプルホールド回路へ入力されるサンプルホールド制御信号の波形図であり、
(c)はプッシュプル信号検出回路に設けられたサンプルホールド回路から出力される信号の波形図であり、
(d)はプッシュプル信号検出回路に設けられたハイパスフィルタから出力される信号の波形図であり、
(e)はプッシュプル信号検出回路に設けられたエンベロープ検出回路から出力される信号の波形図であり、
(f)はプッシュプル信号検出回路に設けられたローパスフィルタから出力される信号の波形図であり、
(g)はプッシュプル信号検出回路に設けられた可変ゲイン増幅器から出力される信号の波形図であり、
(h)はプッシュプル信号検出回路から出力されるプッシュプル信号の波形図である。
【図4】実施の形態2に係る光ディスク装置の構成を示すブロック図である。
【図5】実施の形態2に係る光ディスク装置のプッシュプル信号検出回路に設けられたAGC回路の構成を示すブロック図である。
【図6】実施の形態2に係る光ディスク装置に設けられたプッシュプル信号検出回路の動作を説明するための波形図である。
(a)はプッシュプル信号検出回路に設けられた可変ゲイン増幅器へ入力される信号の波形図であり、
(b)はプッシュプル信号検出回路に設けられたサンプルホールド回路へ入力されるサンプルホールド制御信号の波形図であり、
(c)はプッシュプル信号検出回路に設けられたサンプルホールド回路から出力される信号の波形図であり、
(d)はプッシュプル信号検出回路に設けられたハイパスフィルタから出力される信号の波形図であり、
(e)はプッシュプル信号検出回路に設けられたエンベロープ検出回路から出力される信号の波形図であり、
(f)はプッシュプル信号検出回路に設けられた可変ゲイン増幅器から出力される信号の波形図であり、
(g)はプッシュプル信号検出回路から出力されるプッシュプル信号の波形図である。
【図7】実施の形態3に係る光ディスク装置の構成を示すブロック図である。
【図8】(a)は実施の形態3に係る光ディスク装置のプッシュプル信号検出回路に設けられたAGC回路の構成を示すブロック図であり、
(b)は実施の形態3に係る光ディスク装置のプッシュプル信号検出回路に設けられた他のAGC回路の構成を示すブロック図である。
【図9】実施の形態3に係る光ディスク装置に設けられたプッシュプル信号検出回路の動作を説明するための波形図である。
(a)はプッシュプル信号検出回路のAGC回路に設けられた可変ゲイン増幅器へ入力される信号の波形図であり、
(b)はプッシュプル信号検出回路の他のAGC回路に設けられた可変ゲイン増幅器へ入力される信号の波形図であり、
(c)はプッシュプル信号検出回路のAGC回路に設けられた可変ゲイン増幅器から出力される信号の波形図であり、
(d)はプッシュプル信号検出回路の他のAGC回路に設けられた可変ゲイン増幅器から出力される信号の波形図である。
(e)はプッシュプル信号検出回路から出力されるプッシュプル信号の波形図である。
【図10】実施の形態4に係る光ディスク装置の構成を示すブロック図である。
【図11】実施の形態4に係る光ディスク装置のプッシュプル信号検出回路に設けられたAGC回路の構成を示すブロック図である。
【図12】実施の形態4に係る光ディスク装置に設けられたプッシュプル信号検出回路の動作を説明するための波形図である。
(a)はプッシュプル信号検出回路のAGC回路に設けられた可変ゲイン増幅器へ入力される信号の波形図であり、
(b)はプッシュプル信号検出回路のAGC回路に設けられたハイパスフィルタへ出力される信号の波形図であり、
(c)はプッシュプル信号検出回路のAGC回路に設けられた全波整流回路から出力される信号の波形図であり、
(d)はプッシュプル信号検出回路のAGC回路に設けられたローパスフィルタから出力される信号の波形図であり、
(e)はプッシュプル信号検出回路のAGC回路に設けられた可変ゲイン増幅器から出力される信号の波形図である。
【図13】実施の形態5に係る光ディスク装置の構成を示すブロック図である。
【図14】実施の形態5に係る光ディスク装置のプッシュプル信号検出回路に設けられたAGC回路の構成を示すブロック図である。
【図15】実施の形態5に係る光ディスク装置に設けられたプッシュプル信号検出回路の動作を説明するための波形図である。
(a)はプッシュプル信号検出回路のAGC回路に設けられた可変ゲイン増幅器へ入力される信号の波形図であり、
(b)はプッシュプル信号検出回路のAGC回路に設けられたハイパスフィルタへ出力される信号の波形図であり、
(c)はプッシュプル信号検出回路のAGC回路に設けられた半波整流回路から出力される信号の波形図であり、
(d)はプッシュプル信号検出回路のAGC回路に設けられたエンベロープ検出回路から出力される信号の波形図であり、
(e)はプッシュプル信号検出回路のAGC回路に設けられたローパスフィルタから出力される信号の波形図であり、
(f)はプッシュプル信号検出回路のAGC回路に設けられた可変ゲイン増幅器から出力される信号の波形図である。
【図16】従来の光ディスク装置の構成を示すブロック図である。
【図17】光ディスク装置によって読み書きされる光ディスクに形成された記録領域を拡大して示した斜視図である。
【図18】従来の光ディスク装置のプッシュプル信号検出回路に設けられたAGC回路の構成を示すブロック図である。
【図19】従来の光ディスク装置に設けられたプッシュプル信号検出回路の動作を説明するための波形図である。
【図20】従来の光ディスク装置に設けられたプッシュプル信号検出回路の他の動作を説明するための波形図である。
【符号の説明】
1 プッシュプル信号検出回路
2 AGC回路
3 ハイパスフィルタ
4 可変ゲイン増幅器
5 サンプルホールド回路
6 エンベロープ検出回路
7 ローパスフィルタ
8 差動回路
9 増幅器
10 差動回路
11 プリセット検出回路
12 プッシュプル信号検出回路
13 ウォブル検出回路
14 フォトディテクタ
15 アドレス検出器
16 PLL
17 全波整流回路
18 半波整流回路
19 ピーク検波回路
20 ボトム検波回路
100 光ディスク装置

Claims (11)

  1. 所定の周期によってウォブリングして形成されたランドトラックにランドプリピットが形成された光ディスクによって反射された反射光を受光し、前記受光した反射光に基づいて、プッシュプル法に従って一対の差分信号を生成するフォトディテクタと、
    前記フォトディテクタによって生成された前記一対の差分信号に基づいて第1ラジアルプッシュプル信号を検出する第1プッシュプル信号検出回路と、
    前記第1プッシュプル信号検出回路によって検出された前記第1ラジアルプッシュプル信号に基づいてウォブル信号を検出するウォブル検出回路と、
    前記フォトディテクタによって生成された前記一対の差分信号に基づいて第2ラジアルプッシュプル信号を検出する第2プッシュプル信号検出回路と、
    前記第2プッシュプル信号検出回路によって検出された前記第2ラジアルプッシュプル信号に基づいてランドプリピット信号を検出するプリピット検出回路とを具備することを特徴とする光ディスク装置。
  2. 前記第2プッシュプル信号検出回路は、前記フォトディテクタによって生成された前記一対の差分信号の一方の振幅を調整する第1AGC回路と、
    前記フォトディテクタによって生成された前記一対の差分信号の他方の振幅を調整する第2AGC回路と、
    前記第1AGC回路によって振幅を調整された前記一対の差分信号の前記一方と前記第2AGC回路によって振幅を調整された前記一対の差分信号の前記他方との間の差を検出する差動回路とを有している、請求項1記載の光ディスク装置。
  3. 前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、
    前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するサンプルホールド回路と、
    前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、
    前記ハイパスフィルタの出力のエンベロープ波形を検出して出力するエンベロープ検出回路と、
    前記エンベロープ検出回路の出力を平滑化するローパスフィルタと、
    前記ローパスフィルタの出力電圧と所定の基準電圧との間の差を出力する差動回路と、
    前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有している、請求項2記載の光ディスク装置。
  4. 前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、
    前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するするサンプルホールド回路と、
    前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、
    前記ハイパスフィルタの出力のエンベロープ波形を検出して出力するエンベロープ検出回路と、
    前記エンベロープ検出回路の出力と所定の基準電圧との間の差を出力する差動回路と、
    前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有している、請求項2記載の光ディスク装置。
  5. 前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、
    前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するするサンプルホールド回路と、
    前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、
    前記ハイパスフィルタの出力を整流して出力する全波整流回路と、
    前記全波整流回路の出力を平滑化して出力するローパスフィルタと、
    前記ローパスフィルタの出力と所定の基準電圧との間の差を出力する差動回路と、
    前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有している、請求項2記載の光ディスク装置。
  6. 前記第1AGC回路と前記第2AGC回路とは、前記一対の差分信号のいずれかをゲイン制御信号に基づいて増幅する可変ゲイン増幅器と、
    前記可変ゲイン増幅器によって増幅された前記一対の差分信号のいずれかをサンプルホールド制御信号に応じてホールドして出力するするサンプルホールド回路と、
    前記サンプルホールド回路の出力からRF信号成分を抽出して出力するハイパスフィルタと、
    前記ハイパスフィルタの出力を整流して出力する半波整流回路と、
    前記半波整流回路の出力のエンベロープ波形を検出して出力するエンベロープ検出回路と、
    前記エンベロープ検出回路の出力を平滑化して出力するローパスフィルタと、
    前記ローパスフィルタの出力と所定の基準電圧との間の差を出力する差動回路と、
    前記差動回路の出力を増幅して前記ゲイン制御信号として前記可変ゲイン増幅器へ出力する増幅器とをそれぞれ有している、請求項2記載の光ディスク装置。
  7. 前記基準電圧は、前記一対の差分信号の一方の電圧と前記一対の差分信号の他方の電圧との平均電圧になっている、請求項3ないし請求項6記載の光ディスク装置。
  8. 前記第1AGC回路は、前記一対の差分信号の一方を第1ゲイン制御信号に基づいて増幅する第1可変ゲイン増幅器と、
    前記可変ゲイン増幅器によって増幅された前記一対の差分信号の一方をサンプルホールド制御信号に応じてホールドして出力するする第1サンプルホールド回路と、
    前記第1サンプルホールド回路の出力からRF信号成分を抽出して出力する第1ハイパスフィルタと、
    前記第1ハイパスフィルタの出力のエンベロープ波形を検出して出力する第1エンベロープ検出回路と、
    前記第1エンベロープ検出回路の出力におけるピークレベルを検波して出力するピーク検波回路と、
    前記ピーク検波回路の出力と所定の第1基準電圧との間の差を出力する第1差動回路と、
    前記第1差動回路の出力を増幅して前記第1ゲイン制御信号として前記第1可変ゲイン増幅器へ出力する第1増幅器とを有しており、
    前記第2AGC回路は、前記一対の差分信号の他方を第2ゲイン制御信号に基づいて増幅する第2可変ゲイン増幅器と、
    前記第2可変ゲイン増幅器によって増幅された前記一対の差分信号の他方を前記サンプルホールド制御信号に応じてホールドして出力するする第2サンプルホールド回路と、
    前記第2サンプルホールド回路の出力からRF信号成分を抽出して出力する第2ハイパスフィルタと、
    前記第2ハイパスフィルタの出力のエンベロープ波形を検出して出力する第2エンベロープ検出回路と、
    前記第2エンベロープ検出回路の出力におけるボトムレベルを検波して出力するボトム検波回路と、
    前記ボトム検波回路の出力と所定の第2基準電圧との間の差を出力する第2差動回路と、
    前記第2差動回路の出力を増幅して前記第2ゲイン制御信号として前記第2可変ゲイン増幅器へ出力する第2増幅器とを有している、請求項2記載の光ディスク装置。
  9. 前記第1基準電圧と前記第2基準電圧とは、互いに等しくなっている、請求項8記載の光ディスク装置。
  10. 前記第1基準電圧と前記第2基準電圧とは、前記一対の差分信号の一方の電圧と前記一対の差分信号の他方の電圧との平均電圧になっている、請求項8記載の光ディスク装置。
  11. 前記ウォブル検出回路によって検出された前記ウォブル信号と前記プリピット検出回路によって検出された前記ランドプリピット信号とに基づいて、前記フォトディテクタによって受光された前記反射光の前記光ディスク上における位置を表すアドレス情報を検出するアドレス検出器と、
    前記ウォブル信号と前記ランドプリピット信号とに基づいて、前記光ディスクにデータを記録するためのクロック信号を生成するPLLとをさらに具備している、請求項1記載の光ディスク装置。
JP2002358646A 2002-12-10 2002-12-10 光ディスク装置 Pending JP2004192715A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358646A JP2004192715A (ja) 2002-12-10 2002-12-10 光ディスク装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358646A JP2004192715A (ja) 2002-12-10 2002-12-10 光ディスク装置

Publications (2)

Publication Number Publication Date
JP2004192715A true JP2004192715A (ja) 2004-07-08
JP2004192715A5 JP2004192715A5 (ja) 2006-02-02

Family

ID=32758310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358646A Pending JP2004192715A (ja) 2002-12-10 2002-12-10 光ディスク装置

Country Status (1)

Country Link
JP (1) JP2004192715A (ja)

Similar Documents

Publication Publication Date Title
JP2000285582A (ja) 光ディスク判別装置及びその方法
US6859425B2 (en) Wobble signal detection circuit and optical disk device
US7123552B2 (en) Wobble signal detecting circuit for optical disc system
JP3458502B2 (ja) 光ディスク装置
JP3881835B2 (ja) 記録再生装置
JP3671838B2 (ja) 光ディスク装置
US7218580B2 (en) Skew detection method, optical pickup, and optical disc device
US7173890B2 (en) Wobbling signal demodulation method, wobbling signal demodulation circuit, and optical disk drive
JP2004022127A (ja) チルト補正装置
JP2002117536A (ja) 光ディスク装置
EP1225571A2 (en) Pre-pit detecting apparatus
JP2004192715A (ja) 光ディスク装置
JP3756917B2 (ja) 光ディスク装置及び情報記録方法
WO2005101388A1 (ja) 光ディスク記録再生装置
JP3570683B1 (ja) 光ディスク装置及び情報記録方法
JP2005158168A (ja) 情報読取装置およびプリピット検出回路
JP2001067674A (ja) ディスク駆動装置および方法、並びに記録媒体
TWI253631B (en) Push-pull waveform measuring apparatus and method for optical disk
JP2002074675A (ja) プリピット信号検出装置及び検出方法
JP4101199B2 (ja) ウォブル信号検出回路、ウォブル信号検出装置及び光ディスク装置
JP3910787B2 (ja) ウォブル信号検出装置、光ディスク装置及び情報処理装置
JP2006309862A (ja) ウォブル信号復調装置、ウォブル信号復調方法及び記録再生装置
JP2004192807A (ja) ウォブル信号検出回路及び光ディスク装置
JP2004071142A (ja) 光ディスク装置および光ディスク装置における記録制御方法
JP2004241115A (ja) ウォブル信号検出回路及び光ディスク装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080306