JP2004190583A - スクリュー圧縮機 - Google Patents

スクリュー圧縮機 Download PDF

Info

Publication number
JP2004190583A
JP2004190583A JP2002359840A JP2002359840A JP2004190583A JP 2004190583 A JP2004190583 A JP 2004190583A JP 2002359840 A JP2002359840 A JP 2002359840A JP 2002359840 A JP2002359840 A JP 2002359840A JP 2004190583 A JP2004190583 A JP 2004190583A
Authority
JP
Japan
Prior art keywords
pressure
motor
control
inverter
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002359840A
Other languages
English (en)
Other versions
JP3923422B2 (ja
Inventor
Masakazu Hase
征和 長谷
Masakazu Aoki
優和 青木
Hiroyuki Matsuda
洋幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2002359840A priority Critical patent/JP3923422B2/ja
Publication of JP2004190583A publication Critical patent/JP2004190583A/ja
Application granted granted Critical
Publication of JP3923422B2 publication Critical patent/JP3923422B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

【課題】多様化したユーザのニーズに柔軟に対応することができるスクリュー圧縮機を提供する。
【解決手段】空気を圧縮する圧縮機本体1と、この圧縮機本体1を駆動するモータ2と、このモータ2の回転数を所定の可変制御範囲内で可変に制御するインバータ13と、圧縮機本体1から吐出される圧縮空気の吐出圧力を検出する圧力センサ7と、モータ2の回転数の可変制御範囲を所定の範囲に固定してインバータ13を制御する可変速モード1、モータ2の回転数の可変制御範囲を目標圧力設定Piに応じて変更するようにインバータ13を制御する可変速モード2、モータ2の回転数の可変制御範囲を圧力センサ7で検出した吐出圧力P1に応じて運転中に自動的に変更するようにインバータ13を制御する可変速モード3のいずれか1つに選択時に切り換えられ、そのモードでインバータ13を制御する制御装置14とを有する。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、インバータによりモータの回転数を可変制御し、吐出圧力を一定に制御するスクリュー圧縮機に関する。
【0002】
【従来の技術】
一般に、スクリュー圧縮機は、例えば空気を圧縮する圧縮機本体と、この圧縮機本体を駆動するモータと、このモータの回転数を可変制御するインバータと、圧縮機本体から吐出される圧縮空気の吐出圧力を検出する圧力検出手段と、この圧力検出手段の検出した吐出圧力と目標圧力設定との偏差に基づきインバータに演算結果を出力する制御手段とを備えており、この制御手段から入力された演算結果に応じた周波数をインバータがモータに出力してモータの回転数を制御することで、スクリュー圧縮機の吐出圧力はほぼ一定に目標圧力になるようになっている。なお、元来より、このインバータによるモータ回転数の可変制御範囲の上限値及び下限値は、所定の値に固定されていた(以下、元来の技術)。
【0003】
ところで、近年、1997年12月に開催された地球温暖化防止京都会議及びそれに伴う省エネ法の改正等により、工場事業所等における省エネ化の要望が急激に高まっている。特に、国内消費電力の5%を占める空気圧縮機の消費電力を削減することが急務となっている。このような気運の下、例えば1段の上記スクリュー圧縮機の場合、目標圧力設定を0.1MPa下げて運転することで理論断熱動力上の動力を例えば約7〜8%程度低減できることに着眼し、多くの工場事業所等において、空気圧縮機の現状の目標圧力設定を見直し適正な圧力に下げて運転することで消費電力の削減が図られている。
【0004】
このように、目標圧力設定を下げて運転することでその分の動力を低減でき、モータの能力に余裕を作ることができる。しかしながら、例えば何らかの事情で圧縮機の出力側における使用空気量が一時的に定格空気量を上回る場合等においては、上記元来の技術のようにモータの回転数の可変制御範囲が固定されたスクリュー圧縮機ではその回転数が上限値により制限されてしまい、定格空気量しか吐出することができないために吐出空気量が不足して、モータの能力には余裕があるにも拘らず吐出圧力が一時的に大きく低下する事態を招いていた。また、これを回避するためには、モータと圧縮機本体との間のギヤ又はプーリの比率を変更し、圧縮機本体の回転数をより増加させる必要があった。
【0005】
そこで、このような背景に基づき、従来、圧縮機本体からの吐出圧力の基準値を所望の圧力に設定可能な吐出圧力設定装置を設け、その目標圧力設定(吐出圧力設定値)に応じて制御手段(最高回転数制御装置)によりインバータを介しモータの回転数の可変制御範囲の上限値(最高回転数)を定めるスクリュー圧縮機が既に提唱されている(例えば、特許文献1参照。以下、従来技術)。これによれば、制御手段は、吐出圧力設定装置での目標圧力設定に略反比例してモータの回転数の可変制御範囲の上限値を決定するようになっている。すなわち、吐出圧力設定装置に定格圧力より小さい目標圧力を設定することでモータの回転数を比較的大きい回転数とすることができ、その結果、上記のように使用空気量が一時的に定格空気量を上回るような場合には定格空気量以上の吐出空気量を得ることができる。
【0006】
このように、上記従来技術によればギヤ又はプーリの比率の変更を行わなくても吐出圧力の低下を抑制することができる。しかしながら、上記従来技術ではモータの回転数の可変制御範囲の上限値は予め設定入力された目標圧力設定に応じて演算により決定されるが、一度設定された目標圧力設定は運転中は固定であり、運転状態に応じてその都度設定されるものではないため、モータの回転数の可変制御範囲の上限値についても運転中は固定されることになる。このため、スクリュー圧縮機の圧力過渡状態、例えば起動時の初期充気時においては、吐出圧力が上昇してくるまでの低圧の間はその分モータの回転数を大きく増大させて吐出圧力の上昇促進を図る余地があるにも拘らず、上記従来技術ではモータの回転数が上限値に制限されるために、初期充気の遅延化を招く可能性があった。また、例えば運転時に使用空気量が何らかの理由で一時的に定格空気量を上回り吐出圧力が低下する場合においても、上記従来技術ではモータの回転数が上限値に制限されるために、吐出圧力の低下あるいは低下後の復帰の遅延化を招く可能性があった。
【0007】
以上の背景に基づき、本願発明者等は、モータの回転数の可変制御範囲の上限値を圧力検出手段で検出した吐出圧力に応じて運転中に自動的に変更する制御手段を備えたスクリュー圧縮機を提唱した(特願2002−156865号(出願日:平成14年5月30日)。以下、先願発明)。このスクリュー圧縮機によれば、初期充気時におけるモータの回転数を吐出圧力の過渡状態に合わせて最適な値に変更することができるので、上記従来技術に比べて初期充気時間を短縮することができ、また使用空気量が定格空気量を上回り吐出圧力が大きく低下するときにおいても、制御手段が吐出圧力の低下にすばやく追従してモータの回転数を最適な値に変更することができるので、上記従来技術に比べて吐出圧力の低下を抑制することが可能となる。
【0008】
【特許文献1】
特開平9−209949号公報
【0009】
【発明が解決しようとする課題】
しかしながら、本願発明者等のその後の検討によれば、上記先願発明には以下のような更なる改善の余地があることが分かった。
すなわち、近年におけるスクリュー圧縮機に対する需要は、圧縮空気の使用用途や圧縮機の使用環境等により多様化しており、例えば上記先願発明のように吐出空気量を増加して初期充気の遅延化防止や一時的な使用空気量増大時における吐出圧力低下の防止を図ることを主眼とする場合もあれば、上述の元来の技術のようにもっぱら消費動力低減のみを主眼とすれば足りる場合もあり、さらにはそれらの中間の、元来と比べて使用空気量が一時的に定格空気量を上回るような場合には吐出空気量の増加は図りたいが、先願発明のような初期充気の遅延化防止及び使用空気量増大時の吐出圧力低下防止までは望まず、むしろそのときの先願発明のように追従性のよい精密な制御を行うことによる機械的な劣化を避けたい場合(上記従来技術にほぼ相当)もある。このような多種多様なユーザのニーズに柔軟に対応できる圧縮機は従来存在しなかった。
【0010】
一方、上記先願発明においては、モータの回転数の可変制御範囲の上限値を可変することで定格空気量以上の吐出空気量を得ることができるが、可変制御範囲の上限値のみを可変させ下限値については固定したままである。このため、上限値が可変して小さくなる場合には、モータの回転数の可変制御範囲が狭くなるために供給先の必要風量に応じた可変幅の広い回転数制御ができにくくなる可能性がある。しかも、圧縮機の運転領域全体に占めるロード・アンロード運転を行う領域の割合が増加するので、消費動力が増大することによる省エネルギ特性の低下及びロード・アンロード運転の際に動作する吸込み絞り弁等の機械寿命の低下を招く可能性がある。さらに、上限値が可変して大きくなる場合には、下限値が固定されているために可変制御範囲が必要以上に拡大され、共振する頻度が増加する可能性がある。
【0011】
また、上記先願発明を含めた従来設備の圧縮機においては、圧力検出手段による吐出圧の検出を回転数可変制御の応答性を鑑みて吐出配管の比較的上流側で行うのが一般的である。したがって、圧力検出手段で検出する上流側の吐出圧と実際の供給先への供給圧となる下流側の吐出圧とは、通常、吐出配管の圧力損失によって差が生じる。この圧力損失は、供給先への圧縮空気の安定供給の観点からはなるべく小さくするのが好ましいが、一般に空気配管の圧力損失は空気流量の2乗に比例する性質を有するため、吐出空気量が多いほど飛躍的に増大する。すなわち、下流側の圧力は、モータの回転数が低いとき(圧縮機の吐出空気量が少ないとき)よりもモータの回転数が高いとき(圧縮機の吐出空気量が多いとき)の方が、上流側の圧力に対して低くなる度合いが大きくなる。したがって、上記先願発明においては、定格空気量以上の吐出空気量を得ることができる反面、上流側圧力と下流側圧力、すなわち目標圧力設定値と実際の供給先への供給圧との差が大きくなってしまうことが考えられ、圧縮空気の吐出空気量精度の点で向上の余地があった。なお、この圧力差を低減するために圧力検出手段を下流側に設けることも考えられるが、その場合には圧縮機本体と圧力検出手段との距離が長くなることで圧力変動の検出に遅れが生じるため、モータの回転数がハンチングを生じ、圧縮空気の供給が不安定となる可能性がある。
【0012】
本発明の第1の目的は、多様化したユーザのニーズに柔軟に対応することができるスクリュー圧縮機を提供することにある。
また本発明の第2の目的は、供給先の必要風量に応じて可変幅の広い回転数制御を確実に行えるスクリュー圧縮機を提供することにある。
また本発明の第3の目的は、圧縮空気の吐出空気量精度を向上することができるスクリュー圧縮機を提供することにある。
【0013】
【課題を解決するための手段】
(1)上記第1の目的を達成するために、本発明のスクリュー圧縮機は、空気を圧縮する圧縮機本体と、この圧縮機本体を駆動するモータと、このモータの回転数を所定の可変制御範囲内で可変に制御するインバータと、前記圧縮機本体から吐出される圧縮空気の吐出圧力を検出する圧力検出手段と、前記モータの回転数の可変制御範囲を所定の範囲に固定して前記インバータを制御する第1の制御モード、前記モータの回転数の可変制御範囲を目標圧力設定に応じて変更するように前記インバータを制御する第2の制御モード、及び前記モータの回転数の可変制御範囲を前記圧力検出手段で検出した吐出圧力に応じて運転中に自動的に変更するように前記インバータを制御する第3の制御モードのいずれか1つに選択時に切り換えられ、その切り換えられたモードで前記インバータを制御する第1制御手段とを有するものとする。
【0014】
本発明においては、スクリュー圧縮機を、第1の制御モード、第2の制御モード、及び第3の制御モードの3種類の中から任意に選択した制御モードにて運転する。すなわち、第1の制御モードが選択された場合には、第1制御手段はモータの回転数の可変制御範囲を所定の範囲に固定し、その範囲内においてモータの回転数を圧力検出手段で検出した吐出圧力に応じインバータを介して可変制御する。これにより、目標圧力設定を下げて運転した場合にモータ回転数が可変制御範囲の上限値に制限され、消費動力を低減することができる。一方、第3の制御モードが選択された場合には、第1制御手段は可変制御範囲を圧力検出手段で検出した吐出圧力に応じて運転中に自動的に変更しつつ、この変更した可変制御範囲内においてモータの回転数を圧力検出手段で検出した吐出圧力に応じてインバータを介して可変制御する。これにより、例えば起動時の初期充気時等の圧力過渡状態において、吐出空気量を吐出圧に追従して増加させ圧縮空気の初期充気時の遅延化防止を図ったり、一時的に供給先の使用空気量が増大した場合における吐出圧の低下の防止を図ることができる。他方において、第2の制御モードが選択された場合には、第1制御手段はモータの回転数の可変制御範囲を予め設定された目標圧力設定に応じて変更し、この変更した可変制御範囲内でモータの回転数を圧力検出手段で検出した吐出圧力に応じてインバータを介して可変制御する。これにより、例えば目標圧力をモータの仕様圧力より小さく設定した場合には、上記の第3の制御モードの場合と同様にモータの回転数の可変制御範囲の上限値を可変して大きくすることができ、その結果、吐出空気量を増加することができる。このとき、この第2の制御モードにおいては、上記第3の制御モードのように運転中の吐出圧力状態に追従して上限値を変更するのではなく、予め設定する目標圧力設定に応じて上限値が変更されるのみであるので、上記第3の制御モードのような運転状態に追従した精密な回転数制御を行う場合に比べて圧縮機の機械的な劣化を抑制することができる。
【0015】
すなわち、本発明によれば、吐出空気量を増加して初期充気の遅延化防止や一時的な使用空気量増大時における吐出圧力低下の防止を図りたい場合には第3の制御モード、もっぱら消費動力低減のみを主眼としたい場合には第1の制御モード、吐出空気量の増加は図りたいがそれによる機械的な劣化は抑制したい場合には第2の制御モードといったように、スクリュー圧縮機がニーズに応じた制御モードにて運転されることで、ユーザの多種多様なニーズに対し柔軟に対応することができる。
【0016】
(2)上記(1)において、好ましくは、前記第1の制御モード、第2の制御モード、及び第3の制御モードのいずれかが選択入力され、これに応じた選択信号を前記第1制御手段に出力する選択手段をさらに備えるものとする。
これにより、制御モードを第1の制御モード、第2の制御モード、及び第3の制御モードのいずれかに容易に切り換えることができる。
【0017】
(3)上記第2の目的を達成するために、本発明のスクリュー圧縮機は、空気を圧縮する圧縮機本体と、この圧縮機本体を駆動するモータと、このモータの回転数を可変に制御するインバータと、前記圧縮機本体から吐出される圧縮空気の吐出圧力を検出する圧力検出手段と、前記モータの回転数の可変制御範囲の下限値を変更するように前記インバータを制御する第2制御手段とを備えるものとする。
【0018】
本発明においては、例えば、第2制御手段で可変制御範囲の上限値を圧力検出手段で検出した吐出圧力に応じて運転中に自動的に変更すると共に、可変制御範囲の下限値についても上記吐出圧力に応じて自動的に変更し、その変更した可変制御範囲内において圧力検出手段で検出した圧縮空気の吐出圧力に応じてモータの回転数をインバータで制御して回転数可変制御を行う。これにより、例えば可変制御範囲の上限値のみを可変させる前述した先願発明のような構造と比べ、上限値が可変して小さくなる場合には可変制御範囲が縮小することを抑制できるので、供給先の必要風量に応じた比較的可変幅の広い回転数制御を行うことができる。さらに、圧縮機の運転領域全体に占めるロード・アンロード運転を行う領域の割合の増大を抑制することができるので、消費動力を低減することができ、且つロード・アンロード運転の際に動作する吸込み絞り弁等の機械寿命の低下を抑制することができる。一方、上限値が可変して大きくなる場合には、可変制御範囲の上限値のみを可変させる構造と比べて可変制御範囲が必要以上に拡大するのを抑制することができるので、共振する頻度が増大するのを抑制することができる。
【0019】
(4)上記(3)において、好ましくは、前記第2制御手段は前記可変制御範囲の下限値を予め設定された目標圧力設定に応じて変更するものとする。
【0020】
(5)上記(3)において、また好ましくは、前記第2制御手段は、前記可変制御範囲の下限値を前記圧力検出手段で検出した吐出圧力に応じて運転中に自動的に変更するものとする。
【0021】
(6)上記第3の目的を達成するために、本発明のスクリュー圧縮機は、空気を圧縮する圧縮機本体と、この圧縮機本体を駆動するモータと、このモータの回転数を可変に制御するインバータと、前記圧縮機本体から吐出される圧縮空気の第1の検出位置での吐出圧力を検出する上流側圧力検出手段と、この上流側圧力検出手段で検出した前記第1の検出位置での吐出圧力に応じて、前記第1の検出位置より流れ方向下流側における第2の検出位置での吐出圧力が所定の範囲内となるように、前記モータの回転数を前記インバータを介して可変制御する第3制御手段とを備えるものとする。
【0022】
一般に、スクリュー圧縮機においては、上流側圧力検出手段による吐出圧力の検出は回転数可変制御の応答性を鑑みて吐出配管の比較的上流側で行う。したがって、この上流側圧力検出手段で検出する上流側の第1の検出位置での吐出圧力と実際の供給先への供給圧となる下流側の第2の検出位置での吐出圧力とは、通常、吐出配管の圧力損失によって差が生じる。この圧力損失は、供給先への圧縮空気の安定供給の観点からはなるべく小さくするのが好ましいが、一般に空気配管の圧力損失は空気流量の2乗に比例するため、圧縮機の吐出空気量が多くなるほど飛躍的に増大する性質を有する。したがって、吐出空気量が多くなるほど上流側圧力と下流側圧力、すなわち目標圧力設定値と実際の供給先への供給圧との差が大きくなってしまい、圧縮空気の吐出空気量精度が悪化することになる。なお、この吐出空気量精度の悪化を防止するために上流側圧力検出手段を下流側の第2の検出位置に設けることも考えられるが、その場合には圧縮機本体と上流側圧力検出手段との距離が長くなることで圧力変動の検出に遅れが生じるため、モータの回転数がハンチングを生じ、圧縮空気の供給が不安定となる可能性がある。
【0023】
本発明においては、第3制御手段で、上流側圧力検出手段で検出した第1の検出位置での吐出圧力に応じて、下流側の第2の検出位置での吐出圧力が所定の範囲内となるようにモータの回転数をインバータを介して可変制御する。これにより、実際の圧縮空気の供給先への供給圧力がほぼ所定の範囲内となるように制御することができるので、圧縮空気の吐出空気量精度を向上することができる。さらに、上流側圧力検出手段で上流側の第1の検出位置において検出した吐出圧力を回転数制御に用いるので、回転数制御のハンチングの発生を防止することができる。
【0024】
(7)上記(6)において、好ましくは、前記第3制御手段は、前記上流側圧力検出手段で検出した前記第1の検出位置での吐出圧力に応じて前記第1の検出位置と前記第2の検出位置との間の圧力差を演算し、この演算した圧力差に応じて前記モータの回転数を可変制御するものとする。
これにより、第2の検出位置に圧力検出手段を設ける必要がなくなり、安価に本発明を実現することができる。
【0025】
(8)上記(6)において、また好ましくは、前記第2の検出位置に下流側圧力検出手段をさらに備え、前記第3制御手段は、前記上流側圧力検出手段で検出した前記第1の検出位置での吐出圧力と前記下流側圧力検出手段で検出した前記第2の検出位置での吐出圧力との偏差に応じて前記モータの回転数を可変制御するものとする。
【0026】
【発明の実施の形態】
以下、本発明のスクリュー圧縮機の一実施の形態を図面を参照しつつ説明する。
図1は、本発明のスクリュー圧縮機の一実施の形態の全体構造を表す模式図である。なお、この図1中の黒の太線の矢印は圧縮空気の流れ、黒の細線の矢印はオイルの流れ、白抜きの矢印は冷却風の流れ、破線の矢印は信号の流れを示している。
【0027】
この図1において、スクリュー圧縮機は、空気を圧縮する圧縮機本体1と、この圧縮機本体1を駆動するモータ2とを備えており、このモータ2により圧縮機本体1を回転駆動することで、大気圧の空気をフィルタ3を介して吸い込み圧縮するようになっている。圧縮機本体1により圧縮された圧縮空気は、オイルと共にオイルケース4内に導入されるときにオイルと1次分離され、オイルセパレータ5においてオイルと2次分離される。分離された圧縮空気は、アフタークーラ6で冷却されて吐出されるようになっている。
【0028】
上記のオイルは、オイルケース4内の圧縮機本体吸込み側と吐出側との差圧によって循環されるようになっている。すなわち、オイルケース4内で圧縮空気から1次分離されたオイルはオイルクーラ8で冷却され、オイルフィルタ9を介して圧縮機本体1の吸い込み側に戻されて、圧縮空気と再度混合されるようになっている。また、オイルセパレータ5において圧縮空気と2次分離されたオイルについても、圧縮機本体1に回収されるようになっている。
【0029】
なお、上記のモータ2、アフタークーラ6、及びオイルクーラ8等は、ファンモータ10により駆動される冷却ファン11によって作られる冷却風(その流れを図1中白抜きの矢印で示す)で冷却されるようになっている。
【0030】
また、スクリュー圧縮機は、オイルセパレータ5の後段側に設けられ圧縮機本体1から吐出される圧縮空気の流れ方向上流側における吐出圧力を検出する圧力センサ7と、この圧力センサ7よりも流れ方向下流側における吐出圧力を検出する圧力センサ12と、これら圧力センサ7及び圧力センサ12で検出した吐出圧力に応じてインバータ13を介してモータ2の回転数を可変に制御する制御装置14とをさらに備えている。図2は、この制御装置14の制御機能を表す機能ブロック図である。
【0031】
この図2において、制御装置14は、設定入力部15と、PID演算部16と、上限/下限演算部17とを備えている。上記設定入力部15は、例えば制御装置14の盤面に備えられる入力端末(又は外部に設けた外部端末でもよい)であり、制御装置14の適宜の場所に予め記憶(又は適宜設定入力してもよい)された圧力モード1、圧力モード2、及び圧力モード3の3つの圧力制御モードのうちの1つを設定入力できるようになっている。すなわち、設定入力部15で圧力制御モードが圧力モード1として設定入力されると、上記PID演算部16は上記圧力センサ7で検出した圧縮空気の上流側吐出圧力P1(図1も参照)を入力し、この入力された吐出圧力P1と設定入力部15に予め記憶(又は適宜設定入力してもよい)された目標圧力設定Piとの偏差に基づきPID演算を行うようになっている。
【0032】
一方、設定入力部15で圧力制御モードが圧力モード2として設定入力されると、PID演算部16はまず、圧力センサ7で検出した上流側吐出圧力P1を入力する。このとき、PID演算部16は、設定入力部15に予め記憶(又は適宜設定入力してもよい)され仕様圧力Psと同じ圧力値の時の上流側吐出圧力P1と下流側吐出圧力P2との圧力差である圧力差設定Pdeltaを元に、上記入力した吐出圧力P1と吐出空気量の関係から現在の圧力差(P1−P2)′を演算する機能を備えており、上記入力された吐出圧力P1と、この演算された現在の圧力差(P1−P2)′を上記目標圧力設定Piに加算した第2の目標圧力設定Pi2(=(P1−P2)′+Pi)との偏差に基づきPID演算を行うようになっている(詳細は後述)。
【0033】
他方、設定入力部15で圧力制御モードが圧力モード3として設定入力されると、PID演算部16は圧力センサ7で検出した上流側吐出圧力P1及び上記圧力センサ12で検出した圧縮空気の下流側吐出圧力P2(図1も参照)を入力し、この入力した吐出圧力P1と、これら入力した上流側吐出圧力P1と下流側吐出圧力P2との圧力差P1−P2を目標圧力設定Piに加算した第3の目標圧力設定Pi3(=(P1−P2)+Pi)との偏差に基づきPID演算を行うようになっている(詳細は後述)。
【0034】
このようにして、PID演算部16は各圧力制御モードで演算した演算結果を演算値S(図1も参照)としてインバータ13に出力し、インバータ13はこのPID演算部16から入力された演算値Sに応じた周波数F(図1も参照)をモータ2に出力してモータ2の回転数を制御する。これにより、スクリュー圧縮機の吐出圧力は目標圧力設定Piにほぼ一定に制御されるようになっている。
【0035】
なお、この図2において、制御装置14が出力する演算値Sは0以上1以下の値である。したがって、制御装置14が最大演算値1をインバータ13に出力すると、インバータ13はこれに対応して最高周波数設定Fmaxをモータ2に出力し、モータ2の回転数は最大回転数に制御される。一方、制御装置14が最小演算値0をインバータ13に出力すると、インバータ13はこれに対応して最低周波数設定Fminをモータ2に出力し、モータ2の回転数は最小回転数に制御される。通常、制御装置14は、圧力センサ7から入力される上流側吐出圧力P1に応じて演算値Sを上記0から1の可変制御範囲内において可変させることで、インバータ13の周波数Fを上記最低周波数設定Fminから最高周波数設定Fmaxの範囲内において可変させ、これによりモータ2の回転数を上記最小回転数から最大回転数の範囲内において可変制御するようになっている。
【0036】
このとき、制御装置14の適宜の場所には可変速モード1、可変速モード2、及び可変速モード3の3つの可変速制御モードが予め記憶(又は適宜設定入力してもよい)されており、設定入力部15でその可変速制御モードを設定入力できるようになっている。すなわち、設定入力部15で可変速制御モードが可変速モード1として設定入力されると、上限/下限演算部17は設定入力部15に予め記憶(又は適宜設定入力してもよい)されている仕様圧力設定Psに応じて最高周波数割合KH1及び最低周波数割合KL1を演算し、PID演算部16から出力される演算値Sの可変制御範囲が上記上限/下限演算部17で演算された最高周波数割合KH1及び最低周波数割合KL1により制限される。これにより、インバータ13からモータ2に出力される周波数Fは上記最高周波数割合KH1及び最低周波数割合KL1に対応した上限周波数から下限周波数までの可変制御範囲内で制御され、これによりモータ2の回転数は上記上限周波数と下限周波数とに対応した上限回転数から下限回転数までの可変制御範囲内において制御されるようになっている。
【0037】
一方、設定入力部15で可変速制御モードが可変速モード2として設定入力されると、上限/下限演算部17は設定入力部15に予め記憶(又は適宜設定入力してもよい)された目標圧力設定Piに応じて最高周波数割合KH2及び最低周波数割合KL2を演算し、PID演算部16から出力される演算値Sの可変制御範囲が上記上限/下限演算部17で演算された最高周波数割合KH2及び最低周波数割合KL2により制限されることで、インバータ13からモータ2に出力される周波数Fは上記最高周波数割合KH2及び最低周波数割合KL2に対応した上限周波数から下限周波数までの可変制御範囲内で制御され、これによりモータ2の回転数は上記上限周波数と下限周波数とに対応した上限回転数から下限回転数までの可変制御範囲内において制御されるようになっている。
【0038】
他方、設定入力部15で可変速制御モードが可変速モード3として設定入力されると、上限/下限演算部17は圧縮機運転中において常に圧力センサ7で検出した上流側吐出圧力P1を入力し、この入力した吐出圧力P1に応じて最高周波数割合KH3及び最低周波数割合KL3を演算する。これにより、PID演算部16から出力される演算値Sの可変制御範囲が上記最高周波数割合KH3及び最低周波数割合KL3により運転中に自動的に制限され、インバータ13からモータ2に出力される周波数Fは上記最高周波数割合KH3及び最低周波数割合KL3に対応した上限周波数から下限周波数までの可変制御範囲内に制御され、これによりモータ2の回転数は上記上限周波数と下限周波数とに対応した上限回転数から下限回転数までの可変制御範囲内において制御されるようになっている。
【0039】
また、設定入力部15においては、上記した仕様圧力Ps、目標圧力設定Pi、圧力差設定Pdeltaの他に、最高圧力設定Pmax、最低圧力設定Pmin、最高周波数設定Fmax、最低周波数設定Fmin、最小上限演算値Kmax、及び最小下限演算値Kminを適宜設定入力できるようになっている。上記最高圧力設定Pmax及び最低圧力設定Pminは、圧縮機が行う目標圧力設定Piを目標値とした圧力一定制御における圧力制御範囲を設定するものである。また、上記最高周波数設定Fmax(又は最低周波数設定Fmin、以下かっこ内の関係同様)はモータ2において構造的に定まる機械保護用の上限回転数(又は下限回転数)に対応した値に設定されている。これにより、例えば可変速制御モードが可変速モード3に設定され吐出圧力P1が極めて低い状態(又は高い状態)のとき等に、制御装置14がインバータ13に出力する演算値Sを最大演算値1まで増大(又は最小演算値0まで減少)させても、モータ2が破損・故障等を起こすことを防止することができるようになっている。また、最小上限演算値Kmaxと最小下限演算値Kminは、PID演算部16からインバータ13に出力される演算値Sの可変制御範囲を制限する最高・最低周波数割合KH,KLの最小値をそれぞれ設定するものであり、0以上1以下の数値で設定するようになっている。
【0040】
このようにして設定入力された上記最高圧力設定Pmax、最低圧力設定Pmin、最小上限演算値Kmax、及び最小下限演算値Kminを用い、上限/下限演算部17は各可変速モード1〜3において、仕様圧力設定Ps、目標圧力設定Pi、及び圧力センサ7から入力した上流側吐出圧力P1に応じてPID演算部16が出力する演算値Sの可変制御範囲を制限する最高周波数割合KH及び最低周波数割合KLを演算するようになっている。
【0041】
以上のようにして設定入力された各圧力制御モード、各可変速制御モードに応じ、制御装置14はモータ2の回転数可変制御を行うようになっている。以下、この制御内容の詳細について図3及び図4を用いて説明する。
図3は、制御装置14の制御機能のうち、初期設定及び圧縮機運転前に行われる圧力一定制御及び可変速制御に係わる制御内容を表すフローチャートである。なお、この図3において、制御装置14は例えば電源を投入されたときにこのフローを開始するようになっている。
【0042】
まずステップ10では、図3中に示す各設定入力項目(仕様圧力設定Ps、目標圧力設定Pi、最高圧力設定Pmax、最低圧力設定Pmin、最高周波数設定Fmax、最低周波数設定Fmin、最小上限演算値Kmax、最小下限演算値Kmin、圧力差設定Pdelta、圧力制御モード、及び可変速制御モード)について設定入力部15に初期設定値を入力し、次のステップ20に移る。なお、この各設定入力項目は図3中に示す条件1〜5を満たす値とする。
【0043】
ステップ20では、上記ステップ10で設定入力部15に入力した圧力制御モードをPID演算部16に読み出して圧力モード1〜圧力モード3のどれに設定してあるかを判定する。圧力モード2の場合には次のステップ30に移る。
【0044】
ステップ30では、上記ステップ10で設定入力部15に入力した仕様圧力設定Psと目標圧力設定Pi、圧力差設定PdeltaをPID演算部16に読み出し、次式(1)にしたがってβを演算し、次のステップ40に移る。
【0045】
【数1】
Figure 2004190583
なお、上記式(1)は、次式(2)に示す一般的な空気管の圧力損失計算式を変換し、さらに圧力の単位をkgf/cmからMPaに変換したものである。
【0046】
【数2】
Figure 2004190583
上記式(2)において、ΔPは直管における圧力効果(kgf/cm)、μは摩擦係数、Lは管の長さ(m)、dは管の内径(m)、γは流体の重さ(760mmHg,0℃において1.2931kg/m)、vは流体の平均速度(m/s)、gは重力加速度(9.81m/S)である。なお、上記流体平均速度vは次式(3)で表される。
【0047】
【数3】
Figure 2004190583
上記式(3)において、qは大気圧・常温における空気流量(m3/min)、pは流体の圧力(kgf/cm)、Aは配管の断面積(m)である。
【0048】
なお、先のステップ20において、圧力制御モードが圧力モード1又は3である場合には次のステップ40に直接移る。
【0049】
ステップ40では、上記ステップ10で設定入力部15に入力した可変速制御モードを上限/下限演算部17に読み出し、可変速モード1〜可変速モード3のどれに設定してあるかを判定する。可変速モード3の場合には本フローを終了する。また、可変速モード1又は2の場合には次のステップ50に移る。
【0050】
ステップ50では、上記ステップ10で設定入力部15に入力した目標圧力設定Pi、最低圧力設定Pminを上限/下限演算部17に読み出し、目標圧力設定Pi≧最低圧力設定Pminであれば判定が満たされ、次のステップ60に移る。
【0051】
ステップ60では、上記ステップ40で読み出した可変速制御モードが可変速モード1又は2のどちらであるかを判定する。可変速モード2の場合には次のステップ70に移る。
【0052】
ステップ70では、上記ステップ10で設定入力部15に入力した目標圧力設定Pi、最高圧力設定Pmax、最低圧力設定Pmin、最小上限演算値Kmaxを上限/下限演算部17に読み出し、次式(4)にしたがって最高周波数割合KH2(又はKH1)を演算し、次のステップ90に移る。
【0053】
【数4】
Figure 2004190583
なお、先のステップ50において、目標圧力設定Pi<最低圧力設定Pminである場合、判定が満たされずにステップ80に移り、上限/下限演算部17において最高周波数割合KH1(又はKH2)を1とし、次のステップ90に直接移る。
【0054】
ステップ90では、上記ステップ10で設定入力部15に入力した目標圧力設定Pi、最高圧力設定Pmax、最低圧力設定Pmin、最小下限演算値Kminを上限/下限演算部17に読み出し、次式(5)にしたがって最低周波数割合KL2(又はKL1)を演算し、本フローを終了する。
【0055】
【数5】
Figure 2004190583
なお、先のステップ60において可変速モード1である場合にはステップ100に移り、上記ステップ10で設定入力部15に入力した目標圧力設定Pi、仕様圧力設定Psを上限/下限演算部17に読み出し、目標圧力設定Pi≦仕様圧力設定Psであるかどうかを判定する。目標圧力設定Pi>仕様圧力設定Psであれば判定が満たされず、上記ステップ70に移る。一方、目標圧力設定Pi≦仕様圧力設定Psであれば判定が満たされ、次のステップ110に移る。
【0056】
ステップ110では、上記ステップ10で設定入力部15に入力した仕様圧力設定Ps、最高圧力設定Pmax、最低圧力設定Pmin、最小上限演算値Kmaxを上限/下限演算部17に読み出し、次式(6)にしたがって最高周波数割合KH1を演算し、次のステップ120に移る。
【0057】
【数6】
Figure 2004190583
ステップ120では、上記ステップ10で設定入力部15に入力した仕様圧力設定Ps、最高圧力設定Pmax、最低圧力設定Pmin、最小下限演算値Kminを上限/下限演算部17に読み出し、次式(7)にしたがって最低周波数割合KL1を演算し、本フローを終了する。
【0058】
【数7】
Figure 2004190583
図4は、制御装置14の制御機能のうち、圧縮機運転後に行われる圧力一定制御及び可変速制御に係わる制御内容を表すフローチャートである。なお、制御装置14は、図3のフローの終了後、スクリュー圧縮機が運転されて初めてこの図4のフローを開始する。
【0059】
まずステップ210では、圧力センサ7で検出した圧縮空気の上流側吐出圧力P1を上限/下限演算部17とPID演算部16に入力し、次のステップ220に移る。
【0060】
ステップ220では、前記ステップ20で読み出した圧力制御モードが圧力モード1〜3のどれであるかを判定する。圧力モード3の場合には次のステップ230に移る。
【0061】
ステップ230では、圧力センサ12で検出した下流側吐出圧力P2をPID演算部16に入力し、次のステップ240に移る。
【0062】
ステップ240では、PID演算部16に読み出された上流側吐出圧力P1、下流側吐出圧力P2、及び目標圧力設定Piを用いて次式(8)にしたがって前記の第3の目標圧力設定Pi3を演算し、この値をPID演算目標値として次のステップ270に移る。
【0063】
【数8】
Figure 2004190583
なお、先のステップ220において、圧力制御モードが圧力モード1である場合にはステップ250に移り、PID演算部に読み出された目標圧力設定PiをPID演算目標値として次のステップ270に直接移る。また、先のステップ220において、圧力制御モードが圧力モード2である場合にはステップ260に移り、PID演算部に読み出された吐出圧力P1、目標圧力設定Pi、及び前述の式(1)により演算された演算値βを用いて次式(9)にしたがって前記の第2の目標圧力設定Pi2を演算し、この値をPID演算目標値として次のステップ270に直接移る。
【0064】
【数9】
Figure 2004190583
ステップ270では、前記ステップ40で読み出した可変速制御モードが可変速モード1〜3のどれであるかを判定し、可変速モード3の場合には次のステップ280に移る。
【0065】
ステップ280では、吐出圧力P1及び最低圧力設定Pminを上限/下限演算部17に読み出し、吐出圧力P1≧最低圧力設定Pminであれば次のステップ290に移る。
【0066】
ステップ290では、吐出圧力P1及び最高圧力設定Pmaxを上限/下限演算部17に読み出し、吐出圧力P1≦最高圧力設定Pmaxであれば次のステップ300に移る。
【0067】
ステップ300では、上限/下限演算部17に読み出された吐出圧力P1、最高圧力設定Pmax、最低圧力設定Pmin、最小上限演算値Kmaxを用い、次式(10)にしたがって最高周波数割合KH3を演算し、次のステップ330に移る。
【0068】
【数10】
Figure 2004190583
なお、先のステップ280において、吐出圧力P1<最低圧力設定Pminである場合にはステップ310に移り、最高周波数割合KH3を1として次のステップ330に直接移る。また、先のステップ290において、吐出圧力P1>最高圧力設定Pmaxである場合にはステップ320に移り、上限/下限演算部17に読み出された最小上限演算値Kmaxを用いて次式(11)にしたがって最高周波数割合KH3を演算し、次のステップ330に直接移る。
【0069】
【数11】
Figure 2004190583
ステップ330では、上限/下限演算部17に読み出された吐出圧力P1、最高圧力設定Pmax、最低圧力設定Pmin、最小下限演算値Kminを用い、次式(12)にしたがって最低周波数割合KL3を演算し、次のステップ340に移る。
【0070】
【数12】
Figure 2004190583
なお、先のステップ270において、可変速制御モードが可変速モード1又は2の場合には、次のステップ340に直接移る。
【0071】
ステップ340では、PID演算部16において、上記ステップ240、ステップ250、又はステップ260において演算されたPID演算目標値と圧力センサ7から入力された吐出圧力P1との偏差に基づきPID演算が行われ、次のステップ350に移る。なお、このPID演算の演算結果である演算値Sは、前述したように0以上1以下の値である。
【0072】
ステップ350では、先のステップ10で設定入力部15に入力した最高周波数設定Fmax及び最低周波数設定Fminと、前記のステップ70〜90、ステップ110、ステップ120、ステップ300〜320、及びステップ330において上限/下限演算部17で演算された最高周波数割合KH及び最低周波数割合KLと、PID演算部16から読み出したPID演算値Sとを用い、次式(13)にしたがってインバータ出力周波数指令値S2(図2参照)を演算し、次のステップ360に移る。
【0073】
【数13】
Figure 2004190583
ステップ360では、ステップ350で演算されたインバータ出力周波数指令値S2をインバータ13へ出力し、ステップ210に戻る。
【0074】
このようにして、制御装置14が出力するインバータ出力周波数指令値S2に応じ、インバータ13が周波数Fをモータ2に出力することで、制御装置14は圧縮機本体1の回転数を制御するようになっている。なお、このときの周波数Fとインバータ出力周波数指令値S2は同一値である。
【0075】
以上において、圧力センサ7は特許請求の範囲各項記載の圧縮機本体から吐出される圧縮空気の吐出圧力を検出する圧力検出手段を構成するとともに、圧縮機本体から吐出される圧縮空気の第1の検出位置での吐出圧力を検出する上流側圧力検出手段をも構成し、圧力センサ12は第2の検出位置に備えられた下流側圧力検出手段を構成する。また、制御装置14は切り換えられたモードでインバータを制御する第1制御手段を構成するとともに、モータの回転数の可変制御範囲の下限値を変更するようにインバータを制御する第2制御手段を構成し、さらに第3制御手段をも構成する。
【0076】
次に、本発明のスクリュー圧縮機の一実施の形態の動作及び作用を以下に説明する。
設定入力部15で可変速制御モードを可変速モード1として設定入力すると、図3に示すフローにおいてステップ10〜ステップ60→ステップ100に進み、目標圧力設定Pi≦仕様圧力設定Psである場合にはこのステップ100の判定が満たされて次のステップ110に進む。なお、目標圧力設定Pi>仕様圧力設定Psである場合にはこのステップ100の判定が満たされずにステップ70に移り、後述する可変速モード2と同様に制御される。ステップ110及びステップ120において、最高・最低周波数割合KH1,KL1は仕様圧力設定Psに応じて固定した値に演算される。その後、圧縮機が運転されると、図4に示すフローにおいてステップ210〜ステップ270→ステップ340→ステップ350に進み、インバータ出力周波数指令値S2の可変制御範囲が上記上限/下限演算部17で演算された最高・最低周波数割合KH1,KL1により制限されて、ステップ360でインバータ13へ出力される。これにより、インバータ13からモータ2に出力される周波数Fは、上記最高周波数割合KH1及び最低周波数割合KL1に対応した上限周波数から下限周波数までの固定された可変制御範囲内で制御される。
【0077】
ここで、図5は、可変速制御モードが可変速モード1である場合のスクリュー圧縮機におけるインバータ周波数Fに対する消費動力Lの特性を示す図である。この図5において、▲1▼は目標圧力設定Pi>仕様圧力設定Psの場合、▲2▼は目標圧力設定Pi=仕様圧力設定Psの場合、▲3▼は目標圧力設定Pi<仕様圧力設定Psの場合の消費動力特性を示している。この図5に示すように、目標圧力設定Piが仕様圧力設定Ps以下となる範囲では、インバータ周波数Fが上記最高周波数割合KH1によって目標圧力設定Pi=仕様圧力設定Psとなるときの周波数FSに固定される。これにより、目標圧力設定Piを仕様圧力設定Psより小さく設定することで、図5中▲3▼に示すように同じインバータ周波数FSの状態で▲2▼と比べて消費動力をL1からL2まで低減することができる。したがって、可変速モード1を選択した場合には、このように目標圧力設定Piを仕様圧力設定Psより下げて圧縮機を運転することでその分の動力を低減でき、モータ2の能力に余裕を作ることができる。
【0078】
一方、設定入力部15で可変速制御モードを可変速モード3として設定入力すると、図3に示すフローにおいて初期設定入力され、圧縮機運転後、図4中ステップ210〜ステップ280と進み、このステップ280〜ステップ320において最高周波数割合KH3が圧力センサ7で検出した上流側吐出圧力P1に応じて演算され、次のステップ330において最低周波数割合KL3についても上流側吐出圧力P1に応じて演算される。その後、上記の可変速モード1の場合と同様に、ステップ350においてインバータ出力周波数指令値S2の可変制御範囲が上記最高・最低周波数割合KH3,KL3により制限されて、ステップ360でインバータ13へ出力される。
【0079】
ここで、図6は、可変速制御モードが可変速モード3である場合のインバータ周波数に対する消費動力の特性を示す図である。この図6において、▲4▼は吐出圧力P1=最高圧力設定Pmaxの場合、▲5▼は吐出圧力P1=仕様圧力設定Psの場合、▲6▼は吐出圧力P1=最低圧力設定Pminの場合の消費動力特性を示している。このとき、可変速モード3では上述したように最高周波数割合KH3が運転中に圧力センサ7で検出した実際の吐出圧力P1に応じて逐次演算・更新されるので、目標圧力設定Piを仕様圧力設定Psに設定していた場合であっても、例えば吐出圧力P1が最低圧力設定Pminまで低下した際に、上記可変速モード1の場合にはインバータ周波数はFSまでしか上昇しないのに対し、この可変速モード3では図6中▲6▼に示すようにインバータ周波数Fが追従して最高周波数設定Fmaxまで上昇し、スクリュー圧縮機の仕様を超えない範囲で最大限の空気量を吐出することができる。したがって、例えば起動時の初期充気時等の圧力過渡状態において、吐出圧力P1が最低圧力設定Pminに達するまでの間はインバータ周波数Fを最高周波数設定Fmaxまで上昇させて吐出空気量を最大限に増加させることにより初期充気時の遅延化防止を図ったり、一時的に供給先の使用空気量が増大した場合にそのときの吐出圧力P1の低下に追従して吐出空気量を増加することで供給圧力の低下の防止を図ることができる。
【0080】
他方において、設定入力部15で可変速制御モードを可変速モード2として設定入力すると、図3中ステップ10〜ステップ70に進み、このステップ70及び次のステップ80において最高・最低周波数割合KH2,KL2が目標圧力設定Piに応じた値に演算される。その後、圧縮機が運転されてからの制御内容は上記の可変速モード1の場合と同様である。
【0081】
ここで、図7は、可変速制御モードが可変速モード2である場合のインバータ周波数に対する消費動力の特性を示す図である。この図7において、▲7▼は目標圧力設定Pi>仕様圧力設定Psの場合、▲8▼は目標圧力設定Pi=仕様圧力設定Psの場合、▲9▼は目標圧力設定Pi<仕様圧力設定Psの場合の消費動力特性を示している。このとき、可変速モード2では上述したように最高周波数割合KH2が目標圧力設定Piに応じた値に演算されるので、目標圧力設定Piを仕様圧力設定Psより小さく設定した場合には、上記可変速モード1の場合にはインバータ周波数はFSまでしか上昇しないのに対し、この可変速モード2では図7中▲9▼に示すようにインバータ周波数Fを周波数FSより上のそのときの目標圧力設定Piに対応する周波数まで上昇させることができる。このように、可変速モード2においては目標圧力設定Piを仕様圧力設定Psより小さく設定することで、インバータ周波数Fの上限値を増大させ圧縮機の吐出空気量を定格空気量以上に増大させることができる。なお、この可変速モード2では上記可変速モード3のように運転中の吐出圧力状態に追従して上限値を変更するのではなく、予め設定する目標圧力設定Piに応じて上限値を変更するにすぎないので、上記可変速制御モード3のような運転状態に追従した精密な回転数制御を行う場合に比べて圧縮機の機械的な劣化を抑制する効果を得ることができる。
【0082】
以上説明したように、本実施の形態のスクリュー圧縮機によれば、吐出空気量を増加して初期充気の遅延化防止や一時的な使用空気量増大時における吐出圧力低下の防止を図りたい場合には可変速モード3、もっぱら消費動力低減のみを主眼としたい場合には可変速モード1、吐出空気量の増加は図りたいがそれによる機械的な劣化は抑制したい場合には可変速モード2を選択してその制御モードにて運転することで、ユーザの多種多様なニーズに対し柔軟に対応することができる。
【0083】
また本実施の形態においては、可変速制御モードが可変速モード1であって目標圧力設定Piが仕様圧力設定Ps以下である場合を除き、上述したように、可変速モード2の場合には図3中ステップ90において最低周波数割合KL2が目標圧力設定Piに応じた値に演算され、また可変速モード3の場合には図4中ステップ330において最低周波数割合KL3が上流側吐出圧力P1に応じた値に演算される。したがって、インバータ周波数Fの可変範囲の下限値は、可変速モード3の場合には図6中アに示す範囲で上限値の変更に追従して上流側吐出圧力P1に応じて運転中に自動的に変更され、可変速モード2の場合には図7中イに示す範囲で上限値の変更に追従して目標圧力設定Piに応じて自動的に変更される。これにより、インバータ周波数Fの可変制御範囲の上限値のみを可変させる前述した先願発明のような構造と比べて、上限値が可変して小さくなる場合には可変制御範囲が減縮されるのを抑制することができるので、供給先の必要風量に応じて比較的可変幅の広い回転数制御を行うことができる。さらに、下限値が可変しない構造に比べ、インバータ周波数の0から上限値までの領域中に占めるロード・アンロード運転が行われる領域の割合が増大するのを抑制することができるので、消費動力を低減することができ、且つ、ロード・アンロード運転の際に動作する吸込み絞り弁19(図1参照)等の機械寿命が低下するのを抑制することができる。またこれに加えて、上限値が可変して大きくなる場合には、下限値が可変しない構造に比べて可変制御範囲が必要以上に拡大するのを抑制することができるので、共振する頻度が増大するのを抑制することができる。
【0084】
また本実施の形態においては、設定入力部15で圧力制御モードを圧力モード1として設定入力すると、運転後において図4中ステップ210で圧力センサ7で検出した上流側吐出圧力P1を入力し、ステップ250でPID演算目標値を目標圧力設定Piとし、ステップ340でこのPID演算目標値である目標圧力設定Piと上流側吐出圧力P1との偏差に基づいてPID演算が行われる。すなわち、圧力センサ7で検出した上流側吐出圧力P1が目標圧力設定Piとなるように圧力一定制御が行われる。
【0085】
ここで、本実施の形態のスクリュー圧縮機において、上流側吐出圧力P1を検出する圧力センサ7は、圧力一定制御の応答性を鑑みて吐出配管系統の比較的上流側であるオイルセパレータ5とアフタークーラ6との間に設けられている。したがって、この圧力センサ7で検出する上流側吐出圧力P1と、実際の供給先への供給圧に近似する吐出配管系統下流側での下流側吐出圧力P2は、通常、その間の吐出配管の圧力損失によって差が生じる。この圧力損失は圧縮空気流量の2乗に比例する性質を有するため、圧縮機の吐出空気量が多くなるほど飛躍的に増大する。したがって、本実施の形態のスクリュー圧縮機においては、上述したように可変速制御モードを可変速モード2又は3とした場合には吐出空気量を定格空気量以上に増大することができるので、特に可変速モード2又は3とした場合に圧力制御モードを上記圧力モード1とすると、上流側吐出圧力P1と実際の供給圧力、すなわち目標圧力設定Piと実際の供給先への供給圧との差が大きくなってしまい、圧縮空気の吐出空気量精度が悪化してしまう可能性がある。
【0086】
そこで本実施の形態においては、設定入力部15で圧力制御モードを圧力モード2として設定入力すると、図3中ステップ30で圧力センサ7と圧力センサ12との間の圧力損失を演算値βとして算出し、図4中ステップ210において圧力センサ7で検出した上流側吐出圧力P1を入力し、さらにステップ260において上記演算値β(正確には単位換算したもの)に目標圧力設定Piを加算した第2の目標圧力設定Pi2をPID演算目標値とする。そして、ステップ340でこのPID演算目標値である目標圧力設定Pi2と上流側吐出圧力P1との偏差に基づいてPID演算が行われる。すなわち、実際に検出した上流側吐出圧力P1に基づいて圧力センサ7と圧力センサ12との間の吐出配管の圧力損失を演算し、その演算した圧力損失を供給先への目標供給圧力である目標圧力設定Piに加算することで演算上の上流側吐出圧力を設定し、実際の上流側吐出圧力P1がこの演算上の上流側吐出圧力となるように圧力一定制御が行われる。
【0087】
また本実施の形態においては、設定入力部15で圧力制御モードを圧力モード3として設定入力すると、図4中ステップ210において圧力センサ7で検出した上流側吐出圧力P1を入力した後、ステップ230で圧力センサ12で検出した下流側吐出圧力P2を入力し、さらにステップ240でこれら上流側吐出圧力P1と下流側吐出圧力P2との偏差に目標圧力設定Piを加算した第3の目標圧力設定Pi3をPID演算目標値とする。そして、ステップ340でこのPID演算目標値である目標圧力設定Pi3と上流側吐出圧力P1との偏差に基づいてPID演算が行われる。すなわち、実際に検出した上流側吐出圧力P1と下流側吐出圧力P2との偏差に供給先への目標供給圧力である目標圧力設定Piを加算することで上流側吐出圧力を設定し、実際の上流側吐出圧力P1がこの設定された上流側吐出圧力となるように圧力一定制御が行われる。
【0088】
以上のように、圧力制御モードを圧力モード2又は3とすることで、圧力センサ7で検出した吐出圧力P1に応じて下流側吐出圧力P2(すなわち供給先への供給圧)が一定範囲内となるように圧力一定制御を行うことができる。これにより、実際の圧縮空気の供給先への供給圧力がほぼ所定の範囲内となるように制御することができるので、圧縮空気の吐出空気量精度を向上することができる。したがって、上記したように特に可変速モード2又は3として定格空気量以上の吐出空気量を得ようとした場合でも、圧力制御モードを圧力モード2又は3とすることで圧縮空気の吐出空気量精度の悪化を防止することができる。また、圧力モード2及び3においては、下流側吐出圧力P2を直接PID演算に用いずに、圧力損失を加算した上流側吐出圧力P1をPID演算に用いるので、圧縮機本体1と吐出圧力検出位置との距離が離れている場合に生じるモータ回転数のハンチングを防止でき、圧縮空気の供給が不安定となるのを防止することができる。
【0089】
なお、上記本発明の一実施の形態においては、圧力制御モード及び可変速制御モードの設定入力を設定入力部15でするようにしたが、これに限らない。すなわち、制御装置14の外部に設けた外部端末18(図2中破線で図示)等により制御モードの選択がなされ、この外部端末18から出力される選択信号Mにより設定入力部15の制御モードが切り換えられるようにしてもよい。また、その他の各種設定値についても、この外部端末18等から設定入力するようにしてもよい。このとき、外部端末18は請求項2記載の選択信号を第1制御手段に出力する選択手段を構成する。
【0090】
【発明の効果】
請求項1記載の本発明によれば、もっぱら消費動力低減のみを主眼としたい場合には第1の制御モード、吐出空気量の増加は図りたいがそれによる機械的な劣化は抑制したい場合には第2の制御モード、吐出空気量を増加して初期充気の遅延化防止や一時的な使用空気量増大時における吐出圧力低下の防止を図りたい場合には第3の制御モードといったように、ニーズに応じた制御モードにてスクリュー圧縮機を運転することができる。これにより、ユーザの多種多様なニーズに対し柔軟に対応することができる。
【0091】
請求項3記載の本発明によれば、第2制御手段で可変制御範囲の下限値を変更し、その変更した可変制御範囲内において圧力検出手段で検出した圧縮空気の吐出圧力に応じてモータの回転数をインバータで制御して回転数可変制御を行う。これにより、可変制御範囲の上限値のみを可変させる場合と比べて、上限値が可変して小さくなる場合には可変制御範囲が減縮することを抑制できるので、供給先の必要風量に応じて可変幅の広い回転数制御を行うことができる。さらに、圧縮機の運転領域全体に占めるロード・アンロード運転を行う領域の割合が増大するのを抑制することができるので、消費動力を低減することができ、且つロード・アンロード運転の際に動作する吸込み絞り弁等の機械寿命の低下を抑制することができる。一方、上限値が可変して大きくなる場合には、可変制御範囲が必要以上に拡大するのを抑制することができるので、共振する頻度が増大するのを抑制することができる。
【0092】
請求項6記載の本発明によれば、第3制御手段により、上流側圧力検出手段で検出した第1の検出位置での吐出圧力に応じて、下流側の第2の検出位置での吐出圧力が所定の範囲内となるように制御する。これにより、実際の圧縮空気の供給先への供給圧力がほぼ所定の範囲内となるように制御することができるので、圧縮空気の吐出空気量精度を向上することができる。さらに、上流側圧力検出手段で上流側の第1の検出位置において検出した吐出圧力を回転数制御に用いるので、ハンチングの発生を防止することができる。
【図面の簡単な説明】
【図1】本発明のスクリュー圧縮機の一実施の形態の全体構造を表す模式図である。
【図2】本発明のスクリュー圧縮機の一実施の形態を構成する制御装置の制御機能を表す機能ブロック図である。
【図3】本発明のスクリュー圧縮機の一実施の形態を構成する制御装置の制御機能のうち、初期設定及び圧縮機運転前に行われる圧力一定制御及び可変速制御に係わる制御内容を表すフローチャートである。
【図4】本発明のスクリュー圧縮機の一実施の形態を構成する制御装置の制御機能のうち、圧縮機運転後に行われる圧力一定制御及び可変速制御に係わる制御内容を表すフローチャートである。
【図5】本発明のスクリュー圧縮機の一実施の形態において、可変速制御モードが可変速モード1である場合のインバータ周波数に対する消費動力の特性を示す図である。
【図6】本発明のスクリュー圧縮機の一実施の形態において、可変速制御モードが可変速モード3である場合のインバータ周波数に対する消費動力の特性を示す図である。
【図7】本発明のスクリュー圧縮機の一実施の形態において、可変速制御モードが可変速モード2である場合のインバータ周波数に対する消費動力の特性を示す図である。
【符号の説明】
1 圧縮機本体
2 モータ
7 圧力センサ(圧力検出手段;上流側圧力検出手段)
12 圧力センサ(圧力検出手段;下流側圧力検出手段)
13 インバータ
14 制御装置(第1制御手段;第2制御手段;第3制御手段)
18 外部端末(選択手段)

Claims (8)

  1. 空気を圧縮する圧縮機本体と、
    この圧縮機本体を駆動するモータと、
    このモータの回転数を所定の可変制御範囲内で可変に制御するインバータと、前記圧縮機本体から吐出される圧縮空気の吐出圧力を検出する圧力検出手段と、
    前記モータの回転数の可変制御範囲を所定の範囲に固定して前記インバータを制御する第1の制御モード、前記モータの回転数の可変制御範囲を目標圧力設定に応じて変更するように前記インバータを制御する第2の制御モード、及び前記モータの回転数の可変制御範囲を前記圧力検出手段で検出した吐出圧力に応じて運転中に自動的に変更するように前記インバータを制御する第3の制御モードのいずれか1つに選択時に切り換えられ、その切り換えられたモードで前記インバータを制御する第1制御手段とを有することを特徴とするスクリュー圧縮機。
  2. 請求項1記載のスクリュー圧縮機において、前記第1の制御モード、第2の制御モード、及び第3の制御モードのいずれかが選択入力され、これに応じた選択信号を前記第1制御手段に出力する選択手段をさらに備えることを特徴とするスクリュー圧縮機。
  3. 空気を圧縮する圧縮機本体と、
    この圧縮機本体を駆動するモータと、
    このモータの回転数を可変に制御するインバータと、
    前記圧縮機本体から吐出される圧縮空気の吐出圧力を検出する圧力検出手段と、
    前記モータの回転数の可変制御範囲の下限値を変更するように前記インバータを制御する第2制御手段とを備えたことを特徴とするスクリュー圧縮機。
  4. 請求項3記載のスクリュー圧縮機において、前記第2制御手段は前記可変制御範囲の下限値を予め設定された目標圧力設定に応じて変更することを特徴とするスクリュー圧縮機。
  5. 請求項3記載のスクリュー圧縮機において、前記第2制御手段は、前記可変制御範囲の下限値を前記圧力検出手段で検出した吐出圧力に応じて運転中に自動的に変更することを特徴とするスクリュー圧縮機。
  6. 空気を圧縮する圧縮機本体と、
    この圧縮機本体を駆動するモータと、
    このモータの回転数を可変に制御するインバータと、
    前記圧縮機本体から吐出される圧縮空気の第1の検出位置での吐出圧力を検出する上流側圧力検出手段と、
    この上流側圧力検出手段で検出した前記第1の検出位置での吐出圧力に応じて、前記第1の検出位置より流れ方向下流側における第2の検出位置での吐出圧力が所定の範囲内となるように、前記モータの回転数を前記インバータを介して可変制御する第3制御手段とを備えたことを特徴とするスクリュー圧縮機。
  7. 請求項6記載のスクリュー圧縮機において、前記第3制御手段は、前記上流側圧力検出手段で検出した前記第1の検出位置での吐出圧力に応じて前記第1の検出位置と前記第2の検出位置との間の圧力差を演算し、この演算した圧力差に応じて前記モータの回転数を可変制御することを特徴とするスクリュー圧縮機。
  8. 請求項6記載のスクリュー圧縮機において、前記第2の検出位置に下流側圧力検出手段をさらに備え、前記第3制御手段は、前記上流側圧力検出手段で検出した前記第1の検出位置での吐出圧力と前記下流側圧力検出手段で検出した前記第2の検出位置での吐出圧力との偏差に応じて前記モータの回転数を可変制御することを特徴とするスクリュー圧縮機。
JP2002359840A 2002-12-11 2002-12-11 スクリュー圧縮機 Expired - Lifetime JP3923422B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359840A JP3923422B2 (ja) 2002-12-11 2002-12-11 スクリュー圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359840A JP3923422B2 (ja) 2002-12-11 2002-12-11 スクリュー圧縮機

Publications (2)

Publication Number Publication Date
JP2004190583A true JP2004190583A (ja) 2004-07-08
JP3923422B2 JP3923422B2 (ja) 2007-05-30

Family

ID=32759115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359840A Expired - Lifetime JP3923422B2 (ja) 2002-12-11 2002-12-11 スクリュー圧縮機

Country Status (1)

Country Link
JP (1) JP3923422B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097643A (ja) * 2004-09-30 2006-04-13 Kobe Steel Ltd 圧縮機
JP2008151076A (ja) * 2006-12-19 2008-07-03 Hokuetsu Kogyo Co Ltd インバータ駆動圧縮機における運転制御方法及びインバータ駆動圧縮機
JP2008529472A (ja) * 2005-02-02 2008-07-31 エドワーズ リミテッド ポンプシステムの作動方法
JP2010024845A (ja) * 2008-07-15 2010-02-04 Hitachi Industrial Equipment Systems Co Ltd 圧縮空気製造設備
US8257053B2 (en) 2006-07-11 2012-09-04 Hitachi Industrial Equipment Systems Co., Ltd. Compressed air manufacturing facility
CN102927011A (zh) * 2011-08-12 2013-02-13 株式会社神户制钢所 压缩装置
US8753095B2 (en) 2005-04-29 2014-06-17 Edwards Limited Pumping system and method of operation
JP2018013099A (ja) * 2016-07-21 2018-01-25 三井精機工業株式会社 コンプレッサ
CN111853533A (zh) * 2019-04-24 2020-10-30 株式会社日立产机系统 压缩空气制造设备、目标压力调节方法和记录介质

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097643A (ja) * 2004-09-30 2006-04-13 Kobe Steel Ltd 圧縮機
JP4482416B2 (ja) * 2004-09-30 2010-06-16 株式会社神戸製鋼所 圧縮機
US9062684B2 (en) 2005-02-02 2015-06-23 Edwards Limited Method of operating a pumping system
JP2008529472A (ja) * 2005-02-02 2008-07-31 エドワーズ リミテッド ポンプシステムの作動方法
US9903378B2 (en) 2005-02-02 2018-02-27 Edwards Limited Method of operating a pumping system
US8753095B2 (en) 2005-04-29 2014-06-17 Edwards Limited Pumping system and method of operation
US8257053B2 (en) 2006-07-11 2012-09-04 Hitachi Industrial Equipment Systems Co., Ltd. Compressed air manufacturing facility
US8608450B2 (en) 2006-07-11 2013-12-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressed air manufacturing facility
JP2008151076A (ja) * 2006-12-19 2008-07-03 Hokuetsu Kogyo Co Ltd インバータ駆動圧縮機における運転制御方法及びインバータ駆動圧縮機
JP2010024845A (ja) * 2008-07-15 2010-02-04 Hitachi Industrial Equipment Systems Co Ltd 圧縮空気製造設備
CN102927011A (zh) * 2011-08-12 2013-02-13 株式会社神户制钢所 压缩装置
JP2018013099A (ja) * 2016-07-21 2018-01-25 三井精機工業株式会社 コンプレッサ
CN111853533A (zh) * 2019-04-24 2020-10-30 株式会社日立产机系统 压缩空气制造设备、目标压力调节方法和记录介质
US11976788B2 (en) 2019-04-24 2024-05-07 Hitachi Industrial Equipment Systems Co., Ltd. Compressed air production facility, compressed air pressure setpoint adjusting method, and compressed air pressure setpoint adjusting program

Also Published As

Publication number Publication date
JP3923422B2 (ja) 2007-05-30

Similar Documents

Publication Publication Date Title
JP4786443B2 (ja) 圧縮空気製造設備
JP3837278B2 (ja) 圧縮機の運転方法
JP4627492B2 (ja) 油冷式スクリュー圧縮機
KR101448864B1 (ko) 향상된 콤프레서 제어
JP6272479B2 (ja) 気体圧縮機
CN110529991A (zh) 空调器的控制方法及系统、空调器和计算机可读存储介质
JP3923422B2 (ja) スクリュー圧縮機
CN106403349B (zh) 一种双缸变容空调系统及控制方法
JP6915152B2 (ja) 気体圧縮機
JPH1082391A (ja) 2段スクリュー圧縮機の制御装置
JP6633759B2 (ja) 給油式空気圧縮機
US9017040B2 (en) Roughing pump method for a positive displacement pump
JP2000054977A (ja) スクリュ圧縮機の中間段圧力制御方法
JP4795977B2 (ja) 圧縮機の運転方法
JP3957171B2 (ja) スクリュー圧縮機
JP4742862B2 (ja) インバータ駆動容積形圧縮機の容量制御装置及び方法
JP3916418B2 (ja) スクリュ圧縮機の制御方法
JP2005016464A (ja) 圧縮装置
JP4127670B2 (ja) 無給油式スクリュー圧縮機
JP2005023818A (ja) 圧縮機システム
JP4659851B2 (ja) 無給油式スクリュー圧縮機
JPS6229852A (ja) ヒ−トポンプ式空気調和機の圧縮機制御装置
JP6612412B1 (ja) 圧縮機
JP2005351169A (ja) スクリュー圧縮機及びその運転制御方式
JP4599372B2 (ja) スクリュー圧縮機の運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Ref document number: 3923422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term