JP2004190116A - Steel wire for spring - Google Patents

Steel wire for spring Download PDF

Info

Publication number
JP2004190116A
JP2004190116A JP2002362131A JP2002362131A JP2004190116A JP 2004190116 A JP2004190116 A JP 2004190116A JP 2002362131 A JP2002362131 A JP 2002362131A JP 2002362131 A JP2002362131 A JP 2002362131A JP 2004190116 A JP2004190116 A JP 2004190116A
Authority
JP
Japan
Prior art keywords
tempering
quenching
mass
spring
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002362131A
Other languages
Japanese (ja)
Inventor
Yoshiro Fujino
善郎 藤野
Nozomi Kawabe
望 河部
Norito Yamao
憲人 山尾
Hiroshi Izumida
寛 泉田
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2002362131A priority Critical patent/JP2004190116A/en
Priority to PCT/JP2003/015689 priority patent/WO2004055226A1/en
Publication of JP2004190116A publication Critical patent/JP2004190116A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel wire for a spring whose fatigue properties can be improved by allowing the steel wire to have both strength and toughness in a well balance. <P>SOLUTION: The steel wire for a spring contains, by mass, 0.55 to 0.75% C, 1.80 to 2.70% Si, 0.1 to 0.7% Mn and 0.70 to 1.50% Cr, and one or more kinds of metals selected from the group consisting of 0.05 to 0.50% V, 0.05 to 0.50% Mo, 0.05 to 0.15% W, 0.05 to 0.15% Nb and 0.01 to 0.20% Ti, and the balance Fe with inevitable impurities. The steel wire has a tempered martensitic structure obtainable by quenching-tempering. The austenite grain size after the quenching-tempering is 1.0 to 18.0 μm, and the content of retained austenite is ≤10 vol./%. Then, after heat treatment at 420 to 480°C for ≥2 hr performed after the quenching-tempering, the hardness at a position of 1/4 of the diameter from the center of the axis is ≥550 Hv, and the value of the reduction of area is ≥35%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼入れ焼戻しを行って焼戻しマルテンサイト組織を有するばね用鋼線及びこの鋼線により製造されたばねに関するものである。特に、自動車のエンジン弁ばねやトランスミッション内部に用いられるばねなどに適した高強度高靭性のばね用鋼線及びばねに関するものである。
【0002】
【従来の技術】
自動車の低燃費化に対応して、近年、自動車のエンジンやトランスミッションの小型軽量化が進められている。それに伴って、エンジンの弁ばねやトランスミッション用のばねに負荷される応力は年々厳しくなっており、用いられるばね材料にも一層の疲労強度の向上が求められている。これらエンジンの弁ばねやトランスミッションのばねには、従来、シリコンクロム系のオイルテンパー線が用いられており、例えば、特許文献1〜5、非特許文献1に記載されるものが知られている。
【0003】
【特許文献1】
特開平2-247354号公報(特許請求の範囲、第1図参照)
【特許文献2】
特開2000-313938号公報(特許請求の範囲、図1参照)
【特許文献3】
特開平10-251760号公報(特許請求の範囲、実施例、表1、表2参照)
【特許文献4】
特開2002-194496号公報(特許請求の範囲、表1参照)
【特許文献5】
特開2002-180195号公報(特許請求の範囲、表1参照)
【非特許文献1】
ばね技術研究会、1994年度秋季講演会講演論文集、「8 高疲労強度ばねの疲労強度に及ぼす表面欠陥の影響」、1994年11月、29-32ページ
【0004】
【発明が解決しようとする課題】
上記のようにばねに要求される特性は、近年厳しくなっており、ばね用鋼線及びばねに対して更なる改善が求められており、特に、強度と靭性とをよりバランスよく具えることが望まれている。
【0005】
ここで、近年、オイルテンパー線を用いてばねを製造する際、ばね加工後に歪み取り焼鈍を施した後、表面処理として窒化処理やショットピーニングを行うことが知られている(特許文献2参照)。窒化処理は、通常、線表面を硬化させ、表面硬度を高くすることができるが、線内部の硬度を低下させる。また、ばね加工後の歪み取り焼鈍に加えて、窒化処理を施すことで、線内部の硬度がより低下し易くなる。そして、線内部が低硬度であることで、線内部を起点とする折損が生じる可能性がある。
【0006】
特許文献1及び4では、窒化処理について記載されておらず、窒化処理による線内部の硬度の低下が考慮されていない。特許文献2では、線表面の硬度のみを規定している。また、特許文献2及び非特許文献1では、窒化処理の温度を高くしている。後述する試験結果からわかるように、窒化処理の温度が高いほど、絞りなどの靭性が低下する傾向にある。
【0007】
更に、硬度のみでは十分な疲労特性が得られにくいため、靭性についても管理する必要があるが、いずれの文献も、高硬度であると共に、靭性をよりよくするための構成について言及されていない。特に、いずれの文献も、靭性の指標の一つである絞り値を規定していない。
【0008】
そこで、本発明の主目的は、強度と靭性とをバランスよく具えるばね用鋼線、及びこの鋼線から製造されたばねを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、化学成分、オーステナイト結晶粒径、残留オーステナイト量に加えて、ばね加工後に施す熱処理後の内部硬度及び絞り値を規定することで上記目的を達成する。
【0010】
即ち、本発明ばね用鋼線は、以下を特徴とする。
<化学成分>
質量%で、C:0.55〜0.75%、Si:1.80〜2.70%、Mn:0.1〜0.7%、Cr:0.70〜1.50%と、V:0.05〜0.50%、Mo:0.05〜0.50%、W:0.05〜0.15%、Nb:0.05〜0.15%及びTi:0.01〜0.20%よりなる群から選択される1種以上とを含有し、残部がFe及び不可避不純物
<組織>
焼入れ焼戻しによって得られる焼戻しマルテンサイト組織
<オーステナイト結晶粒径>
焼入れ焼戻し後のオーステナイト結晶粒径が1.0〜18.0μm
本発明においてオーステナイト結晶粒径とは、旧オーステナイト結晶粒径とする。
<残留オーステナイト量>
焼入れ焼戻し後の残留オーステナイト量が10体積%以下
<線内部の硬度>
焼入れ焼戻し後に施す420〜480℃で2hr以上の熱処理後において、
線中心から直径の1/4の位置における硬度:550Hv以上
<靭性>
焼入れ焼戻し後に施す420〜480℃で2hr以上の熱処理後において、
絞り値:35%以上
本発明では、靭性の指標として絞り値を用いる。
【0011】
本発明者らが種々の検討試験を行った結果、上記成分範囲のSiによる固溶強化と、V、Mo、W、Nb、Tiの炭化物の析出強化とにより耐熱性を向上させることで、焼入れ焼戻し後に歪み取り焼鈍(テンパー処理)や窒化処理などの熱処理を施しても、線内部の硬度の低下が少なく、高い硬度が得られるとの知見を得た。また、Mnの含有量を比較的少なくすることで、焼入れ焼戻し後だけでなく、その後に施す熱処理後においても、靭性を向上することができるとの知見を得た。この知見に基づき、上記化学成分を規定する。
【0012】
また、従来のように線表面や線表面よりもわずかに内側の線内部の硬度を規定するだけでは、熱処理後の内部硬度の評価を正当に行いにくい。そこで、本発明では、線表面や線表面付近といった表層部の硬度ではなく、線内部の硬度として、線中心から直径の1/4の位置における硬度を規定する。線中心から直径の1/4の位置は、表面脱炭や窒化処理などによる表面付近の硬度の上昇や中心偏析などの影響を最も受けにくいため、熱処理後の内部硬度を正当に評価し易い。
【0013】
線内部の硬度の低下を防止するべく、本発明では、上記のように化学成分を規定しているが、内部硬度は、熱処理によっても低下することがある。具体的には、熱処理温度が高く、かつ保持時間が長いほど低下し易い。そのため、熱処理による内部硬度の低下を抑制防止し、かつ耐熱性の向上と共に窒化処理などの熱処理による表面硬度の向上という効果を得るには、従来行われている温度よりも比較的高い温度域:420℃以上480℃以下で2時間以上の加熱が必要である。そこで、本発明では、焼入れ焼戻し後に施す熱処理条件を420〜480℃で2hr以上と規定する。
【0014】
更に、靭性の向上には、旧オーステナイトの結晶粒径、残留オーステナイト量が影響するとの知見を得た。この知見に基づき、本発明では、これらのパラメータを規定するものである。
【0015】
上記知見に基づき構成された本発明ばね用鋼線は、靭性を向上すると共に、焼入れ焼戻し後に施す熱処理後の内部硬度の低下を低減して、線内部を起点とするばねの折損を抑制することができる。
【0016】
以下、本発明ばね用鋼線の規定事項の限定理由をより詳しく説明する。
<化学成分>
C:0.55〜0.75質量%
Cは鋼の強度を決定する重要な元素であり、0.55質量%未満では十分な強度が得られず、0.75質量%を超えると靭性を損なうため、0.55質量%以上0.75%以下とする。
【0017】
Si:1.80〜2.70質量%
Siは溶解精錬時の脱酸剤として使用される。また、フェライト中に固溶して耐熱性を向上させ、ばね加工後の歪み取り焼鈍や窒化処理などの熱処理による線内部の硬度の低下を防ぐことができる。耐熱性を保持するためには1.8質量%以上が必要であり、2.7質量%を超えると靭性が低下するため、1.8質量%以上2.7%以下とする。
【0018】
Mn:0.1〜0.7質量%
MnはSiと同様に溶解精錬時の脱酸剤として使用され、鋼の焼入れ性を向上させる。そのため、脱酸剤に必要な添加量として下限を0.1質量%とする。一方、Mnは中心偏析を生じ易くする元素であり、過剰に添加すると、熱間圧延後のパテンチング処理時において中心偏析部分にマルテンサイトを生じ、その後の伸線加工の際、断線の原因となると共に、焼入れ焼戻し後の靭性を低下させる。本発明では、特に、靭性の向上を目指すため、添加量を従来と比べて比較的少なくする。具体的には、靭性の低下を防止する添加量として上限を0.7質量%とする。
【0019】
Cr:0.7〜1.5質量%
Crは鋼の焼入れ性を向上させ、焼入れ焼戻し後の軟化抵抗を増加させるため、ばね加工後のテンパー処理や窒化処理などの熱処理時の軟化防止に有効である。添加量が0.7質量%未満であると、上記熱処理時の軟化防止効果が少ないため、十分な効果が得られる添加量として下限を0.7質量%とする。一方、1.5質量%を超えて添加すると、パテンチング時にマルテンサイトを発生し易く、伸線時に断線の原因となると共に、オイルテンパー後の靭性を低下させる。そのため、Crの添加量は、1.5質量%以下とする。
【0020】
上記化学成分のうち、特に、Si及びCrは、炭化物を形成することで耐熱性を向上させる効果がある。そこで、本発明では、Si及びCrの含有量を比較的高めに設定して、耐熱性の向上を図る。但し、どの程度含有させるかは、靭性との兼ね合いによる。十分な耐熱性を得るためには、Siの原子%+Crの原子%を0.09以上とすることが好ましい。
【0021】
また、上記化学成分において硬度と靭性とのバランスをよりよくするためには、C:0.60質量%以上0.70質量%以下、Si:2.20質量%以上2.50質量%以下、Mn:0.2質量%以上0.5質量%以下、Cr:0.9質量%以上1.3質量%以下とすることが好ましい。
【0022】
Co:0.02〜1.00質量%
CoはMs点(マルテンサイト変態開始温度)を上昇させる元素であり、焼入れ後の残留オーステナイト量を減少させて、焼入れ焼戻し後の靭性を向上させる。従って、本発明では、靭性をより向上させるために添加する。靭性向上の効果を得るためには、0.02質量%以上添加することが好ましい。一方、一定量以上添加しても上記効果の向上が得られず、またCoは比較的高価であるため、上限を1.00質量%以下とする。靭性向上とコストの両面から考慮してより好ましい添加量は、0.05質量%以上0.20質量%以下である。
【0023】
Mo、V:0.05〜0.50質量%
W、Nb:0.05〜0.15質量%
これらの元素は、焼戻し時に炭化物を形成し、軟化抵抗を増加させる傾向がある。0.05質量%未満では軟化抵抗の増加効果が得られにくく、硬度を向上させにくい。一方、Mo、Vは0.50質量%を超えると、W、Nbは0.15質量%を超えると、靭性を低下させ易い。そのため、Mo、Vは、0.05質量%以上0.50質量%以下とする。また、W、Nbは、0.05質量%以上0.15質量%以下とする。
【0024】
Ti:0.01〜0.20質量%
Tiは焼戻し時に炭化物を形成し、軟化抵抗を増加させる効果がある。この効果を得るには、0.01質量%以上添加することが好ましい。しかし、過剰に添加すると高融点非金属介在物TiOが形成されて、靭性を低下させる恐れがある。この介在物の生成による靭性の低下を考慮して、0.20質量%以下とする。
【0025】
<線内部の硬度>
焼入れ焼戻し後、窒化処理により十分な表面硬度を得るためには、上記のように420〜480℃で2hr以上の加熱が必要であるが、一方で、線内部の硬度が低下したり、線内部を起点とした折損が生じる恐れがある。また、後述する実験結果から明らかなように、窒化処理の加熱温度が高くなるほど、内部硬度及び靭性が低下する傾向にある。そこで、本発明では、化学成分を規定することにより、耐熱性と靭性とを高める。具体的には、線内部の硬度550Hv以上を実現する。
【0026】
<オーステナイト結晶粒径>
旧オーステナイトの結晶粒径は耐疲労性に影響を与える。粒径が18.0μm以下の場合、結晶粒の微細化効果により、疲労特性が向上し、18.0μm超ではこの効果が得られにくい。また、1.0μm以下の場合、焼入れ焼戻し後の熱処理の際に十分に炭化物を固溶させることができず、かえって靭性の低下を招く。そこで、本発明では、旧オーステナイトの結晶粒径を1.0μm超18.0μm以下とする。旧オーステナイトの結晶粒径は、保持時間を一定とする場合、焼入れ時の加熱温度を変化させることで制御することができる。具体的には、加熱温度を低めにすると粒径を小さく、高めにすると粒径を大きくすることができる。
【0027】
<残留オーステナイト量>
残留オーステナイトは、含有量が多いと、焼入れ焼戻し後の靭性を低下させると共に、その後のばね加工時に加工誘起マルテンサイトに変態してばね成形特性を低下させる。そのため、本発明では、10体積%以下とする。残留オーステナイト量は、上記のように化学成分を特定することで制御可能である。
【0028】
<靭性>
本発明では、疲労強度の向上とばね加工に必要な靭性を具えるために、焼入れ焼戻し後に行う熱処理後の絞り値を35%以上とする。絞り値は、上記のように化学成分、オーステナイト結晶粒径、残留オーステナイト量を特定することで制御可能である。
【0029】
本発明ばね用鋼線は、焼入れ焼戻しを行った後、ばね加工を施し、窒化処理、更に1回以上のショットピーニングを実施してばねを製造するの用いることが好適である。また、製造されたばねは、自動車のエンジン弁ばねやトランスミッション内部などに用いることが挙げられる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
表1に示す化学成分を有する鋼材を溶解した後、熱間圧延により直径6.3φmmの線材を作製した。この線材をパテンチングした後、皮剥ぎ、焼鈍、伸線加工を順次行い直径3.2φmmのワイヤを得た。このワイヤに焼入れ焼戻しを行った。
【0031】
【表1】

Figure 2004190116
【0032】
焼入れ焼戻しを行ったサンプルA〜Oについて焼入れ焼戻し後の引張強度(TS)、旧オーステナイトの結晶粒径(γ粒径)、残留オーステナイト量(残留γ量)を表2に示す。また、各サンプルのワイヤを二つずつ用意し、焼入れ焼戻し後(OT後)、窒化処理を想定して420℃×2hrの熱処理、480℃×2hrの熱処理を各サンプルのそれぞれのワイヤに施した。これらワイヤの熱処理後の内部硬度及び絞り値を表2に示す。本例において内部硬度は、線中心より直径の1/4の位置(本例では、線表面から0.8mmの位置)において任意の4点の硬度をとり、その平均硬度とした。
【0033】
【表2】
Figure 2004190116
【0034】
引張強度は、焼戻し温度を変化させることで制御した。γ粒径は、焼入れ温度を変化させることで制御した。具体的には、γ粒径が10μm未満の試料No.4〜6、14、15は、900℃、昇温速度500℃/s、保持時間2s、γ粒径が10〜15μm以下の試料No.2、3、7-13は、1000℃、昇温速度500℃/s、保持時間2s、γ粒径が20μm超の試料No.1は、1100℃、昇温速度500℃/s、保持時間2sとした。残留γ量及び線内部の硬度は、化学成分により変化させた。
【0035】
その結果、表2に示すように特定の化学成分、γ粒径、残留γ量を満たす試料No.8〜15は、焼入れ焼戻し後に熱処理を行っても、内部硬度が高く、優れた靭性を具えることがわかる。また、熱処理温度は比較的低い方が優れた内部硬度及び靭性を有することが分かる。
【0036】
一方、Cの含有量が低く、焼入れ温度が高い試料No.1は、熱処理後の内部硬度が低い。試料No.3、7は、それぞれCr、Siの含有量が低いことで耐熱性に乏しくなり、熱処理後の内部硬度が低く、絞り値も小さい。試料No.2は、Cの含有量が高いことで残留γ量が多くなり、靭性が低い。試料No.4〜6は、それぞれSi、Mn、Crの含有量が高いため、靭性に乏しくなり、絞り値が低くなっている。
【0037】
上記480℃×2hrの熱処理を行った各試料に対し、それぞれ中村式回転曲げ疲労試験機にかけて、疲れ強さを調べてみた。試験は、ひずみ速度を一定にして各試料に応力を加え、評価は、繰り返し回数:1×10回で折損がなかった振幅応力にて行った(n数=8)。結果を表3に示す。
【0038】
【表3】
Figure 2004190116
【0039】
表3に示すように試料No.8〜15は、試料No.1〜7と比較して高い疲労限を有することがわかる。このことから、本発明は、硬度と靭性との両立により疲労強度の向上が図られていることが分かる。
【0040】
【発明の効果】
以上説明したように本発明ばね用鋼線によれば、強度と靭性との双方をバランスよく具えることで、疲労特性を向上することができるという優れた効果を奏し得る。従って、本発明ばね用鋼線を用いれば、疲労特性に優れたばねを得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spring steel wire having a martensitic structure after quenching and tempering, and a spring manufactured from the steel wire. In particular, the present invention relates to a high-strength and high-toughness spring steel wire and spring suitable for an engine valve spring of an automobile or a spring used inside a transmission.
[0002]
[Prior art]
In recent years, in response to the reduction in fuel consumption of automobiles, the size and weight of automobile engines and transmissions have been reduced. Along with this, the stress applied to the valve spring of the engine and the spring for the transmission has become severer year by year, and the spring material used has been required to further improve the fatigue strength. Conventionally, silicon-chromium-based oil-tempered wires have been used for valve springs and transmission springs of these engines. For example, those described in Patent Documents 1 to 5 and Non-Patent Document 1 are known.
[0003]
[Patent Document 1]
JP-A-2-247354 (Claims, see FIG. 1)
[Patent Document 2]
JP 2000-313938A (Claims, see FIG. 1)
[Patent Document 3]
JP-A-10-251760 (Claims, Examples, see Tables 1 and 2)
[Patent Document 4]
JP-A-2002-194496 (Claims, see Table 1)
[Patent Document 5]
JP 2002-180195 A (Claims, see Table 1)
[Non-patent document 1]
Spring Technology Workshop, 1994 Autumn Lectures, "8 Influence of Surface Defects on Fatigue Strength of High Fatigue Strength Springs," November 1994, pp. 29-32 [0004]
[Problems to be solved by the invention]
As described above, the properties required for springs have become stricter in recent years, and further improvements are required for steel wires for springs and springs. In particular, it is necessary to provide a more balanced balance between strength and toughness. Is desired.
[0005]
Here, in recent years, when manufacturing a spring using an oil-tempered wire, it is known to perform a nitriding treatment or shot peening as a surface treatment after performing strain relief annealing after the spring working (see Patent Document 2). . The nitriding treatment can usually harden the wire surface and increase the surface hardness, but lower the hardness inside the wire. Further, by performing the nitriding treatment in addition to the strain relief annealing after the spring working, the hardness inside the wire is more likely to be reduced. And since the inside of a wire is low hardness, there is a possibility that breakage starting from the inside of the wire may occur.
[0006]
Patent Documents 1 and 4 do not describe the nitriding treatment, and do not consider the decrease in hardness inside the wire due to the nitriding treatment. Patent Document 2 defines only the hardness of the wire surface. In Patent Document 2 and Non-patent Document 1, the temperature of the nitriding treatment is increased. As can be seen from the test results described later, the higher the temperature of the nitriding treatment, the lower the toughness such as drawing tends to be.
[0007]
Furthermore, since it is difficult to obtain sufficient fatigue properties only with hardness, it is necessary to control toughness, but none of the documents mentions a configuration for improving hardness and toughness. In particular, none of the documents specifies an aperture value, which is one of the indexes of toughness.
[0008]
Therefore, a main object of the present invention is to provide a spring steel wire having a good balance of strength and toughness, and a spring manufactured from this steel wire.
[0009]
[Means for Solving the Problems]
The present invention achieves the above object by defining the internal hardness after heat treatment performed after spring working and the aperture value, in addition to the chemical composition, the austenite crystal grain size, and the amount of retained austenite.
[0010]
That is, the spring steel wire of the present invention has the following features.
<Chemical components>
In mass%, C: 0.55 to 0.75%, Si: 1.80 to 2.70%, Mn: 0.1 to 0.7%, Cr: 0.70 to 1.50%, V: 0.05 to 0.50%, Mo: 0.05 to 0.50%, W: 0.05 0.15%, Nb: 0.05 to 0.15% and Ti: at least one selected from the group consisting of 0.01 to 0.20%, with the balance being Fe and inevitable impurities <structure>
Tempered martensite structure obtained by quenching and tempering <Austenite grain size>
Austenite grain size after quenching and tempering is 1.0-18.0μm
In the present invention, the austenite crystal grain size is the former austenite crystal grain size.
<Amount of retained austenite>
The amount of retained austenite after quenching and tempering is 10% by volume or less <Hardness inside wire>
After heat treatment at 420 to 480 ° C for more than 2 hours after quenching and tempering,
Hardness at 1/4 of diameter from line center: 550Hv or more <Toughness>
After heat treatment at 420 to 480 ° C for more than 2 hours after quenching and tempering,
Aperture value: 35% or more In the present invention, the aperture value is used as an index of toughness.
[0011]
As a result of various studies conducted by the present inventors, solid solution strengthening by Si in the above component range and V, Mo, W, Nb, and precipitation strengthening of carbides of Ti improve heat resistance, thereby quenching. It has been found that even after heat treatment such as strain relief annealing (tempering treatment) or nitriding treatment after tempering, a decrease in hardness inside the wire is small and a high hardness can be obtained. Further, it has been found that by making the content of Mn relatively small, the toughness can be improved not only after the quenching and tempering but also after the subsequent heat treatment. Based on this knowledge, the above chemical components are defined.
[0012]
Further, it is difficult to properly evaluate the internal hardness after the heat treatment only by defining the hardness of the wire surface or the inside of the wire slightly inside the wire surface as in the related art. Therefore, in the present invention, the hardness at a position 1/4 of the diameter from the center of the line is defined as the hardness inside the line, not as the hardness of the surface layer such as the line surface or the vicinity of the line surface. Since the position at a quarter of the diameter from the center of the line is least susceptible to an increase in hardness near the surface due to surface decarburization or nitriding, or the effects of center segregation, the internal hardness after the heat treatment can be properly evaluated.
[0013]
In the present invention, the chemical components are specified as described above in order to prevent a decrease in the hardness inside the wire, but the internal hardness may also be reduced by heat treatment. Specifically, the higher the heat treatment temperature and the longer the holding time, the lower the temperature. Therefore, in order to prevent the reduction of the internal hardness due to the heat treatment and to obtain the effect of improving the surface hardness by the heat treatment such as the nitriding treatment together with the improvement of the heat resistance, the temperature range which is relatively higher than the temperature conventionally performed: Heating at 420 ° C to 480 ° C for 2 hours or more is required. Therefore, in the present invention, the heat treatment conditions to be performed after quenching and tempering are specified to be at 420 to 480 ° C. for 2 hours or more.
[0014]
Further, it has been found that the improvement in toughness is affected by the crystal grain size of old austenite and the amount of retained austenite. Based on this finding, the present invention defines these parameters.
[0015]
The steel wire for springs of the present invention configured based on the above findings improves toughness, reduces a decrease in internal hardness after heat treatment performed after quenching and tempering, and suppresses breakage of a spring starting from inside the wire. Can be.
[0016]
Hereinafter, the reasons for limiting the specified items of the steel wire for spring of the present invention will be described in more detail.
<Chemical components>
C: 0.55 to 0.75 mass%
C is an important element that determines the strength of steel. If it is less than 0.55% by mass, sufficient strength cannot be obtained, and if it exceeds 0.75% by mass, the toughness is impaired. Therefore, C is set to 0.55% by mass or more and 0.75% or less.
[0017]
Si: 1.80 to 2.70 mass%
Si is used as a deoxidizing agent during refining. In addition, the solid solution in ferrite improves heat resistance, and prevents a decrease in hardness inside the wire due to heat treatment such as strain relief annealing or nitriding after spring processing. In order to maintain heat resistance, the content is required to be 1.8% by mass or more, and if it exceeds 2.7% by mass, toughness is reduced.
[0018]
Mn: 0.1 to 0.7 mass%
Mn, like Si, is used as a deoxidizing agent during melting and refining, and improves the hardenability of steel. Therefore, the lower limit is set to 0.1% by mass as an addition amount required for the deoxidizing agent. On the other hand, Mn is an element that tends to cause center segregation, and when added excessively, causes martensite in the center segregated portion at the time of patenting treatment after hot rolling and causes wire breakage during subsequent wire drawing. At the same time, it reduces the toughness after quenching and tempering. In the present invention, particularly, in order to improve the toughness, the amount of addition is made relatively small as compared with the conventional case. Specifically, the upper limit is set to 0.7% by mass as an addition amount for preventing a decrease in toughness.
[0019]
Cr: 0.7 to 1.5 mass%
Cr improves the hardenability of steel and increases the softening resistance after quenching and tempering, and is thus effective in preventing softening during heat treatment such as tempering or nitriding after spring processing. If the addition amount is less than 0.7% by mass, the softening prevention effect during the heat treatment is small, so the lower limit is set to 0.7% by mass as an addition amount that can provide a sufficient effect. On the other hand, if it is added in excess of 1.5% by mass, martensite is liable to be generated at the time of patenting, which causes disconnection at the time of wire drawing, and reduces toughness after oil tempering. Therefore, the amount of Cr added is set to 1.5% by mass or less.
[0020]
Among the above chemical components, in particular, Si and Cr have an effect of improving heat resistance by forming carbides. Therefore, in the present invention, the content of Si and Cr is set relatively high to improve heat resistance. However, how much is contained depends on the balance with toughness. In order to obtain sufficient heat resistance, it is preferable that the atomic% of Si + the atomic% of Cr be 0.09 or more.
[0021]
Further, in order to improve the balance between hardness and toughness in the above chemical components, C: 0.60% by mass to 0.70% by mass, Si: 2.20% by mass to 2.50% by mass, Mn: 0.2% by mass to 0.5% by mass %, And Cr: preferably 0.9% to 1.3% by mass.
[0022]
Co: 0.02-1.00 mass%
Co is an element that increases the Ms point (martensite transformation start temperature), reduces the amount of retained austenite after quenching, and improves the toughness after quenching and tempering. Therefore, in the present invention, it is added in order to further improve the toughness. In order to obtain the effect of improving toughness, it is preferable to add 0.02% by mass or more. On the other hand, even if a certain amount or more is added, the above effect cannot be improved, and Co is relatively expensive, so the upper limit is made 1.00% by mass or less. A more preferable addition amount in consideration of both improvement in toughness and cost is 0.05% by mass or more and 0.20% by mass or less.
[0023]
Mo, V: 0.05 to 0.50 mass%
W, Nb: 0.05 to 0.15 mass%
These elements tend to form carbides during tempering and increase softening resistance. If it is less than 0.05% by mass, it is difficult to obtain the effect of increasing the softening resistance, and it is difficult to improve the hardness. On the other hand, if Mo and V exceed 0.50% by mass, and W and Nb exceed 0.15% by mass, the toughness tends to decrease. Therefore, Mo and V are set to 0.05% by mass or more and 0.50% by mass or less. Further, W and Nb are set to 0.05% by mass or more and 0.15% by mass or less.
[0024]
Ti: 0.01 to 0.20 mass%
Ti has the effect of forming carbides during tempering and increasing softening resistance. To obtain this effect, it is preferable to add 0.01% by mass or more. However, if added excessively, high melting point nonmetallic inclusions TiO may be formed, and the toughness may be reduced. Considering the decrease in toughness due to the formation of inclusions, the content is set to 0.20% by mass or less.
[0025]
<Hardness inside wire>
After quenching and tempering, in order to obtain sufficient surface hardness by nitriding treatment, heating at 420 to 480 ° C for 2 hours or more is necessary as described above, but on the other hand, the hardness inside the wire decreases, There is a possibility that breakage from the starting point may occur. Further, as apparent from the experimental results described later, the higher the heating temperature of the nitriding treatment, the lower the internal hardness and toughness tend to be. Therefore, in the present invention, heat resistance and toughness are improved by defining chemical components. Specifically, a hardness of 550 Hv or more inside the wire is realized.
[0026]
<Austenite grain size>
The grain size of prior austenite affects fatigue resistance. When the particle size is 18.0 μm or less, fatigue characteristics are improved due to the effect of refining crystal grains, and when the particle size exceeds 18.0 μm, this effect is hardly obtained. On the other hand, when the thickness is 1.0 μm or less, the carbide cannot be sufficiently dissolved in the heat treatment after the quenching and tempering, and the toughness is rather lowered. Therefore, in the present invention, the crystal grain size of the prior austenite is set to more than 1.0 μm and 18.0 μm or less. If the holding time is constant, the crystal grain size of the prior austenite can be controlled by changing the heating temperature during quenching. Specifically, the particle size can be reduced by lowering the heating temperature and increased by increasing the heating temperature.
[0027]
<Amount of retained austenite>
When the content of the retained austenite is large, the toughness after quenching and tempering is reduced, and at the time of subsequent spring working, the transformed austenite is transformed into work-induced martensite to lower the spring forming properties. Therefore, in the present invention, the content is set to 10% by volume or less. The amount of retained austenite can be controlled by specifying the chemical components as described above.
[0028]
<Toughness>
In the present invention, in order to improve the fatigue strength and provide the toughness required for spring processing, the aperture value after the heat treatment performed after quenching and tempering is set to 35% or more. The aperture value can be controlled by specifying the chemical component, the austenite crystal grain size, and the amount of retained austenite as described above.
[0029]
The steel wire for a spring of the present invention is preferably used for manufacturing a spring by performing quenching and tempering, then performing spring processing, nitriding, and performing one or more shot peening operations. Further, the manufactured spring may be used for an engine valve spring of an automobile, the inside of a transmission, or the like.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
After a steel material having the chemical components shown in Table 1 was melted, a wire having a diameter of 6.3 mm was produced by hot rolling. After the wire was patented, skinning, annealing, and wire drawing were sequentially performed to obtain a 3.2 mm diameter wire. The wire was quenched and tempered.
[0031]
[Table 1]
Figure 2004190116
[0032]
Table 2 shows the tensile strength (TS) after quenching and tempering, the crystal grain size of the prior austenite (γ grain size), and the amount of residual austenite (residual γ amount) for the samples A to O subjected to quenching and tempering. In addition, two wires of each sample were prepared, and after quenching and tempering (after OT), a heat treatment at 420 ° C. for 2 hours and a heat treatment at 480 ° C. for 2 hours were performed on each wire of each sample assuming a nitriding treatment. . Table 2 shows the internal hardness and the drawn value of these wires after heat treatment. In this example, the internal hardness was determined as the average hardness of four arbitrary points at a position 1/4 of the diameter from the center of the line (in this example, 0.8 mm from the line surface).
[0033]
[Table 2]
Figure 2004190116
[0034]
The tensile strength was controlled by changing the tempering temperature. The γ particle size was controlled by changing the quenching temperature. Specifically, Sample Nos. 4 to 6, 14, and 15 having a γ particle size of less than 10 μm are 900 ° C., a temperature rising rate of 500 ° C./s, a holding time of 2 s, and a sample No. having a γ particle size of 10 to 15 μm or less. .2, 3, 7-13: 1000 ° C, heating rate: 500 ° C / s, holding time: 2s, Sample No. 1 with γ particle size of more than 20μm, 1100 ° C, heating rate: 500 ° C / s, holding Time was 2 s. The amount of residual γ and the hardness inside the line were changed depending on the chemical components.
[0035]
As a result, as shown in Table 2, Samples Nos. 8 to 15 satisfying the specific chemical components, γ particle size, and residual γ amount had high internal hardness and excellent toughness even after heat treatment after quenching and tempering. You can see it. Also, it can be seen that the relatively low heat treatment temperature has excellent internal hardness and toughness.
[0036]
On the other hand, Sample No. 1 having a low C content and a high quenching temperature has a low internal hardness after heat treatment. Samples Nos. 3 and 7 have low heat resistance due to low contents of Cr and Si, respectively, have low internal hardness after heat treatment, and have a small aperture value. Sample No. 2 has a high content of C, has a large residual γ content, and has low toughness. Samples Nos. 4 to 6 each have a high content of Si, Mn, and Cr, and thus have poor toughness and a low aperture value.
[0037]
Each of the samples subjected to the heat treatment at 480 ° C. for 2 hours was subjected to a Nakamura-type rotary bending fatigue tester to examine the fatigue strength. In the test, a stress was applied to each sample while keeping the strain rate constant, and the evaluation was performed at an amplitude stress at which the number of repetitions was 1 × 10 7 times and there was no breakage (n number = 8). Table 3 shows the results.
[0038]
[Table 3]
Figure 2004190116
[0039]
As shown in Table 3, it can be seen that Samples Nos. 8 to 15 have a higher fatigue limit than Samples Nos. 1 to 7. From this, it can be seen that in the present invention, fatigue strength is improved by achieving both hardness and toughness.
[0040]
【The invention's effect】
As described above, according to the spring steel wire of the present invention, by providing both strength and toughness in a well-balanced manner, an excellent effect of improving fatigue characteristics can be obtained. Therefore, if the steel wire for a spring of the present invention is used, a spring having excellent fatigue characteristics can be obtained.

Claims (6)

質量%で、
C:0.55〜0.75%、Si:1.80〜2.70%、Mn:0.1〜0.7%、Cr:0.70〜1.50%と、
V:0.05〜0.50%、Mo:0.05〜0.50%、W:0.05〜0.15%、Nb:0.05〜0.15%及びTi:0.01〜0.20%よりなる群から選択される1種以上とを含有し、
残部がFe及び不可避不純物からなり、
焼入れ焼戻しによって得られる焼戻しマルテンサイト組織を有し、
焼入れ焼戻し後において、
オーステナイト結晶粒径が1.0〜18.0μmであり、
残留オーステナイト量が10体積%以下であり、
焼入れ焼戻し後に施す420〜480℃で2hr以上の熱処理後において、
線中心から直径の1/4の位置における硬度が550Hv以上であり、
絞り値が35%以上であることを特徴とするばね用鋼線。
In mass%,
C: 0.55 to 0.75%, Si: 1.80 to 2.70%, Mn: 0.1 to 0.7%, Cr: 0.70 to 1.50%,
V: 0.05 to 0.50%, Mo: 0.05 to 0.50%, W: 0.05 to 0.15%, Nb: 0.05 to 0.15%, and Ti: one or more selected from the group consisting of 0.01 to 0.20%,
The balance consists of Fe and inevitable impurities,
Having a tempered martensite structure obtained by quenching and tempering,
After quenching and tempering,
The austenite grain size is 1.0-18.0μm,
The residual austenite amount is 10% by volume or less,
After heat treatment at 420 to 480 ° C for more than 2 hours after quenching and tempering,
The hardness at the position of 1/4 of the diameter from the line center is 550Hv or more,
A spring steel wire having an aperture value of 35% or more.
質量%で、
C:0.55〜0.75%、Si:1.80〜2.70%、Mn:0.1〜0.7%、Cr:0.70〜1.50%、Co:0.02〜1.00%と、
V:0.05〜0.50%、Mo:0.05〜0.50%、W:0.05〜0.15%、Nb:0.05〜0.15%及びTi:0.01〜0.20%よりなる群から選択される1種以上とを含有し、
残部がFe及び不可避不純物からなり、
焼入れ焼戻しによって得られる焼戻しマルテンサイト組織を有し、
焼入れ焼戻し後において、
オーステナイト結晶粒径が1.0〜18.0μmであり、
残留オーステナイト量が10体積%以下であり、
焼入れ焼戻し後に施す420〜480℃で2hr以上の熱処理後において、
線中心から直径の1/4の位置における硬度が550Hv以上であることを特徴とするばね用鋼線。
In mass%,
C: 0.55 to 0.75%, Si: 1.80 to 2.70%, Mn: 0.1 to 0.7%, Cr: 0.70 to 1.50%, Co: 0.02 to 1.00%,
V: 0.05 to 0.50%, Mo: 0.05 to 0.50%, W: 0.05 to 0.15%, Nb: 0.05 to 0.15%, and Ti: one or more selected from the group consisting of 0.01 to 0.20%,
The balance consists of Fe and inevitable impurities,
Having a tempered martensite structure obtained by quenching and tempering,
After quenching and tempering,
The austenite grain size is 1.0-18.0μm,
The residual austenite amount is 10% by volume or less,
After heat treatment at 420 to 480 ° C for more than 2 hours after quenching and tempering,
A spring steel wire having a hardness of 550Hv or more at a position 1/4 of the diameter from the wire center.
更に、焼入れ焼戻し後に施す420〜480℃で2hr以上の熱処理後において、絞り値が35%以上であることを特徴とする請求項2記載のばね用鋼線。3. The steel wire for a spring according to claim 2, further comprising, after heat treatment at 420 to 480 ° C. for 2 hours or more performed after quenching and tempering, a drawn value of 35% or more. 質量%でC:0.60〜0.70%、Si:2.20〜2.50%、Mn:0.2〜0.5%、Cr:0.9〜1.3%を含有することを特徴とする請求項1〜3のいずれかに記載のばね用鋼線。The spring according to any one of claims 1 to 3, wherein C: 0.60 to 0.70%, Si: 2.20 to 2.50%, Mn: 0.2 to 0.5%, and Cr: 0.9 to 1.3% by mass%. For steel wire. 質量%でCo:0.05〜0.20%を含有することを特徴とする請求項2〜4のいずれかに記載のばね用鋼線。The spring steel wire according to any one of claims 2 to 4, wherein the steel wire contains 0.05 to 0.20% by mass of Co. 請求項1〜5のいずれかに記載のばね用鋼線を用いて製造されたことを特徴とするばね。A spring manufactured using the steel wire for a spring according to any one of claims 1 to 5.
JP2002362131A 2002-12-13 2002-12-13 Steel wire for spring Pending JP2004190116A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002362131A JP2004190116A (en) 2002-12-13 2002-12-13 Steel wire for spring
PCT/JP2003/015689 WO2004055226A1 (en) 2002-12-13 2003-12-08 Steel wire for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362131A JP2004190116A (en) 2002-12-13 2002-12-13 Steel wire for spring

Publications (1)

Publication Number Publication Date
JP2004190116A true JP2004190116A (en) 2004-07-08

Family

ID=32588148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362131A Pending JP2004190116A (en) 2002-12-13 2002-12-13 Steel wire for spring

Country Status (2)

Country Link
JP (1) JP2004190116A (en)
WO (1) WO2004055226A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018048A1 (en) * 2005-08-05 2007-02-15 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
US20090205753A1 (en) * 2006-03-31 2009-08-20 Masayuki Hashimura High strength spring-use heat treated steel
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
WO2011004913A1 (en) * 2009-07-09 2011-01-13 新日本製鐵株式会社 Steel wire for high-strength spring

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357977B2 (en) * 2004-02-04 2009-11-04 住友電工スチールワイヤー株式会社 Steel wire for spring
CN101892425B (en) * 2010-08-20 2012-06-13 武汉中磁浩源科技有限公司 Soft magnetic alloy powder, magnetic powder core and preparation methods thereof
ES2640626T3 (en) * 2013-10-11 2017-11-03 N.V. Bekaert S.A. High tensile strength steel wire
CN106442495B (en) * 2016-09-18 2018-11-30 扬州大学 It whether there is the heat treatment method of martensite in a kind of measurement austempered ductile iron

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233188B2 (en) * 1995-09-01 2001-11-26 住友電気工業株式会社 Oil-tempered wire for high toughness spring and method of manufacturing the same
JP3548341B2 (en) * 1996-06-24 2004-07-28 新日本製鐵株式会社 Wire material with excellent descaling and drawability
JP2003105498A (en) * 2001-09-28 2003-04-09 Togo Seisakusho Corp High strength spring, and production method therefor
JP2003213372A (en) * 2002-01-25 2003-07-30 Sumitomo Denko Steel Wire Kk Steel wire for spring and spring
JP3975110B2 (en) * 2002-04-16 2007-09-12 住友電工スチールワイヤー株式会社 Steel wire, manufacturing method thereof and spring

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018048A1 (en) * 2005-08-05 2007-02-15 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
JP2007063584A (en) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd Oil tempered wire and manufacturing method therefor
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
US20090205753A1 (en) * 2006-03-31 2009-08-20 Masayuki Hashimura High strength spring-use heat treated steel
WO2011004913A1 (en) * 2009-07-09 2011-01-13 新日本製鐵株式会社 Steel wire for high-strength spring
US8734600B2 (en) 2009-07-09 2014-05-27 Nippon Steel & Sumitomo Metal Corporation High strength steel wire for spring

Also Published As

Publication number Publication date
WO2004055226A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP6461360B2 (en) Spring steel wire and spring
US8845825B2 (en) High strength spring-use heat treated steel
JP4478072B2 (en) High strength spring steel
WO2007114491A1 (en) Heat-treatment steel for high-strength spring
KR20050105281A (en) Steel wire for high strength spring excellent in workability and high strength spring
KR20060129019A (en) Steel wire for spring
EP2746420B1 (en) Spring steel and spring
JP2007302950A (en) High-strength spring steel wire superior in setting resistance
JP5655627B2 (en) High strength spring steel with excellent hydrogen embrittlement resistance
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
JP2003213372A (en) Steel wire for spring and spring
JP4994932B2 (en) Oil tempered wire and method for producing oil tempered wire
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
JP2004190116A (en) Steel wire for spring
JPH07188852A (en) Steel for nitrided spring excellent in fatigue strength and nitrided spring
JP5214292B2 (en) Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same
JP4133515B2 (en) Spring steel wire with excellent sag and crack resistance
JP2004010965A (en) High strength spring steel having excellent corrosion fatigue strength
JPS62274051A (en) Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP3142689B2 (en) Spring with excellent fatigue strength
JP2014227581A (en) Oil temper wire and method of producing oil temper wire
WO2018074003A1 (en) High-strength spring, method for producing same, steel for high-strength spring, and method for producing same
JP2011058035A (en) Hard-drawn wire

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20040720

Free format text: JAPANESE INTERMEDIATE CODE: A625

A131 Notification of reasons for refusal

Effective date: 20080130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080801