JPS62274051A - Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same - Google Patents
Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using sameInfo
- Publication number
- JPS62274051A JPS62274051A JP11820786A JP11820786A JPS62274051A JP S62274051 A JPS62274051 A JP S62274051A JP 11820786 A JP11820786 A JP 11820786A JP 11820786 A JP11820786 A JP 11820786A JP S62274051 A JPS62274051 A JP S62274051A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- wire
- tensile strength
- resistance
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 47
- 239000010959 steel Substances 0.000 title claims abstract description 47
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000005496 tempering Methods 0.000 abstract description 13
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910008458 Si—Cr Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Springs (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
[産業上の利用分野]
本発明は、耐疲労性、耐へたり性に優れた鋼及び同鋼を
利用した弁ばね用鋼線に係り、特に内燃機関用弁ばね、
クラッチばねまたはブレーキばね等の機械用ばねに用い
られるものに関する。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a steel with excellent fatigue resistance and fatigue resistance, and a steel wire for valve springs using the same steel. , especially valve springs for internal combustion engines,
It relates to mechanical springs such as clutch springs and brake springs.
[従来の技術]
耐疲労性や耐へたり性が要望される代表的な弁ばね用銅
としてはS i−Cr鋼のオイルテンパー線が用いられ
ている。[Prior Art] An oil-tempered wire made of Si-Cr steel is used as a typical copper for valve springs, which is required to have fatigue resistance and fatigue resistance.
これらのワイヤーの引張強さは線径に応じた概略式とし
て。The tensile strength of these wires is expressed as a rough formula depending on the wire diameter.
T 、 S =71d−172+155(T、S:引張
強さ[kgf/mm″]d:素線径[m mφ]
)
で与えられる。T, S = 71d-172+155 (T, S: tensile strength [kgf/mm''] d: strand diameter [mmφ]
) is given by.
具体的にこの式に基づいて引張強さを求めると、4[m
mφ]のワイヤーでT、Sは約190 [kgf/mt
n’l となる。Specifically, when calculating the tensile strength based on this formula, it is 4 [m
mφ] wire, T and S are approximately 190 [kgf/mt
It becomes n'l.
また、弁ばね用オイルテンパー線として5WRS67B
等のピアノ線用が用いられることがある。このときのワ
イヤーの引張強さは5i−Cr鋼のオイルテンパー線よ
りも更に低く、4.0[mmφ]のワイヤーで目標とさ
れる引張強さは約165[kgf/mm″]である。Also, 5WRS67B is used as an oil tempered wire for valve springs.
For piano wire, etc. are sometimes used. The tensile strength of the wire at this time is even lower than the oil-tempered wire of 5i-Cr steel, and the target tensile strength for a 4.0 [mmφ] wire is about 165 [kgf/mm''].
更に、弁ばね用ワイヤーとして、伸線加工されたままの
ワイヤーが用いられる場合もある。Furthermore, as the wire for the valve spring, a wire that has been drawn may be used in some cases.
その代表的な例として、5WRS82Aを伸線加工した
ワイヤーが挙げられるが、そあ引張強さは約170[k
gf/mm’コである。A typical example is wire drawn from 5WRS82A, which has a tensile strength of approximately 170 k
gf/mm'.
そして、従来の弁ばね用ワイヤーに関する規格について
は次のようなものがある。There are the following standards regarding conventional valve spring wires.
<(J I S規格等)
JIS G3566、JIS G3561、JIS
G3565.JSMA(日本ばね工業会規格)
[発明が解決しようとする問題点]
一般に、圧縮・引張りコイルばねにおいて、ばねの高さ
くH[mml ) 、軸方向力が作用した場合の素”線
に生じるねじり応力(τ[kgf/mm”l)は次式で
与えられる。<(JIS standards, etc.) JIS G3566, JIS G3561, JIS
G3565. JSMA (Japan Spring Manufacturers Association Standards) [Problems to be solved by the invention] In general, in compression/tension coil springs, the spring height H [mmml] and the twisting that occurs in the bare wires when an axial force is applied. The stress (τ [kgf/mm''l) is given by the following equation.
H=A@Naad・−−−・・■ τ=8・P −D/π・d3 ・・・・・・ ■但し。H=A@Naad・---・・■ τ=8・P −D/π・d3・・・・・・ ■However.
A:定数 、Na:有効巻数
d:素線径[m m ]
P:ばねにかかる荷重[kgf]
D:コイル平均径[m m ]
ところで、弁ばねの高さを低くすることによって、弁ば
ねのみではなく、弁の駆動系全体及びそれを保護してい
るブロックを軽量化することができる。A: Constant, Na: Effective number of turns d: Wire diameter [mm] P: Load applied to spring [kgf] D: Coil average diameter [mm] By the way, by lowering the height of the valve spring, the valve spring Not only that, but also the entire valve drive system and the block protecting it can be made lighter.
従って、ばねの高さを低くするためには、■式から有効
巻数(Na )を減少させ、素線径(d)を小さくする
ことが必−要となる。Therefore, in order to reduce the height of the spring, it is necessary to reduce the effective number of turns (Na) and the diameter (d) of the strands from equation (2).
しかし、この場合には0式からばねに作用する繰り返し
応力が大きくなるため、ばねの疲労寿命が低下してしま
うという相反関係がある。However, in this case, there is a contradictory relationship in that the repetitive stress acting on the spring increases from equation 0, and the fatigue life of the spring decreases.
またエンジン等においてはその出力を向上させるために
はエンジンの回転数を上げることが最も有効である。従
って、エンジン等の要部に使用されているばねについて
は、その固有振動数を大きくすることが望まれることが
少なくない。Furthermore, in order to improve the output of an engine, etc., it is most effective to increase the engine speed. Therefore, it is often desirable to increase the natural frequency of springs used in important parts of engines and the like.
尚、固有振動数は
fl=3.56X10S ad/Na1ID2・・・・
・・■
(JIS B2704)
で与えられる。In addition, the natural frequency is fl=3.56X10S ad/Na1ID2...
...■ Given by (JIS B2704).
このためには、有効巻数(Na )を減少させ、ばねの
素線径(、d)を大きくすることが必要となる。For this purpose, it is necessary to reduce the effective number of turns (Na) and increase the wire diameter (, d) of the spring.
しかし、素線径(d)を大きくすると軽量化に不適当で
あるため、素線径(d)を一定にして有効巻数(Na
)を減少させることになるが、この場合にもばねに作用
する綴り返し応力が大きくなるため、ばねの疲労寿命が
低下してしまう゛という相反関係がある。However, increasing the wire diameter (d) is inappropriate for weight reduction, so the effective number of turns (Na
), but in this case as well, the reversing stress acting on the spring increases, resulting in a reciprocal relationship: the fatigue life of the spring decreases.
以上のことから、ばねの疲労寿命を保証するためにはば
ねの素材の強度を向上させることが必要となる。From the above, in order to guarantee the fatigue life of the spring, it is necessary to improve the strength of the spring material.
現在使用されているばね用ワイヤーの代表的素材である
5i−Cr鋼でも、オイルテンパー処理での焼もどし温
度を下げることによって高強度ワイヤーは得られるが、
この場合には次のような問題点が生じる。Even with 5i-Cr steel, which is the typical material for spring wires currently in use, high-strength wires can be obtained by lowering the tempering temperature during oil tempering.
In this case, the following problems arise.
焼もどし処理は溶融鉛を使用することにより行なわれる
が、現行のS i −Cr鋼で高強度化を図るためには
、素線径4−0[mmφ]のワイヤーで溶融鉛温度を4
00℃以下にしなければならない、しかし、溶融鉛の融
点は327℃であり、この処理温度では処理鋼線の表面
に鉛が付着してしまう。Tempering treatment is carried out using molten lead, but in order to increase the strength of current Si-Cr steel, it is necessary to heat the molten lead to 4 mm using a wire with an strand diameter of 4-0 [mmφ].
However, the melting point of molten lead is 327°C, and at this processing temperature, lead will adhere to the surface of the treated steel wire.
また、引張強さを220[kgf/mm″]以上にする
と延性が極端に低下し、ばねコイリング時での折損や疲
労寿命の低下を招いてしまう。Furthermore, if the tensile strength is 220 [kgf/mm''] or more, the ductility will be extremely reduced, leading to breakage during spring coiling and a shortened fatigue life.
一般に成形されたばねは、ばね成形時の歪除去と弾性限
の向上のためブルーイング処理がなされるが、この際に
現行の5i−Cr鋼で高強度を維持するためにはブルー
イング温度が低くなり、上記の問題点について充分な効
果が得られなくなる。Generally, formed springs are subjected to bluing treatment to remove strain during spring forming and to improve the elastic limit, but in order to maintain high strength with current 5i-Cr steel, the bluing temperature must be low. Therefore, sufficient effects cannot be obtained regarding the above-mentioned problems.
そこで、本発明は高強度でも高い延性を有し、且つ高い
ブルーイング処理温度でもその強度を維持する鋼を提供
することを目的として創作された。Therefore, the present invention was created with the aim of providing a steel that has high ductility even at high strength and maintains its strength even at high bluing treatment temperatures.
[問題点を解決するための手段] 本発明は次の二発明からなる。[Means for solving problems] The present invention consists of the following two inventions.
第一の発明は、化学成分が重量%で、Co0゜5〜0.
8%、Si:0.8〜2.0%、M n : 0 、1
〜0 、7%、Cr:0.5〜1゜2%、Al:0.0
05% 以下でV、Mo、Nb、Taのうち一種または
2種以上を0゜05〜0.5%添加し、残部Feである
耐疲労性、耐へたり性に優れた鋼に係る。In the first invention, the chemical components are 0.5 to 0.0% by weight.
8%, Si: 0.8-2.0%, Mn: 0, 1
~0, 7%, Cr: 0.5-1°2%, Al: 0.0
The present invention relates to a steel having excellent fatigue resistance and set resistance, in which one or more of V, Mo, Nb, and Ta is added in an amount of 0.05 to 0.5%, and the balance is Fe.
第二の発明は、第一の発明の鋼をオイルテンパー処理し
、引張強さを素線径に対して、71 d −172+
173≦T 、 S <71d−1/2+20:](T
、S:引張強さ[k g f / mゴ]d:素線径[
mml ’ )なる関係を有するように調整
した弁ばね用鋼線に係る。In the second invention, the steel of the first invention is subjected to oil tempering treatment, and the tensile strength is 71 d -172+ with respect to the wire diameter.
173≦T, S<71d-1/2+20:](T
, S: Tensile strength [kg f / m] d: Wire diameter [
This relates to a steel wire for a valve spring that is adjusted to have the following relationship:
[作用]
第一の発明の鋼について、化学成分を限定した理由を説
明する。[Operation] The reason for limiting the chemical composition of the steel of the first invention will be explained.
C:
Cは強度を大きくするために有効な元素であるが、0.
5%未満では充分な強度を得ることができない、一方、
0.8%を越えると靭性が劣化する。従って、C量を(
15〜0.8%とした。C: C is an effective element for increasing strength, but 0.
If it is less than 5%, sufficient strength cannot be obtained;
If it exceeds 0.8%, toughness will deteriorate. Therefore, the amount of C is (
The content was set at 15% to 0.8%.
Si:
Siは脱酸に有効で、且つオイルテンパーした場合の強
度に大きく寄与する元素であり、0.8%未満では高強
度にすることが困難になる。一方、2.0%を越えると
脱炭を助長して表面の強度を低下させるばかりでなく、
A1の混入源となる。後記するように、AIの増加は非
延性介在物を生成せしめるため、ばねの疲労特性が悪く
なる。従って、Si量を0.8〜2.0%とした。Si: Si is an element that is effective in deoxidizing and greatly contributes to strength when oil tempered, and if it is less than 0.8%, it is difficult to achieve high strength. On the other hand, if it exceeds 2.0%, it not only promotes decarburization and reduces the surface strength, but also
This is a source of A1 contamination. As will be described later, an increase in AI causes the formation of non-ductile inclusions, which deteriorates the fatigue properties of the spring. Therefore, the amount of Si was set to 0.8 to 2.0%.
Mn:
焼入焼もどし処理では、鋼の焼入性が重要であり、この
ためにはMnの添加がなされなければならない、また、
鋼の靭延性に有害なSを固定する役割を果たすため、あ
る程度のMnの添加が必要となる。しかし、添加しすぎ
ると、処理鋼の延性が低下し、高強度ワイヤーが得られ
なくなる。従って、Mn量を0.1〜0.7%とした。Mn: In the quenching and tempering process, the hardenability of the steel is important, and for this purpose Mn must be added.
It is necessary to add a certain amount of Mn to play the role of fixing S, which is harmful to the toughness and ductility of steel. However, if it is added too much, the ductility of the treated steel decreases, making it impossible to obtain a high-strength wire. Therefore, the amount of Mn was set to 0.1 to 0.7%.
(第1図参照)
■ :
■の添加は結品粒を微細にし、処理鋼の靭延性の向上に
寄与する。また、耐へたり性の改善にも有効である。更
に、■ばばね成形後の歪取り焼鈍及びオイルテンパー処
理において二次析出強化を図るため、焼もどし軟化抵抗
が大きくなり、高強度化に有効である。しかし、0゜0
5%以下ではその効果は非常に小さくなる。(See Figure 1) ■: The addition of ■ makes the grains finer and contributes to improving the toughness and ductility of the treated steel. It is also effective in improving resistance to settling. Furthermore, (2) secondary precipitation strengthening is achieved in strain relief annealing and oil tempering treatment after spring forming, which increases tempering softening resistance and is effective in increasing strength. However, 0゜0
Below 5%, the effect becomes very small.
(第2図参照)
一方、オイルテンパー処理におけるオーステナイト化時
に過度に■を添加すると溶は込まず、未溶解炭化物がオ
イルテンパー材に残ってしまい、この未溶解炭化物が粗
大になると処理材の延性が低下する。従って、この添加
量には上限があり、0.5%である。(See Figure 2) On the other hand, if too much ■ is added during austenitization in oil tempering, it will not dissolve and undissolved carbides will remain in the oil tempered material, and if these undissolved carbides become coarse, the ductility of the treated material will increase. decreases. Therefore, there is an upper limit to this amount of addition, which is 0.5%.
以上から、■量を0.05〜0.5%とした。Based on the above, the amount (1) was set to 0.05 to 0.5%.
A I =
AIを0.005%以上添加した材料では多数(7)A
1203が生成すル、コc7) A l 203は非延
性であるだけでなく、非常に硬度が高いため、疲労試験
において早期破壊が発生する。このため、AIの添加量
は極力おさえるべきであり、o、oos%以下にする必
要がある。A I = A large number of materials containing 0.005% or more of AI (7) A
1203 is produced.Al 203 is not only non-ductile, but also very hard, leading to premature failure in fatigue tests. For this reason, the amount of AI added should be suppressed as much as possible, and should be less than 0.00%.
M o 、 N b 、 T a :
これらのものは、■と同様に析出強化を付与する元素で
あり、単独または複合して添加することにより高強度化
に効果がある。しかし、0.05%以下ではその効果が
小さく、一方。Mo, Nb, Ta: These are elements that impart precipitation strengthening like (2), and are effective in increasing strength when added alone or in combination. However, the effect is small below 0.05%.
0.5%以上では粗大な未溶解炭化物ができるため、0
.05〜0.5%とした。If it exceeds 0.5%, coarse undissolved carbides will form, so 0.
.. 05 to 0.5%.
次に第二の発明の引張強さを限定した理由について説明
する。Next, the reason for limiting the tensile strength of the second invention will be explained.
一般的にばねの素線の疲労限はワイヤーの引張強度が高
いほど向上する。Generally, the fatigue limit of a spring wire increases as the tensile strength of the wire increases.
しかし、引張強さがT 、 S =7fd−12+15
5で与えられる強度より10 [kgf/mm’l程度
大きくても疲労限の向上は顕著でなく、目的を達成する
ことができない、一方、T、5=71d−1/2+20
3で与えられる強度より大きくなると靭延性が不足し、
コイリング時に折損が増えるだけでなく、疲労限も低下
してゆく、従って、前記の鋼をオイルテンパー処理し、
引張強さを素線径に対して、
71d l/2+ 173≦T、S≦71d−1/2+
203なる関係を有するように調整することにより、弁
ばね用鋼線を得ることとした。However, the tensile strength is T, S = 7fd-12+15
Even if the strength is about 10 [kgf/mm'l larger than the strength given by
If the strength is greater than that given by 3, the toughness and ductility will be insufficient,
Not only does breakage increase during coiling, but the fatigue limit also decreases.Therefore, the above-mentioned steel is treated with oil tempering,
Tensile strength versus strand diameter: 71d l/2+ 173≦T, S≦71d-1/2+
A steel wire for a valve spring was obtained by adjusting the relationship to have a relationship of 203.
[実施例]
第1表に示した供試鋼(a−f)により素線径4.2[
mmφ]ワイヤーを製造し、オイルテンパーした後に中
村式回転曲げ疲労試験機で試験を行い、疲労限度を求め
た。[Example] Using the test steels (a-f) shown in Table 1, the strand diameter was 4.2[
mmφ] wire was manufactured, oil-tempered, and then tested using a Nakamura rotary bending fatigue tester to determine the fatigue limit.
この結果は第2表に示されるが、本発明鋼であるa、b
は高強度でも優れた疲労特性を示しているが、比較鋼c
、dは強度を上げると逆に疲労特性が悪くなる。尚、比
較鋼e、fは高強度にすることが困難である。The results are shown in Table 2, and the invention steels a, b
shows excellent fatigue properties even at high strength, but comparative steel c
, d, when the strength is increased, the fatigue properties worsen. Note that it is difficult to make comparative steels e and f high in strength.
また、鋼種a、eについて、ばね定数2゜5[kgf/
mm]のコイルばねを製造し、ワイヤーの引張強さの1
72の応力でセッチングを施し、試験応力が80[kg
f/mm″]となるように一定荷重を24 [hrl、
tso℃で加えて残留せん断歪を測定した。Also, for steel types a and e, the spring constant is 2゜5 [kgf/
mm] of the coil spring, and the tensile strength of the wire is 1
Setting was performed with a stress of 72, and the test stress was 80 [kg
Apply a constant load to 24 [hrl,
The residual shear strain was measured at tso°C.
この結果は第3表に示されるが、本発明鋼aは比較tR
eと同じ引張強さでもへたりが少ないが、高強度にする
ことによって更に耐へたり性が改善されていることが理
解できる。The results are shown in Table 3, and the invention steel a has a comparative tR
It can be seen that even if the tensile strength is the same as e, there is little sagging, but by increasing the strength, the sagging resistance is further improved.
[発明の効果1
本発明鋼を使用することにより、従来からの5t−Cr
鋼と同様の焼もどし及びブルーイング処理温度で処理す
ることによって、T、5=71d−1/2 +173
[kgf/mm″1以上の引張強さを有するオイル
テンパー線が得られるだけでなく、超微細粒を有する鋼
線を製造することが可能となる。[Effect of the invention 1 By using the steel of the present invention, the conventional 5t-Cr
By processing at tempering and bluing temperatures similar to steel, T,5 = 71d-1/2 +173
Not only can an oil tempered wire with a tensile strength of 1 kgf/mm'' or more be obtained, but also a steel wire with ultrafine grains can be produced.
また、このワイヤーを使用することにより。Also, by using this wire.
従来より高い疲労強度を有した弁ばね用鋼線を得ること
ができ、更に本発明鋼ではAIが極端に低いレベルに押
さえられているため、疲労に有害な非延性介在物も非常
に少なくすることができる。It is possible to obtain a steel wire for valve springs that has higher fatigue strength than conventional steel wires, and since the steel of the present invention suppresses AI to an extremely low level, non-ductile inclusions that are harmful to fatigue are also extremely reduced. be able to.
従って、従来材(S i−Cr鋼等)よりも高い疲労強
度を得ることが可能となり、エンジンの小型化や軽量化
に寄与するだけでなく、小型のばねで高出力の機能を内
燃機関に与えることが可能となる。Therefore, it is possible to obtain higher fatigue strength than conventional materials (Si-Cr steel, etc.), which not only contributes to the miniaturization and weight reduction of engines, but also allows internal combustion engines to have high output functions with small springs. It becomes possible to give.
また、■の添加によりオイルテンパー線にバナジウムカ
ーバイトを微細析出させ、且つ前記のように超微細粒を
有した鋼線の製造が可能となるため、弁ばね用鋼線で重
要な耐へたり性や耐熱性も向上せしめる。In addition, by adding (■), vanadium carbide is finely precipitated in the oil-tempered wire, and it is possible to manufacture steel wire with ultra-fine grains as described above, which improves the resistance to fatigue, which is important in steel wire for valve springs. It also improves properties and heat resistance.
第2表 (Kgf/+m2 ) 第3表Table 2 (Kgf/+m2) Table 3
第1図は横軸にMnの含有量を、縦軸に引張強さをとり
、Mnの含有上限の限定理由を示すグラフ、第2図は横
軸にブルーイング温度を、縦軸に引張強さをとり、■の
含有量をパラメータとしてブルーイング温度と引張強さ
の関係を示したグラフである。
Mn量(wt筋
第2図
引張強さくkgf/mm’)
ブルーイング温度(’0)
手続補正書
1、事件の表示
昭和61年特許願第118207号
2、発明の名称
耐疲労性、耐へたり性に優れた鋼
及び同調を利用した弁ばね用鋼線
3、補正をする者
事件との関係 特許出願人
住 所 兵庫県神戸市中央区脇浜町
1丁目3番18号
名 称 (119)株式会社神戸製鋼所代表者 牧
冬 彦
4、代 理 人 〒160電話03(358)8840
住 所 東京都新宿区本塩町 12
6、補正により増加する発明の数 07、
補正の対象
明細書の特許請求の範囲の欄及び発明の詳細な説明の欄
8、補正の内容
(1)明細書の特許請求の範囲を別紙の通り補正する。
(2)明細書の第10頁第3行と第4行の間に、r
Cr:
Crは脱炭を防止するのに有効な元素であり、また、鋼
の焼もどし軟化抵抗を大きくするため、高強度化に有効
である。0.5%未満ではその効果は少なく、1.2%
を越えると靭性が劣化するので0.5%〜1.2%とし
た。」
と挿入する。
特許請求の範囲
(1)化学成分が重量%で、
C:0.5〜0.8%
Si:0.8〜2.0%
M n + 0 、1〜0 、7%
Cr:0.5〜1.2%
A1:0.005% 以下で、
V、Mo、Nb、Taの一種または2種以上を0.05
〜0.5%添加し、残部Feであることを特徴とする耐
疲労性、耐へたり性に優れた鋼。
(2)化学成分が重量%で、
C:0.5〜0.8%
Si:0.8〜2.0%
M n : 0 、1〜0 、7%
Cr : 0 、5〜1 、2%
Al:0.005% 以下で、
V、Mo、Nb、、Taのうち一種または2種以上を0
.05〜0.5%添加し、残部Feである鋼をオイルテ
ンパー処理し、引張強さを素線径に対して。
71d−1/2+ 173≦T、S≦71 d −1/
2 + 203(T、S:引張強さ[k g’f /
mm’]d:素線径[m m ] )なる関
係を有するように調整したことを特徴とする弁ばね用鋼
線。Figure 1 is a graph showing the reasons for limiting the upper limit of Mn content, with the horizontal axis representing the Mn content and the vertical axis representing the tensile strength. Figure 2 is a graph showing the reason for limiting the upper limit of Mn content. This is a graph showing the relationship between bluing temperature and tensile strength with the content of ■ being taken as a parameter. Mn content (wt muscle Figure 2 tensile strength kgf/mm') Blueing temperature ('0) Procedural amendment 1, case description 1986 Patent Application No. 118207 2, name of invention Fatigue resistance, resistance to Steel wire with excellent flexibility and steel wire for valve springs using tuning 3, and its relationship to the amended case Patent applicant address 1-3-18 Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo Name (119) Kobe Steel, Ltd. Representative: Fuyuhiko Maki 4, Agent: 160 Telephone: 03 (358) 8840
Address: 12-6, Honshio-cho, Shinjuku-ku, Tokyo, Number of inventions increased due to amendment: 07,
Claims column and Detailed Description of the Invention column 8 of the specification to be amended, contents of the amendment (1) The claims of the specification will be amended as shown in the attached sheet. (2) Between the third and fourth lines of page 10 of the specification, r
Cr: Cr is an effective element for preventing decarburization, and is also effective for increasing the strength of steel because it increases resistance to tempering and softening. If it is less than 0.5%, the effect is small, 1.2%
Since toughness deteriorates when the content exceeds 0.5% to 1.2%. ” Insert. Claims (1) Chemical components in weight%: C: 0.5-0.8% Si: 0.8-2.0% M n + 0, 1-0, 7% Cr: 0.5 ~1.2% A1: 0.005% or less, 0.05% of one or more of V, Mo, Nb, Ta
A steel with excellent fatigue resistance and sag resistance, characterized in that ~0.5% is added and the balance is Fe. (2) Chemical components in weight%: C: 0.5-0.8% Si: 0.8-2.0% Mn: 0, 1-0, 7% Cr: 0, 5-1, 2 % Al: 0.005% or less, one or more of V, Mo, Nb, Ta is 0
.. 05 to 0.5%, the remainder being Fe, was oil tempered, and the tensile strength was determined relative to the wire diameter. 71d-1/2+ 173≦T, S≦71 d-1/
2 + 203 (T, S: tensile strength [k g'f /
A steel wire for a valve spring, characterized in that the steel wire is adjusted to have the following relationship: mm']d: strand diameter [mm].
Claims (2)
〜0.5%添加し、残部Feであることを特徴とする耐
疲労性、耐へたり性に優れた鋼。(1) Chemical components in weight%: C: 0.5-0.8% Si: 0.8-2.0% Mn: 0.1-0.7% Cr: 0.5-2.0% Al: 0.005% or less, one or more of V, Mo, Nb, Ta at 0.05% or less
A steel with excellent fatigue resistance and sag resistance, characterized in that ~0.5% is added and the balance is Fe.
05〜0.5%添加し、残部Feである鋼をオイルテン
パー処理し、引張強さを素線径に対して、 71d^−^1^/^2+173≦T.S≦71d^−
^1^/^2+203(T.S:引張強さ[kgf/m
m^2] d:素線径[mm]) なる関係を有するように調整したことを特徴とする弁ば
ね用鋼線。(2) Chemical components in weight%: C: 0.5-0.8% Si: 0.8-2.0% Mn: 0.1-0.7% Cr: 0.5-1.2% Al: 0.005% or less, and 0.005% or less of one or more of V, Mo, Nb, and Ta.
05 to 0.5%, the balance being Fe is oil tempered, and the tensile strength is determined to be 71d^-^1^/^2+173≦T. S≦71d^-
^1^/^2+203 (T.S: tensile strength [kgf/m
m^2] d: Wire diameter [mm]) A steel wire for a valve spring, characterized in that it is adjusted to have the following relationship.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11820786A JPS62274051A (en) | 1986-05-21 | 1986-05-21 | Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11820786A JPS62274051A (en) | 1986-05-21 | 1986-05-21 | Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62274051A true JPS62274051A (en) | 1987-11-28 |
JPH049860B2 JPH049860B2 (en) | 1992-02-21 |
Family
ID=14730850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11820786A Granted JPS62274051A (en) | 1986-05-21 | 1986-05-21 | Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62274051A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63303036A (en) * | 1987-01-14 | 1988-12-09 | Suzuki Kinzoku Kogyo Kk | High-strength steel wire |
JPH01184259A (en) * | 1988-01-18 | 1989-07-21 | Nippon Steel Corp | High-strength spring steel |
JPH02247354A (en) * | 1989-03-20 | 1990-10-03 | Sumitomo Electric Ind Ltd | Oil tempered steel wire having excellent fatigue resistance or the like |
JPH03219045A (en) * | 1989-06-09 | 1991-09-26 | Thyssen Edelstahlwerke Ag | Precipitation hardened ferrite-perlite steel |
EP0614994A1 (en) * | 1993-02-17 | 1994-09-14 | Sumitomo Electric Industries, Ltd. | Spring steel wires and process for producing the same |
DE19546204C1 (en) * | 1995-12-11 | 1997-03-20 | Max Planck Inst Eisenforschung | High strength steel object prodn.,esp. leaf spring |
FR2764219A1 (en) * | 1997-06-04 | 1998-12-11 | Ascometal Sa | METHOD OF MANUFACTURING A STEEL SPRING, OBTAINED SPRING AND STEEL FOR THE MANUFACTURE OF SUCH A SPRING |
JP2005344199A (en) * | 2004-06-07 | 2005-12-15 | Kobe Steel Ltd | Steel material to be cold-bent |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5931850A (en) * | 1982-08-17 | 1984-02-21 | Daido Steel Co Ltd | Soft-nitrided low-alloy steel |
JPS6086245A (en) * | 1983-10-17 | 1985-05-15 | Daido Steel Co Ltd | Spring grade steel |
JPS60103155A (en) * | 1983-11-10 | 1985-06-07 | Sumitomo Metal Ind Ltd | Spring steel with superior durability and settling resistance |
JPS62177152A (en) * | 1986-01-30 | 1987-08-04 | Daido Steel Co Ltd | Spring steel |
JPS62193823A (en) * | 1986-02-19 | 1987-08-26 | 住友電気工業株式会社 | Light-weight composite metallic material for spring |
-
1986
- 1986-05-21 JP JP11820786A patent/JPS62274051A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5931850A (en) * | 1982-08-17 | 1984-02-21 | Daido Steel Co Ltd | Soft-nitrided low-alloy steel |
JPS6086245A (en) * | 1983-10-17 | 1985-05-15 | Daido Steel Co Ltd | Spring grade steel |
JPS60103155A (en) * | 1983-11-10 | 1985-06-07 | Sumitomo Metal Ind Ltd | Spring steel with superior durability and settling resistance |
JPS62177152A (en) * | 1986-01-30 | 1987-08-04 | Daido Steel Co Ltd | Spring steel |
JPS62193823A (en) * | 1986-02-19 | 1987-08-26 | 住友電気工業株式会社 | Light-weight composite metallic material for spring |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63303036A (en) * | 1987-01-14 | 1988-12-09 | Suzuki Kinzoku Kogyo Kk | High-strength steel wire |
JPH01184259A (en) * | 1988-01-18 | 1989-07-21 | Nippon Steel Corp | High-strength spring steel |
JPH02247354A (en) * | 1989-03-20 | 1990-10-03 | Sumitomo Electric Ind Ltd | Oil tempered steel wire having excellent fatigue resistance or the like |
JPH03219045A (en) * | 1989-06-09 | 1991-09-26 | Thyssen Edelstahlwerke Ag | Precipitation hardened ferrite-perlite steel |
EP0614994A1 (en) * | 1993-02-17 | 1994-09-14 | Sumitomo Electric Industries, Ltd. | Spring steel wires and process for producing the same |
DE19546204C1 (en) * | 1995-12-11 | 1997-03-20 | Max Planck Inst Eisenforschung | High strength steel object prodn.,esp. leaf spring |
FR2764219A1 (en) * | 1997-06-04 | 1998-12-11 | Ascometal Sa | METHOD OF MANUFACTURING A STEEL SPRING, OBTAINED SPRING AND STEEL FOR THE MANUFACTURE OF SUCH A SPRING |
JP2005344199A (en) * | 2004-06-07 | 2005-12-15 | Kobe Steel Ltd | Steel material to be cold-bent |
Also Published As
Publication number | Publication date |
---|---|
JPH049860B2 (en) | 1992-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5541418B2 (en) | Spring steel and spring | |
EP3464669B1 (en) | A precipitation hardening steel and its manufacture | |
JP4097151B2 (en) | High strength spring steel wire and high strength spring with excellent workability | |
JP2003213372A (en) | Steel wire for spring and spring | |
JPS62274051A (en) | Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same | |
JP2783145B2 (en) | Steel for nitrided spring and nitrided spring with excellent fatigue strength | |
JP2003105496A (en) | Spring steel having low decarburization and excellent delayed fracture resistance | |
EP1612287A1 (en) | Steel for spring being excellent in resistance to setting and fatigue characteristics | |
JPH0796697B2 (en) | High strength spring steel | |
JP2661911B2 (en) | High strength spring steel wire | |
JP3075314B2 (en) | Manufacturing method of steel wire for ultra high strength spring | |
JPH064904B2 (en) | ▲ High ▼ strength oil tempered wire for spring | |
JP2004190116A (en) | Steel wire for spring | |
JPH05331597A (en) | Coil spring with high fatigue strength | |
JPH04247824A (en) | Manufacture of high strength spring | |
JPS6130653A (en) | High strength spring steel | |
JPH0874006A (en) | Precipitation hardening type stainless steel excellent in strength and twisting property | |
JPH0570890A (en) | Steel for high strength bolt excellent in delayed fracture resistance | |
JP4515347B2 (en) | Method for determining fatigue resistance of spring steel wires and spring steel wires | |
JPH08295984A (en) | Steel for flat spring, excellent in delayed fracture resistance | |
KR950013193B1 (en) | Low decorburizing & high toughness spring steel | |
JPH07292435A (en) | High strength spring steel | |
JPH07207412A (en) | Steel for grain stabilizing carburization | |
JPH0711422A (en) | Spring excellent in fatigue strength | |
JPH0726347A (en) | Steel wire for high strength suspension spring, excellent in cold formability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |